
Tolerating Faults While Maximizing Reward �

Hakan Aydın, Rami Melhem, Daniel Mossé
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

(aydin, melhem, mosse)@cs.pitt.edu

Abstract

The imprecise computation (IC) model is a general schedul-
ing framework, capable of expressing the precision vs. timeli-
ness trade-off involved in many current real-time applications.
In that model, each task comprises mandatory and optional
parts. While allowing greater scheduling flexibility, manda-
tory parts in the IC model have still hard deadlines and hence
they must be completed before the task’s deadline even in the
presence of faults. In this paper, we address fault tolerant (FT)
scheduling issues for IC tasks. First, we propose two recovery
schemes, namely Immediate Recovery and Delayed Recovery.
These schemes can be readily applied to provide fault toler-
ance to mandatory parts by scheduling optional parts appro-
priately for recovery operations. After deriving the necessary
and sufficient conditions for both schemes, we consider the
FT-Optimality problem, that is, generating a schedule which
is FT and whose reward is maximum among all possible FT
schedules. For Immediate Recovery, we present and prove cor-
rectness of an efficient FT-Optimal scheduling algorithm. For
Delayed Recovery, we show that the FT-Optimality problem is
NP-Hard, thus is intractable.

1 Introduction

In real-time systems, timeliness is as important as the cor-
rectness of the output. Traditionally, hard real-time schedul-
ing theory has aimed at achieving predictability by assum-
ing worst-case scenarios, such as worst-case execution time
and interarrival rates. However, the advance of new technolo-
gies such as multimedia applications and Web-based informa-
tion servers has introduced extra dimensions to the traditional
framework. One major characteristic of the new era is the pro-
gressive nature of the task’s execution: First a result or output
of minimal quality is produced, then it is refined by additional
computation(s). Yet, scheduling decisions must a priori assure
an output of minimal quality for every task, even in the pres-

�This work has been supported by the Defense Advanced Research Projects
Agency through the FORTS project (Contract DABT63-96-C-0044).

ence of unpredictable events. In addition, CPU allocation to
refinement processes should maximize a performance metric.

The Imprecise Computation (IC) technique appears is an ap-
propriate framework to formulate and address many aspects of
the issues discussed above. It was originally proposed as an
overload scheduling technique for applications with less strin-
gent timing constraints than hard-real time systems [4]. In
this model, each task is composed of a mandatory part and
an optional part. The mandatory part runs first and its com-
pletion before the deadline assures a result of minimal qual-
ity. The optional part becomes ready only after the manda-
tory part completes, and its execution can be interrupted at any
time. The quality of the final result is proportional to the ser-
vice time received by the optional part. The applicability of
the model has steadily expanded to several areas of Computer
Science/Engineering, such as multimedia applications, image
and speech processing, time-dependent planning, robot con-
trol/navigation systems, medical decision making, information
gathering, real-time heuristic search and database query pro-
cessing.

In the IC model, the timely completion of mandatory parts
is still crucial, even in the presence of faults. A first study
addressing Fault Tolerance (FT) issues in the context of IC
framework appeared in [2]. An extension for on-line schedul-
ing was considered in [3]. However, these works assume a
priori the knowledge of the worst-case fault profile per task.
Besides the considerable difficulty of obtaining this informa-
tion for real applications (as opposed to the fault profile for the
system), the solutions enforce provisioning for simultaneous
occurrences of all faults of all tasks. This fact (as observed in
[2]) drastically reduces the number of task sets which can pass
FT-schedulability set, although in practice only one or a few
tasks incur faults. Further, the scheme requires the update of
the schedule when a task completes succesfully (without fault),
which largely increases the run-time overhead.

Our work is based on the observation that the optional parts
in IC schedules have the potential of providing the time re-
dundancy for recovery of mandatory parts. Hence, one of the
main issues in this study is the investigation of FT conditions
and recovery techniques involved in IC environments. We fur-

0-7695-0734-4/00 $10.00 � 2000 IEEE

ther enforce FT-Optimality: that is, to compute the schedule
which provides the largest reward (utility) among all possible
FT schedules. Finally, we require that the on-line updating of
the schedule be avoided and the FT-Optimality of the schedule
be preserved, as long as faults are not encountered as opposed
to [2, 3]. This is crucial in preventing excessive run-time over-
head, since the successful completion of tasks is much more
common than the occurrence of faults in any realistic system.

In a recent work, we addressed the problem in the context
of tasks with or without precedence constraints, but sharing a
single, end-to-end deadline [1]. In practice, however, numer-
ous applications mandate the use of different deadlines and our
main purpose in this work is to extend the FT-Optimality ap-
proach to tasks with multiple deadlines. Moreover, unlike the
single-deadline case, the new setting requires distinguishing
among different recovery schemes, which lead to different FT
approaches/schedules and as we show, even the tractability of
the problem is affected by this choice.

