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Abstract

In this paper, we undertake the competitive analysis of the online

real-time scheduling problems under a given hard energy constraint.

Specifically, we derive worst-case performance bounds that apply to

any online algorithm, when compared to an optimal algorithm that

has the knowledge of the input sequence in advance. First, by focus-

ing on uniform value-density settings, we prove that no online algo-

rithm can achieve a competitive factor greater than 1− emax

E
, where

emax is the upper bound on the size of any job and E is the available

energy budget. Then we propose a variant of EDF algorithm, EC-

EDF, that is able to achieve this upper bound. We show that a priori

information about the largest job size in the actual input sequence

makes possible the design of a semi-online algorithm EC-EDF ∗

which achieves a constant competitive factor of 0.5. This turns out to

be the best achievable competitive factor in these settings. We also ex-

tend our analysis to other settings, including those with non-uniform

value densities and Dynamic Voltage Scaling capability.

1 Introduction

An algorithm is said to be online if it must make its decisions

at run-time, without having any information about the future

input. Design and analysis of online algorithms is a well-

established field with direct applications in a wide range of

areas such as load balancing, scheduling, circuit design, server

performance evaluation, memory hierarchy design, search,

portfolio selection, and revenue management [13]. In online

settings, the performance of an algorithm is often assessed

by comparing it to that of an optimal and clairvoyant algo-

rithm that knows the entire input in advance. This framework,

known as competitive analysis, is considered as a standard

analysis and evaluation tool in Computer Science. The reader

is referred to excellent surveys such as [13, 30] for an overview

of existing techniques and results.

For underloaded real-time systems, where a feasible sched-

ule for the workload is known to exist, the preemptive Earliest

Deadline First (EDF) algorithm is optimal in the hard real-time

sense, meaning that EDF is guaranteed to meet all the dead-

lines even when it processes and schedules jobs as they arrive

without any knowledge of future release times [18]. This re-
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markable feature does not extend to multiprocessor environ-

ments, for which it is well-known that no online algorithm can

guarantee to generate a feasible schedule if future job release

times are not known [17].

A real-time system is said to be overloaded, if there does

not exist a schedule where all jobs meet their deadlines. In

these settings where deadline misses are unavoidable (even for

a clairvoyant algorithm), the goal is typically to maximize a

soft real-time performance metric. A common approach in

firm real-time systems is to associate a value with each job

to quantify its contribution to the overall system performance

[8, 9, 14]. The value of the job is added to the overall perfor-

mance metric (cumulative, or, total system value) if and only if

it meets its deadline – no value is accrued for partial executions

that are not completed before the task deadline.

An online scheduling algorithm is said to have a compet-

itive factor r, 0 ≤ r ≤ 1, if and only if it is guaranteed

to achieve a cumulative value at least r times the cumulative

value achievable by a clairvoyant algorithm on any finite in-

put job sequence [8, 14, 23]. An online algorithm is said to

be competitive, if it has a constant competitive factor strictly

greater than zero. In general, the higher the competitive ratio,

the better performance guarantees provided by an online al-

gorithm. As such, the competitive analysis technique aims to

establish performance bounds that hold even under worst-case

scenarios for online algorithms, when compared to an optimal

clairvoyant algorithm [13, 30].

Another technique in competitive analysis is to explore the

impact of giving some (but still, limited) information to the on-

line algorithm about the actual input sequence (actual job set)

in an effort to improve its competitiveness. Such algorithms

are known as semi-online algorithms [30]. For example, a pri-

ori information about the largest job size that will appear in

the actual input sequence typically makes possible design of

semi-online algorithms with improved competitive ratio [30].

A significant body of research has been devoted to the anal-

ysis of online scheduling algorithms for overloaded real-time

systems, where the goal is to maximize the total system value

[8, 9, 11, 23]. In a seminal paper, Baruah et al. showed that no

online algorithm can achieve a competitive factor greater than

0.25 [8], in an overloaded real-time system. This result holds

for task systems with uniform density settings, where the value
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of a job is proportional to its execution time. For more gen-

eral, non-uniform value density settings where different tasks

may contribute different values per execution time, the bound

is much smaller. Consider a firm real-time task system where

the job Ji accrues ki units of value per execution time (value

density), if it completes by the deadline. Then, no online algo-

rithm can achieve a competitive factor greater than 1
(1+

√
k)2

,

where k = max(ki)
min(ki)

is the importance ratio obtained through

the largest and smallest value densities in the task set [8].

Remarkably, Koren and Shasha provided an optimal on-

line algorithm Dover that achieves this upper bound [23]. The

same authors also considered extensions to multiprocessor set-

tings [24]. Several other studies addressed competitive on -

line real-time scheduling for imprecise computation tasks [12],

tasks with bounded slack factors [11], and tasks with given

stretch metrics [27] among others.

Recently, energy management has moved to the forefront

of research in real-time systems. This is primarily due to

the emergence of devices that rely on battery power, which

is fairly limited. Literally hundreds of research papers were

published, each extending the real-time scheduling results

to energy-aware settings for various task/system models.

These studies can be broadly classified in two categories. The

first line targets minimizing the total energy consumption

while meeting the timing constraints [3, 5, 29]. The second

line addresses the settings where the system has to operate

within a given and fixed energy budget and explores ways

to maximize the performance of an underloaded real-time

system, when the energy is not sufficient to meet all the

deadlines [1, 2, 16, 31, 32, 33]. In the latter formulation,

energy is effectively the hard constraint and the system is said

to be energy-constrained [1, 2].

