Energy-Aware Standby-Sparing on
Heterogeneous Multicore Systems

Abhishek Roy, Hakan Aydin
Department of Computer Science
George Mason University
Fairfax, Virginia 22030
aroy6@gmu.edu, aydin@cs.gmu.edu

ABSTRACT

Standby-sparing systems where one processor is used as pri-
mary while another one is deployed as spare have been used
to provide high reliability to real-time embedded systems.
To reduce the energy consumption, the primary uses DVFS
while the spare employs DPM to postpone the backup tasks.
In this paper, we re-visit the problem for heterogeneous mul-
ticore systems that include both high-performance and low-
power cores. We identify and address the two main dimen-
sions of the problem, namely, what type of core to use as the
primary or backup, and how to make frequency assignments
on the primary to maximize energy savings.

1. INTRODUCTION

Reliability is an increasingly important design dimension
for real-time embedded systems including those deployed for
safety-critical applications in the areas of industrial control,
automotive, and high-confidence medical systems. In such
systems, provisions must be made to tolerate both transient
and permanent faults. Transient faults are primarily caused
by electromagnetic interference and cosmic rays (including
alpha particles) [10]. They manifest in the form of soft errors
(or single event upsets (SEUs)) that appear in the proces-
sor core logic or memory subsystems, leading to incorrect
computations. Moreover, with increased technology scaling
and the use of aggressive low-power design techniques such
as near-threshold voltage operation, the CMOS circuits be-
come more vulnerable to transient faults [7,15]. By their
nature, the transient faults are short-lived, and it is often
possible to invoke an alternative back-up task after such a
fault is detected on a specific task [2]. The permanent faults,
on the other hand, are often the results of manufacturing
defects, aging, or adverse temperature/environmental con-
ditions. It is often necessary to have redundant hardware,
in the form of extra processing units, in order to tolerate the
permanent faults [10].

A popular approach that allows to tolerate both transient
and permanent faults is the standby-sparing system [4]. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

DAC ’17, June 18-22, 2017, Austin, TX, USA
© 2017 ACM. ISBN 978-1-4503-4927-7/17/06. .. $15.00
DOL: http://dx.doi.org/10.1145/3061639.3062238

Dakai Zhu
Department of Computer Science
University of Texas at San Antonio

San Antonio, Texas 78249
dakai.zhu@utsa.edu

a standby-sparing system, one processor (called primary)
executes the main tasks, while a back-up copy for each task is
allocated to a second (spare) processor. The spare processor
is kept in low-power state thanks to the Dynamic Power
Management (DPM) technique, unless a fault is detected on
the primary processor. In case of a permanent fault, the
spare completely takes over the execution of the workload.
For transient faults, the spare (re-)executes only the back-up
copies of the affected task(s).

In energy-aware standby-sparing configuration, the pri-
mary processor uses Dynamic Voltage and Frequency Scal-
ing (DVFS) to execute the main tasks at reduced processing
frequencies to save power. The spare processor uses only
DPM,; it delays the back-ups as much as possible in order to
cancel them dynamically to save power, if the correspond-
ing main task(s) complete without errors. Thus, a common
problem addressed in the literature is to determine the volt-
age/frequency assignments for main tasks allocated to the
primary processor for various task models [4,5,8,9]. A fre-
quent theme in this line of research is to minimize the overlap
between the primary and back-up copies of the tasks to re-
duce the energy consumption of the spare, because it is not
always possible to delay the back-ups by significant margins,
in view of the task deadlines [5,9,13].

The existing energy-aware standby-sparing studies focus
exclusively on homogeneous dual-core systems [4,5,9]. Re-
cently, heterogeneous (asymmetric) multicore systems have
been attracting much attention due to their ability to ex-
ploit power and performance trade-offs for varying work-
loads [11,12]. In those systems, some “big” cores offer high-
performance but exhibit high-power consumption profiles.
The power-efficient (“little”) cores, on the other hand, have
modest performance characteristics. A well-known exam-
ple is ARM big.LITTLE systems that combine high per-
formance out-of-order (e.g., ARM Cortex-A15) cores with
power-efficient in-order (e.g., ARM Cortex-A7) cores [1].
In such systems, the “big” cores are activated when high-
performance is needed, while “little” cores can be sufficient
for modest load levels in order to save energy.