2 System Model

2.1 Task Model

We consider a uniprocessor system with a task set T =
fT1; T2; : : : ; Tng. All tasks are assumed to be independent.
Further, each task Ti is composed of a mandatory part Mi

and an optional part Oi. The worst-case execution times of
Mi and Oi are denoted by mi and oi, respectively. Mi be-
comes ready at t = ri (ready time) and it must be completed
by t = di (deadline). On the other hand,Oi can start to execute
only when Mi completes, and further refines the latter’s output
while still before the deadline. Preemption is allowed and we
ignore the costs of preempting the tasks throughout the paper.
We say that a schedule is feasible if every mandatory part Mi

receives at least mi units of service time after its ready time ri,
but before its deadline di.

The quality of the final result produced by Ti is directly
proportional to the amount of service time ti assigned to the
optional part Oi: it is still acceptable, yet minimal when ti =
0, and maximal when ti = oi. Hence, the reward of task Ti is
Ri = ti when 0 � ti � oi, and Ri = oi when ti > oi (that is,
the execution beyond oi does not improve further the quality).
Our concept of reward is analogous to (dual of) the concept of
(precision) error (the amount of optional part left unexecuted)
in other IC studies [4]. A schedule S is optimal if it is feasible
and maximizes the total reward REW =

Pn

i=1Ri.

2.2 Fault Model

We assume that at most k faults may occur during the ex-
ecution of the task set. However, we develop and present our
methodology first in the context of a single fault model (that
is, k = 1) for the sake of simplicity. An extension of this
framework to the k-faults case is presented at the end of Sec-
tion 4. We assume that whenever a mandatory part Mi com-
pletes, consistency or acceptance checks are performed on its

output. If the outcome is positive, then the output of Mi is
committed, and the optional part Oi becomes ready. However,
in case that the checks reveal an error, a recovery mechanism is
invoked, either to re-execute the mandatory part, or to execute
a recovery block. The recovery block associated with Mi and
its worst-case execution time are denoted by Bi and bi, respec-
tively. If an error is detected at the end of the optional part,
then its result is not committed.

In general, a feasible schedule is said to be (single) Fault
Tolerant (FT) if it allows the recovery of a single fault detected
in any mandatory part Mi to be completed before the dead-
line di, while not compromising the timely completion of other
mandatory parts. Finally, a schedule is FT-Optimal if
i. it is FT and,
ii. its total reward is maximum among all possible FT sched-
ules. We require that the FT-Optimality of the schedule be pre-
served as long as no faults are encountered.

3 Recovery Models for Imprecise Computation

We should underline that the definition of FT(-Optimal)
schedule above is incomplete, in the sense that one needs to
specify how and when the recovery block is executed. Since an
additional workload is introduced to the system because of the
recovery block, all the subsequent optional parts may not have
a chance to execute. We can distinguish two recovery schemes
that can be readily applied in practical real-time applications
without considerable overhead:

� Immediate Recovery (IR): The recovery block is exe-
cuted immediately when the error is detected at the end
of the faulty mandatory task. The mandatory parts yet
to execute may have to be delayed/postponed due to the
recovery operation.

� Delayed Recovery (DR): The recovery block is allowed
to execute only in time slots which are not dedicated to
any mandatory task (i.e., those which are empty or as-
signed to an optional part), but still before the deadline.
Thus, mandatory parts are not shifted in the timeline.

As an example, consider the schedule in Fig. 1a. We assume
that b1 = m1. If a fault is detected at the end of M1 at t = 4,
the recovery operation is initiated. If the mechanism chosen
is the immediate recovery then the recovery proceeds without
preemption and until full completion, resulting in a ’shift’ of
M2 (Fig. 1.b). On the other hand, if the delayed recovery
is applied then B1 runs only during the optional slots while
before d1. Clearly, M2 does not need to be shifted in this case
(see Fig. 1.c). Note that, in both cases M2 and the recovery
block B1 complete successfully before their deadlines.

It should be emphasized that the two schemes above do not
lead to identical FT schedule spaces. To see this, consider the
schedule in Figure 2.a. Assuming that m1 = m2 = b1 = b2 =
4, the schedule above is clearly FT according to the immediate
recovery scheme, but not according to the delayed recovery:

0-7695-0734-4/00 $10.00 � 2000 IEEE

d 1 = d2 d 1 = d2 d 1 = d2

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

0 4
(a)

8 10 0 4
(b)

8 10 0 4
(c)
6 8 106

detected
fault fault

detected

M1 O 2 O21M M1 1 2MB M1 B1 2M B1

Figure 1. (a) A feasible schedule (b) Recovery of M1 with IR
(c)Recovery of M1 with DR

There is simply no optional part scheduled before d1, during
which one would run the recovery block B1. Similarly, the
schedule shown in Figure 2.b is FT according to the delayed
recovery scheme, while the immediate recovery of a fault in
M3 would cause M2 to miss its deadline (assume again that
bi = mi for all the tasks and recovery by re-execution).

d d1 2 1d d d2 3

0 4
(a)

8 12 0 4 16 20 26 32 36
(b)

M M2 O2 M1 M3 O1 M 2 O2 O31

Figure 2. (a) An FT schedule according to IR but not DR (b)
An FT schedule according to DR but not IR

Given a schedule and a recovery mechanism, checking its
tolerance to fault(s) is not a difficult process and can be accom-
plished in polynomial-time. On the other hand, as indicated in
Section 1, our aim is to construct FT-Optimal schedules in a
computationally efficient manner, which turns out to be a non-
trivial task. Given a feasible schedule S, we define:
EndS(Mi) : The time by which Mi completes in S.
OptS(t1; t2) :The sum of optional parts and empty slots in

time interval [t1; t2] in S.
We will drop the subscript S, whenever the schedule in-

volved is clear from the context. As an example, in the sched-
ule of Figure 2.b, End(M2) = 26, while Opt(16; 32) = 10.
Clearly, in case of preemptions, the End function should con-
sider the completion of the last portion of the task.

