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Abstract

In this paper, we undertake the competitive analysis of the online
real-time scheduling problems under a given hard energy constraint.
Specifically, we derive worst-case performance bounds that apply to
any online algorithm, when compared to an optimal algorithm that
has the knowledge of the input sequence in advance. First, by focus-
ing on uniform value-density settings, we prove that no online algo-
rithm can achieve a competitive factor greater than 1 — “me= | where
emaz 18 the upper bound on the size of any job and F is the available
energy budget. Then we propose a variant of EDF algorithm, EC-
EDF, that is able to achieve this upper bound. We show that a priori
information about the largest job size in the actual input sequence
makes possible the design of a semi-online algorithm EC-EDF™
which achieves a constant competitive factor of 0.5. This turns out to
be the best achievable competitive factor in these settings. We also ex-
tend our analysis to other settings, including those with non-uniform
value densities and Dynamic Voltage Scaling capability.

1 Introduction

An algorithm is said to be online if it must make its decisions
at run-time, without having any information about the future
input. Design and analysis of online algorithms is a well-
established field with direct applications in a wide range of
areas such as load balancing, scheduling, circuit design, server
performance evaluation, memory hierarchy design, search,
portfolio selection, and revenue management [13]. In online
settings, the performance of an algorithm is often assessed
by comparing it to that of an optimal and clairvoyant algo-
rithm that knows the entire input in advance. This framework,
known as competitive analysis, is considered as a standard
analysis and evaluation tool in Computer Science. The reader
is referred to excellent surveys such as [13, 30] for an overview
of existing techniques and results.

For underloaded real-time systems, where a feasible sched-
ule for the workload is known to exist, the preemptive Earliest
Deadline First (EDF) algorithm is optimal in the hard real-time
sense, meaning that EDF is guaranteed to meet all the dead-
lines even when it processes and schedules jobs as they arrive
without any knowledge of future release times [18]. This re-
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markable feature does not extend to multiprocessor environ-
ments, for which it is well-known that no online algorithm can
guarantee to generate a feasible schedule if future job release
times are not known [17].

A real-time system is said to be overloaded, if there does
not exist a schedule where all jobs meet their deadlines. In
these settings where deadline misses are unavoidable (even for
a clairvoyant algorithm), the goal is typically to maximize a
soft real-time performance metric. A common approach in
firm real-time systems is to associate a value with each job
to quantify its contribution to the overall system performance
[8, 9, 14]. The value of the job is added to the overall perfor-
mance metric (cumulative, or, total system value) if and only if
it meets its deadline — no value is accrued for partial executions
that are not completed before the task deadline.

An online scheduling algorithm is said to have a compet-
itive factor r, 0 < r < 1, if and only if it is guaranteed
to achieve a cumulative value at least r times the cumulative
value achievable by a clairvoyant algorithm on any finite in-
put job sequence [8, 14, 23]. An online algorithm is said to
be competitive, if it has a constant competitive factor strictly
greater than zero. In general, the higher the competitive ratio,
the better performance guarantees provided by an online al-
gorithm. As such, the competitive analysis technique aims to
establish performance bounds that hold even under worst-case
scenarios for online algorithms, when compared to an optimal
clairvoyant algorithm [13, 30].

Another technique in competitive analysis is to explore the
impact of giving some (but still, limited) information to the on-
line algorithm about the actual input sequence (actual job set)
in an effort to improve its competitiveness. Such algorithms
are known as semi-online algorithms [30]. For example, a pri-
ori information about the largest job size that will appear in
the actual input sequence typically makes possible design of
semi-online algorithms with improved competitive ratio [30].

A significant body of research has been devoted to the anal-
ysis of online scheduling algorithms for overloaded real-time
systems, where the goal is to maximize the total system value
[8,9, 11, 23]. In a seminal paper, Baruah et al. showed that no
online algorithm can achieve a competitive factor greater than
0.25 [8], in an overloaded real-time system. This result holds
for task systems with uniform density settings, where the value
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of a job is proportional to its execution time. For more gen-
eral, non-uniform value density settings where different tasks
may contribute different values per execution time, the bound
is much smaller. Consider a firm real-time task system where
the job J; accrues k; units of value per execution time (value
density), if it completes by the deadline. Then, no online algo-

. . iy 1
rithm can achieve a competitive factor greater than Eev
where k = ";L‘ZZ((:; is the importance ratio obtained through

the largest and smallest value densities in the task set [8].

Remarkably, Koren and Shasha provided an optimal on-
line algorithm D°"¢" that achieves this upper bound [23]. The
same authors also considered extensions to multiprocessor set-
tings [24]. Several other studies addressed competitive on
line real-time scheduling for imprecise computation tasks [12],
tasks with bounded slack factors [11], and tasks with given
stretch metrics [27] among others.

Recently, energy management has moved to the forefront
of research in real-time systems. This is primarily due to
the emergence of devices that rely on battery power, which
is fairly limited. Literally hundreds of research papers were
published, each extending the real-time scheduling results
to energy-aware settings for various task/system models.
These studies can be broadly classified in two categories. The
first line targets minimizing the total energy consumption
while meeting the timing constraints [3, 5, 29]. The second
line addresses the settings where the system has to operate
within a given and fixed energy budget and explores ways
to maximize the performance of an underloaded real-time
system, when the energy is not sufficient to meet all the
deadlines [1, 2, 16, 31, 32, 33]. In the latter formulation,
energy is effectively the hard constraint and the system is said
to be energy-constrained 1, 2].