In this paper, we re-visit the energy-aware standby-sparing
problem in the context of emerging heterogeneous multi-core
systems for real-time embedded applications. In addition to
the problem of determining the frequency assignments on
the primary, the new settings introduce a new dimension,
namely, whether to use the power-efficient core as the pri-
mary or spare. We investigate both of these dimensions,
propose solutions, and present a comprehensive experimen-
tal evaluation. Our results indicate that, unlike the homoge-

T1 T2 T3

B, B, |Bs

Y

I T T
T @t

Figure 1: A standby-sparing system

neous case, allowing some overlaps between the primary and
back-up copies may help to reduce energy, in particular when
the high-performance core is used as the primary. We also
show that, in general, designating the power-efficient core as
the primary and high-power core as the spare is preferable,
except when the system utilization is high. Our analysis is
performed under the realistic assumption that the execution
time and power consumption of different applications scale
by different ratios on the big and little cores [12].

The rest of the paper is organized as follows. In Section 2,
we present our system model and assumptions. In Section 3,
we develop our proposed schemes for primary /spare role des-
ignation, and the task frequency assignment. We experi-
mentally evaluate the proposed schemes in Section 4 before
concluding in Section 5.

2. SYSTEM MODEL AND ASSUMPTIONS
2.1 Platform and Application model

We consider a single-ISA heterogeneous dual-core system
that consists of a high-performance and power-hungry (“big”)
core, and a relatively slow but power-efficient (“little”) core.
The application consists of a set of n real-time periodic tasks
{71, ..., 7o} that must complete their execution by a specific
deadline D, which is also equal to the common period. This
specific model is also called frame-based model in the lit-
erature [14,15]. The worst-case number of cycles required
by task 7; is denoted by C;. When executed at the fre-
quency f, the task may require up to W; = C;/f time units
to complete. Due to the architectural differences (such as
in-order versus out-of-order processors), the same task may
require different number of cycles and hence, different exe-
cution times, on each type of cores. Throughout the paper,
we will use the superscripts LP and H P, respectively, to
denote the values of these variables for the low-power and
high-power cores (e.g., CFF, Wi, ¢HP WHP). The max-
imum processing frequency on low-power and high-power
cores is denoted by fHE and fEP. | respectively.

We employ the energy-aware standby sparing technique
on the dual-processor platform [5,9]. One processing core is
designated as the primary and the other one as the spare,
as shown in Figure 1. Throughout the paper, we show the
primary processor at the top, and the spare processor at the
bottom in the figures. When a task (7;) is allocated to the
primary core, a back-up copy (B;) is also allocated to the
spare core. The main and backup tasks follow the same
execution order on their respective processors. The pri-
mary core uses the DVFS [3] technique to save energy. The
spare core is DPM-enabled; it remains in low-power state

as much as possible, delaying the execution of the back-up
tasks while still meeting the deadline (Figure 1). Whenever
a main task completes, the acceptance (or, sanity) tests are
performed [10] to check the existence of errors induced by
transient faults. If there are no errors, the (remaining part
of the) corresponding back-up task on the spare processor is
cancelled dynamically. For example, in Figure 1, B; and B3
are completely cancelled, because the corresponding main
tasks (71 and 73) complete successfully before the sched-
uled start times of B; and Bs. Similarly, a part of By is
cancelled as soon as 72 completes successfully (we are us-
ing the dashed lines to indicate cancelled executions in the
schedules). In case of a transient fault, the back-up task
executes as specified in the spare schedule. If a permanent
fault affects the primary processor, the spare copy executes
the back-up tasks after that point. The back-up tasks are
executed at the maximum processing frequency of the spare
core. This energy-aware standby-sparing arrangement can
tolerate a single fault of either processor, while enabling the
recovery of transient faults affecting any subset of the main
tasks on the primary processor [5].

