Tolerating Faults While Maximizing Reward *

Hakan Aydin, Rami Mehem, Daniel Mossé
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260
(aydin, melhem, mosse) @cs.pitt.edu

Abstract

Theimprecise computation (IC) model isa general schedul-
ing framework, capable of expressing the precision vs. timeli-
ness trade-off involved in many current real-time applications.
In that model, each task comprises mandatory and optional
parts. While allowing greater scheduling flexibility, manda-
tory partsin the IC model have still hard deadlines and hence
they must be completed before the task’s deadline even in the
presence of faults. In this paper, we address fault tolerant (FT)
scheduling issues for I1C tasks. First, we propose two recovery
schemes, namely Immediate Recovery and Delayed Recovery.
These schemes can be readily applied to provide fault toler-
ance to mandatory parts by scheduling optional parts appro-
priately for recovery operations. After deriving the necessary
and sufficient conditions for both schemes, we consider the
FT-Optimality problem, that is, generating a schedule which
is FT and whose reward is maximum among al possible FT
schedules. For Immediate Recovery, we present and prove cor-
rectness of an efficient FT-Optimal scheduling algorithm. For
Delayed Recovery, we show that the FT-Optimality problemis
NP-Hard, thusisintractable.

1 Introduction

In real-time systems, timeliness is as important as the cor-
rectness of the output. Traditionally, hard real-time schedul-
ing theory has aimed at achieving predictability by assum-
ing worst-case scenarios, such as worst-case execution time
and interarrival rates. However, the advance of new technolo-
gies such as multimedia applications and Web-based informa-
tion servers has introduced extra dimensions to the traditional
framework. One major characteristic of the new eraisthe pro-
gressive nature of the task’s execution: First aresult or output
of minimal quality is produced, then it isrefined by additional
computation(s). Yet, scheduling decisions must a priori assure
an output of minimal quality for every task, even in the pres-

*Thiswork has been supported by the Defense Advanced Research Projects
Agency through the FORTS project (Contract DABT63-96-C-0044).

0-7695-0734-4/00 $10.00 ® 2000 IEEE

ence of unpredictable events. In addition, CPU dlocation to
refinement processes should maximize a performance metric.

The Imprecise Computation (1C) technique appearsisan ap-
propriateframework to formulate and address many aspects of
the issues discussed above. It was originaly proposed as an
overload scheduling technique for applications with less strin-
gent timing constraints than hard-red time systems [4]. In
this model, each task is composed of a mandatory part and
an optional part. The mandatory part runs first and its com-
pletion before the deadline assures a result of minimal qual-
ity. The optional part becomes ready only after the manda
tory part completes, and its execution can be interrupted at any
time. The quality of the find result is proportiona to the ser-
vice time received by the optiona part. The applicability of
the model has steadily expanded to several areas of Computer
Science/Engineering, such as multimedia applications, image
and speech processing, time-dependent planning, robot con-
trol/navigation systems, medical decision making, information
gathering, rea-time heuristic search and database query pro-
cessing.

In the IC model, the timely completion of mandatory parts
is dtill crucial, even in the presence of faults. A first study
addressing Fault Tolerance (FT) issues in the context of IC
framework appeared in [2]. An extension for on-line schedul -
ing was considered in [3]. However, these works assume a
priori the knowledge of the worst-case fault profile per task.
Besides the considerable difficulty of obtaining this informa-
tion for real applications (as opposed to thefault profilefor the
system), the solutions enforce provisioning for simultaneous
occurrences of all faultsof all tasks. Thisfact (as observed in
[2]) drastically reduces the number of task sets which can pass
FT-schedulability set, although in practice only one or a few
tasks incur faults. Further, the scheme requires the update of
the schedule when atask compl etes succesfully (without fault),
which largely increases the run-time overhead.

Our work isbased on the observation that the optiona parts
in 1C schedules have the potential of providing the time re-
dundancy for recovery of mandatory parts. Hence, one of the
main issues in this study is the investigation of FT conditions
and recovery techniquesinvolved in IC environments. We fur-

ther enforce FT-Optimality: that is, to compute the schedule
which provides the largest reward (utility) among all possible
FT schedules. Findly, we require that the on-line updating of
the schedul e be avoided and the FT-Optimality of the schedule
be preserved, as long as faults are not encountered as opposed
to[2, 3]. Thisiscrucial in preventing excessive run-time over-
head, since the successful completion of tasks is much more
common than the occurrence of faultsin any realistic system.

In arecent work, we addressed the problem in the context
of tasks with or without precedence constraints, but sharing a
single, end-to-end deadline [1]. In practice, however, numer-
ous applications mandate the use of different deadlines and our
main purpose in thiswork is to extend the FT-Optimality ap-
proach to tasks with multiple deadlines. Moreover, unlike the
single-deadline case, the new setting requires distinguishing
among different recovery schemes, which lead to different FT
approaches/schedules and as we show, even the tractability of
the problem is affected by this choice.