Contributions of this paper. The primary objective of this
paper is to undertake a preliminary competitive analysis of
energy-constrained online real-time scheduling problem. As
mentioned above, most of the online real-time scheduling
studies focus on overloaded settings, where time is the main
(and only) limiting factor. While recognizing the fundamental
importance of these pioneering studies, we posit that there is
a need to consider also the online real-time scheduling frame-
works with hard energy constraint (where energy is the main
scarce resource). As a first step, we analyze the energy-
constrained settings for underloaded uni-processor systems
(i.e. where energy is the main and only limiting factor), derive
inherent performance bounds, and prove the existence of on-
line real-time scheduling algorithms that achieve these bounds
for a few fundamental task models. Specifically:

e By extending the conventional uniform value density on-
line real-time system settings to energy-constrained envi
ronments, we show that no online algorithm can achieve
a competitive factor better than 1 — €me= where €42
is the upper bound on the size of any job and F is the
available energy budget of the system (Section 3).
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We develop a variant of EDF algorithm, called EC-EDF,
that is provably optimal in online energy-constrained set-
tings, in the sense that it achieves the best possible com-
petitive ratio of 1 — “=e= (Section 3.1).

We show that if the online algorithm has a priori informa-
tion about the largest job size in the actual input instance,
then there is a semi-online algorithm (EC-EDF™*) with
a competitive factor of 0.5. We further show that this is
the theoretical upper bound that can be achieved by any
semi-online algorithm with such additional information
(Section 3.2).

We extend our competitive analysis to more general set-
tings with non-uniform value densities (Section 4.1) and
those where the processor has the Dynamic Voltage Scal-
ing capability (Section 4.2).

Finally, we also analyze the EC-EDF algorithm within
the context of the resource augmentation technique [28,
22] and characterize the conditions under which EC-EDF
can achieve a competitive factor of 1, with extra energy
or DVS feature (Section 5).

A table with a partial list of the basic results of this paper,
with the performance bounds that we establish along with the
competitive factors of our solutions, is presented below.

Settings Bound Our Solution
Online 1 — Cmex 1 — fmas
Semi-online 0.5 0.5
Non-uniform value density | —emzz S
(ko) " E

Before proceeding with the details of our solutions, we un-
derline that competitive analysis is certainly not the only way
to analyze the performance of a scheduling algorithm with un-
certain job arrival patterns. For example, if we have a rea-
sonable approximation of the input probability distribution,
average-case analysis can be undertaken either analytically or
experimentally (through simulations). However, when such
information is not available or reliable and/or when analyti-
cal worst-case performance guarantees are sought, competi-
tive analysis is of fundamental importance.

2 System Model, Assumptions, and
Terminology

We consider a uni-processor system with a limited energy bud-
get of F energy units. The system’s total energy consumption
during its operation cannot exceed this allowance. We assume
that executing a job consumes one unit of energy per time unit.
The system’s energy consumption in idle state (i.e. when it is
not executing any job) is negligible.

Real-time jobs enter and leave the system during its oper-
ation. We use 1) to denote the finite input sequence of jobs
that arrive to the system during its operation. Preemptive
scheduling is assumed. Each job J; is represented by the tuple



(rs, ei,d;). Here r; and d; are the release time and deadline of
the job J;, respectively. For the sake of clarity, we use e; to de-
note the size of the job, indicating both its execution time and
energy requirements (since execution per unit time requires
unit energy). The laxity of the job J; is given by d; — (r; + ¢;)
Since 1 is finite and one unit of execution requires one unit
of energy, similar to [1, 2], we define E, = > e; to be the
Ji€Y

minimum energy needed to complete a// the jobsdin .

As mentioned in Section 1, as opposed to the well-studied

online overloaded real-time scheduling settings (e.g. [8, 23])
where there is sufficient energy but insufficient time; our ob
jective is to study the impact of the energy constraint on
the competitiveness of online real-time scheduling in settings
where there is sufficient time but insufficient energy to com-
plete all the workload. Hence, we make the following assump-
tion throughout the paper.
Underloaded energy-constrained system assumption: We
assume that the input instance 1) is feasible in real-time sense;
that is, there exists a feasible schedule where all the jobs in v
meet their deadlines if the energy constraint is not taken into
account.

Each job is associated with a value that is proportional to
its execution time. We consider firm real-time systems where a
job that successfully completes execution by its deadline con-
tributes its value to the system; otherwise no value is obtained
from this job [8, 23]. We consider the uniform value den-
sity model [8, 9, 11, 23], where the job’s value is equal to its
size (e;). We also extend our results (in Section 4.1) to the
more general non-uniform value density model. Note that the
off-line problem of maximizing the total system value can be
easily shown to be NP-Hard even for the simple case where
all jobs have the same deadline, by slightly modifying the in
tractability proof given in [32].

We define e,,,4, as the upper bound on the size of any job
that can be introduced to the system. We assume €4, < E
since no algorithm can process jobs with energy requirement
greater than F. Observe that this definition implies that a job
with size exactly e,,4, may or may not appear in the actual
input instance.

We denote the minimum processing time (and energy re-
quirement) of any job in the system by 0. That is, the size of
any job is no smaller than § units'. E and e; (for each job J;)
are assumed to be expressed as exact multiples of §. Observe
that this assumption guarantees that the number of jobs intro-
duced to the system is polynomial with respect to the energy
constraint £. However, the ratio % may be arbitrarily low.