Observe that in any of the schemes, we can not impose an
a priori order among the different tasks, as long as we are not
ready to compromise FT-optimality.

4 Immediate Recovery(IR) with identical ready
times

We start by defining necessary and sufficient FT conditions
according to the IR scheme. The execution of the recovery
blockBi may affect only the mandatory parts which are sched-
uled after Mi. We say that a task Tj is safe in a given schedule
S, if and only if Mj can be completed in a timely manner even
in the presence of any faults in tasks preceding or occurring
duringMj ; or equivalently, if and only if:

End(Mj) + bi � Opt(End(Mi); End(Mj)) � dj

8 i such that End(Mi) � End(Mj) (1)

For a given i, the left-hand side of the inequality (1) indi-
cates the time by which Mj would complete, if a fault were
detected in Mi; or equivalently the (new) End(Mj) value af-
ter the fault and recovery of Mi. More precisely, it is derived
by taking into account that the workload is increased by an
amount of bi, but decreased by (if necessary) removing all
the subsequent optional parts, in case an error is detected at
Mi. Now, a schedule S is said to be Fault Tolerant (accord-
ing to IR scheme), if and only if all the tasks are safe; that is,
if and only if the Equation (1) holds for all mandatory tasks
Mj; j = 1; : : : ; n.

Given an FT schedule S, consider the effects of moving a
portion �x of a task Tx to a later in point in the schedule as
shown in Figure 3. We call such a move the forward (FW)
move of �x —which may be mandatory or optional. Through-
out this section, � denotes the schedule portion preceding �x
prior to the FW-move and
 denotes the schedule portion fol-
lowing �x after the FW-move. Observe that both � and
 oc-
cupy the same portion of the shedule before and after the move.
The portion initially located between �x and
 is denoted by �.

30 t 1 2t t 3 4 0 t 1 t 4

xα τ β γ β τ γx
t t

Forward move α

Figure 3. The forward move of the task portion �x

Theorem 1 : (Forward-moving theorem) If a schedule S is
FT, then the schedule S0 resulting from the forward-move of a
task portion �x belonging to Tx is still FT if and only if, in S’:
i. Tx is safe, and
ii. A fault of Tx does not cause a deadline miss in any manda-
tory part located in
.

Proof: We will prove the theorem by showing that in the trans-
formed schedule S0,
(i.) Every task Tj such that EndS(Mj) is in � are still safe,
(ii.) Every task Tj such that EndS(Mj) is in � are still safe,
(iii.) No fault detected in � or � can cause a deadline miss (of
mandatory parts) in
.

To establish (i.), it is sufficient to observe that the seg-
ment � remains unchanged in S0, hence any task Tj such that
End(Mj) � t1 is still safe in the transformed schedule.

To see that (ii.) holds, consider any task Tj such that
t2 < EndS(Mj) � t3 (Mj in �). Since Tj was safe in S
by definition, the equation (1) gives:

End(Mj) + bi � Opt(End(Mi); End(Mj)) � dj

8 i such that End(Mi) � End(Mj) (2)

Consider the fault of a task Mi preceding Mj in S
(EndS(Mi) � EndS(Mj)). If EndS(Mi) = t2, then the
FW-moved portion �x belongs to Mx, Mi = Mx and the
fault of Mx can no longer cause a problem for Mj in S0

where now it succeeds Mj . Otherwise, it is either in � or
� (preceding Mj). Note that EndS(Mj) � EndS0(Mj) =
t2 � t1 > 0 (Mj has been moved backward in the schedule by

0-7695-0734-4/00 $10.00 � 2000 IEEE

an amount of t2 � t1). Also Opt(EndS(Mi); EndS(Mj)) �
Opt(End0S(Mi); End0S(Mj)) is either t2� t1 (in case thatMi

is in � and �x is a portion of the optional part Ox) or 0 (the
remaining cases). Hence, the sum of optional parts between
Mi and Mj may have decreased, but at most by an amount
of t2 � t1. However, this shows that Mj is still safe in S0

since: EndS0(Mj) + bi � Opt(EndS0(Mi); EndS0(Mj)) �
EndS(Mj) + bi � Opt(EndS(Mi); EndS(Mj)) �
dj 8 i such that EndS0(Mi) � EndS0(Mj)

Finally, to show (iii.), let EndS(Mj) be in
. Clearly,
EndS(Mj) = EndS0(Mj). Consider a fault of any task
Mi preceding Mj in S0, such that EndS(Mi) in � or �. It
is not difficult to see that Opt(EndS(Mi); EndS(Mj)) �
Opt(EndS0(Mi); EndS0(Mj)), thus the sum of optional parts
between Mi and Mj may have never decreased in S0. But this
gives: EndS0(Mj) + bi � Opt(EndS0(Mi); EndS0(Mj)) �
EndS(Mj) + bi � Opt(EndS(Mi); EndS(Mj)) �
dj 8 i such that EndS0(Mi) is in � or �, completing
the proof. 2

With the help of the Forward-moving theorem, we can fur-
ther obtain important properties of FT schedules, as the next
theorem demonstrates.