2 System Model
2.1 Task Model

We consider a uniprocessor system with atask set T =
{T1,Ts,...,T,}. All tasks are assumed to be independent.
Further, each task 7T; is composed of a mandatory part M;
and an optiona part O;. The worst-case execution times of
M; and O; are denoted by m; and o;, respectively. M; be-
comes ready at ¢ = r; (ready time) and it must be completed
by ¢t = d, (deadline). On the other hand, O; can start to execute
only when M; completes, and further refines the latter’s output
while still before the deadline. Preemption is allowed and we
ignore the costs of preempting the tasks throughout the paper.
We say that a schedule is feasible if every mandatory part M;
receives at least m; unitsof service time after itsready time r;,
but beforeitsdeadline d;.

The quality of the final result produced by 7; is directly
proportional to the amount of service time ¢; assigned to the
optional part O;: it isstill acceptable, yet minima when¢; =
0, and maximal when ¢; = o;. Hence, thereward of task 7; is
R; =t;when0 <t; <o;,and R; = o; whent; > o; (thatis,
the execution beyond o; does not improve further the quality).
Our concept of reward isanaogousto (dua of) the concept of
(precision) error (the amount of optional part left unexecuted)
inother IC studies[4]. A schedule S isoptimal if it isfeasible
and maximizes thetotal revard REW = """, R;.

2.2 Fault Model

We assume that at most & faults may occur during the ex-
ecution of the task set. However, we develop and present our
methodology first in the context of a single fault model (that
is, & = 1) for the sake of simplicity. An extension of this
framework to the k-faults case is presented at the end of Sec-
tion 4. We assume that whenever a mandatory part M; com-
pletes, consistency or acceptance checks are performed on its

0-7695-0734-4/00 $10.00 ® 2000 IEEE

output. If the outcome is positive, then the output of M; is
committed, and the optiona part O; becomes ready. However,
in case that the checks reveal an error, arecovery mechanismis
invoked, either to re-execute the mandatory part, or to execute
arecovery block. The recovery block associated with M; and
itsworst-case execution time are denoted by B; and b;, respec-
tively. If an error is detected at the end of the optiond part,
thenitsresult is not committed.

In genera, afeasible schedule is said to be (single) Fault
Tolerant (FT) if it allowstherecovery of asinglefault detected
in any mandatory part M; to be completed before the dead-
lined;, while not compromising the timely completion of other
mandatory parts. Finally, a scheduleis FT-Optimal if
i.itisFT and,

ii. itstotal reward is maximum among all possible FT sched-
ules. We requirethat the FT-Optimality of the schedule be pre-
served as long as no faults are encountered.

3 Recovery Modelsfor Imprecise Computation

We should underline that the definition of FT(-Optimal)
schedule above is incomplete, in the sense that one needs to
specify how and when the recovery block is executed. Since an
additiona workload is introduced to the system because of the
recovery block, all the subsequent optional parts may not have
a chance to execute. We can distinguish two recovery schemes
that can be readily applied in practica rea-time applications
without considerable overhead:

e Immediate Recovery (IR): The recovery block is exe-
cuted immediately when the error is detected at the end
of the faulty mandatory task. The mandatory parts yet
to execute may have to be delayed/postponed due to the
recovery operation.

e Delayed Recovery (DR): The recovery block is alowed
to execute only in time slots which are not dedicated to
any mandatory task (i.e., those which are empty or as-
signed to an optional part), but still before the deadline.
Thus, mandatory parts are not shifted in the timeline.

As an example, consider the schedule in Fig. 1a. We assume
that by = m,. If afault isdetected at theend of M, at ¢t = 4,
the recovery operation is initiated. If the mechanism chosen
is the immediate recovery then the recovery proceeds without
preemption and until full completion, resulting in a’shift’ of
M; (Fig. 1.b). On the other hand, if the delayed recovery
is applied then By runs only during the optiona slots while
befored; . Clearly, M, does not need to be shifted in this case
(see Fig. 1.c). Note that, in both cases M5 and the recovery
block B; complete successfully before their deadlines.

It should be emphasized that the two schemes above do not
lead to identical FT schedule spaces. To see this, consider the
schedulein Figure 2.a. Assumingthat my = mg = by = by =
4, the schedule above is clearly FT according to theimmediate
recovery scheme, but not according to the delayed recovery:

_ fault _
di=dy

!

| M [oddog
0 46 8 10
@

0

Figure 1. (a) A feasible schedule (b) Recovery of M; with IR
(c)Recovery of M; with DR

There is smply no optiona part scheduled before dy, during
which one would run the recovery block By. Similarly, the
schedule shown in Figure 2.b is FT according to the delayed
recovery scheme, while the immediate recovery of a fault in
M3 would cause M, to miss its deadline (assume again that
b; = m; for al the tasks and recovery by re-execution).

d d
I
[T o
0 4 8§ 12

‘ M1 ‘ M3 O1
0 4 2

@ ®

Figure 2. (8) An FT schedule according to IR but not DR (b)
An FT schedule according to DR but not IR

Given a schedule and a recovery mechanism, checking its
tolerance to fault(s) is not adifficult process and can be accom-
plished in polynomial-time. On the other hand, asindicated in
Section 1, our aim is to construct FT-Optimal schedules in a
computationally efficient manner, which turns out to be anon-
trivial task. Given afeasible schedule S, we define:

Endg(M;) : Thetime by which M; completesin S.
Opts(t1,t2) :The sum of optional parts and empty slotsin
timeinterval [t1, 2] in S.