Before proceeding with our formal analysis, we would
like to introduce a specific job arrival pattern that is proven
very useful in deriving competitive factors in online real-time
scheduling [8, 23]. Specifically, we say that a set of sequential
jobs with size 'x’ are introduced to the system at time t, if they

TAs energy and execution requirements (especially with DVS) are ex-
pressed as real numbers, § is assumed to be a real number strictly greater
than zero.
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have the following characteristics:

(1) all jobs in the set have size x,

(2) the first job is released at time ¢ with deadline ¢ + x, and,
(3) each subsequent job is released at the deadline of the pre-
vious job in the set.

Hence, all the jobs in the sequence have zero laxity. Note thata
similar pattern of sequential jobs were crucial in obtaining the
well-known competitive factor bound of 0.25 for overloaded
real-time systems [8, 23].

3 Basic Results

We start by re-iterating a basic proposition, which states that
preemptive EDF achieves the best possible performance with-
out the knowledge of future job release times, if the system
has sufficient energy to execute the entire workload (which is
assumed to be feasible in real-time sense).

Proposition 1 If E > Ey, then preemptive EDF has a compet-
itive factor of 1.

Proof: Follows from the optimality of preemptive EDF in
underloaded real-time environments [18]. O

However, in underloaded environments with scarce energy,
preemptive EDF turns out to be a poor online algorithm:

Lemma 1 IfE < Ey, then preemptive EDF cannot guarantee
a non-zero total value (hence, it cannot guarantee a non-zero
competitive factor).

Proof: Figure 1 shows how to construct an instance using
n jobs (Jy ...Jp), with decreasing deadlines and increasing
release times, for which preemptive EDF cannot guarantee a
non-zero value. Let ¢ and D be two positive numbers such
that ¢ < ejae and D > c. All jobs have size of ¢ units.
Also, 0 and di = D. Given this, the release times
and deadlines of any two successive jobs are related by the
following equations:

ri=Tri-1+c—30

di :di,1 -4

Observe that when EDF is about to finish executing a job,
another job with a shorter deadline is released. EDF preempts
the currently running job in favor of the job with earlier
deadline. Continuing this way, while executing .J,,, for some
n > 1, EDF depletes its entire energy budget at time ¢t = F.
Notice that at time ¢ = E, EDF has n pending jobs and zero
remaining energy. Since preemptive EDF does not execute
any job to completion in this instance, its total value is zero. [J

One can attempt to modify EDF with the following sim-
ple rule: Preempt J; is favor of J;, with an earlier deadline,
only if there is enough energy to execute J;,. Even with this
augmented rule, EDF cannot provide more than a total value
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Figure 1: The worst-case instance for preemptive EDF

of § by slightly modifying the scenario given in the proof of
Lemma 1: at the very end when the system has ¢ units of re-
maining energy, one can release a job with size J and zero
laxity. This way, one would get a value of §, which can be
still arbitrarily low compared to E, making the algorithm still
technically non-competitive.

An interesting question involves the upper bound on the
performance of any online algorithm in energy-constrained
settings, in worst-case scenarios. In establishing such upper
bounds, the competitive analysis technique typically makes
use of the so-called adversary method ([13, 9, 23, 30]). In
this proof technique, the adversary generates an initial input
job sequence, observes the online algorithms’ behavior, and
then decides on what further jobs should be released. This
process is repeated a finite number of times. At some point
(which must comply with the problem specification), the ad-
versary announces the optimal schedule that it would generate
for that input sequence — and a bound on the competitive factor
is established by comparing it to the schedule selected by the
online algorithm. Theorem 1 establishes this upper bound as a
function of energy budget £ and the upper bound on possible
job size enqz-

Theorem 1 In energy-constrained underloaded settings, no
online algorithm can achieve a competitive factor greater than

E—emas
Proof: See Appendix for a full proof.

The proof of Theorem 1 is slightly involved, mainly be-
cause the input instance created by the adversary must comply
with the system model and settings as described in Section 2.
Specifically,

e The input sequence ¢ created by the adversary must be
feasible in real-time sense. Recall that our purpose is to
analyze the online energy-constrained real-time schedul-
ing for underloaded settings.

The jobs released by the adversary in the input instance
should not violate the upper bound on possible job size
(émaz ). For example, a job of size E' — €4, cannot be
released when e, < %

Energy budget and execution requirements are expressed
as positive real numbers.
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Theorem 1 implies that, the upper bound on the competitive
factor depends heavily on the ratio “z#=: the higher this ratio,
the lower the best achievable competitive factor. For exam-
ple, if e"% = 1/3, then, no algorithm can achieve more than
2/3 of the total value of a clairvoyant algorithm. However, as
¢mex — 1, the upper bound approaches zero; implying that no
online algorithm can be competitive.

Further, for a given workload, as the system’s initial energy
budget E is reduced, the best achievable competitive factor
quickly decreases. Similarly, for a given energy budget F, as
the upper bound on job size e,,,, for the workload increases,
the best achievable competitive factor quickly decreases. Nev-
ertheless, we show that an online algorithm that is able to
achieve this upper bound indeed exists.

3.1 Algorithm EC-EDF

In this subsection, we develop and show the optimality of an
online algorithm called EC-EDF for energy-constrained real-
time scheduling in underloaded settings. EC-EDF uses an ad-
mission test to admit new jobs that arrive at run-time. Specif-
ically, if the newly-arriving job J fails to pass the admission
test, it is discarded (i.e. never executed). In case that it passes
the test, the new job J is added to the set C of admitted jobs.
When a job completes execution, it is removed from set C.