Contributions of this paper. The primary objective of this

paper is to undertake a preliminary competitive analysis of

energy-constrained online real-time scheduling problem. As

mentioned above, most of the online real-time scheduling

studies focus on overloaded settings, where time is the main

(and only) limiting factor. While recognizing the fundamental

importance of these pioneering studies, we posit that there is

a need to consider also the online real-time scheduling frame-

works with hard energy constraint (where energy is the main

scarce resource). As a first step, we analyze the energy-

constrained settings for underloaded uni-processor systems

(i.e. where energy is the main and only limiting factor), derive

inherent performance bounds, and prove the existence of on-

line real-time scheduling algorithms that achieve these bounds

for a few fundamental task models. Specifically:

• By extending the conventional uniform value density on-

line real-time system settings to energy-constrained envi -

ronments, we show that no online algorithm can achieve

a competitive factor better than 1 − emax

E
, where emax

is the upper bound on the size of any job and E is the

available energy budget of the system (Section 3).

• We develop a variant of EDF algorithm, called EC-EDF,

that is provably optimal in online energy-constrained set-

tings, in the sense that it achieves the best possible com-

petitive ratio of 1− emax

E
(Section 3.1).

• We show that if the online algorithm has a priori informa-

tion about the largest job size in the actual input instance,

then there is a semi-online algorithm (EC-EDF ∗) with

a competitive factor of 0.5. We further show that this is

the theoretical upper bound that can be achieved by any

semi-online algorithm with such additional information

(Section 3.2).

• We extend our competitive analysis to more general set-

tings with non-uniform value densities (Section 4.1) and

those where the processor has the Dynamic Voltage Scal-

ing capability (Section 4.2).

• Finally, we also analyze the EC-EDF algorithm within

the context of the resource augmentation technique [28,

22] and characterize the conditions under which EC-EDF

can achieve a competitive factor of 1, with extra energy

or DVS feature (Section 5).

A table with a partial list of the basic results of this paper,

with the performance bounds that we establish along with the

competitive factors of our solutions, is presented below.

Settings Bound Our Solution

Online 1− emax

E
1− emax

E

Semi-online 0.5 0.5
Non-uniform value density 1

(kmax)
emax

E

1
2kmax

Before proceeding with the details of our solutions, we un-

derline that competitive analysis is certainly not the only way

to analyze the performance of a scheduling algorithm with un-

certain job arrival patterns. For example, if we have a rea-

sonable approximation of the input probability distribution,

average-case analysis can be undertaken either analytically or

experimentally (through simulations). However, when such

information is not available or reliable and/or when analyti-

cal worst-case performance guarantees are sought, competi-

tive analysis is of fundamental importance.

2 System Model, Assumptions, and

Terminology

We consider a uni-processor system with a limited energy bud-

get of E energy units. The system’s total energy consumption

during its operation cannot exceed this allowance. We assume

that executing a job consumes one unit of energy per time unit.

The system’s energy consumption in idle state (i.e. when it is

not executing any job) is negligible.

Real-time jobs enter and leave the system during its oper-

ation. We use ψ to denote the finite input sequence of jobs

that arrive to the system during its operation. Preemptive

scheduling is assumed. Each job Ji is represented by the tuple
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(ri, ei, di). Here ri and di are the release time and deadline of

the job Ji, respectively. For the sake of clarity, we use ei to de-

note the size of the job, indicating both its execution time and

energy requirements (since execution per unit time requires

unit energy). The laxity of the job Ji is given by di− (ri+ei) .
Since ψ is finite and one unit of execution requires one unit

of energy, similar to [1, 2], we define Eb =
∑
Ji∈ψ

ei to be the

minimum energy needed to complete all the jobs in ψ.

As mentioned in Section 1, as opposed to the well-studied

online overloaded real-time scheduling settings (e.g. [8, 23])

where there is sufficient energy but insufficient time; our ob
-

jective is to study the impact of the energy constraint on

the competitiveness of online real-time scheduling in settings

where there is sufficient time but insufficient energy to com-

plete all the workload. Hence, we make the following assump-

tion throughout the paper.

Underloaded energy-constrained system assumption: We

assume that the input instance ψ is feasible in real-time sense;

that is, there exists a feasible schedule where all the jobs in ψ
meet their deadlines if the energy constraint is not taken into

account.

Each job is associated with a value that is proportional to

its execution time. We consider firm real-time systems where a

job that successfully completes execution by its deadline con-

tributes its value to the system; otherwise no value is obtained

from this job [8, 23]. We consider the uniform value den-

sity model [8, 9, 11, 23], where the job’s value is equal to its

size (ei). We also extend our results (in Section 4.1) to the

more general non-uniform value density model. Note that the

off-line problem of maximizing the total system value can be

easily shown to be NP-Hard even for the simple case where

all jobs have the same deadline, by slightly modifying the in
-

tractability proof given in [32].

We define emax as the upper bound on the size of any job

that can be introduced to the system. We assume emax ≤ E
,

since no algorithm can process jobs with energy requirement

greater than E. Observe that this definition implies that a job

with size exactly emax may or may not appear in the actual

input instance.

We denote the minimum processing time (and energy re-

quirement) of any job in the system by δ. That is, the size of

any job is no smaller than δ units1. E and ei (for each job Ji)

are assumed to be expressed as exact multiples of δ. Observe

that this assumption guarantees that the number of jobs intro-

duced to the system is polynomial with respect to the energy

constraint E. However, the ratio δ
E

may be arbitrarily low.

