
Optimal Speed Scaling Algorithms under Speed Change Constraints

Zhi Zhang, Fei Li, Hakan Aydin

Department of Computer Science
George Mason University
Fairfax, Virginia 22030

Email: {zzhang8, lifei, aydin}@cs.gmu.edu

Abstract—In this paper, we investigate energy-aware real-
time scheduling algorithms with speed change constraints. A
processor is equipped with variable clock frequency (speedy)
feature and is used to schedule a set of given jobs with
deadlines. Each speed change involves time/energy overhead
and recent studies show that it also impacts negatively the
processor’s lifetime reliability. Motivated by this, we study the-
oretical energy-aware scheduling problems with consideration
of number and cost of speed changes. We associate a cost
with each speed change to reflect its negative impact on the
processor’s lifetime reliability. We design speed schedules to
satisfy all jobs’ deadlines and optimize the energy consumption
and the total cost incurred due to speed changes. Four related
problems based on this framework are considered. We develop
algorithms that perform arbitrarily close to the optimal and
we also analyze their time complexities.

Keywords-speed scaling algorithms; real-time scheduling;
energy management; dynamic voltage scaling

I. INTRODUCTION

Energy management remains an important problem for

computer systems, and in particular, for real-time embedded

systems. In this paper, we study energy-aware real-time job

scheduling algorithms. We target on designing and analyzing

algorithms for maximizing energy-usage efficiency with the

consideration of system performance requirements.

The rapid advance of processor design technologies pro-

vides faster processors. Modern processors, such as those

supported by Intel SpeedStep and AMD PowerNOW! tech-

nologies, have been equipped with a feature to vary the

clock frequencies dynamically. The operating system is able

to adjust the processor’s clock frequency (speed) on the fly

along with the supply voltage to execute jobs and reduce

energy consumption at lower speeds. This functionality is

called speed scaling and also dynamic voltage scaling [1].

Speed scaling is expected to satisfy some quality-of-service

measures as well as to reduce overall energy cost, by ma-

nipulating modern processors’ multiple speeds. In a seminal

paper [2], Yao et al. initiated the algorithmic study of speed

scaling techniques to schedule a given set of jobs with time

constraints. Under the speed f(t) at time t, the processor

consumes energy e(f(t)) per time unit and the function e(·)
is assumed to be convex. The objective is to construct a

schedule satisfying all the jobs’ deadline constraints and to

minimize the total energy consumption, which is defined

as
∫
e(f(t))dt. The algorithm in [2] has a running time of

O(n3), where n is the number of jobs to be scheduled. Li et

al. [3] improved the result to O(n2 log n). Many settings and

metrics based on this framework are studied in the literature,

such as maximizing throughput [4], or minimizing the sum

of energy consumption and (weighted) flow time of jobs [5],

[6].

Existing studies considered energy minimization through

speed scaling without much attention to the impact of

speed changes. Such changes typically involve time and

energy overhead. Moreover, recent studies indicate that the

lifetime reliability of a CMOS circuit is directly related

to the number and span of speed changes. For example,

in [7], it is reported that (hardware) failures, such as cracks
and fatigue failures, are created not by sustained high
temperatures, but rather by the repeated heating and cooling
of sections of the processor. This phenomenon is referred to
as ‘thermal cycling’. Thermal cycling is caused by the large

difference in thermal expansion coefficients of metallic and

dielectric materials, and leads to cracks and other permanent

failures. Using MTTF (Mean-Time-To-Failure) to describe

the expected processor’s life, the following Coffin-Manson

formula [8] is used to characterize a processor’s lifetime

reliability:

MTTF ∝ 1

Co(ΔTmp −ΔTo)qx
, (1)

where Co is a material dependent constant, ΔTmp is the

entire temperature cycle-range of the device, ΔTo is the

portion of the temperature range in the elastic region, q is the

Coffin-Manson exponent, and x is the frequency (number of

occurrences per unit time) of thermal cycles [8]. Typically,

ΔTo � ΔTmp and 6 ≤ q ≤ 9 for silicon materials.