EC-EDF eftectively commits to all the admitted jobs, in the
sense that, as formally shown below, it guarantees their timely
completion without violating the system’s energy budget lim-
its. Further, all admitted jobs are scheduled according to the
well-known preemptive EDF policy.

The admission test uses the following relatively simple rule
to decide whether the new job J arriving at time ¢ can be ad-
mitted or not: J is admitted if and only if the system’s re-
maining energy budget at time ¢, E7, is sufficient to fully
execute J and the remaining workload of all the pending
admitted jobs (i.e. the remaining workload in set C).

Let E™ and e] represent the remaining energy with the sys-
tem and the remaining execution time of job .J; at time ¢ re-
spectively. We assume both £ and e] are properly updated at
run-time. Hence, formally, a job J with size e arriving at time
t is admitted to the system if and only if

E">e+ Z er
JieC

We now give an example illustrating the behavior of EC-
EDF. Consider a system with E 100. The follow-
ing four jobs constitute the input sequence: Ji(0,20,200),
J2(10, 30, 190), J5(25, 75,150) and J4(85, 15, 120). Figure 2
shows the schedules generated by EC-EDF, EDF and the clair-
voyant algorithm along with the total values obtained by them.
In each schedule, the unshaded jobs are those that complete
before the corresponding algorithm depletes its energy budget,
while the shaded jobs are those that fail to do so.

At time t = 0, EC-EDF admits J; and dispatches it (C =
{J1}). Att = 10, Jo with higher priority than J; arrives. EC-
EDF admits J5 as there is enough remaining energy to execute
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Figure 2: Schedules Generated by EC-EDF, EDF and Optimal

both J, and the pending workload of admitted jobs, C = {J1 }
(i.e. E" > eg + e]). EC-EDF updates set C to {J1, J2}.

Notice that at ¢ = 25 when the largest job J3 in the set ar-
rives, the remaining energy is sufficient to execute it. However
EC-EDF does not admit J3 as with the remaining energy of 75
units, the system cannot execute .J3 and the pending workload
of admitted jobs C = {J1, Jo} (i.e. E” < ez + €] + e5).

At t = 85, EC-EDF admits and executes J4 to completion.
Thus, by executing jobs J1, J2 and J4 to completion, EC-EDF
gathers a total value of 65. It is straightforward to verify that
EDF gets a total value of only 15. The clairvoyant algorithm
knowing the future job sizes and arrival patterns, skips cer-
tain jobs and idles as necessary, making a total value of 95 as
shown in Figure 2.

Proposition 2 EC-EDF guarantees the completion of all the
admitted jobs before their deadlines, without violating the sys-
tem’s energy budget limits.

Proof:  Assume there exists a non-empty subset C’ of the
admitted jobs that cannot be completed in a timely manner
without violating the energy budget limits. We will show by
contradiction that C’ cannot exist.

Recall that by assumption, the input sequence v is guar-
anteed to be feasible from timing constraints point of view.
Thus, C’ C 1 is also feasible. Further, EC-EDF schedules
the admitted jobs using preemptive EDF which is known to
be optimal in underloaded conditions. Hence, if C exists then
EC-EDF must run out of energy before completing the jobs it
admitted. Since the admission rule of EC-EDF ensures that
there is always enough remaining energy in the system to
meet the computational demand of all pending admitted jobs
along with the newly admitted job, we reach a contradiction.
Hence, C’ cannot exist. O

Theorem 2 EC-EDF has a competitive factor of ELE”'“

Proof: First, note that if £, < E, EC-EDF reduces to tradi-
tional EDF and can execute all the jobs in the input sequence
1 (which is assumed to be feasible), achieving a competitive
factor of one. Thus, the adversary must create a feasible input
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sequence ¢ such that F, > FE. Under this condition, even-
tually EC-EDF will be forced to discard a job due to energy
limitations. Let Jy be the first job discarded by EC-EDF at
time ¢. At time ¢, the system has the remaining energy of E”
units and let the amount of energy required to complete all
pending admitted jobs be R units. Given this, the following
condition must hold at time ¢: E™ < eq + R.

Notice that by time ¢, EC-EDF has depleted £ — E”
units of energy in processing jobs. The pending workload
of the admitted jobs is R. Therefore, the total workload size
introduced by the adversary up to time ¢ (including eq) is
(E—E")+ (R)+ (eq) > E (sinceeq + R — E" > 0). Also,
since EC-EDF discards Jg, it has so far admitted a workload
of at least v/ = E — eq + ¢ units. From Proposition 2,
EC-EDF is guaranteed to complete ¢’ in a timely manner
without violating the system energy budget limits. Thus,
EC-EDF guarantees a total value of £ — eq + 0. Since
ed < €maq by definition, the total value obtained by EC-EDF
is no less than F — e,,4, + 0, while the adversary can make
at most a value of E. Since % may be arbitrarily low, we
conclude that EC-EDF has a competitive factor of % |

We also underline that in settings where £ > Ej, EC-EDF
is able to finish all the jobs in the input sequence thanks to the
optimality of EDF, achieving a competitive factor of 1 under
that condition. That is, regardless of the relationship be-
tween £ and £, EC-EDF Yyields the best competitive fac-
tor.

3.2 A Semi-online Algorithm with a Constant
Competitive Factor

As mentioned in Section 1, it is occasionally possible to im-
prove the competitive ratio by providing some limited infor-
mation about the actual input sequence. For example, on-
line scheduling algorithms typically benefit from information
about the maximum job size, sum of job processing times or
job size patterns in the actual input [4, 30]. The online algo-
rithms that exploit this type of limited information about the
actual input are called semi-online and their design and analy-
sis have been recently attracting increasing interest [4, 30].