2.2 Power Model

We model the dynamic power consumption of a task 7;
as P;(f) = a; f* + o; where a; denotes the switching capac-
itance, «; indicates the frequency-independent power con-
sumption [9,14], and f is the processing frequency of the
task. Due to the asymmetric nature of the dual-core sys-
tem, the tasks exhibit different power consumption charac-
teristics on different cores. Again, we are using the super-
scripts HP and LP, to distinguish between the values of the
task power consumption parameters on the high-power and
power-efficient cores, respectively (e.g., aF”, PFT).

Each core executes tasks in the active state, dissipating
power as determined by the characteristics of the current
task and processing frequency. When a core does not exe-
cute tasks, it remains in the low-power (idle) state. The low-
power (idle) power consumption of the high-performance
and low-power cores are denoted by PHE and PLE | respec-
tively. We assume those figures include the static power
consumption of the corresponding core as well. Finally, the
energy consumption during a time interval is given by the
aggregate power consumption during the same interval.

The existence of the frequency-independent power com-
ponent implies the existence of an energy-efficient frequency
(fee) below which DVFS affects the overall energy consump-
tion negatively [15]. The value of fe. can be analytically
derived using standard techniques [15].

Problem Statement. In this paper, we address the follow-
ing problem: Given a set of frame-based real-time tasks and
a heterogeneous dual-core system, minimize the overall en-
ergy consumption while still meeting the deadlines, by de-
termining;:

1. which core should be designated as the primary and
spare in the standby-sparing system, and,

2. what processing frequency assignments should be made
to tasks on the primary core.

We investigate these two dimensions in Sections 3.1 and 3.2,
respectively.

3. PROPOSED SCHEMES
3.1 Primary/Backup Role Assignment

The first design dimension is to whether to designate as
the primary processor the high-performance core or low-
power core. The two options are, therefore:

e FasterP: Use II7% as primary, IT1*F as spare

e SlowerP: Use IIXT as primary, IT7 T as spare

It turns out that this decision can have a significant impact
on the overall energy consumption of the system, depending
on the workload. For instance, if a high-performance core is
used as the primary core, ideally it should be slowed down
through DVFS to reduce its energy consumption. However,
that would extend the completion times on the primary,
and the overlapped backup executions could significantly in-
crease the energy consumption on the slow, power-efficient,
spare processor. Conversely, if the low-power core is used as
the primary, due to its modest performance, the task com-
pletion times would naturally shift, increasing the overlaps
with the power-hungry spare processor.

Consider two tasks that run on a heterogeneous system
where the normalized maximum frequencies are f2I =1.0
and fLP = 0.8. Assume PHE = 0.05 and PL = 0.02.
For both tasks, af¥ = 1.0, «f¥ = 0.3, off¥ = 0.1 and
aFf =0.03. Table 1 gives task execution times (in ms), and
energy consumptions (E¥¥ E*P) on both cores (in m.J)
under respective maximum frequencies.

Table 1: Example Task Set 1

WHEP T WIP | EBP | ELF
T1 22 52 24.2 | 9.55
T2 10 24 11.0 4.4

When this task set is assigned to a homogeneous system
consisting of two high-power cores (fmar = 1.0 for both
cores) where the primary is slowed down as much as pos-
sible, the execution of the system is shown in Figure 2a.
The last 21 time units of Bi’s execution are dynamically
cancelled when 7 executes successfully, but B is executed
fully. This yields an overall energy consumption of 29.5 mJ
(in all the examples, we focus on the energy consumed in the
fault-free execution sequence, because faults are rare events).
But once the application is moved to the heterogeneous sys-
tem, we can take advantage of the power-efficient execution
on the little core. In the FasterP case (Figure 2b), the over-
lapped portion is larger than the one in Figure 2a, but the
overall energy consumption decreases to 26.51 mJ, giving
an improvement of 10.32%. This is due to the fact that
the power-efficient core is used at its maximum frequency
to execute the spare. When a SlowerP configuration is used
(Figure 2c), we have the same amount of overlap as in the
homogeneous case, but now the primary workload can be ex-
ecuted on a power-efficient core with maximum slow-down
(fi = 0.61). The energy consumption of the SlowerP system
shows a 11.77% improvement compared to the homogeneous
system. Now, if we slightly change the task set parameters
and increase the W4T¥ and W£F values to 13 and 31, re-
spectively, we can compute that the execution on FasterP
in Figure 2d yields a 10% energy savings compared to the
homogeneous system, and SlowerP yields only a 7.6% im-
provement (not shown). In this case, the increased workload