Theorem 2 It is always possible to transform an FT schedule
S to another FT schedule with the same total reward, where:
i. Mandatory parts are not preempted,
ii. Optional parts are not preempted,
iii. Optional parts follow EDF order.

Proof: Suppose that Mi is preempted once or more in S.
Let Mia be the first ’segment’ of Mi in S, Mib the sec-
ond and so on. Consider forward-moving of Mia close
to Mib as illustrated in Fig 4. We call the resulting
schedule S0. According to Theorem 1, we need to check
only the safety of Mi and the effect of Mi’s fault in

. It is easy to see that Opt(EndS(Mj); EndS(Mk)) =
Opt(EndS0(Mj); EndS0(Mk)) 8j; k and further, there is no
task Mj such that End(Mj) has increased in S0. Hence the
condition (1) implies that Mi and all tasks in
 are still safe.
One can apply this transformation repeatedly to obtain a sched-
ule where the mandatory parts are never preempted.

0 t 1 t 2 3t 0 t 1 t 2 t 3

Forward move
ia Mib Mia Mibα β γ α β γM

Figure 4. Forward move of the preempted mandatory portion

Similarly, if Oi is preempted, one can move it for-
ward to obtain the schedule S0 (see Fig 5). Clearly,
0 � EndS(Mi) = EndS0(Mi) � t1 and Mi is
in �, Ti definitely is still safe in S0 (where � did not
change at all). Also, Opt(EndS(Mi); EndS(Mj)) �
Opt(EndS0(Mi); EndS0(Mj)) 8Mj in
 and the condition
(1) ensures that all tasks in
 are safe, thus S0 is still FT. Hence,
it is possible to apply the transformation repeatedly to remove
all the preemptions of optional parts.

α β γ α β γOia Oib Oib iaO

0 t 1 t 2 t 3 0 t 1 t 2 t 3

Forward move

Figure 5. Forward move of the preempted optional portion

Finally, consider a pair of optional parts which do not fol-
low EDF order in S. We can consider that all the preemptions
are already removed via the transformations described above.
Again, consider moving Oi after Oj (Fig. 6). Following a rea-
soning completely analogous to the preceding paragraph, we
can establish that Mi and all the tasks in
 are still safe. A fi-
nite number of transformations would definitely yield a sched-
ule where optional parts follow EDF order. Note also that, the
total reward of the FT schedule remains the same after any
forward-moves just described. 2

α β γ α β γiO jO Oj iO

0 t 1 t 2 t 3 0 t 1 t 2 3t

Forward move

jd di dj di

Figure 6. Forward move of the optional task with later deadline

Corollary 1 Provided that a task set T is FT, there exists an
FT-optimal schedule for T, where no mandatory or optional
part is preempted and optional parts follow EDF order.

Unfortunately, it may not be always possible to find an FT-
optimal schedule where mandatory parts follow also EDF or-
der. To see this, consider the tasks T1; T2; T3 with parameters
m1 = 4; o1 = 8; d1 = 20;m2 = 2; o2 = 2; d2 = 24;m3 =
8; o3 = 2; d3 = 26. We assume that bi = mi i = 1; 2; 3.
In fact, one can schedule the task set in an FT manner without
discarding any optional part as shown in Figure 7.a, which is
consequently an FT-Optimal schedule. On the other hand, if
one tries to enforce the EDF rule for mandatory parts also, the
best schedule that can be obtained is the one shown in Fig. 7.b.
Observe that O1 can not be scheduled beyond d1 and the large
recovery block of M3 contributes to a lower reward.

0 4 12
(a)

20 22 24 26 0 4 6 14
(b)

20 22 24

1d d d d d d2 3 31 2

1M 3M 1O 2 2O 3O 1M 2M 3M 1O O 2 3OM

Figure 7. (a) The FT-Optimal schedule (b) The suboptimal
schedule with EDF order among mandatory parts

Before presenting our final algorithm, we obtain another
useful property of the FT-optimal schedules.

Theorem 3 If a task set is FT, then there exists always an FT-
optimal schedule, where, for each task Ti, ti > 0 only if tj =
oj j = i+ 1; : : : ; n.

Informally, the theorem states that one can always find an
FT-Optimal schedule where an optional part with later dead-
line can always be used instead of an optional part with earlier
deadline, as long as the upperbounds on the optional execution
times are not violated.

0-7695-0734-4/00 $10.00 � 2000 IEEE

Proof: Without loss of generality, assume that the FT-
Optimal schedule is in the ’canonical’ form stated in Corollary
1: that is, no preemption exists and optional parts follow EDF
order. Let Op be the optional part with the latest deadline such
that tp > 0 and tp+1 < op+1 (such a task should definitely
exist if the proposition does not hold). Since the schedule is in
the canonical form, we can move � = min(op+1 � tp+1; tp)
units of Op forward and consider it as part of Op+1. Figure 8
illustrates the FW-move.