Simplifying Equation (1), we have

MTTF ∝ 1

Co ·ΔT q
mp · x. (2)

Equation (2) clearly indicates that an algorithm which

frequently changes the processor’s speeds results in large

x and ΔTmp. Thus, such a schedule may introduce a large

temperature cycle-range and therefore affect the processor’s

reliability adversely. Simulations in [7] have confirmed that

various speed-scaling energy-aware policies have different

2011 IEEE International Conference on High Performance Computing and Communications

978-0-7695-4538-7/11 $26.00 © 2011 IEEE

DOI 10.1109/HPCC.2011.35

202

Table I
SUMMARY OF THE RESULTS IN THIS PAPER. (ALL THE ALGORITHMS RUN IN POLYNOMIAL TIME.)

algorithms objectives to minimize constraints

Algorithm 1 sum of energy consumption and costs of speed changes -
Algorithm 2 energy consumption bounded number of speed changes
Algorithm 3 number of speed changes bounded energy consumption
Algorithm 4 energy consumption bounded span of frequencies used

impacts on processor’s reliability in terms of MTTF. The

number of speed changes (x in Equation (2)) is a critical

factor in determining a processor’s reliability (MTTF in

Equation (2)) under the thermal cycling phenomena.

A. Contributions

In this paper, we incorporate speed change constraints into

speed-scaling scheduling algorithms. Limiting the number of

speed changes is important for emerging reliability objec-

tives in real-time embedded systems. The main purpose of

this paper is to undertake a theoretical investigation of speed

scaling algorithms by considering the costs and number of

speed changes. Our contribution can be seen as the extension

of the Yao et al.’s classical speed scaling algorithm [2]

to incorporate the number and costs of speed changes.

We consider four optimization problems and develop their

corresponding solutions. We also analyze the running time

complexities. The results in this paper are summarized in

Table I.

We note that our results remain valid for arbitrary convex

energy consumption functions e(·) with e(0) = 0. We do not

require that e(·) should be in some single closed function

form; it may be given by various closed formulas in different

frequency ranges. A recent study considered the energy

minimization for settings where the frequency of the bus and

the memory can be adjusted independently, but without the

speed change constraints [9]. In this paper, we assume that

only the CPU’s clock frequency can be adjusted. Extending

our results to the settings of [9] is left as a future work.

B. Paper organization

In Section II, we formulate the problem of optimizing

energy consumption and cost/number of speed changes into

four combinatorial optimization problems. In Section III, we

provide convex-programming-based algorithmic solutions to

these problems and analyze their complexity. Related work

is introduced in Section IV and conclusive remarks are given

in Section V.

II. MODELS AND PROBLEM DEFINITION

We consider a single-processor setting. The processor has

variable clock frequencies (speeds). Under a speed f , the

processor consumes energy e(f) per time unit and we simply

assume that the function e(·) is convex and e(0) = 0. This

setting is a generalization of the power model used in Yao’s

paper [2] and its successors [3], [10].

We note that in scaling speeds, the processor’s fre-

quency and supply voltage are both adjusted (dynamic volt-

age/frequency scaling). Hence, in the rest of the paper, we

will understand that frequency/speed change always involves

the corresponding voltage change [2].

We consider scheduling a set of n real-time jobs J =
{J1, J2, . . . , Jn}. Each job Ji has a release time ri ∈ R

+,

a processing time (also called worst-case execution time)

pi ∈ R
+ and a deadline di ∈ R

+. Under the speed f , it

takes time pi/f to complete the job Ji. We consider pre-

emptive scheduling and assume that the cost of preemption

is negligible.

The objective in this study is to design scheduling algo-

rithms to finish all the jobs before their deadlines by consid-

ering the objectives of minimizing the energy consumption,

as well as the number and cost of speed changes.

Definition 1 (Speed Schedule): A speed schedule can be

viewed as a piece-wise constant curve, specifying the speed

the processor employs in each time interval. Assume that the

CPU speed changes m times during the execution. Then the

speed schedule Ψ is defined by m intervals and the speed

used in each of these intervals. Let the m time intervals be:

I1 := (t0, t1], I2 := (t1, t2], . . . , Im := (tm−1, tm].

The triple (ti−1, ti, si) corresponds to the ith time

interval Ii = (ti−1, ti] (0 < i ≤ m and t0 = 0) in which the

processor runs at a speed si ≥ 0. Hence, the speed scheduler

Ψ is specified by m triples:

Ψ : {(t0, t1, s1), (t1, t2, s2), . . . , (tm−1, tm, sm)}.
Figure 1 illustrates an example schedule. The schedule

employs 4 distinct speeds f1, f2, f3, f4 in 6 time intervals,

where s1 = s4 = f1, s2 = s6 = f4, s3 = f2, and s5 = f3.