In our problem as well, the knowledge of the largest job
size in the actual input instance turns out to be very helpful.
For the uniform value density model where the value of a job
is equal to its execution time, the largest size job in the in-
put instance is also the most valuable job in the set. Below,
we describe an algorithm EC-EDF™* that achieves a compet-
itive factor of 0.5, using this information. Further, we show
that with only the additional knowledge of the largest job size,
no semi-online algorithm can perform better than EC-EDF™*,
demonstrating its optimality.

Let e; < E represent the largest job size in the actual input
sequence. We first give the rules for FC-EDF*. EC-EDF*
exploits the information about e;: in semi-online settings, the
fact that at least one job of size e; will be part of the input



sequence is guaranteed by definition. EFC-EDF* compares
e; to the available energy budget E. If ¢; > %, EC-EDF*
simply waits for the largest size job, e;, and executes it. Since
E>e > %, the value of EC-EDF™ is no less than % + 9.

The adversary can gather a value of at most E. On the other

hand, if ¢; < %, EC-EDF* schedules jobs using EC-EDF .

By definition, no job size in the actual input sequence can be
larger than e;. Thus, from Theorem 2 the competitive factor for
EC-EDF becomes £ &+ Further, given the constraint ¢; < £
the lower bound on competitive factor of EC-EDF and hence
that of EC-EDF* reduces to 0.5. Thus, in either case, EC-
EDF* makes at least half of the value of the adversary.

Lemma 2 EC-EDF* has a competitive factor of 0.5.

Lemma 3 With only the additional knowledge of the largest
job size, no semi-online algorithm can achieve a competitive
factor greater than 0.5.

Proof: We describe a scenario through which the adversary
effectively limits the total value of any semi-online algorithm
to half of its value. As mentioned in the proof of Theorem 1,
E can be expressed as E = k - ¢; + k' - §, where k and &’
are integers, k > 1, k¥ > 0. The construction is similar to
that given in the proof of Theorem 1. The adversary releases
sequential jobs in three stages. Jobs of size k’-§ are introduced
in the first stage, while jobs of size ¢ appear in the second
stage. In the third stage the adversary now releases jobs of
size e;. Again, if k¥’ = 0, the first stage can be skipped. We
distinguish two cases.

Case 1: The semi-online algorithm A skips all these jobs
until time ¢ = F. Observe that in the pattern of jobs released
in the proof of Theorem 1, the third stage cannot have started
attime ¢ < F. Thus, in this scenario, the adversary introduces
a single job of size e; at time ¢ = E and then stops releasing
jobs. Since A has skipped all sequential jobs, it will be able
to execute the job of size e; gathering a value of e;, while the
adversary gathers a value of E by executing all the sequential
jobs up to time ¢t = E. The competitive factor is .

Case 2: A executes one of the sequential jobs at t < F.
The scenario can now be mapped to that in the proof of The-
orem 1. Therefore, by repeating the arguments of Theorem 1,
tge upper bound on the competitive factor can be evaluated as
E—e

E

one can restrict the total value

By choosing ¢; 5
of A to % for both Cases 1 and 2. Thus, no semi-online
algorithm can achieve a competitive factor greater than 0.5. [J

Corollary 1 Among semi-online algorithms that have only the
additional knowledge of the largest job size, EC-EDF* is
optimal.

We remark that, in online real-time scheduling in overload
conditions, the best achievable competitive factor was shown
to be 0.25 [8] and further, there exists an algorithm D°V¢",
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with this competitive factor [23]. In contrast, in online real-
time scheduling with hard energy constraints for underloaded
settings, with the knowledge of the largest job size in the actual
input sequence, the best achievable competitive factor is 0.5
which is twice as large as that in overloaded settings. Further,
the algorithm EC-E DF* achieves this competitive factor.

4 [Extensions to more general settings

In this section, we extend our analysis to more general set-
tings involving non-uniform value density and those with the
advanced power management features (DVS).

4.1 Non-Uniform Value Densities

As mentioned previously, each job is associated with a value
proportional to its execution time. The value density of a job is
its value divided by its execution time. The ratio of the largest
value density to the smallest value density is called importance
ratio [8, 23]. In uniform density settings (Section 3), the im-
portance ratio is one and hence the value of the job is equal to
its size. In this section, we extend our competitive analysis to
the more general non-uniform density settings.

In these settings, the value of a job .J; with value density
k; is given by k;e;. Let kp,in and k4, denote the smallest
and largest value densities that can be associated with any job.
Without loss of generality, we assume that k,,,;, = 1 and thus
the ratio of ii is simply k,q.. Observe that in comparison
to uniform density settings, the largest size job is no longer
guaranteed to be the most valuable job.

Theorem 3 In non-uniform value settings where kpqr > 1,
no online algorithm can achieve a competitive factor greater
than L

(kmaz) B

The full proof of Theorem 3 is given in [19], due to space
constraints. We add that, the upper bound on performance es-
tablished by Theorem 3 holds with or without the knowledge
of the largest job size in the input sequence. Thus, the a priori
knowledge of the largest job size does not help design bet-
ter online algorithms in non-uniform value density settings.
Lemma 4 establishes the competitive factor of the semi-online
algorithm, EC-E DF*, which uses the additional knowledge
of largest job size.