We will drop the subscript S, whenever the schedule in-
volved is clear from the context. As an example, in the sched-
ule of Figure 2.b, End(M,) = 26, while Opt(16, 32) = 10.
Clearly, in case of preemptions, the E'nd function should con-
sider the completion of thelast portion of the task.

Observe that in any of the schemes, we can not impose an
a priori order among the different tasks, as long as we are not
ready to compromise FT-optimality.

4 |Immediate Recovery(IR) with identical ready
times

We start by defining necessary and sufficient FT conditions
according to the IR scheme. The execution of the recovery
block B; may affect only the mandatory parts which are sched-
uled after M;. We say that atask 7; is safein agiven schedule
S if and only if M; can be completed in atimely manner even
in the presence of any faults in tasks preceding or occurring
during M;; or equivaently, if and only if:

End(Mj) +b; — Opt(End(]W,’)7 End(Mj)) <dj
Vi such that End(M;) < End(Mj) 1)

0-7695-0734-4/00 $10.00 ® 2000 IEEE

For a given ¢, the left-hand side of the inequality (1) indi-
cates the time by which M; would complete, if a fault were
detected in M;; or equivaently the (new) End(M;) value &f-
ter the fault and recovery of M;. More precisaly, it is derived
by taking into account that the workload is increased by an
amount of b;, but decreased by (if necessary) removing all
the subsequent optional parts, in case an error is detected at
M;. Now, aschedule S is said to be Fault Tolerant (accord-
ing to IR scheme), if and only if al the tasks are safe; that is,
if and only if the Equation (1) holds for all mandatory tasks
M, j=1,...,n.

Given an FT schedule S, consider the effects of moving a
portion 7, of atask 7, to alater in point in the schedule as
shown in Figure 3. We call such a move the forward (FW)
move of 7, —which may be mandatory or optional. Through-
out this section, « denotes the schedule portion preceding .
prior to the FW-move and ~ denotes the schedule portion fol-
lowing 7, after the FW-move. Observe that both oo and v oc-
cupy the same portion of the shedul e before and after the move.
The portioninitially located between . and v isdenoted by 3.

[o =] ¢ N
0 t1 t2 t3 [0 t1 ts [

Forward move
[v | e

Figure 3. The forward move of the task portion 7,

Theorem 1 : (Forward-moving theorem) If a schedule S is
FT, then the schedule 5" resulting from the forward-move of a
task portion 7, belongingto 7, isstill FT if and only if, in S
i. T, issafe, and

ii. Afault of T}, does not cause a deadline missin any manda-
tory part located in ~.

Proof: Wewill prove the theorem by showingthat inthetrans-
formed schedule 57,

(i.) Every task T; such that Ends(M;) isin « are still safe,
(ii.) Every task T; suchthat Ends(M;) isin g are still safe,
(iii.) No fault detected in « or 3 can cause a deadline miss (of
mandatory parts) in ~.

To establish (i.), it is sufficient to observe that the seg-
ment « remains unchanged in S*, hence any task T such that
End(M;) <ty isstill safein the transformed schedule.

To see that (ii.) holds, consider any task 7} such that
ty < Endg(M;) < tz (M; in 8). Since T; was safe in S
by definition, the equation (1) gives:

End(Mj) +b; — Opt(End(]W,’)7 End(Mj)) <dj
Vi such that End(M;) < End(Mj) 2

Consider the fault of a task M; preceding M; in S
(EndS(MZ) S EndS(M])) If EndS(MZ) = 19, then the
FW-moved portion 7, belongs to M,, M; = M, and the
fault of M, can no longer cause a problem for M; in 5’
where now it succeeds M;. Otherwisg, it is either in o or
B (preceding M;). Note that Endgs(M;) — Ends: (M;) =
1y — 11 > 0 (M; hasbeen moved backward in the schedule by

an amount of t; — t1). Also Opt(Ends(M;), Ends(M;)) —
Opt(End's(M;), End'y(M;)) isdthert, —t; (incasethat M;
isin « and 7, isa portion of the optiona part O.) or O (the
remaining cases). Hence, the sum of optional parts between
M; and M; may have decreased, but at most by an amount
of t, — 1. However, this shows that M; is still safe in S
since: EndSI(Mj) + b; — Opt(EndSI(Mi),EndSI(Mj)) <
EndS(Mj) + b - Opt(EndS(Mi),EndS(Mj)) <
dj VY i such that EndSI(Mi) S EndSI(Mj)

Finaly, to show (iii.), let Ends(M;) bein . Clearly,
EndS(Mj) = EndSI(Mj). Consider a fault of any task
M; preceding M; in §', such that Ends(M;) ina or 3. It
is not difficult to see that Opt(Ends(M;), Ends(M;)) <
Opt(Ends:(M;), Ends/ (M;)), thusthe sum of optional parts
between M; and M; may have never decreased in S’. But this
giVGS: EndSI(Mj) + b; — Opt(EndSI(Mi), EndSI(Mj)) <

EndS(Mj) + b - Opt(EndS(Mi),EndS(Mj)) <
d; V i suchthat FEnds:/(M;)isinaor 3, completing
the proof. |

With the help of the Forward-moving theorem, we can fur-
ther obtain important properties of FT schedules, as the next
theorem demonstrates.