α β γ ’α β γpO p’O p+1Op+1O

∆
0 t 1 t 2 3 0 t 1 t 2 t 3

∆

Forward move

t

Figure 8. Forward move of an optional part’s portion (�) and
its renaming

Note that from the definition of �, tp+1 + tp = t0p+1 + t0p,
hence the total reward remains the same. Moreover, one can
easily verify that the FW-move of � units ofOp does not affect
the safety of any task. Note that, tj = oj for j = p + 2; : : : ; n
from the assumptions. If the statement of the theorem does
not hold after this transformation, then we can apply the tech-
nique repeatedly to favor later optional parts without harming
the fault tolerance requirement or the optimal reward. 2

Theorem 3 implies that one does not need to schedule an
optional part unless all the optional parts with the later dead-
lines are fully utilized. Hence, given a set O of optional parts
fO1; : : : ; Ong and a positive real number X we can define
the function SUFFIX(O;X) which returns the (new) set of
optional parts O’= f0; 0; : : :; O0

m; O
0

m+1 : : : ; O
0

ng such that
o0i = oi for i = m + 1; : : : ; n and o0m = X �

Pn

i=m+1 o
0

i.
Note that in case that X � on , O’= f0; 0; : : : ; 0; O0

ng where
o0n = X; or if X �

P
oi, then O’= O.

Corollary 2 The existence of an FT schedule with total re-
ward larger than or equal to X, implies that there is an FT-
Optimal schedule where the optional parts in SUFFIX(O,X)
appear fully and in EDF order.

It may happen that in an FT-optimal schedule
P

mi +P
ti < dn; that is, there are ’empty’ slots in the interval

[0; dn]. The following establishes that it is possible further to
obtain a fully-utilized schedule or timeline without hurting FT,
by augmenting tn.

Theorem 4 If
P

mi+
P

ti < dn in an FT-optimal schedule S,
then we can increase tn (beyond the upperbound on) to obtain
an FT-optimal schedule S’ where

P
mi +

P
ti = dn

Proof: Since
P

mi +
P

ti < dn in S, there should be empty
slots within the timeline interval [0; dn]. By a reasoning similar
to the proof of Theorem 3, moving every empty slot to the end
of the schedule and renaming it as part of the optional part On

(beyond the upperbound on) keeps the total reward unchanged,
the FT property is preserved, and the timeline is now fully uti-
lized. 2.

The results above allow us to devise a polynomial-time
algorithm (Figure 9) to decide whether there exists an FT-
Optimal schedule with a total reward of exactly X.

Algorithm DECIDE(M, O, X)
1 Set O’= SUFFIX(O;X)

2 Set diff = dn �
Pn

i=1
mi �

Pn

i=1
o0i

3 If diff < 0 then return FAILURE
else o0n = o0n+ diff

4 Set pointer = shiftlimit = dn

5 Set index = n

6 SetMq =M

7 Repeat
8 While pointer � dindex do f
9 /* schedule optional part there */
10 Set pointer = pointer � o0index
11 Set Timeline[pointer; pointer + o0index] = Oindex

12 Set index = index� 1

13 g

14 /* Find the FT-forward schedulable mandatory part with */
/* the latest deadline and schedule it /*

15 Set Ma = FT-forward-sch(pointer; shiftlimit)
16 If Ma = nil then return FAILURE
17 Set pointer = pointer �ma

18 Set Timeline[pointer; pointer +ma] =Ma

19 SetMq =Mq �Ma

20 If da � shiftlimit then shiftlimit = shiftlimit�ma

21 else shiftlimit = da �ma

22 UntilMq = ;

23 Return(Timeline, SUCCESS)

Figure 9. Algorithm to solve FT-Optimality Decision Problem

Function FT-forward-sch(pointer; shiftlimit)
1 Repeat
2 Set counter = n

3 If Mcounter inMq f

4 Set endpoint = pointer + bcounter

5 if endpoint �min(shiftlimit; dcounter) return Mcounter

6 g

7 Set counter = counter � 1

8 Until (counter = 0)
9 Return nil

Figure 10. Function returning FT-Forward schedulable

mandatory task

The algorithm is based on the fact that there exists a sched-
ule S that fully utilizes the timeline between 0 and dn, fol-
lowing Corollary 2 and Theorem 4 (in other words, S is an
FT-schedule with total reward X, where tn may be augmented
beyond its upperbound). The algorithm:

� Proceeds backwards from dn and tries to schedule one
(mandatory or optional) task at a time, at the given point
of the schedule (represented by the variable pointer).

0-7695-0734-4/00 $10.00 � 2000 IEEE

� If unable to find such a task, it exits with a FAILURE
message.

� If more than one task is eligible for a given time point, it
always favors an optional part (in case of ties, the optional
task with the latest deadline is chosen). The optional parts
are only subject to the deadline constraints.