Lemma 4 Algorithm EC-EDF* has a competitive factor of
1

2kmaq

Proof: Lete; < E represent the largest job size in the input
sequence. If e; > g, EC-EDF* waits for the largest job of
size e; and is guaranteed a value of kpin (5 +6) = £ + 6.
The adversary can make at most k4, F. The competitive
factor is m On the other hand, if ¢; < 5, EC-EDF*
follows EC-EDF which would guarantee a value of at least

kmin(E — e; + 0) even when executed on jobs with the



minimum value density k,,;, = 1. Again, the adversary can
make a total value of at most k4, F. Thus, the competitive

factor is found as the minimum value of £=21% which is
Emas E
maw

1
2kmaz

competitive factor is

(obtained when e; = %) As a result, in both cases, the
O

1
2km

We conclude this subsection with the following remarks.

e The competitive factor of the algorithm heavily depends
on the ratio . When e,,4, < %, the best achiev-

4 ; 1 mas
able competitive factor is T As fmez — 1, the best

achievable competitive factor reduces to %

Emax
E

e The tightness of the upper bound established in Theo-
rem 3 is an interesting open problem that we are currently
investigating.

4.2 Extensions to DVS settings

Dynamic Voltage Scaling (DVS) is a popular energy manage-
ment technique through which the processor frequency and
voltage can be varied at run-time. Since processor power con-
sumption increases in convex manner with processor clock
frequency, DVS significantly reduces processor dynamic en-
ergy consumption. DVS has been subject to extensive re-
search in the past decade [5, 25, 29]. There have also been a
few research research efforts on competitive analysis of DVS
based systems, mostly relating to energy minimization of spo-
radic jobs [6, 15, 34] (without the hard energy constraint).
DVS-capable processors can play a critical role in energy-
constrained real-time systems. Using effective DVS policies,
which help minimize the energy spent on processing a work-
load, the energy-constrained system can successfully process
additional workload with a given energy budget, thus giving
higher overall system value compared to non-DVS systems.
In this section, we derive an upper bound on the competitive
factor of DVS-enabled online algorithms.

We consider a DVS capable processor whose frequency can
be varied in the range [ fmin, fmaz]. Without loss of generality,
we assume fi,q; = 1. Power consumption of the processor at
frequency f is modeled as a convex function P(f) = af?,
where a is a constant characterized by the processor param-
eters®> and 2 < a < 3. Thus, at frequency f, the time and
energy required to execute a job with processing time x are
given by  and E(f)=P(f)- 7= fo~ Lz, respectively.

Notice that with DVS, the energy required to execute a
job depends on the frequency at which the job is executed.
As such, there is no longer one-to-one correspondence be-
tween job execution times and energy requirements. By tak-
ing this into account, in this section, we represent a job J; as

’In this section we assume a = 1. We also point out that recently
there have been research efforts addressing system energy models, where it
was shown that lowering frequency below a certain threshold (called energy-
efficient speed) may adversely affect overall system energy consumption [3].
Our upper bound results can easily be adapted to these system-level energy
models by enforcing arbitrarily low energy-efficient speed levels.
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Ji(ri, ¢i, Dy, e;), where r; is its release time, ¢; is its execution
time at frequency fmaz, D; 18 its relative deadline and e; is its
minimum energy requirement. The minimum energy require-
ment e; is computed by assuming the minimum frequency %
that would allow the timely completion of J; before its dead-
line. Thatis, e; = E(3-) = (f)—ll)‘l_1 - G

Note that we assume the uniform density model throughout
this section and the value of a job J; is assumed to be equal to
c; (execution time at fq.). That is, executing a job at a low
frequency reduces the energy consumption but does not affect
its value. Before proceeding, we give some basic definitions
and existing results that will be instrumental in our derivation.

Definition 1 Let [(t1,t2) denote the total amount of workload
of jobs with release times at or later than t, and deadlines at
or earlier than to. The effective loading factor h(ty,ts) over

an interval [t1,t2] is defined as h(t1,t2) = UGRHE))

T ta—t1 °

Definition 2 The absolute effective loading factor (or simply
the loading factor) 3 is the maximum effective loading factor
over all intervals [t1,t2]: B = max(h(t1,t2)), 0 <11 < ta.

Theorem 4 (from [7, 20]) A set of real-time jobs can be
scheduled in feasible manner (by preemptive EDF) if and only

<L

Given the loading factor g, if the processor executes all jobs at
constant frequency f = max(fimin, 5), then the new loading
factor 3’ (increased due to the reduced frequency) would be ?
Further, one can easily verify that 5" would still not exceed 1.0
under that condition [34]. Thus, running jobs at frequency
f = max(fmin, B) preserves the system feasibility (without
the energy constraint).

Proposition 3 4 DVS algorithm that runs at constant speed
f > maz(fmin, B) cannot make a total value > £

foT
Proposition 3 can be justified by observing that with DVS, to
deplete e units of energy, the system will have to execute a
workload of % at frequency f. Thus, with e units of en-
ergy, a maximum value of z%+ can be made by running the
processor at constant speed f. Note that this implies that with
DVS the system is able to achieve a value greater than E. In
settings where both the online algorithm and adversary have
DVS, the pre-knowledge of 3 can potentially provide some
advantage to the online algorithm. Theorem 5 characterizes
this result.

Theorem 5 Assuming 3 > finin, where 0 < 3 < 1,

(i) Without the knowledge of (3, there is no online DVS algo-
rithm with a competitive factor greater than f; 1.

(ii) With the knowledge of 3, there is no online DVS algorithm
with a competitive factor greater than (f";%)o‘*l.

Proof: Case 1: Assume [ is unknown to the algorithm.