Theorem 2 Itisalways possible to transforman FT schedule
Sto another FT schedule with the same total reward, where:

i. Mandatory parts are not preempted,

ii. Optional parts are not preempted,

iii. Optional parts follow EDF order.

Proof: Suppose that M; is preempted once or more in S.
Let M;, be the first 'segment’ of M; in S, M, the sec-
ond and so on. Consider forward-moving of M;, close
to M;, as illustrated in Fig 4. We call the resulting
schedule $’. According to Theorem 1, we need to check
only the safety of M, and the effect of M,’s fault in
~. It is easy to see that Opt(Ends(M;), Ends(My)) =
Opt(EndSI(Mj),EndSI(Mk)) Yj, k and further, thereisno
task M; such that End(M;) has incressed in S’. Hence the
condition (1) implies that M; and al tasks in v are till safe.
Onecan apply thistransformation repeatedly to obtain a sched-
ule where the mandatory parts are never preempted.

o [Md b M v | RSl o [8 [Md Mo| v
0 t1 t2 t3 0 t1 t2

t3

Figure 4. Forward move of the preempted mandatory portion

Similarly, if O; is preempted, one can move it for-
ward to obtain the schedule S’ (see Fig 5). Clearly,
0 S EndS(MZ) = EndSI(Mi) S 3] and M; is
in «, T; definitely is «ill safe in S” (where « did not
Change a aII) Also, Opt(EndS(Mi),EndS(Mj)) <
Opt(Ends:(M;), Ends/(M;)) ¥V M; in~ and the condition
(1) ensuresthat al tasksin v are safe, thus S” isstill FT. Hence,
it is possibleto apply the transformation repeatedly to remove
all the preemptions of optiona parts.

0-7695-0734-4/00 $10.00 ® 2000 IEEE

Forward move

‘U‘OiaJB‘Qb‘V O“B‘Om‘ola‘v‘
t1 t2 t1 t2 t3

Figure 5. Forward move of the preempted optional portion

Finally, consider a pair of optional parts which do not fol-
low EDF order in S. We can consider that al the preemptions
are already removed via the transformations described above.
Again, consider moving O; after O; (Fig. 6). Following area-
soning completely analogous to the preceding paragraph, we
can establish that M; and all thetasksin v are still safe. A fi-
nite number of transformationswould definitely yield a sched-
ulewhere optiona partsfollow EDF order. Note aso that, the
total reward of the FT schedule remains the same after any
forward-moves just described. i

4] d| g9
| o [ole o] v === e |6 [afo] v |
i1 t2 i1 iz t

Figure 6. Forward move of the optional task with later deadline

Corollary 1 Provided that a task set T is FT, there exists an
FT-optimal schedule for T, where no mandatory or optional
part is preempted and optional partsfollow EDF order.

Unfortunately, it may not be aways possibleto find an FT-
optimal schedule where mandatory parts follow aso EDF or-
der. To see this, consider the tasks 11, T, T5 with parameters
my = 4,01 = S,dl = 20,777,2 = 2,02 = 2,d2 = 24,777,3 =
8,03 = 2,d3 = 26. Weassumethat b, = m; i =1,2,3.
In fact, one can schedule the task set in an FT manner without
discarding any optional part as shown in Figure 7.a, which is
consequently an FT-Optimal schedule. On the other hand, if
onetriesto enforce the EDF rule for mandatory parts a so, the
best schedul e that can be obtained isthe one shownin Fig. 7.b.
Observe that O can not be scheduled beyond d; and the large
recovery block of M3 contributesto alower reward.

dp do d3 dq do d3

I

(M| wo | o Jwjood [mip ws | on Jojos

0 4 12 20 22 24 26 0 46 14 20 22 24
@ (b)

Figure 7. (8) The FT-Optimal schedule (b) The suboptimal
schedulewith EDF order among mandatory parts

Before presenting our final agorithm, we obtain another
useful property of the FT-optimal schedules.

Theorem 3 If atask set isFT, then there exists always an FT-
optimal schedule, where, for each task 7;, ¢; > 0 onlyif¢; =
o; j=1+1,...,n.

Informally, the theorem states that one can aways find an
FT-Optima schedule where an optiond part with later dead-
line can always be used instead of an optiond part with earlier
deadline, as long as the upperbounds on the optiona execution
times are not violated.