Figure 1. A piecewise curve describing the time intervals and the
processor’s speeds in each interval

203

We call time ti a speed switching point. Without loss of

generality, we assume that the processor is in idle state

initially at time 0 (s0 = 0) and gets back to the idle state

after processing all the jobs (sm+1 = 0). Thus, a schedule

with m time intervals have m + 1 speed switching points

t0, t1, . . . , tm.

The total energy consumption of such a schedule is

calculated as:

EΨ =

m∑
i=1

e(si)(ti − ti−1).

For the example in Figure 1, we have

EΨ = e(f1)(t1 − 0) + e(f4)(t2 − t1) + e(f2)(t3 − t2)

+e(f1)(t4 − t3) + e(f3)(t5 − t4) + e(f4)(t6 − t5)

= e(f1)(t1 + t4 − t3) + e(f4)(t2 − t1 + t6 − t5)

+e(f2)(t3 − t2) + e(f3)(t5 − t4).

To incorporate the penalty of changing clock frequencies,

we consider that each speed change from the frequency

si (in interval Ii) to the frequency si+1 (in interval Ii+1)

involves a cost ci,i+1 ∈ R
+ (ci,i+1 may, for example,

reflect the speed change’s negative impact on the processor’s

lifetime reliability). In [11], analysis and simulation results

show the exponential (sα with α > 2) and super-linear

(s1+ε) dependencies of the power on voltage (speed) s and

temperature.

Along with the fact that the processor’s reliability is a con-

vex function of the temperature change (see Equation (2)),

we assume that the cost of a speed change is a convex

function of the difference between the previous and the new

speed values. For instance, switching from f4 to f1 may be

more costly than switching from f4 to f3, if f1 < f3 < f4.

Consequently, the function c(·) is convex and ci,i+1 is the

value of c(·) for |si − si+1|.
ci,i+1 := c(|si − si+1|), where s0 = sm+1 = 0. (3)

We now present the formulation of four optimization

problems.

P1. [Minimizing sum of energy consumption and costs

incurred due to speed changes.]

Let EΨ denote the total energy consumed by the

schedule Ψ to complete a set of jobs J by their

deadlines. Assume Ψ has m time intervals. The total

cost associated with all the clock speed changes during

this schedule is
∑m

i=0 ci,i+1 where s0 and sm+1 are

defined as 0 (see Equation (3)). In this problem, we seek

to minimize EΨ + β
∑m

i=0 ci,i+1, where β is a given

constant. After normalizing ci,i+1, we can remove β
and formulate our problem as

min .

(
m∑
i=1

e(si)(ti − ti−1) +

m∑
i=0

c′i,i+1

)
,

where s0 = sm+1 = 0 and c′i,i+1 = ci,i+1/β. (Note

that c′(·) = c(·)/β is still a convex function.) We can

rename c′i,i+1 as ci,i+1.

P2. [Under a fixed number of clock speed changes.]

Let EΨ and m denote the total energy consumed and

the total number of speed changes in the schedule Ψ to

complete the jobs in J by their deadlines, respectively.

Let M be the upper bound on the number of speed

changes. The objective is to minimize EΨ subject to

m ≤M . That is,

min .

m∑
i=1

e(si)(ti − ti−1), subject to m ≤M.

The problem P2 considers the number of speed changes

as a constraint.

P3. [Under a fixed energy budget.]

Let E∗ denote the optimal (minimum) energy consump-

tion required to complete all the jobs in J by their

deadlines. (We do not have to know E∗ beforehand.)

Let Eb denote the energy budget that we are given. In

this problem setting, we always have Eb ≥ E∗. Let

the schedule Ψ have m time intervals. The objective

is to minimize the total number of speed changes m
during the schedule subject to the constraint that the

total energy consumption EΨ is bounded by Eb. That

is,

min . m, subject to

m∑
i=1

e(si)(ti − ti−1) ≤ Eb.

P4. [Under a bound of span of frequencies used.]

Let EΨ and m denote the total energy consumed and

the total number of time intervals of an schedule Ψ to

complete the jobs J by their deadlines, respectively. Let

smax = max1≤i≤m{si} and smin = min1≤i≤m{si},
with smax ≥ smin ≥ 0. In other words smax and

smin are the maximum and minimum speed used in Ψ
while executing the jobs. The difference smax − smin

is defined as the span of the frequencies used in Ψ.