� If no optional part is eligible, then the mandatory part
which is FT-forward schedulable at pointer is selected.
We say that a mandatory part Mi is FT-forward schedula-
ble at tx, if scheduling Mi between tx �mi and tx does
not cause Mi to miss its deadline (i.e., tx + bi � di) nor
does it cause subsequent tasks to miss their deadlines, in
case a fault occurs during the execution of Mi. In order
to check how much the subsequent tasks can be pushed
later in the timeline, the algorithm keeps a variable named
shiftlimit. As with optional parts, ties are broken in fa-
vor of mandatory task with the later deadline.

Correctness: To begin with, the algoritm’s commitment to
non-preemptive tasks and to optional parts in SUFFIX(O,X) is
immediately justified by Corollaries 1 and 2. Yet, we need to
justify the selections of the algorithm whenever two (or more)
tasks are eligible at a given point.
Favoring optional parts does not compromise the correct-
ness: Let Ox be the optional part (with the later deadline) such
that pointer � dx. Scheduling Op at the pointer clearly does
not hurt FT-schedulability of the successive tasks. However,
suppose that the algorithm’s selection is incorrect, in the sense
that it fails to find an FT schedule in the following steps, yet
an FT-schedule S with the total reward X would have been ob-
tained if a mandatory task Mi had been selected at this point.
The hypothetical schedule S is clearly fully utilized and Ox

precedes Mi in S (see Fig. 11). Consider forward-move of Ox

afterMi to obtain the schedule S0. It should be straightforward
to observe that the two conditions of Theorem 1 still hold inS0:
The schedule segment up to and includingMx (in �) not being
changed, Mx and all the tasks in
 are still safe. Hence the
algorithm’s selection of Ox in the first place would have also
yielded an FT-schedule, and we reach a contradiction.

0 t 1 t 2 t 3 0 t 1 t 2 t 3

Forward moveOx iM M i xOα β γ α β γ

Figure 11. Forward move of the optional task

Favoring mandatory part (with the later deadline) does not
compromise the correctness: Note that the algorithm sched-
ules a mandatory part only when it is FT-forward schedulable;
this is clearly a necessary condition in an FT-schedule. As to
justify the selection of the mandatory task with the later dead-
line Mx: suppose again that the algorithm fails after choosing
Mx in consecutive steps, while the scheduling of another FT-
forward schedulable task Mp with an earlier deadline would
have yielded an FT-schedule S.

Again consider forward-move of Mx after Mp to obtain the
schedule S0 (See Fig. 12). The second condition of Theorem
1 is immediately satisfied since Mx is FT-forward schedula-
ble. Mx can not suffer from its own fault because of the same
reason.

As the last possibility, suppose Mx misses its deadline in
S0, due to the fault of a task Mf preceding it. However, S
was FT and Mp was safe in S, i.e. , EndS(Mp) + bf �
Opt(EndS(Mf); EndS(Mp)) � dp. Clearly, EndS(Mp) =
EndS0(Mx) and Opt(EndS(Mf); EndS(Mp)) =
Opt(EndS0(Mf); EndS0(Mx)), giving EndS0(Mx) + bf �
Opt(EndS0(Mf); EndS0(Mx)) � dp � dx. But this shows
thatMx is also safe in S0 and consequently S0 is also FT, yield-
ing a contradiction.

0 t 1 t 2 t 3 0 t 1 t 2 t 3

Forward move
xM M pM xMα β γ α β γp

Figure 12. Forward move of the mandatory task with later
deadline

Having an efficient decision procedure such as DECIDE
above, we can easily develop an algorithm to compute the FT-
optimal schedule, by adopting a binary-search like technique
on the maximum reward. The lower and upper bounds for the
binary search are initially set to 0 and dn �

Pn

i=1mi, respec-
tively (the latter being the maximum possible reward of the
task set, FT or non-FT). The algorithm initially checks the ex-
istence of FT schedules with exactly these amount of rewards,
and if needed, the ’middle’ point as chosen as the average of
these values. Lower and upper bounds are adjusted accordingly
throughout the iterations.

Complexity: The time complexity of the algorithm DE-
CIDE is clearly O(n2), since we schedule 2n tasks (n op-
tional and n mandatory) and for each of the tasks we execute at
most O(n) operations (For mandatory tasks, the function FT-
forward-sch and lines 16-20, for optional tasks lines 10-12).
The complexity of the final algorithm is then O(n2 log dn).

Extension to k faults:

Now, we consider the problem of extending the FT-
Optimality framework to the case of k faults, with IR scheme
and tasks having identical ready times. We assume that all the
recovery blocks for a given task have the same worst-case ex-
ecution time, and that all k faults may also occur during the
execution and recoveries of a single task. The following serves
as the basis for the approach.

Theorem 5 A schedule S is tolerant to k faults if and only if it
is tolerant to a single fault for the ’transformed’ task set where
b0i = k � bi; i = 1 : : :n.

The result underlines that the same FT-Optimality analysis
and algorithm presented above can be applied to the k-fault
case, just by scaling up the bi values accordingly.

0-7695-0734-4/00 $10.00 � 2000 IEEE

5 Delayed Recovery (DR) scheme

Recall that in the Delayed Recovery (DR) case, the op-
tional parts scheduled before di are used as recovery slots to
achieve Fault Tolerance. Given a schedule S, we define the
function Slack(Mi) to be equal to the sum of optional parts
scheduled after Mi but before di. We say that a schedule S
is fault tolerant according to the DR scheme if Slack(Mi) =
Opt(End(Mi); di) � bi 8i.