Before proceeding with our formal analysis, we would

like to introduce a specific job arrival pattern that is proven

very useful in deriving competitive factors in online real-time

scheduling [8, 23]. Specifically, we say that a set of sequential

jobs with size ’x’ are introduced to the system at time t, if they

1As energy and execution requirements (especially with DVS) are ex-

pressed as real numbers, δ is assumed to be a real number strictly greater

than zero.

have the following characteristics:

(1) all jobs in the set have size x,

(2) the first job is released at time t with deadline t+ x, and,

(3) each subsequent job is released at the deadline of the pre-

vious job in the set.

Hence, all the jobs in the sequence have zero laxity. Note that a

similar pattern of sequential jobs were crucial in obtaining the

well-known competitive factor bound of 0.25 for overloaded

real-time systems [8, 23].

3 Basic Results

We start by re-iterating a basic proposition, which states that

preemptive EDF achieves the best possible performance with-

out the knowledge of future job release times, if the system

has sufficient energy to execute the entire workload (which is

assumed to be feasible in real-time sense).

Proposition 1 If E ≥ Eb then preemptive EDF has a compet-

itive factor of 1.

Proof: Follows from the optimality of preemptive EDF in

underloaded real-time environments [18]. �

However, in underloaded environments with scarce energy,

preemptive EDF turns out to be a poor online algorithm:

Lemma 1 IfE < Eb, then preemptive EDF cannot guarantee

a non-zero total value (hence, it cannot guarantee a non-zero

competitive factor).

Proof: Figure 1 shows how to construct an instance using

n jobs (J1 . . . Jn), with decreasing deadlines and increasing

release times, for which preemptive EDF cannot guarantee a

non-zero value. Let c and D be two positive numbers such

that c ≤ emax and D � c. All jobs have size of c units.

Also, r1 = 0 and d1 = D. Given this, the release times

and deadlines of any two successive jobs are related by the

following equations:

ri = ri−1 + c− δ

di = di−1 − δ

Observe that when EDF is about to finish executing a job,

another job with a shorter deadline is released. EDF preempts

the currently running job in favor of the job with earlier

deadline. Continuing this way, while executing Jn, for some

n ≥ 1, EDF depletes its entire energy budget at time t = E.

Notice that at time t = E, EDF has n pending jobs and zero

remaining energy. Since preemptive EDF does not execute

any job to completion in this instance, its total value is zero. �

One can attempt to modify EDF with the following sim-

ple rule: Preempt Jl is favor of Jh with an earlier deadline,

only if there is enough energy to execute Jh. Even with this

augmented rule, EDF cannot provide more than a total value
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Figure 1: The worst-case instance for preemptive EDF

of δ by slightly modifying the scenario given in the proof of

Lemma 1: at the very end when the system has δ units of re-

maining energy, one can release a job with size δ and zero

laxity. This way, one would get a value of δ, which can be

still arbitrarily low compared to E, making the algorithm still

technically non-competitive.

An interesting question involves the upper bound on the

performance of any online algorithm in energy-constrained

settings, in worst-case scenarios. In establishing such upper

bounds, the competitive analysis technique typically makes

use of the so-called adversary method ([13, 9, 23, 30]). In

this proof technique, the adversary generates an initial input

job sequence, observes the online algorithms’ behavior, and

then decides on what further jobs should be released. This

process is repeated a finite number of times. At some point

(which must comply with the problem specification), the ad-

versary announces the optimal schedule that it would generate

for that input sequence – and a bound on the competitive factor

is established by comparing it to the schedule selected by the

online algorithm. Theorem 1 establishes this upper bound as a

function of energy budget E and the upper bound on possible

job size emax.

Theorem 1 In energy-constrained underloaded settings, no

online algorithm can achieve a competitive factor greater than
E−emax

E
.

Proof: See Appendix for a full proof.

The proof of Theorem 1 is slightly involved, mainly be-

cause the input instance created by the adversary must comply

with the system model and settings as described in Section 2.

Specifically,

• The input sequence ψ created by the adversary must be

feasible in real-time sense. Recall that our purpose is to

analyze the online energy-constrained real-time schedul-

ing for underloaded settings.

• The jobs released by the adversary in the input instance

should not violate the upper bound on possible job size

(emax). For example, a job of size E − emax cannot be

released when emax <
E
2 .

• Energy budget and execution requirements are expressed

as positive real numbers.

Theorem 1 implies that, the upper bound on the competitive

factor depends heavily on the ratio emax

E
: the higher this ratio,

the lower the best achievable competitive factor. For exam-

ple, if emax

E
= 1/3, then, no algorithm can achieve more than

2/3 of the total value of a clairvoyant algorithm. However, as
emax

E
→ 1, the upper bound approaches zero; implying that no

online algorithm can be competitive.

Further, for a given workload, as the system’s initial energy

budget E is reduced, the best achievable competitive factor

quickly decreases. Similarly, for a given energy budget E, as

the upper bound on job size emax for the workload increases,

the best achievable competitive factor quickly decreases. Nev-

ertheless, we show that an online algorithm that is able to

achieve this upper bound indeed exists.

3.1 Algorithm EC-EDF

In this subsection, we develop and show the optimality of an

online algorithm called EC-EDF for energy-constrained real-

time scheduling in underloaded settings. EC-EDF uses an ad-

mission test to admit new jobs that arrive at run-time. Specif-

ically, if the newly-arriving job J fails to pass the admission

test, it is discarded (i.e. never executed). In case that it passes

the test, the new job J is added to the set C of admitted jobs.

When a job completes execution, it is removed from set C.

EC-EDF effectively commits to all the admitted jobs, in the

sense that, as formally shown below, it guarantees their timely

completion without violating the system’s energy budget lim-

its. Further, all admitted jobs are scheduled according to the

well-known preemptive EDF policy.