Let Q be the given upper bound on the span of the

speeds that we do not want to exceed. The objective is

to minimize EΨ subject to smax − smin ≤ Q. That is,

min .

m∑
i=1

e(si)(ti−ti−1), subject to smax−smin ≤ Q.

For the problem P4, we bear the understanding that

running the processor with a smaller speed span (small

smax − smin difference) results in less fluctuation of

temperature (reduced ΔTmp in Equation (2)), and

thus, improves the chip’s lifetime reliability (improved

MTTF in Equation (2)).

In the following, we present convex-programming-based

algorithmic solutions for the problems P1, P2, P3, and P4.

We analyze their performance as well. Note that Yao et

204

al. [2] and Li et al. [3] presented algorithms to minimize

the total energy consumption. The algorithms in [2] and [3]

have no restrictions over the number of processor’s speed

changes. The models that we discussed above have their own

algorithmic challenges. As we shall see, our solutions are

different from [2], [3] that had the objective of minimizing

energy alone. The problem P2 generalizes the well-studied

Yao et al.’s model in [2], when we set the upper bound of

speed changes M to a very large number.

III. ALGORITHMS AND ANALYSIS

In this section, we provide algorithmic solutions for the

problems P1 − P4.

A. Minimizing the sum of energy consumption and cost
incurred due to speed changes

Assume the schedule Ψ has m time intervals Ii =
(ti−1, ti] (1 ≤ i ≤ m) and within each interval Ii, the

processor keeps running at constant speed si ≥ 0. The

system does not consume any energy after finishing the last

job. The objective is

min .

(
m∑
i=1

e(si)(ti − ti−1) +

m∑
i=0

ci,i+1

)
, (4)

where ci,i+1 is scaled by a factor β from its definition in

Equation (3).

Define OPT as an optimal algorithm minimizing the

sum of energy consumption and the costs incurred due

to speed changes (Equation (4)). Our job is to determine

all the candidate values that ti in Equation (4) can take.

We note that the function c(·) is assumed to be a general

convex function, hence determining the optimal schedule’s

speed switching points heavily depends on the function c(·)
itself. In our technical report [12], we show that for an

arbitrary convex cost function c(·), it is possible that the

processor will need to change its speed in each time slot

to optimize Equation (1). Instead of designing algorithms

for some specific functions c(·), we study a large class

of algorithms called event-driven DVS (dynamic voltage
scaling) algorithms. The purpose of introducing an event-

driven DVS algorithm for the problem P1 is to show that

there exists an optimal convex-programming-based solution,

and this solution’s framework can be proved to generate

optimal solutions for the other three problems P2, P3, and

P4.

Definition 2 (Event-Driven DVS Algorithm): For event-
driven DVS algorithms, speed changes (speed switching

points) only happen at jobs’ release times and/or deadlines.

We note here that event-driven DVS algorithms have the

distinct advantage of keeping the run-time overhead due to

DVS low, as opposed to DVS algorithms that require speed

change at arbitrary points during execution: The CPU sched-

uler, that is invoked at task release times and deadlines, can

also regulate the frequency according to the pre-determined

speed schedule during the same invocation. As a result, we

believe that our result regarding the optimality of event-

driven DVS algorithms will prove very useful in practice.

Let J = {J1, J2, . . . , Jn} denote the n jobs to be

scheduled. A job Jj is represented by a triple (rj , dj , pj).
Let R = {r1, r2, . . . , rn} and D = {d1, d2, . . . , dn}. We

use Z = R ∪D to denote the union of all the release time

and deadlines of jobs. Note |Z| = |R∪D| ≤ |R|+|D| ≤ 2n.

We sort all the values in Z in increasing order and index

them as z1, z2, . . . , zn′ where n′ ≤ 2n. Without loss

of generality, we assume z1 = 0. Before the last deadline

zn′ , the time range is divided into n′ − 1 non-overlapping

intervals (zi, zi+1], ∀ 1 ≤ i ≤ n′− 1. We name the interval

Ti,i′ := (zi, zi′] (i′ ≥ i+1) as a scheduling interval. There

are at most
(
n′
2

)
= n′(n′−1)

2 = O(n2) such scheduling

intervals. For each scheduling interval Ti,i′ , we can compute

its corresponding workload denoted by a variable Pi,i′ and

processing capacity denoted by a variable Wi,i′ , given the

speed s′l assumed for each interval (zl−1, zl].