Proof: Without loss of generality, assume that the FT-
Optimal scheduleisin the’canonica’ form stated in Corollary
1: that is, no preemption exists and optional parts follow EDF
order. Let O, betheoptiona part with the latest deadline such
that ¢, > 0 and ¢,41 < op41 (such atask should definitely
exist if the proposition does not hold). Sincethe scheduleisin
the canonical form, we can move A = min(op41 — tpy1,1p)
units of O, forward and consider it as part of O,,11. Figure 8
illustratesthe FW-move.

o (e Pl v | R L6 o b [Gu] v]
0 t1 - t2 t3 0 t1 t2 t3
Figure 8. Forward move of an optional part’s portion (A) and

its renaming

Note that from the definition of A, 41 +t, = ¢, +1,,
hence the total reward remains the same. Moreover, one can
easily verify that the FW-move of A unitsof O, doesnot affect
the safety of any task. Notethat, t; = o;forj =p+2,...,n
from the assumptions. If the statement of the theorem does
not hold after this transformation, then we can apply the tech-
nique repestedly to favor later optional parts without harming
the fault tolerance requirement or the optimal reward. O

Theorem 3 implies that one does not need to schedule an
optional part unless all the optional parts with the later dead-
lines are fully utilized. Hence, given a set O of optiona parts
{01,...,0,} and a positive real number X we can define
the function SUF FIX (0, X) which returns the (new) set of
optiond parts O'= {0,0,...,0,,,0/,,,...,0;} such that
o =0 fori=m+1,...,nando, = X — Z?:m_l_lo;.
Notethat incase that X < o, , O'= {0,0,...,0,0/,} where
o, = X;orif X > > 0;,then0’= O.

Corollary 2 The existence of an FT schedule with total re-
ward larger than or equal to X, implies that there is an FT-
Optimal schedule where the optional parts in SUFFIX(O,X)
appear fully andin EDF order.

It may happen that in an FT-optimal schedule " m; +
>t < dy; that is, there are "empty’ dots in the interval
[0,d,]. The following establishes that it is possible further to
obtain afully-utilized schedule or timeline without hurting FT,
by augmenting ¢,,.

Theorem 4 1f>" m;+> t; < d,, inanFT-optimal schedule S,
then we can increase t,, (beyond the upperbound o,,) to obtain
an FT-optimal schedule S where >~ m; + Y ¢, = d,

Proof: Since)" m; + > t; < d,, in S, there should be empty
slotswithinthetimelineinterval [0, d,,]. By areasoning similar
to the proof of Theorem 3, moving every empty slot to theend
of the schedule and renaming it as part of the optiond part O,,
(beyond the upperbound o,,) keepsthetota reward unchanged,
the FT property is preserved, and thetimelineis now fully uti-
lized. 0.

0-7695-0734-4/00 $10.00 ® 2000 IEEE

The results above alow us to devise a polynomia-time
algorithm (Figure 9) to decide whether there exists an FT-
Optimal schedule with atotal reward of exactly X.

Algorithm DECIDE(M, O, X)
1 SetO'= SUFFIX(0,X)
2 Setdiff=d, — ?:1 m; — ?:1 o}
3 If diff < 0 thenreturn FAILURE
glseol, = o}, + diff

4 Set pointer = shiftlimit = d,

5 Setindexr =n

6 SetMy=M

7 Repeat

8 Whilepointer < dinges do {

9 /* schedule optional part there */

10 Set pointer = pointer — 04y, gox

11 Set Timeline[pointer, pointer + 0!, 4..] = Oindea
12 Setindexr = index — 1

13 }

14 /* Find the FT-forward schedulable mandatory part with */
/* the latest deadline and scheduleit /*

15 Set M, = FT-forward-sch(pointer, shi ftlimait)

16 If M, = nil then return FAILURE

17 Setpointer = pointer — myg

18 Set Timeline[pointer, pointer + mq] = M,

19 SetMq =M, - M,

20 If dy > shiftlimit then shiftlimit = shiftlimit — m,

21 elseshiftlimit = dg — mg

22 Until My =0

23 Return(Timeline, SUCCESS)

Figure 9. Algorithm to solve FT-Optimality Decision Problem

Function FT-forward-sch(pointer, shi ftlimit)

1 Repeat

2 Setcounter =n

3 If Meounter iNMgq {

4 Set endpoint = pointer + beounter

5 if endpoint < min(shiftlimit, dcounter) return Meounter
6 }

7 Setcounter = counter — 1

8 Until (counter = 0)

9 Return nil

Figure 10. Function returning FT-Forward schedulable
mandatory task

The algorithm is based on the fact that there exists a sched-
ule S that fully utilizes the timeline between 0 and d,,, fol-
lowing Corollary 2 and Theorem 4 (in other words, S is an
FT-schedule with total reward X, wheret,, may be augmented
beyond its upperbound). The algorithm:

e Proceeds backwards from d,, and tries to schedule one
(mandatory or optional) task at atime, at the given point
of the schedul e (represented by the variable pointer).

e If unable to find such atask, it exits with a FAILURE
message.