The admission test uses the following relatively simple rule

to decide whether the new job J arriving at time t can be ad-

mitted or not: J is admitted if and only if the system’s re-

maining energy budget at time t, Er, is sufficient to fully
execute J and the remaining workload of all the pending

admitted jobs (i.e. the remaining workload in set C).
Let Er and eri represent the remaining energy with the sys-

tem and the remaining execution time of job Ji at time t re-

spectively. We assume both Er and eri are properly updated at

run-time. Hence, formally, a job J with size e arriving at time

t is admitted to the system if and only if

Er ≥ e+
∑

Ji∈C
eri

We now give an example illustrating the behavior of EC-

EDF. Consider a system with E = 100. The follow-

ing four jobs constitute the input sequence: J1(0, 20, 200),
J2(10, 30, 190), J3(25, 75, 150) and J4(85, 15, 120). Figure 2

shows the schedules generated by EC-EDF, EDF and the clair-

voyant algorithm along with the total values obtained by them.

In each schedule, the unshaded jobs are those that complete

before the corresponding algorithm depletes its energy budget,

while the shaded jobs are those that fail to do so.

At time t = 0, EC-EDF admits J1 and dispatches it (C =
{J1}). At t = 10, J2 with higher priority than J1 arrives. EC-

EDF admits J2 as there is enough remaining energy to execute
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EDF Schedule with a total value of 15
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Figure 2: Schedules Generated by EC-EDF, EDF and Optimal

both J2 and the pending workload of admitted jobs, C = {J1}
(i.e. Er ≥ e2 + er1). EC-EDF updates set C to {J1, J2}.

Notice that at t = 25 when the largest job J3 in the set ar-

rives, the remaining energy is sufficient to execute it. However

EC-EDF does not admit J3 as with the remaining energy of 75
units, the system cannot execute J3 and the pending workload

of admitted jobs C = {J1, J2} (i.e. Er < e3 + er1 + er2).

At t = 85, EC-EDF admits and executes J4 to completion.

Thus, by executing jobs J1, J2 and J4 to completion, EC-EDF

gathers a total value of 65. It is straightforward to verify that

EDF gets a total value of only 15. The clairvoyant algorithm

knowing the future job sizes and arrival patterns, skips cer-

tain jobs and idles as necessary, making a total value of 95 as

shown in Figure 2.

Proposition 2 EC-EDF guarantees the completion of all the

admitted jobs before their deadlines, without violating the sys-

tem’s energy budget limits.

Proof: Assume there exists a non-empty subset C′ of the

admitted jobs that cannot be completed in a timely manner

without violating the energy budget limits. We will show by

contradiction that C′ cannot exist.

Recall that by assumption, the input sequence ψ is guar-

anteed to be feasible from timing constraints point of view.

Thus, C′ ⊂ ψ is also feasible. Further, EC-EDF schedules

the admitted jobs using preemptive EDF which is known to

be optimal in underloaded conditions. Hence, if C′ exists then

EC-EDF must run out of energy before completing the jobs it

admitted. Since the admission rule of EC-EDF ensures that

there is always enough remaining energy in the system to

meet the computational demand of all pending admitted jobs

along with the newly admitted job, we reach a contradiction.

Hence, C′ cannot exist. �

Theorem 2 EC-EDF has a competitive factor of E−emax

E
.

Proof: First, note that if Eb ≤ E, EC-EDF reduces to tradi-

tional EDF and can execute all the jobs in the input sequence

ψ (which is assumed to be feasible), achieving a competitive

factor of one. Thus, the adversary must create a feasible input

sequence ψ such that Eb > E. Under this condition, even-

tually EC-EDF will be forced to discard a job due to energy

limitations. Let Jd be the first job discarded by EC-EDF at

time t. At time t, the system has the remaining energy of Er

units and let the amount of energy required to complete all

pending admitted jobs be R units. Given this, the following

condition must hold at time t: Er < ed +R.

Notice that by time t, EC-EDF has depleted E − Er

units of energy in processing jobs. The pending workload

of the admitted jobs is R. Therefore, the total workload size

introduced by the adversary up to time t (including ed) is

(E −Er) + (R) + (ed) > E (since ed +R−Er > 0). Also,

since EC-EDF discards Jd, it has so far admitted a workload

of at least ψ′ = E − ed + δ units. From Proposition 2,

EC-EDF is guaranteed to complete ψ′ in a timely manner

without violating the system energy budget limits. Thus,

EC-EDF guarantees a total value of E − ed + δ. Since

ed ≤ emax by definition, the total value obtained by EC-EDF

is no less than E − emax + δ, while the adversary can make

at most a value of E. Since δ
E

may be arbitrarily low, we

conclude that EC-EDF has a competitive factor of E−emax

E
. �

We also underline that in settings where E ≥ Eb, EC-EDF
is able to finish all the jobs in the input sequence thanks to the

optimality of EDF, achieving a competitive factor of 1 under

that condition. That is, regardless of the relationship be-

tween E and Eb, EC-EDF yields the best competitive fac-

tor.

3.2 A Semi-online Algorithm with a Constant

Competitive Factor

As mentioned in Section 1, it is occasionally possible to im-

prove the competitive ratio by providing some limited infor-

mation about the actual input sequence. For example, on-

line scheduling algorithms typically benefit from information

about the maximum job size, sum of job processing times or

job size patterns in the actual input [4, 30]. The online algo-

rithms that exploit this type of limited information about the

actual input are called semi-online and their design and analy-

sis have been recently attracting increasing interest [4, 30].

In our problem as well, the knowledge of the largest job

size in the actual input instance turns out to be very helpful.