Unfortunately, the FT-Optimality problem within the DR
scheme turns out to be NP-Hard even for identical ready times
and the single fault case.

To prove this, we will define a decision problem version
of FT-Optimality, denoted by FT-DR-OPT, and show that it is
NP-Hard, which implies the intractability of the FT-Optimality
problem. To prove NP-hardness of FT-DR-OPT, we will trans-
form the KNAPSACK problem (which is NP-Complete), to an
instance of FT-DR-OPT.

FT-DR-OPT: Given a set of imprecise computation tasks
fTig, deadlines fdig and an integer R representing the total re-
ward of the system, is there an FT-Optimal schedule (according
to the DR scheme) whose total reward is � R?

KNAPSACK: Let there be a set of items U =
fu1; u2; : : : ; ung, integers si (size) and vi (value) for each
ui 2 U , positive integers B and K denoting the size of the
knapsack and the value of the items in the knapsack, respec-
tively. Is there a subset U 0 � U such that

P
ui2U 0 si � B andP

ui2U 0 vi � K?

Transformation: Let S =
nP

i=1

si and V =
nP

i=1

vi. Note that

the KNAPSACK problem is NP-Complete only if K � V and
B < S (for if K > V then the answer is definitely ’no’; sim-
ilarly if B � S then the answer is quickly found by checking
whether V � K). Hence, in the following discussion, we’ll
assume that K + B < S + V .

If an instance of KNAPSACK is given, we construct a cor-
responding instance of FT-DR-OPT with n + 1 independent
imprecise computation tasks. The first n tasks have the follow-
ing characteristics:

mi = si oi = vi bi = 0 di = K + S + V i = 1; : : : ; n

We also introduce an extra task T0 with the parameters:

m0 = K o0 = 0 b0 = K d0 = 2K + B

For convenience, the schedule to fill out is shown in Figure
13. Now, consider the question: Is there an FT-Optimal sched-

ule of T0; T1; : : : ; Tn with the total reward � V =
nP

i=1

vi? We

claim that this instance of FT-DR-OPT is equivalent to that of
KNAPSACK.

First, note that
Pn

i=0 oi = V , hence the inequality above
can be readily considered as equality. The total reward is V ,
implying ti � oi = vi; 8 i. Moreover, the length of the
schedule is L = d1 = : : : = dn = K + S + V =

Pn

i=0mi +

d
0

= 2K+B

0

K+S+Vd =1 . . . = d = n

Figure 13. The schedule timeline

Pn

i=0 oi which can be true only when ti = oi 8 i and when
there exists no idle slots in the schedule (otherwise the total
reward of V =

Pn

i=0 oi can not be reached). Thus the question
above can be re-formulated as: “Is there an FT schedule with
no idle slots and all optional parts are scheduled entirely?”

We note that b0 = K is the only recovery block whose ex-
ecution time is larger than 0, that is, we require fault tolerance
only for M0. Finally, it is easy to see that M0 and (some)
optional parts of total length at least K should be scheduled
before d0 in any FT schedule. We prove the equivalence of
two decision problem instances in two parts:
1. If there is a solution to the KNAPSACK instance, then there
is also a solution to the FT-DR-OPT instance.

Proof: If U 0 is a solution set to the KNAPSACK instance,
then
P

ui2U 0 si � B and
P

ui2U 0 vi � K.
Let � = fMijui 2 U 0g, � = fOijui 2 U 0g, �0 =

fMijui 2 U �U 0g and �0 = fOijui 2 U �U 0g. Consider the
schedule given in Figure 14.

∆α ∆α ’

0

M 0 ∆β ∆ ’β
Κ

 K+S+Vd =1 . . . = d = n

<= Β >= K

Figure 14. The FT-Optimal schedule

In this schedule �X denotes the schedule segment where
only tasks in the set X are scheduled. In other words, we sched-
ule the tasks in the following order: M0, the mandatory parts
in �, the optional parts in �, the mandatory parts in �0, the
optional parts in �0. It should be clear that the schedule is fea-
sible, contains no idle slots and ti = oi 8 i.

However, in order to show that it is also Fault-Tolerant, we
need to prove that Slack(M0) � b0, that is, the sum of optional
parts scheduled before d0 = 2K + B is at least K. Recall
that m0 = K. Also, from the solution of the KNAPSACK:
j��j =

P
Mi2�

mi � B and j��j =
P

Oi2�
oi � K. Thus,

d0 is definitely after �� and, Slack(M0) � d0 � B �m0 =
d0�B�K, which implies Slack(M0) � 2K +B �B�K,
or Slack(M0) � K, completing the proof. 2