¢ |f more than onetask is igiblefor agiven time point, it
alwaysfavorsan optional part (in case of ties, the optional
task with thelatest deadlineischosen). The optional parts
are only subject to the deadline constraints.

e If no optional part is eligible, then the mandatory part
which is FT-forward schedulable at pointer is selected.
We say that a mandatory part M; is FT-forward schedul a
bleat ¢, if scheduling M, between ¢, — m; and ¢, does
not cause M; to missitsdeadline (i.e, t, + b; < d;) nor
does it cause subsequent tasks to miss their deadlines, in
case a fault occurs during the execution of M;. In order
to check how much the subseguent tasks can be pushed
later in the timeline, the algorithm keeps avariable named
shiftlimdt. Aswith optional parts, ties are brokenin fa
vor of mandatory task with the later deadline.

Correctness: To begin with, the algoritm’s commitment to
non-preemptive tasks and to optional partsin SUFFIX(O,X) is
immediately justified by Corollaries 1 and 2. Yet, we need to
justify the selections of the algorithm whenever two (or more)
tasks are eligible at a given point.

Favoring optional parts does not compromise the correct-
ness: Let O, betheoptional part (with the later deadline) such
that pointer < d,. Scheduling O, &t the pointer clearly does
not hurt FT-schedulability of the successive tasks. However,
suppose that the algorithm’s selection isincorrect, in the sense
that it failsto find an FT schedule in the following steps, yet
an FT-schedule S with thetotal reward X would have been ob-
tained if a mandatory task M; had been selected at this point.
The hypothetical schedule S is clearly fully utilized and O,
precedes M; in S (see Fig. 11). Consider forward-move of O,,
after M, to obtainthe schedule S’. It should be straightforward
to observe that thetwo conditionsof Theorem 1 till holdin S”:
The schedul e segment up to and including M, (in «) not being
changed, M, and dl the tasks in v are still safe. Hence the
algorithm’s selection of O, in the first place would have also
yielded an FT-schedule, and we reach a contradiction.

‘ M ‘ y ‘ Forward move
t

o [ae « o [wfo] v |
t1 t1 t2

t2 3 t3

Figure 11. Forward move of the optional task

Favoring mandatory part (with thelater deadline) does not
compromise the correctness. Note that the algorithm sched-
ules amandatory part only when it is FT-forward schedul able;
thisis clearly a necessary condition in an FT-schedule. Asto
justify the selection of the mandatory task with the later dead-
line M,: suppose again that the algorithm fails after choosing
M, in consecutive steps, while the scheduling of another FT-
forward schedulable task M,, with an earlier deadline would
have yielded an FT-schedule S.

0-7695-0734-4/00 $10.00 ® 2000 IEEE

Again consider forward-move of M, after M, to obtainthe
schedule S (See Fig. 12). The second condition of Theorem
1lisimmediately satisfied since M, is FT-forward schedula-
ble. M, can not suffer from its own fault because of the same
reason.

As the last possibility, suppose M, misses its deadline in
S’, due to the fault of atask M, preceding it. However, S
was FT and M, was safein S, i.e. , Ends(M,) + by —
Opt(EndS(Mf),EndS(Mp)) S dp. Clearly, EndS(Mp) =
EndSI(Mx) and Opt(EndS(Mf),EndS(Mp)) =
Opt(EndSI(Mf),EndSI(Mx)), glVIng EndSI(Mx) + bf —
Opt(EndSI(Mf),EndSI(Mx)) S dp S d,. But this shows
that M, isasosafein S’ and consequently S’ isalso FT, yield-
ing a contradiction.

Forward move

| o [m]e [w] v | e e[| v |
0 t1 t2 t3 t1 t2

t3

Figure 12. Forward move of the mandatory task with later
deadline

Having an efficient decision procedure such as DECIDE
above, we can easily develop an algorithm to compute the FT-
optimal schedule, by adopting a binary-search like technique
on the maximum reward. The lower and upper bounds for the
binary search areinitialy settoOand d,, — >, m;, respec-
tively (the latter being the maximum possible reward of the
task set, FT or non-FT). The algorithm initialy checks the ex-
istence of FT schedules with exactly these amount of rewards,
and if needed, the 'middl€’ point as chosen as the average of
thesevalues. Lower and upper boundsare adjusted accordingly
throughout the iterations.

Complexity: The time complexity of the algorithm DE-
CIDE is clearly O(n?), since we schedule 2n tasks (n op-
tional and n mandatory) and for each of the tasks we execute at
most O(n) operations (For mandatory tasks, the function FT-
forward-sch and lines 16-20, for optiona tasks lines 10-12).
The complexity of thefinal algorithmisthen O(n?logd,,).

Extension to k faults:

Now, we consider the problem of extending the FT-
Optimality framework to the case of % faults, with IR scheme
and tasks having identical ready times. We assume that all the
recovery blocks for a given task have the same worst-case ex-
ecution time, and that all & faults may also occur during the
execution and recoveries of asingletask. Thefollowing serves
asthe basis for the approach.

Theorem 5 A schedule Sistolerant to k faultsif and only if it
istolerant to a single fault for the 'transformed’ task set where
by =k-b;, i=1...n.

The result underlines that the same FT-Optimality analysis
and algorithm presented above can be applied to the k-fault
case, just by scaling up the b; values accordingly.