Consider the following instance. The adversary sets 3 = 1 and
introduces a job J1 (0, E, E, E) (Notice the minimum energy
requirement for .J; is e; = E). Clearly, if the online algorithm



A does not execute .J1, it will miss its deadline. The adversary
executes J; and releases no more jobs. The value of A is zero,
while that of the adversary is E.
If A executes Jq, then, at time ¢ = F, the adversary intro-
duces Jo(E, kaL,l, k%, E). Observe that .J> can be executed at
E

o1

frequency = k. By skipping Ji, the adversary executes

E
pea
Jo gathering a reward of kal . Thus, the competitive factor

is —£— = k>~!. Since the minimum possible frequency is

a—1
fm:n, by setting k = fi,in, the adversary can force an upper
bound of ( f,m-n)“_1 for the competitive factor.
Case 2: Assume (3 is known to the algorithm.
The pattern in Case 1 can be repeated with a slight modifica-
tion. Jp is given with parameters .J; (0, %, B%’ E). Ais
forced to execute J; at frequency (3 to guarantee a non-zero
total value. At that point, the adversary introduces .J, with the
following parameters Jo(FE, £ _E E). Observe that J,

min

can be executed by the adverérzify at frequency f,in, yielding
a value of —£+. Further, since fmin < [, the processor

loading factor can be easily shown to be 3, satisfying the
assumption. 4 has a value of % and thus the competitive

factor is bounded by (fan Yol O

The case where 8 < f., is relatively simple: consider
the algorithm EC-EDF using a constant speed f,,i,. Notice
that this algorithm does never spend more energy than required
while processing jobs, as the system limitations do not allow
processing below f,:,. Also, due to the same constraint, fi,,in,
is the least possible frequency with which the adversary can
process jobs. As such, this case can be shown to be equiva-
lent to the non-DVS case (Section 3), where both the online
algorithm and the adversary had to process jobs at the same
(constant) speed. Thus, all the results of Section 3 apply.

As a consequence of Theorem 5, the upper bound on com-
petitive factor approaches zero as f,,;, — 0and 8 — 1. An
open problem under investigation is the performance of semi-
online algorithms with the knowledge of both the largest job
size in the actual input sequence and 3 in DVS settings. The
results in this section mostly indicate increased difficulties for
online algorithms operating on DVS-enabled settings. How-
ever, in the next section, we will show that the DVS feature
can help an online algorithm to compete with a clairvoyant
(but non-DVS-enabled) adversary.

5 Resource Augmentation

Noting that the competitive analysis characterizes perfor-
mance guarantees in the worst-case scenarios, some recent ef-
forts exploited alternative means to quantify the performance
of online algorithms. Resource augmentation technique, intro-
duced by [28] and popularized by [22], is such a framework.
With resource augmentation, the online algorithm is given ad-
ditional resources compared to the adversary in an effort to
compensate for the lack of knowledge about the future. For
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example, the online algorithm may run on a faster processor
[22], or it may have access to additional CPUs [10]. In the fol-
lowing, we show how resource augmentation can help signifi-
cantly improve the performance of EC-EDF, especially when
emex is close to one.

First, we explore the implications of providing the online
algorithm EC-EDF with additional energy. Specifically, if the
adversary possesses an energy budget of E units, then EC-
EDF is assumed to have an initial energy of (1 + x)E units,
where z > 0. We know from Theorem 2 that given an initial
energy of E, EC-EDF guarantees a value of at least E — e,,,44.-
Thus, with (1 4+ 2)E units of initial energy, EC-EDF guaran-
tees a value of at least (1 + )E — emaqz. The competitive
factoris 1 + x — “=e=_ Hence, if v = “z2= then EC-EDF has
a competitive factor of 1.

Proposition 4 The online algorithm EC-EDF achieves a com-
petitive factor of 1 compared to an adversary with E units of
energy budget, if it is allocated (1 + “=2=) units of energy.

€max

naz < 1, we have:

Further, since

Corollary 2 [fEC-EDF is provided twice as much energy as
the clairvoyant adversary C,qy, it becomes at least as powerful
as Codv-

Using the terminology made popular by the seminal resource
augmentation analysis paper [22], we can state the following
thanks to Proposition 4: energy is as powerful as clairvoyance.

In the following, we describe a practical way to effectively
give more energy to EC-EDF. Specifically, we augment the
EC-EDF scheduler with the knowledge of the absolute load-
ing factor 3, and a DVS-capable processor. We will show that
EC-EDF can successfully compete with a clairvoyant adver-
sary without DVS feature. With this resource augmentation,
EC-EDF always executes all jobs at speed f = (3. We refer to
this modified EC-EDF as 3-EC-EDF. Observe that since the
processor always runs at constant speed (3, to deplete e units
of energy, the processor must execute ﬁ units of work-
load. Thus, the initial energy budget of 3-EC-EDF is effec-
tively ﬁa%l times that of the adversary. Following Theorem 2,
(-EC-EDF guarantees a value of % — €maz-
Proposlition 5 B-EC-EDF has a competitive factor of
E—B"" emax

ﬁuflE .