on a SlowerP configuration causes the high-power backup to
start early and execute at its maximum frequency, therefore
the FasterP configuration is more advantageous to execute
backups on the low-power spare during the unavoidable over-
lap. This example shows that the best primary/spare config-
uration to minimize the overall energy is dependent on the
characteristics of the workload at hand.

3.2 Frequency Assignment on Primary

Once all the tasks are allocated to the primary proces-
sor and their respective copies to the spare processor, the
next dimension is to determine the processing frequencies
for the main tasks on the primary. Normally, one would
want to exploit DVFS to slow down execution on the pri-
mary and save energy. But, slowing down the main copy
of the task has the potential of increasing its completion
time, and thereby increasing the overlap between the main
task and its backup copy, resulting in a higher overall energy
consumption. Moreover, through a cascading effect, such a
decision could also shift the completion times of the follow-
ing main tasks and further increase the energy consumption.

We will use a heterogeneous dual-core system with fZF =
1.0, fEP = 0.8, PHP = 0.05 and PLF, = 0.02, arranged in
a FasterP configuration, to demonstrate the execution sce-
narios and performance trade-offs of the proposed schemes.
Table 2 shows two tasks 71 and 7o, with their worst-case
execution times (in ms) and energy consumptions (in mJ)
on the low-power and high-power cores and under respective
maximum frequencies. For both of these tasks, a7 = 1.0,
ak? =06, o' = 0.1 and of” = 0.06. In the following
discussion, for brevity, all the C' and f values refer to those
on the primary (high-performance) core.

Table 2: Example Task Set 2

WHEP T WEIFP | EEP | ELF
T1 22 49 24.2 9.0
T2 13 29 14.3 5.3

We propose three schemes for the frequency assignment
to tasks on the primary core:

1. Static Frequency Assignment (Static)
2. Minimize Overlap for Current Task (MO)
3. Overlap-Aware Energy Minimization (OA)

Note that MO and OA are both dynamic/online schemes
that adjust the processor frequency of the primary at run-
time for maximum efficiency.

Static Frequency Assignment (Static). In this scheme,
the frequency assignments to the tasks are done statically,
considering the energy-efficient frequency as well as the mini-
mum (uniform) frequency that guarantees the deadline. Specif-
ically, task 7; is executed at frequency f; = Maz(f{¢, fu),
where, fu = ZDC £ is the minimum frequency that ensures
meeting the frame deadline for all tasks.

On the spare core, the backups are activated as late as
possible and they run at the maximum frequency. Figure 3a
shows the execution of the tasks in Table 2 under the Static
scheme. The tasks on the primary core are slowed down to
the maximum level to save energy, which results in a large
overlapped execution with the spare core, and ultimately
yields an overall consumption value of 40.54 mJ.