5 Delayed Recovery (DR) scheme

Recall that in the Delayed Recovery (DR) case, the op-
tiona parts scheduled before d; are used as recovery slots to
achieve Fault Tolerance. Given a schedule S, we define the
function Slack(M;) to be equd to the sum of optiona parts
scheduled after M; but before d;. We say that a schedule S
is fault tolerant according to the DR scheme if Slack(M;) =

Unfortunately, the FT-Optimality problem within the DR
scheme turns out to be NP-Hard even for identical ready times
and the single fault case.

To prove this, we will define a decision problem version
of FT-Optimality, denoted by FT-DR-OPT, and show that it is
NP-Hard, which impliestheintractability of the FT-Optimality
problem. To prove NP-hardness of FT-DR-OPT, we will trans-
form the KNAPSACK problem (which is NP-Complete), to an
instance of FT-DR-OPT.

FT-DR-OPT: Given a set of imprecise computation tasks
{T;}, deadlines {d; } and an integer R representing thetotal re-
ward of the system, istherean FT-Optimal schedule (according
to the DR scheme) whose totdl reward is > R?

KNAPSACK: Let there be a set of items U =
{u1, usg,...,u,}, integers s; (size) and v; (value) for each
u; € U, positive integers B and K denoting the size of the
knapsack and the value of the items in the knapsack, respec-
tively. Isthereasubset U’ C U suchthat), v si < B and

ZU,EU’ Ui Z I(?
Transformation: Let S = 3~ s; andV =) v;. Notethat

i=1 i=1
the KNAPSACK problemis NP-Completeonly if ' < V and
B < § (forif K > V then the answer is definitely 'no’; sim-
ilarly if B > S then the answer is quickly found by checking
whether V' > K). Hence, in the following discussion, we'll
assumethat K + B< S+ V.

If an instance of KNAPSACK is given, we construct a cor-
responding instance of FT-DR-OPT with n + 1 independent
imprecise computation tasks. Thefirst n tasks have the follow-
ing characteristics:

mi=s; o0,=v; bj=0 dij=K+5+V i=1,...,n

We a so introduce an extratask T, with the parameters:

mozlf 00:0 bo:[f do:?[f—i—B
For convenience, the schedule to fill out is shown in Figure

13. Now, consider the question: Isthere an FT-Optimal sched-
uleof 1y, T4, ..., T, with thetotal reward > V' = Z v;? We

i=1
claim that thisinstance of FT-DR-OPT is equivalent to that of
KNAPSACK.

First, notethat >°" ,0; = V, hence the inequality above
can be readily considered as equality. The total reward is V,
implying¢; > o, = v;, Vi. Moreover, the length of the
scheduleisL=dy=...=d, =K+ S+ V=" mi+

0-7695-0734-4/00 $10.00 ® 2000 IEEE

d0=2K+B d;=...=d= K+StV

Figure 13. The schedule timeline

>, 0i Which can betrue only whent; = o; V4 and when
there exists no idle slots in the schedule (otherwise the total
revardof V' =37 o; can not bereached). Thusthequestion
above can be re-formulated as. “Is there an FT schedule with
noidlesotsand al optiona parts are scheduled entirely?’

We notethat 5o = K isthe only recovery block whose ex-
ecution time islarger than 0, that is, we require fault tolerance
only for My. Finaly, it is easy to see that My and (some)
optional parts of total length at least K should be scheduled
before dy in any FT schedule. We prove the equivaence of
two decision problem instances in two parts:
1. If there is a solution to the KNAPSACK instance, then there
isalso a solution to the FT-DR-OPT instance.

Proof: If U’ isasolution set to the KNAPSACK instance,
then ZU,EU’ S S B and ZU,EU’ [Z K.

Let « = {M;lu; € U'}, 3 = {O;lu; € U'}, o =
{M;lu; e U=U'}and 3 = {O;|u; € U —U'}. Consider the
schedule given in Figure 14.

d;=...=d7 K+SHV

Aa AB Aa’ AB’

Figure 14. The FT-Optimal schedule

In this schedule A x denotes the schedule segment where
onlytasksintheset X are scheduled. In other words, we sched-
ule the tasks in the following order: My, the mandatory parts
in «, the optiona parts in 3, the mandatory parts in o, the
optiond partsin 5. It should be clear that the scheduleisfea
sible containsnoidiedotsand ¢; = o; V.

However, in order to show that it is aso Fault-Tolerant, we
need to provethat Slack(Mo) > bo, thet is, the sum of optional
parts scheduled before dy = 2K + B isat least K. Recall
that mg = K. Also, from the solution of the KNAPSACK:
|Aa| = ZM,EO{ my; S B and |A@| = ZO,Eﬁ 0; Z K. Thus,
do is definitely after A, and, Slack(My) > do — B —mg =
do— B — I, whichimplies Slack(My) > 2K+ B— B— K,
or Slack(M,) > I, completing the proof.]
2. If thereis a solutionto the FT-DR-OPT instance, then there
isalso a solution to the KNAPSACK instance.