For the uniform value density model where the value of a job

is equal to its execution time, the largest size job in the in-

put instance is also the most valuable job in the set. Below,

we describe an algorithm EC-EDF ∗ that achieves a compet-

itive factor of 0.5, using this information. Further, we show

that with only the additional knowledge of the largest job size,

no semi-online algorithm can perform better thanEC-EDF ∗,
demonstrating its optimality.

Let el ≤ E represent the largest job size in the actual input

sequence. We first give the rules for EC-EDF ∗. EC-EDF ∗

exploits the information about el: in semi-online settings, the

fact that at least one job of size el will be part of the input
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sequence is guaranteed by definition. EC-EDF ∗ compares

el to the available energy budget E. If el >
E
2 , EC-EDF ∗

simply waits for the largest size job, el, and executes it. Since

E ≥ el >
E
2 , the value of EC-EDF ∗ is no less than E

2 + δ.

The adversary can gather a value of at most E. On the other

hand, if el ≤
E
2 , EC-EDF ∗ schedules jobs using EC-EDF .

By definition, no job size in the actual input sequence can be

larger than el. Thus, from Theorem 2 the competitive factor for

EC-EDF becomes E−el

E
. Further, given the constraint el ≤

E
2 ,

the lower bound on competitive factor of EC-EDF and hence

that of EC-EDF ∗ reduces to 0.5. Thus, in either case, EC-

EDF ∗ makes at least half of the value of the adversary.

Lemma 2 EC-EDF ∗ has a competitive factor of 0.5.

Lemma 3 With only the additional knowledge of the largest

job size, no semi-online algorithm can achieve a competitive

factor greater than 0.5.

Proof: We describe a scenario through which the adversary

effectively limits the total value of any semi-online algorithm

to half of its value. As mentioned in the proof of Theorem 1,

E can be expressed as E = k · el + k′ · δ, where k and k′

are integers, k ≥ 1, k′ ≥ 0. The construction is similar to

that given in the proof of Theorem 1. The adversary releases

sequential jobs in three stages. Jobs of size k′ ·δ are introduced

in the first stage, while jobs of size δ appear in the second

stage. In the third stage the adversary now releases jobs of

size el. Again, if k′ = 0, the first stage can be skipped. We

distinguish two cases.

Case 1: The semi-online algorithm A skips all these jobs

until time t = E. Observe that in the pattern of jobs released

in the proof of Theorem 1, the third stage cannot have started

at time t < E. Thus, in this scenario, the adversary introduces

a single job of size el at time t = E and then stops releasing

jobs. Since A has skipped all sequential jobs, it will be able

to execute the job of size el gathering a value of el, while the

adversary gathers a value of E by executing all the sequential

jobs up to time t = E. The competitive factor is el

E
.

Case 2: A executes one of the sequential jobs at t < E.

The scenario can now be mapped to that in the proof of The-

orem 1. Therefore, by repeating the arguments of Theorem 1,

the upper bound on the competitive factor can be evaluated as
E−el

E
.

By choosing el = E
2 one can restrict the total value

of A to E
2 for both Cases 1 and 2. Thus, no semi-online

algorithm can achieve a competitive factor greater than 0.5. �

Corollary 1 Among semi-online algorithms that have only the

additional knowledge of the largest job size, EC-EDF ∗ is

optimal.

We remark that, in online real-time scheduling in overload

conditions, the best achievable competitive factor was shown

to be 0.25 [8] and further, there exists an algorithm Dover ,

with this competitive factor [23]. In contrast, in online real-

time scheduling with hard energy constraints for underloaded

settings, with the knowledge of the largest job size in the actual

input sequence, the best achievable competitive factor is 0.5

which is twice as large as that in overloaded settings. Further,

the algorithm EC-EDF ∗ achieves this competitive factor.

4 Extensions to more general settings

In this section, we extend our analysis to more general set-

tings involving non-uniform value density and those with the

advanced power management features (DVS).

4.1 Non-Uniform Value Densities

As mentioned previously, each job is associated with a value

proportional to its execution time. The value density of a job is

its value divided by its execution time. The ratio of the largest

value density to the smallest value density is called importance

ratio [8, 23]. In uniform density settings (Section 3), the im-

portance ratio is one and hence the value of the job is equal to

its size. In this section, we extend our competitive analysis to

the more general non-uniform density settings.

In these settings, the value of a job Ji with value density

ki is given by kiei. Let kmin and kmax denote the smallest

and largest value densities that can be associated with any job.

Without loss of generality, we assume that kmin = 1 and thus

the ratio of kmax

kmin

is simply kmax. Observe that in comparison

to uniform density settings, the largest size job is no longer

guaranteed to be the most valuable job.

Theorem 3 In non-uniform value settings where kmax > 1,
no online algorithm can achieve a competitive factor greater

than 1

(kmax)
emax

E

.

The full proof of Theorem 3 is given in [19], due to space

constraints. We add that, the upper bound on performance es-

tablished by Theorem 3 holds with or without the knowledge

of the largest job size in the input sequence. Thus, the a priori

knowledge of the largest job size does not help design bet-

ter online algorithms in non-uniform value density settings.

Lemma 4 establishes the competitive factor of the semi-online

algorithm, EC-EDF ∗, which uses the additional knowledge

of largest job size.

Lemma 4 Algorithm EC-EDF ∗ has a competitive factor of
1

2kmax
.

Proof: Let el ≤ E represent the largest job size in the input

sequence. If el >
E
2 , EC-EDF ∗ waits for the largest job of

size el and is guaranteed a value of kmin(E2 + δ) = E
2 + δ.