As a consequence of Proposition 5 and since e,,4, < E, we
have the following:

Corollary 3 If 3 < (%)ﬁ B-EC-EDF is as powerful as a
clairvoyant adversary without DVS.
6 Conclusion

In this paper, we undertook a preliminary study of competitive
analysis for energy-constrained online real-time scheduling in



underloaded settings. We proposed an optimal algorithm EC-
EDF which achieves the best possible performance guaran-
tee obtainable by any online algorithm. Further, by assuming
the knowledge of the largest job size, we proposed an optimal
semi-online algorithm FC-EDF*, which has a competitive
factor of 0.5. We extended our analysis and provided funda-
mental results in various models and settings including those
of non-uniform value density and DVS. To the best of our
knowledge, this is the first theoretical investigation of the prob-
lem of online real-time scheduling in underloaded but energy-
constrained environments. We hope that this research effort
will trigger further research in this direction.
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APPENDIX: Proof of Theorem 1

To prove Theorem 1, we are going to create an input sequence
1 such that for any given positive small value ¢ and for any online
algorithm A, A accrues a value no more than £ — ema. + 6 and the
adversary gains a total value of E. Thus, the competitive factor of
A will be shown to be no better than £=Cmaz  Recall that E and e;
for any job J; are exact multiples of §. This implies €mqz, the upper
bound on the size of any job, is also an exact multiple of d.

Let E = k - emax + €', where k is an integer, k > 1, and 0 <
€' < emae. Furthermore, €masr = ks - 6, where k. is an integer.
Also, note that ¢’ = k' - §, where &’ is an integer. Then, we can write:

E=k-ky-6+k -6,

where k, k., and k' are integers, k., k > 1, k" > 0.

In the following, we feed the algorithm A the input sequence v
such that there exists a time ¢, where A obtains a total value of no
more than E — emqq + J. Further, A will be unable to accrue any
additional value after time ¢.

A’s schedule is divided into up to three stages, based on its action
over the released jobs. We start at time ¢ = 0. In the first stage, the
adversary releases jobs with size k- 6. If k' = 0, the first stage is not
needed and we proceed directly to the second stage. In the second
stage, it releases jobs with size ¢, and in the third stage, it releases
jobs with size of emas (= ks - §). Note that, as we will see, the third
stage may not be always needed and the number of jobs released in
each stage depends on A’s actions.

Assume k' # 0. In the first stage, the adversary keeps introducing
sequential jobs with size of k'-§ (recall from Section 2, that sequential
jobs have zero laxity and are released back to back one at a time) until
A picks up one such job torun. Let N = L%j . The adversary stops
releasing new jobs as soon as (1.) the online algorithm A picks up one
such job to run, or, (2.) the number of released jobs reaches V.

a. Assume A does not accept any job until the time when the ad-
versary has released N such jobs. In this case, the adversary
announces that it has executed all IV released jobs in its op-
timal schedule. Observe that, at this point, the adversary has
accrued a total value of N - k' - § and its remaining energy is
E — N -k -6. Ahas E units of remaining energy, but its total
value is still zero. Now, if N - k' - § = FE, then the adversary
does not introduce any new jobs and the competitive factor of .4
is zero. Otherwise, the first stage ends and we enter the second
stage.

Assume A selects a job with size k' - § to run before the ad-
versary has released N such jobs. In this case, as soon as A
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executes its first job, the first stage ends. The adversary exe-
cutes the same job selected by A. Observe that now both the
adversary and A have obtained a value of k' - §. Their remain-
ing energy levels are the same and equal to F — &k’ - 6. Then, the
second stage follows.

In the second stage, the adversary keeps releasing sequential jobs
with size §. If the algorithm does not pick up any job in the first stage
to run (i.e., the above case a.), the adversary keeps releasing such jobs
until the number of jobs with size J reaches

E—-N-k- E—|Z| K6
5 s

Then, the adversary stops releasing any new jobs. We can see that
the algorithm A cannot obtain a value exceeding k-6 (< E — emaxz).
But the adversary can obtain a total value of E, by executing all the
jobs it has released in two stages. Thus, the competitive factor c is:

8 _ <kK.

’
<k
E

E— €maz
E

0 <

c<

In the following, we consider the case where the algorithm picks

up one job in the first stage to run (i.e., we focus on the case b. above).

The second stage ends as soon as (1.) the algorithm A pleS up one

job with size J to run, or (2.) the adversary releases M =
k - kg such jobs.

6

c. Assume A does not accept any job until the time when the ad-
versary has released M such jobs. In this case, the second stage
ends and we do not need to go to the third stage. The adver-
sary does not release any new job. The algorithm obtains a
total value of k' - §. The adversary accrues a total value of
k' -6 +k-ky -6 = E. Thus, the competitive factor c is

K -
- E

6 _ E-—

<

€mazx

E

. Assume A selects a job with size § for execution before the
adversary has released M such jobs. Again, the second stage
ends at this point. The adversary does not execute any of these
jobs, its accumulated value remains at k' - § and its remaining
energy is still E — k' - §. The algorithm has an accumulated
value of k¥’ - § + 4, its remaining energy is £ — k' - § — §, and
we continue with the third stage.

In the third stage, we release a set of jobs with size emaz. We
are going to show that at least one such job cannot be executed by
the online algorithm A. Based on the remaining energy for both
algorithms (A and the adversary), we are going to force the algorithm
A to accept at least one fewer job with processing time of epmax
in the following way. The adversary releases k jobs each with size
emaz and they share a common relative deadline of & - €mmqe. Note
that the algorithm A can accept at most £ — 1 such jobs (because
k'-84+3+k-emax > E)while the adversary can accept all these jobs
(k- 0+k-emar = E). The adversary obtains a total value of F (re-
call it had executed one job of size k’ - § released in the first stage) and
the algorithm A has a total value < E — €42 + 0. Since % can be
arbitrarily low, the competitive factor c is again found as % O