Proof: Suppose that there exists a solution to the FT-DR-
OPT instance, hence an FT schedule with total reward V' (with
no idlesdlotsand t; = o; Vi). Clearly, Slack(My) > K
in this schedule. Let ¢? be the optional service time of 7; in

the interval [0, do]. We remark that >, t? > K, otherwise
the slack constraint of A/, can not be satisfied. Also, observe
that if ¢ > 0, then M; definitely starts and completes in the
interval [0, do], since otherwise O; can not start executing at
al. Lety = {i|t? > 0Oandi > 0}. It iseasy to see that the
following relations hold:

Yoz Yt} > K (©)
1€y 1€y
S my<dy—m,— St <2K+B—K—K =B (4)
1€y 1€y

Recalling that m; = s; ando; = v; fori = 1,...,n, we
conclude from (3) and (4) that Zi_ev m; = Ziev s; < B and
Dien 0 = Dy vi > K, or equivaently U’ = {u; i € v}
isthe solution to KNAPSACK, compl eting the proof. a

6 FT-Optimality with IR scheme and non-
identical ready times

Finaly we prove that, once we alow non-identical ready
times, the FT-Optimality problem with IR also becomes in-
tractable. The reduction is again from the KNAPSACK in-
stance mentioned in Section 5. The decision problem version
we consider is FT-IR-NONID: Given a set of imprecise com-
putation tasks {T;}, deadlines {d;}, ready times {r;} and an
integer R, isthere an FT-Optimal schedule with IR whose total
reward is larger than or equal to R?

Given an instance of the KNAPSACK (s;, v;, B and K val-
ues), we construct an instance of FT-IR-NONID thistime with
n + 2 imprecise computation tasks. The first n tasks have the
following characteristics:

m;=s; o=v; by =0r; =0
di=K+S+V4+1i=1,...,n

We introduce two additiond tasks 7, and 7;, 1 with the
following parameters:

mo=Koo=0bo=Kro=0dy=2K+ B
Mn41 = 1 On41 = 0 bn-l-l =0
Fpt+l = 2K+ B dn+1 =2K4+B+1
where r,, 11 istheready time of thetask 7, 1. Note that again
the only task which requires FT is7 and thetask 7}, 11 isonly
ready to execute at the deadline of task 7p. Considering the

ready time and the deadline of M, 1, we obtain the timeline
shownin Fig. 15.

d=r d di=...=¢

Mn+1
2K+B+1

0 2K+B K+S+V+1

Figure 15. The schedule timeline

Now, consider the question: Is there an FT-Optimal sched-
uleof 1o, T4, ..., Th, Thy1 Withthetota reward larger than or

equaltoV = > v; ?
i=1

0-7695-0734-4/00 $10.00 ® 2000 IEEE

The need to provide FT for My before dy = rpp1 =
2K + B and thetrict constraint that M, 11 can not be moved,
imply that we must have at least K units of optiona parts
schedul ed before do. Combining thiswith the requirement that
every optiona part should be used entirely to achieve the tota
reward V' and hence, to fully utilize the timeline, we can infer
that theinterval [0, 2K + B] may beused asa’template’ for the
KNAPSACK problem. The details of the proof are ana ogous
to thosein Section 5 and omitted here for lack of space.

7 Conclusion

In this paper, we addressed the problem of incorporating
fault tolerance to the IC model. By exploiting the (potential)
time redundancy due to the existence of optiona parts, we
proposed and formalized two recovery schemes for mandatory
parts whose timely completions are essential for the system.

In theimmediate recovery, therecovery block isexecuted as
soon as the fault is detected without preemption, whilein the
delayed recovery, the recovery block isto run only during slots
originally reserved for optional slots. We showed that the two
schemes yield non-identical FT schedules and then, we pro-
vided the FT conditions separately for each approach. Next,
we considered the problem of generating FT-Optima sched-
ulesin the context of each approach. In the case of the imme-
diate recovery with identical ready times, we derived severd
properties of the FT-optimal schedules and based on these, we
presented an efficient algorithm. Finaly, we showed that the
problem becomes NP-Hard if one alows non-identical ready
times or commits to the delayed recovery scheme.

We consider the investigation of FT-optimality for tasks
with precedence constraints, and the design of approximation
algorithmsfor provably intractable cases as major avenues for
the future work.

References

[1] H. Aydin, R. Melhem and D. Moss&. Incorporating Error Re-
covery in the Imprecise Computation Model. Proceedingsof the
Sxth International Conference on Real-Time Systems and Ap-
plications (RTCSA’' 99), December 1999.

[2] R. Bettati, N.S. Bowen and J.Y. Chung. Checkpointing Impre-
cise Computation. Proceedingsof the | EEE Workshopon Impre-
cise and Approximate Computation, Dec. 1992.

[3] R. Bettati, N.S. Bowen and J.Y. Chung. On-Line Scheduling for
Checkpointing Imprecise Computation. Proceedingsof the Fifth
Euromicro Workshop on Real-Time Systems, June 1993.

[4] JaneW.-S. Liu, K.-J. Lin, W.-K. Shih, A. C.-S. Yu, C. Chung, J.
Yao and W. Zhao. Algorithms for scheduling imprecise compu-
tations. IEEE Computer, 24(5): 58-68, May 1991.