The adversary can make at most kmaxE. The competitive

factor is 1
2kmax

. On the other hand, if el ≤
E
2 , EC-EDF ∗

follows EC-EDF which would guarantee a value of at least

kmin(E − el + δ) even when executed on jobs with the
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minimum value density kmin = 1. Again, the adversary can

make a total value of at most kmax E. Thus, the competitive

factor is found as the minimum value of E−el+δ
kmax E

which is
1

2kmax

(obtained when el = E
2 ). As a result, in both cases, the

competitive factor is 1
2kmax

. �

We conclude this subsection with the following remarks.

• The competitive factor of the algorithm heavily depends

on the ratio emax

E
. When emax ≤

E
2 , the best achiev-

able competitive factor is 1√
kmax

. As emax

E
→ 1, the best

achievable competitive factor reduces to 1
kmax

.

• The tightness of the upper bound established in Theo-

rem 3 is an interesting open problem that we are currently

investigating.

4.2 Extensions to DVS settings

Dynamic Voltage Scaling (DVS) is a popular energy manage-

ment technique through which the processor frequency and

voltage can be varied at run-time. Since processor power con-

sumption increases in convex manner with processor clock

frequency, DVS significantly reduces processor dynamic en-

ergy consumption. DVS has been subject to extensive re-

search in the past decade [5, 25, 29]. There have also been a

few research research efforts on competitive analysis of DVS

based systems, mostly relating to energy minimization of spo-

radic jobs [6, 15, 34] (without the hard energy constraint).

DVS-capable processors can play a critical role in energy-

constrained real-time systems. Using effective DVS policies,

which help minimize the energy spent on processing a work-

load, the energy-constrained system can successfully process

additional workload with a given energy budget, thus giving

higher overall system value compared to non-DVS systems.

In this section, we derive an upper bound on the competitive

factor of DVS-enabled online algorithms.

We consider a DVS capable processor whose frequency can

be varied in the range [fmin, fmax]. Without loss of generality,

we assume fmax = 1. Power consumption of the processor at

frequency f is modeled as a convex function P (f) = afα,

where a is a constant characterized by the processor param-

eters2 and 2 ≤ α ≤ 3. Thus, at frequency f , the time and

energy required to execute a job with processing time x are

given by x
f

and E(f) = P (f) · x
f

= fα−1x, respectively.

Notice that with DVS, the energy required to execute a

job depends on the frequency at which the job is executed.

As such, there is no longer one-to-one correspondence be-

tween job execution times and energy requirements. By tak-

ing this into account, in this section, we represent a job Ji as

2In this section we assume a = 1. We also point out that recently

there have been research efforts addressing system energy models, where it

was shown that lowering frequency below a certain threshold (called energy-

efficient speed) may adversely affect overall system energy consumption [3].

Our upper bound results can easily be adapted to these system-level energy

models by enforcing arbitrarily low energy-efficient speed levels.

Ji(ri, ci, Di, ei), where ri is its release time, ci is its execution

time at frequency fmax, Di is its relative deadline and ei is its

minimum energy requirement. The minimum energy require-

ment ei is computed by assuming the minimum frequency ci

Di

that would allow the timely completion of Ji before its dead-

line. That is, ei = E( ci

Di

) = ( ci

Di

)α−1 · ci.
Note that we assume the uniform density model throughout

this section and the value of a job Ji is assumed to be equal to
ci (execution time at fmax). That is, executing a job at a low

frequency reduces the energy consumption but does not affect

its value. Before proceeding, we give some basic definitions

and existing results that will be instrumental in our derivation.

Definition 1 Let l(t1, t2) denote the total amount of workload
of jobs with release times at or later than t1 and deadlines at

or earlier than t2. The effective loading factor h(t1, t2) over

an interval [t1, t2] is defined as h(t1, t2) = l(t1,t2)
t2−t1 .

Definition 2 The absolute effective loading factor (or simply

the loading factor) β is the maximum effective loading factor

over all intervals [t1, t2]: β = max(h(t1, t2)), 0 ≤ t1 < t2.

Theorem 4 (from [7, 20]) A set of real-time jobs can be

scheduled in feasible manner (by preemptive EDF) if and only

if β ≤ 1.

Given the loading factor β, if the processor executes all jobs at

constant frequency f = max(fmin, β), then the new loading

factor β′ (increased due to the reduced frequency) would be β
f

.

Further, one can easily verify that β′ would still not exceed 1.0
under that condition [34]. Thus, running jobs at frequency

f = max(fmin, β) preserves the system feasibility (without

the energy constraint).

Proposition 3 A DVS algorithm that runs at constant speed

f ≥ max(fmin, β) cannot make a total value > E
fα−1 .

Proposition 3 can be justified by observing that with DVS, to

deplete e units of energy, the system will have to execute a

workload of e
fα−1 at frequency f . Thus, with e units of en-

ergy, a maximum value of e
fα−1 can be made by running the

processor at constant speed f . Note that this implies that with

DVS the system is able to achieve a value greater than E. In

settings where both the online algorithm and adversary have

DVS, the pre-knowledge of β can potentially provide some

advantage to the online algorithm. Theorem 5 characterizes

this result.

Theorem 5 Assuming β > fmin, where 0 < β ≤ 1,
(i) Without the knowledge of β, there is no online DVS algo-

rithm with a competitive factor greater than fα−1
min .

(ii) With the knowledge of β, there is no online DVS algorithm
with a competitive factor greater than (fmin

β
)α−1.

Proof: Case 1: Assume β is unknown to the algorithm.