. (=032 fH=032" . =032 f,=032" . =061 fr=061" £ =035 =035 "
. . . HP .
11 | T1 | TS 1T | T1 | T I | T1 | Ty II | 1 Ty
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 6 lb 26 3‘0 4‘0 5‘0 6‘0 7‘0 Sb 9‘0 100
HP. LP HP. LP .
e B 2 II B, I B» e B, 2 o= : | B, | B,
(')T_{oz'oa};ioshsb%oahéom T1pzoab4bshsb7'osbéom ()T_{oz'oahhshsbv'oahéolm qlv_l‘oz‘oz‘oios‘us‘ufos‘og‘olo
HP LP HP LP HP LP
(a) Homogeneous System () (fHE =1.0,fE8. = 0.8) (c) (fEE = 1.0,fE, =0.8) (d) (fEL =1.0, 50, =0.8)

with FasterP configuration

with SlowerP configuration

with modified tasks (FasterP)

Figure 2: Executions under different configurations

fi=1 £ 0.7
. . D D 1 29 D
f1=0.35 fo =0.35 ™ =0.29 e 2 =0.33
. HP, .
HP: T1 T2 IHP; To HP: To
—_— T — —
0 10 20 30 40 50 60 70 80 90 160 0 10 20 30 40 50 60 70 80 90 190 0 10 20 30 40 50 60 70 80 90 100
LP. LP. LP.
nLP: | B, | B, P, B, | B; mLP; | B; | B,
T T T T T T T T T T r T T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Time —— Time ——m Time ——»

(a) Static Frequency Assignment

(b) Minimize Overlap (MO) scheme

(c) Overlap-Aware (OA) scheme

Figure 3: Executions under different schemes

(a) MO-scheme (b) OA-scheme

Figure 4: Frequency assignment with MO and OA schemes

Minimize Overlap for Current Task (MO). In this
scheme, when a main task on the primary (7;) becomes ready
to run, we attempt to choose a frequency that would al-
low the task to complete before its backup copy gets ac-
tivated (Figure 4a). That is, f; = Min(f™*", f{') where
fr = M_C_it, r; is the latest time that the backup copy of 7;
can be activated without violating any deadlines, t is the
current time, and f%* is the maximum frequency of the
primary core. In case f; is less than f{¢ or fy, we update f;
as Maz(fi, f£°, fu).

This scheme makes sure that the activation of the cur-
rent task’s backup copy is avoided whenever possible. Fig-
ure 3b shows the execution of the tasks in Table 2 under
this scheme. The task 71 runs at its maximum frequency
in order to avoid any overlapped execution, which gives T2
enough time to avoid any overlap even when it executes at
its energy efficient frequency (f5° = 0.29). We have found
that the overall energy consumption under this scheme is
about 33.4 mJ—17.5% less than the one under Static.

Overlap-aware Energy Minimization (OA). The MO
scheme opts to avoid an overlapped execution whenever it
can (Figure 4a). However, we have found that in some cases,
allowing some overlapped execution can yield better overall
energy performance (Figure 4b). For instance, in a FasterP
configuration, the energy gain due to additional slowdown
on the primary may offset the extra energy consumption due

to the overlapped execution on the power-efficient spare.
In this scheme, for a given task, first the energy consump-
tion Eyro obtained with the frequency suggested by the MO
scheme is computed. Then the frequency that minimizes the
energy consumption of the main task and its backup copy,
under the assumption that the overlapped execution will hap-
pen, is obtained, and the resulting energy consumption Eoa
is evaluated. Finally the solution that yields the lower en-
ergy consumption between these two options is selected.
Specifically, the frequency f; that minimizes the task’s
energy consumption in case of overlap with the backup is
obtained by solving the following optimization problem:

EPT(fi) + EBk(fz)
fz‘U < fl < Min{fi*>fnzaa:}

Above, the frequency f; is restricted between two values,
fu which is the lowest frequency that guarantees the dead-
line, and f;° is the frequency that enables the task to com-
plete at the start time of its backup copy (see the descrip-
tion of the MO scheme). EF"(f;) = PEF(f:) * (CET/f:) is
the energy consumed on the primary core, and EB* (fi) =
PEP(FLP Y « (C}Lip — (ri = t)) + PLL « (r; — t) is the energy
consumed by the backup'. The above optimization prob-
lem can be solved in constant time, because the objective
function is convex and has only one variable.