2. If there is a solution to the FT-DR-OPT instance, then there
is also a solution to the KNAPSACK instance.

Proof: Suppose that there exists a solution to the FT-DR-
OPT instance, hence an FT schedule with total reward V (with
no idle slots and ti = oi 8 i). Clearly, Slack(M0) � K

in this schedule. Let toi be the optional service time of Ti in

0-7695-0734-4/00 $10.00 � 2000 IEEE

the interval [0; d0]. We remark that
Pn

i=1 t
o
i � K, otherwise

the slack constraint of M0 can not be satisfied. Also, observe
that if toi > 0, then Mi definitely starts and completes in the
interval [0; d0], since otherwise Oi can not start executing at
all. Let
 = fi jtoi > 0 and i > 0g. It is easy to see that the
following relations hold:

P

i2

oi �
P

i2

toi � K (3)

P

i2

mi � do �mo �
P

i2

toi � 2K +B �K �K = B (4)

Recalling that mi = si and oi = vi for i = 1; : : : ; n, we
conclude from (3) and (4) that

P
i2
 mi =

P
i2
 si � B andP

i2
 oi =
P

i2
 vi � K, or equivalently U 0 = fui j i 2
g
is the solution to KNAPSACK, completing the proof. 2

6 FT-Optimality with IR scheme and non-
identical ready times

Finally we prove that, once we allow non-identical ready
times, the FT-Optimality problem with IR also becomes in-
tractable. The reduction is again from the KNAPSACK in-
stance mentioned in Section 5. The decision problem version
we consider is FT-IR-NONID: Given a set of imprecise com-
putation tasks fTig, deadlines fdig, ready times frig and an
integer R, is there an FT-Optimal schedule with IR whose total
reward is larger than or equal to R?

Given an instance of the KNAPSACK (si; vi, B and K val-
ues), we construct an instance of FT-IR-NONID this time with
n + 2 imprecise computation tasks. The first n tasks have the
following characteristics:

mi = si oi = vi bi = 0 ri = 0

di = K + S + V + 1 i = 1; : : : ; n
We introduce two additional tasks T0 and Tn+1 with the

following parameters:

m0 = K o0 = 0 b0 = K r0 = 0 d0 = 2K +B

mn+1 = 1 on+1 = 0 bn+1 = 0

rn+1 = 2K + B dn+1 = 2K + B + 1

where rn+1 is the ready time of the task Tn+1. Note that again
the only task which requires FT is T0 and the task Tn+1 is only
ready to execute at the deadline of task T0. Considering the
ready time and the deadline of Mn+1, we obtain the timeline
shown in Fig. 15.

=1 . . . = d n d

0 2K+B K+S+V+12K+B+1

d = r
0 n+1 n+1

 d

M n+1

Figure 15. The schedule timeline

Now, consider the question: Is there an FT-Optimal sched-
ule of T0; T1; : : : ; Tn; Tn+1 with the total reward larger than or

equal to V =
nP

i=1

vi ?

The need to provide FT for M0 before d0 = rn+1 =
2K +B and the strict constraint that Mn+1 can not be moved,
imply that we must have at least K units of optional parts
scheduled before d0. Combining this with the requirement that
every optional part should be used entirely to achieve the total
reward V and hence, to fully utilize the timeline, we can infer
that the interval [0; 2K+B]may be used as a ’template’ for the
KNAPSACK problem. The details of the proof are analogous
to those in Section 5 and omitted here for lack of space.

7 Conclusion

In this paper, we addressed the problem of incorporating
fault tolerance to the IC model. By exploiting the (potential)
time redundancy due to the existence of optional parts, we
proposed and formalized two recovery schemes for mandatory
parts whose timely completions are essential for the system.

In the immediate recovery, the recovery block is executed as
soon as the fault is detected without preemption, while in the
delayed recovery, the recovery block is to run only during slots
originally reserved for optional slots. We showed that the two
schemes yield non-identical FT schedules and then, we pro-
vided the FT conditions separately for each approach. Next,
we considered the problem of generating FT-Optimal sched-
ules in the context of each approach. In the case of the imme-
diate recovery with identical ready times, we derived several
properties of the FT-optimal schedules and based on these, we
presented an efficient algorithm. Finally, we showed that the
problem becomes NP-Hard if one allows non-identical ready
times or commits to the delayed recovery scheme.

We consider the investigation of FT-optimality for tasks
with precedence constraints, and the design of approximation
algorithms for provably intractable cases as major avenues for
the future work.

References

[1] H. Aydın, R. Melhem and D. Mossé. Incorporating Error Re-
covery in the Imprecise Computation Model. Proceedings of the
Sixth International Conference on Real-Time Systems and Ap-
plications (RTCSA’99), December 1999.

[2] R. Bettati, N.S. Bowen and J.Y. Chung. Checkpointing Impre-
cise Computation. Proceedings of the IEEE Workshop on Impre-
cise and Approximate Computation, Dec. 1992.

[3] R. Bettati, N.S. Bowen and J.Y. Chung. On-Line Scheduling for
Checkpointing Imprecise Computation. Proceedings of the Fifth
Euromicro Workshop on Real-Time Systems, June 1993.

[4] Jane W.-S. Liu, K.-J. Lin, W.-K. Shih, A. C.-S. Yu, C. Chung, J.
Yao and W. Zhao. Algorithms for scheduling imprecise compu-
tations. IEEE Computer, 24(5): 58-68, May 1991.

0-7695-0734-4/00 $10.00 � 2000 IEEE