Consider the following instance. The adversary sets β = 1 and

introduces a job J1(0, E,E,E) (Notice the minimum energy

requirement for J1 is e1 = E). Clearly, if the online algorithm
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A does not execute J1, it will miss its deadline. The adversary

executes J1 and releases no more jobs. The value ofA is zero,

while that of the adversary is E.

If A executes J1, then, at time t = E, the adversary intro-

duces J2(E,
E

kα−1 ,
E
kα , E). Observe that J2 can be executed at

frequency
E

kα−1

E

kα

= k. By skipping J1, the adversary executes

J2 gathering a reward of E
kα−1 . Thus, the competitive factor

is E
E

kα−1

= kα−1. Since the minimum possible frequency is

fmin, by setting k = fmin, the adversary can force an upper

bound of (fmin)α−1 for the competitive factor.

Case 2: Assume β is known to the algorithm.

The pattern in Case 1 can be repeated with a slight modifica-

tion. J1 is given with parameters J1(0,
E

βα−1 ,
E
βα , E). A is

forced to execute J1 at frequency β to guarantee a non-zero

total value. At that point, the adversary introduces J2 with the

following parameters J2(E,
E

f
α−1

min

, E
fα

min

, E). Observe that J2

can be executed by the adversary at frequency fmin, yielding

a value of E

fα−1

min

. Further, since fmin < β, the processor

loading factor can be easily shown to be β, satisfying the

assumption. A has a value of E
βα−1 and thus the competitive

factor is bounded by (fmin

β
)α−1. �

The case where β ≤ fmin is relatively simple: consider

the algorithm EC-EDF using a constant speed fmin. Notice

that this algorithm does never spend more energy than required

while processing jobs, as the system limitations do not allow

processing below fmin. Also, due to the same constraint, fmin
is the least possible frequency with which the adversary can

process jobs. As such, this case can be shown to be equiva-

lent to the non-DVS case (Section 3), where both the online

algorithm and the adversary had to process jobs at the same

(constant) speed. Thus, all the results of Section 3 apply.

As a consequence of Theorem 5, the upper bound on com-

petitive factor approaches zero as fmin → 0 and β → 1. An

open problem under investigation is the performance of semi-

online algorithms with the knowledge of both the largest job

size in the actual input sequence and β in DVS settings. The

results in this section mostly indicate increased difficulties for

online algorithms operating on DVS-enabled settings. How-

ever, in the next section, we will show that the DVS feature

can help an online algorithm to compete with a clairvoyant

(but non-DVS-enabled) adversary.

5 Resource Augmentation

Noting that the competitive analysis characterizes perfor-

mance guarantees in the worst-case scenarios, some recent ef-

forts exploited alternative means to quantify the performance

of online algorithms. Resource augmentation technique, intro-

duced by [28] and popularized by [22], is such a framework.

With resource augmentation, the online algorithm is given ad-

ditional resources compared to the adversary in an effort to

compensate for the lack of knowledge about the future. For

example, the online algorithm may run on a faster processor

[22], or it may have access to additional CPUs [10]. In the fol-

lowing, we show how resource augmentation can help signifi-

cantly improve the performance of EC-EDF, especially when
emax

E
is close to one.

First, we explore the implications of providing the online

algorithm EC-EDF with additional energy. Specifically, if the

adversary possesses an energy budget of E units, then EC-

EDF is assumed to have an initial energy of (1 + x)E units,

where x > 0. We know from Theorem 2 that given an initial

energy ofE, EC-EDF guarantees a value of at leastE−emax.

Thus, with (1 + x)E units of initial energy, EC-EDF guaran-

tees a value of at least (1 + x)E − emax. The competitive

factor is 1 + x− emax

E
. Hence, if x = emax

E
then EC-EDF has

a competitive factor of 1.

Proposition 4 The online algorithm EC-EDF achieves a com-

petitive factor of 1 compared to an adversary with E units of

energy budget, if it is allocated (1 + emax

E
) units of energy.

Further, since emax

E
≤ 1, we have:

Corollary 2 If EC-EDF is provided twice as much energy as

the clairvoyant adversary Cadv, it becomes at least as powerful
as Cadv.

Using the terminology made popular by the seminal resource

augmentation analysis paper [22], we can state the following

thanks to Proposition 4: energy is as powerful as clairvoyance.

In the following, we describe a practical way to effectively

give more energy to EC-EDF. Specifically, we augment the

EC-EDF scheduler with the knowledge of the absolute load-

ing factor β, and a DVS-capable processor. We will show that

EC-EDF can successfully compete with a clairvoyant adver-

sary without DVS feature. With this resource augmentation,

EC-EDF always executes all jobs at speed f = β. We refer to

this modified EC-EDF as β-EC-EDF. Observe that since the

processor always runs at constant speed β, to deplete e units

of energy, the processor must execute e
βα−1 units of work-

load. Thus, the initial energy budget of β-EC-EDF is effec-

tively 1
βα−1 times that of the adversary. Following Theorem 2,

β-EC-EDF guarantees a value of E
βα−1 − emax.

Proposition 5 β-EC-EDF has a competitive factor of
E−βα−1emax

βα−1E
.

As a consequence of Proposition 5 and since emax ≤ E, we

have the following:

Corollary 3 If β ≤ (1
2 )

1

α−1 , β-EC-EDF is as powerful as a

clairvoyant adversary without DVS.