When there are multiple tasks, there is a need to assign
execution windows to each of the tasks to determine the
frequency suggested by the OA scheme. In fact, the slack
time S (remaining time to finish all the incomplete tasks,
which is D—>" C;) can be distributed among the incomplete
tasks to determine individual (pseudo-) task deadlines. We
found out that sharing the slack time based on the tasks’
relative workload is a quite useful strategy. Therefore, each
task 7; is assigned a portion of the slack time, S x* Zcéj7
and 7; must finish execution within this time. The steps are

minimize

subject to:

!These equations assume a FasterP configuration.

S
g 10 [Fastorrs T
asterP-
'%_ 100 = FasterP-MO —s¢—
£ 90 |- FasterP-OA
=] SlowerP-S
2 80 [SlowerP-OA
8 70 -
3
!g) 60 g
w 50 . e —
B 40 | -
N
® 30 1|~ —
% 20 1 1 1 1 1 1
z o Y w9 N © o @ -
o o o o o o o

Utilization

(a) fhb, =07

9

= 110 I | | —

& 100 | . FasterP-S —+—

b= FasterP-MO —¢—

£ 90 |- FasterP-OA

S SlowerP-S

2 80 [SlowerP-OA

o

o 70

3>

ag 60 2

AN} 50 ?/\y/“

8 40 | .2 .

N e

s 30 | B B .

g 20 X 1 l l l l

z @ % 1w e N ® 9 @ -
o o o o o o o

Utilization
(b) frtz =0.9

Figure 5: Impact of utilization

repeated for each task iteratively.

Figure 3c shows the execution of the tasks in Table 2 under
the OA scheme. 71 executes at low frequency, which results
in some overlap with B;. However, the increase in energy
consumption due to the overlap is much less compared to
the energy savings obtained by reducing frequency on the
primary. This scheme yields an overall energy consumption
of 26 mJ —35% and 22.2% improvement over Static and
MO schemes, respectively.

4. EXPERIMENTAL EVALUATION

We evaluated the performances of the proposed schemes
by simulating the execution of large number of synthetic task
sets in a discrete event simulator. The dual-core systems
we simulated have a high-performance core with normalized
frequency fHL = 1.0 and a low-power core with normalized
frequency fLF, varying in the range [0.7,0.9].

For a given target total utilization (3 %), the number
of tasks n, and a deadline D, we have used the RandFized-
Sum [6] algorithm to generate uniformly distributed indi-
vidual task execution times ({C;} values) on the low-power
core. The constants a’f and of'T are set to 1.0 and 0.1

respectively. Similarly, PE = 0.05 and PLE = 0.02.

It is known that the execution time and power consump-
tion on the high-power core for different tasks scale by dif-
ferent ratios when executed on a low-power core [12]. There-

fore, for each task 7;, we define a time-scaling factor tscale; =
LP LP

%7 and a power-scaling factor pscale; = Qﬁ. The mea-
surements reported in [12] suggest that 1.4 é tscale; < 2.3
and 1.4 < 1/(pscale; * tscale;) < 2.1. We generated tscale;
and pscale; values randomly in these ranges, thereby ob-
taining execution times and power characteristics of tasks
on both types of cores.

The two core role assignment options (FasterP vs Slow-
erP), and three frequency assignment schemes (Static, Min-
imize Overlap (MO), and Overlap-Aware (OA)) give six dif-
ferent combinations shortened as FasterP-S, SlowerP-S,
FasterP-MO, SlowerP-MO, FasterP-OA and SlowerP-
OA.. Each of the generated task sets is executed by all these
six schemes and the results are reported. The common frame
period/deadline D is 100ms. For each data point shown in
the plots, we computed the average of 3,000 task sets, each
containing n = 10 tasks.

The trends indicate that for SlowerP configuration, prac-
tically in almost all cases, the Overlap-Aware scheme has
chosen to minimize the overlap, as suggested by the Mini-
mize Overlap (MO) scheme. This is to be expected, because
creating an overlap with the back-up running on the high-
performance spare core almost invariably hurts the energy
savings in the SlowerP configuration. Therefore, the results
we report will not show SlowerP-MO (whose performance is
identical to that of SlowerP-OA). However, as we will see,
FasterP-MO and FasterP-OA may perform quite differently.

Impact of utilization. Figure 5a and 5b show the im-

pact of the system load on two different platforms with fZ2

set to 0.7 and 0.9, respectively; fZL = 1.0 in both cases.
The X-axis shows the utilization with respect to the low-
power core. The results are normalized with respect to the
energy consumption of FasterP-S at U = 1.0. As expected,
the energy consumption of all the schemes increases with
the increasing system load. In these plots, the OA (and
MO) schemes in the SlowerP group perform best for low
load settings, but FasterP-OA starts to outperform when
the system load is heavy. For low-load, SlowerP is better
because it can use the energy-efficient low-power core to ex-
ecute all the primary workload, and the overlaps with the
back-ups on the high-power spare can be mostly avoided.
For heavy load, the situation changes — the spare core gen-
erally turns on earlier to meet the deadline requirements of
backups. Since the spare always runs at maximum speed,
having a slower, power-efficient core helps to reduce energy,
and FasterP configurations prove more advantageous.

Impact of tscale. Figure 6a shows the impact of tscale
for a moderately-loaded (62.5% on low-power core) system
with fLP = 0.8. It can be seen that for the entire region,
SlowerP-OA performs distinctly better than others. This is
because for this moderate load, the high-power backup core
can be kept idle most of the time, and the low-power core
will execute the workload avoiding backup activation. We
can see that FasterP-S scheme performs worse for low tscale
values, but improves as tscale increases. This is because
higher tscale values imply a low-power core with large task
execution times, and other techniques cannot do much to
avoid significant overlapped executions.

Impact of pscale. In general, low pscale values imply

e 110 T T T T T s 120 T T T T T 1 s 105 T T T T T T 1T
< FasterP-S —+— < L FasterP-S —+—
S 100 1 FasterP-MO —»¢— s 110 7 g 100 - FasterP-MO —x— 7*
= FasterP-OA k= = FasterP-OA
g o R SlowerP-S 4 g 100 - g 95 I~ SlowerP-S
= SlowerP-OA > 5 SlowerP-OA
2 g0 | - 2 %0 2 901
% 5]
3 o \k\ S 80 8 85|)
> - 32 E 3 e
8 N s 70 2 g0 - » i
2 60 | e _ c @ e
] i] L 7 e -) - P gt -
o \(Q - 60 /. FasterP-S —+— s 7 e
o 50 - _\7 N 8 50 | 7 ¢ FasterP-MO —»— _ 8 704" i
= - — = FasterP-OA =
e 40 [n E 40 g A SlowerP-S - E 65 .
5 S SlowerP-OA S .
2 30 I I I I I I Z 3 L1 P T Z &0 AR N T N N T S|
- 84 ¥ © @ o o % N @ ¥ B 9o N ® o - - N QY ;oo N Q9 -
— ~— ~— ~— [aV) [aV] o o o o o o o o o o o o o o o o o
tscale pscale BC/WC

(a) Impact of tscale (b) Impact of pscale (c) Impact of workload variability

Figure 6: Impact of tscale, pscale and workload variability

increased energy-efficiency of the low-power core. For these
cases, SlowerP-OA perform better for moderate load (62.5%
on the low-power core with fLP = 0.8), as can be seen in
Figure 6b. But as pscale grows, executing the main tasks
on the faster core becomes less problematic from the energy
standpoint, and at some point FasterP-MO and FasterP-OA
start to outperform the SlowerP group.

Impact of Workload Variability. The results reported
so far correspond to the scenarios where every task takes its
worst-case execution time. However, in practice, many tasks
complete earlier, without presenting its worst-case workload.
To investigate the impact of the workload variability, we de-
fine the ratio BC'/W (' as the ratio of the best-case execution
time to the worst-case execution time. During the experi-
ments, the actual execution time of every task is randomly
generated between its worst-case and BC/WC X worst-case
execution time, using a uniform probability distribution.