6 Conclusion

In this paper, we undertook a preliminary study of competitive

analysis for energy-constrained online real-time scheduling in
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underloaded settings. We proposed an optimal algorithm EC-

EDF which achieves the best possible performance guaran-

tee obtainable by any online algorithm. Further, by assuming

the knowledge of the largest job size, we proposed an optimal

semi-online algorithm EC-EDF ∗, which has a competitive

factor of 0.5. We extended our analysis and provided funda-

mental results in various models and settings including those

of non-uniform value density and DVS. To the best of our

knowledge, this is the first theoretical investigation of the prob-

lem of online real-time scheduling in underloaded but energy-

constrained environments. We hope that this research effort

will trigger further research in this direction.
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APPENDIX: Proof of Theorem 1

To prove Theorem 1, we are going to create an input sequence

ψ such that for any given positive small value δ and for any online

algorithm A, A accrues a value no more than E − emax + δ and the

adversary gains a total value of E. Thus, the competitive factor of

A will be shown to be no better than E−emax

E
. Recall that E and ei

for any job Ji are exact multiples of δ. This implies emax, the upper

bound on the size of any job, is also an exact multiple of δ.

Let E = k · emax + e′, where k is an integer, k ≥ 1, and 0 ≤
e′ < emax. Furthermore, emax = kx · δ, where kx is an integer.

Also, note that e′ = k′ ·δ, where k′ is an integer. Then, we can write:

E = k · kx · δ + k
′ · δ,

where k, kx, and k′ are integers, kx, k ≥ 1, k′ ≥ 0.

In the following, we feed the algorithm A the input sequence ψ

such that there exists a time t, where A obtains a total value of no

more than E − emax + δ. Further, A will be unable to accrue any

additional value after time t.

A’s schedule is divided into up to three stages, based on its action

over the released jobs. We start at time t = 0. In the first stage, the

adversary releases jobs with size k′ · δ. If k′ = 0, the first stage is not

needed and we proceed directly to the second stage. In the second

stage, it releases jobs with size δ, and in the third stage, it releases

jobs with size of emax (= kx · δ). Note that, as we will see, the third

stage may not be always needed and the number of jobs released in

each stage depends on A’s actions.

Assume k′ 6= 0. In the first stage, the adversary keeps introducing

sequential jobs with size of k′·δ (recall from Section 2, that sequential

jobs have zero laxity and are released back to back one at a time) until

A picks up one such job to run. LetN = b E

k′·δ
c. The adversary stops

releasing new jobs as soon as (1.) the online algorithmA picks up one

such job to run, or, (2.) the number of released jobs reaches N .

a. Assume A does not accept any job until the time when the ad-

versary has released N such jobs. In this case, the adversary

announces that it has executed all N released jobs in its op-

timal schedule. Observe that, at this point, the adversary has

accrued a total value of N · k′ · δ and its remaining energy is

E −N · k′ · δ. A has E units of remaining energy, but its total

value is still zero. Now, if N · k′ · δ = E, then the adversary

does not introduce any new jobs and the competitive factor ofA
is zero. Otherwise, the first stage ends and we enter the second

stage.

b. Assume A selects a job with size k′ · δ to run before the ad-

versary has released N such jobs. In this case, as soon as A

executes its first job, the first stage ends. The adversary exe-

cutes the same job selected by A. Observe that now both the

adversary and A have obtained a value of k′ · δ. Their remain-

ing energy levels are the same and equal toE−k′ ·δ. Then, the

second stage follows.

In the second stage, the adversary keeps releasing sequential jobs

with size δ. If the algorithm does not pick up any job in the first stage

to run (i.e., the above case a.), the adversary keeps releasing such jobs

until the number of jobs with size δ reaches

E −N · k′ · δ

δ
=
E − b E

k′·δ
c · k′ · δ

δ
≤ k

′

.

Then, the adversary stops releasing any new jobs. We can see that

the algorithmA cannot obtain a value exceeding k′ ·δ (≤ E−emax).

But the adversary can obtain a total value of E, by executing all the

jobs it has released in two stages. Thus, the competitive factor c is:

c ≤
k′ · δ

E
≤
E − emax

E
.

In the following, we consider the case where the algorithm picks

up one job in the first stage to run (i.e., we focus on the case b. above).

The second stage ends as soon as (1.) the algorithm A picks up one

job with size δ to run, or (2.) the adversary releases M =
E−k

′
·δ

δ
=

k · kx such jobs.

c. Assume A does not accept any job until the time when the ad-

versary has released M such jobs. In this case, the second stage

ends and we do not need to go to the third stage. The adver-

sary does not release any new job. The algorithm obtains a

total value of k′ · δ. The adversary accrues a total value of

k′ · δ + k · kx · δ = E. Thus, the competitive factor c is

c =
k′ · δ

E
≤
E − emax

E
.

d. Assume A selects a job with size δ for execution before the

adversary has released M such jobs. Again, the second stage

ends at this point. The adversary does not execute any of these

jobs, its accumulated value remains at k′ · δ and its remaining

energy is still E − k′ · δ. The algorithm has an accumulated

value of k′ · δ + δ, its remaining energy is E − k′ · δ − δ, and

we continue with the third stage.

In the third stage, we release a set of jobs with size emax. We

are going to show that at least one such job cannot be executed by

the online algorithm A. Based on the remaining energy for both

algorithms (A and the adversary), we are going to force the algorithm

A to accept at least one fewer job with processing time of emax

in the following way. The adversary releases k jobs each with size

emax and they share a common relative deadline of k · emax. Note

that the algorithm A can accept at most k − 1 such jobs (because

k′ ·δ+δ+k ·emax > E) while the adversary can accept all these jobs

(k′ · δ+ k · emax = E). The adversary obtains a total value of E (re-

call it had executed one job of size k′ ·δ released in the first stage) and

the algorithm A has a total value ≤ E − emax + δ. Since δ

E
can be

arbitrarily low, the competitive factor c is again found as E−emax

E
. �
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