Figure 6¢ shows the impact of BC'/WC ratio on a mod-
erately loaded system (62.5% on the low-power core). With
BC/WC, the energy consumption increases, because the
system generates less and less dynamic slack that can be
used to save energy. SlowerP-OA outperforms other schemes
throughout the BC/WC spectrum. FasterP schemes stay
worse than the SlowerP group except when BC/WC'is very
close to 1.0, at which point FasterP-MO and OA outper-
form SlowerP-S. In fact, FasterP schemes do outperform
even SlowerP-OA at high BC'/WC values for highly loaded
systems (the plots are not shown due to space limitations).

5. CONCLUSIONS

In this paper, we investigated the energy-aware standby-
sparing systems on emerging heterogeneous multicore plat-
forms. We found out that designating the high-performance
or low-power core as the primary can make important differ-
ences in terms of energy savings. We also proposed three fre-
quency assignment techniques for tasks on the primary. Our
experimental results indicate that, in general, the schemes
that assign frequency by carefully evaluating the level of
overlap between the main and back-up tasks perform better
than those that blindly ignore or avoid such overlaps.
Acknowledgments: This work was supported by the
US National Science Foundation Awards CNS-1422709 and
CNS-1421855.

6. REFERENCES

[1] ARM big.LITTLE Technology. http://www.arm.com/

products/processors/technologies/biglittleprocessing.php.

[2] H. Aydin, R. Melhem, and D. Mossé. Tolerating faults

while maximizing reward. In Proc. of the 12th IEEE
FEuromicro Conference on Real-Time Systems, 2000.

[3] V. Devadas and H. Aydin. Coordinated power management

of periodic real-time tasks on chip multiprocessors. In Proc.

of the IEEE Green Computing Conference, 2010.

A. Ejlali, B. M. Al-Hashimi, and P. Eles. A standby-sparing

technique with low energy-overhead for fault-tolerant hard

real-time systems. In Proc. of ACM CODES+ISSS, 2009.

(5] A. Ejlali, B. M. Al-Hashimi, and P. Eles. Low-energy

standby-sparing for hard real-time systems. IFEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 31(3):329-342, 2012.

[6] P. Emberson, R. Stafford, and R. I. Davis. Techniques for

the synthesis of multiprocessor tasksets. In Proc. of the Int.

Workshop on Analysis Tools and Methodologies for

Embedded and Real-time Systems (WATERS), 2010.

D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge,

N. S. Kim, and K. Flautner. Razor: circuit-level correction

of timing errors for low-power operation. IEEE Micro,

24(6):10-20, 2004.

[8] M. A. Haque, H. Aydin, and D. Zhu. Energy-aware
standby-sparing technique for periodic real-time
applications. In Proc. of IEEE ICCD, 2011.

[9] M. A. Haque, H. Aydin, and D. Zhu. Energy-aware
standby-sparing for fixed-priority real-time task sets.
Journal of Sustainable Computing, 6:81-93, 2015.

[10] I. Koren and C. M. Krishna. Fault-tolerant systems.
Morgan Kaufmann, 2010.

[11] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani,

T. Mitra, and S. Vishin. Hierarchical power management
for asymmetric multi-core in dark silicon era. In Proc. of
ACM/IEEE DAC, 2013.

[12] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani,

T. Mitra, and S. Vishin. Power-performance modeling on
asymmetric multi-cores. In Proc. of IEEE CASES, 2013.

[13] M. K. Tavana, M. Salehi, and A. Ejlali. Feedback-based
energy management in a standby-sparing scheme for hard
real-time systems. In Proc. of IEEE RTSS, 2011.

[14] B. Zhao, H. Aydin, and D. Zhu. Shared recovery for energy
efficiency and reliability enhancements in real-time
applications with precedence constraints. ACM Trans. on
Design Automation of Electronic Systems, 18(2):23, 2013.

[15] D. Zhu, R. Melhem, and D. Mossé. The effects of energy
management on reliability in real-time embedded systems.
In Proc. of IEEE ICCAD, 2004.

[4

[7