Pi,i′ =

∑
j pj

zi′ − zi
, where zi < rj < dj ≤ zi′ . (5)

Wi,i′ =

i′∑
l=i+1

s′l, i < l ≤ i′, (6)

where s′l is the speed variable to denote at which speed the

processor runs in the interval (zl−1, zl] (s′1 = s′|Z|+1 = 0).

In order to complete all the jobs by their deadlines, the pro-

cessing capacity should be at least the workload requirement

for each time interval.

The remaining task is to determine s′l such that all the

jobs in J can be finished by their deadlines and the objective∑|Z|
l=2 e(s

′
l)(zl−zl−1)+

∑|Z|+1
l=2 c(|s′l−s′l−1|) is minimized.

We formulate this problem using a convex program CP1 as

below:

min .

|Z|∑
l=2

e(s′l)(zl − zl−1) +

|Z|+1∑
l=2

c(|s′l − s′l−1|)

subject to Wi,i′ ≥ Pi,i′ , ∀ 1 ≤ i < i′ ≤ |Z|
s′l ≥ 0.

In the following, we provide the analysis of correctness

and time complexity for Algorithm 1, that computes an

event-driven DVS schedule for the problem P1.

For a given set of real-time jobs with known processing

times, preemptive EDF is optimal in the sense that any

feasible job set can be also scheduled in a feasible manner

by the EDF policy [13]. We have:

Lemma 1 (EDF Optimality): An optimal preemptive al-

gorithm can have its jobs executed in a canonical (deadline)
order, that is, for any two or more jobs ready to be executed

for a given time, the job with the earliest deadline has the

highest priority, with ties broken arbitrarily.

205

Algorithm 1 CONVEX-PROGRAMMING-BASED SOLUTION

Input: A job set J := {J1, J2, . . . , Jn} where Jj denoted

by {rj , dj , pj}
Output: A piecewise curve describing the time intervals

and the speeds at which the processor runs in these

intervals

1: Let R = {r1, r2, . . . , rn}, D = {d1, d2, . . . , dn},
and Z = R ∪D.

2: Sort Z in increasing order. Let the distinct values be zi,
1 ≤ i ≤ |Z|. (Without loss of generality, assume Z has

exactly |Z| distinct elements and z1 = 0.)

3: Define Ti,i′ = (zi, zi′], for any 1 ≤ i < i′ ≤ |Z|. Define

s′l for each (zl−1, zl]. Set s′1 = 0 and s′|Z|+1 = 0.

4: for each pair (i, i′) with 1 ≤ i < i′ ≤ |Z| do
5: calculate

Pi,i′ =

∑
j pj

zi′ − zi
, zi < rj < dj ≤ zi′ .

6: define

Wi,i′ =

i′∑
l=i+1

s′l, i < l ≤ i′.

7: end for
8: Solve the convex program CP1:

min .

|Z|∑
l=2

e(s′l)(zl − zl−1) +

|Z|+1∑
l=2

c(|s′l − s′l−1|)

subject to Wi,i′ ≥ Pi,i′ , ∀ 1 ≤ i < i′ ≤ |Z|
s′l ≥ 0.

9: return a schedule running jobs in canonical order using

speeds {s′l}.

Lemma 2 (Convexity of CP1): The formulation CP1 in

Algorithm 1 is a convex program.

Proof: We study the objective first. Note that all the z-

values are chosen from Z = R ∪D. Thus, e(s′l)(zl − zl−1)
is a non-negative linear combination of the convex function

e(s′l), which is convex as well. The norm |s′l − s′l−1| of an

affine function s′l − s′l−1 is a convex function. Note that all

the variables |s′l−s′l−1| are non-negative, so, by the definition

of function c(·), c(|s′l− s′l−1|) is a non-decreasing function.

As the cost function c(·) is assumed convex, the composition

c(|s′l − s′l−1|) preserves convexity.

We then study the constraints. All the constraints are con-

vex ones (actually, linear ones). (Note that all the calculated

values Pi,i′ are constants but not variables in our formulation

CP1. We can rewrite Wi,i′ ≥ Pi,i′ as Wi,i′−Pi,i′−δi,i′ = 0,

where δi,i′ ≥ 0.)

Let G(·) denote the running time of evaluating e(·)
and c(·) and their first and second derivatives for all the

constraints in the convex program CP1.

Theorem 1 (Optimal Event-Driven Schedule for P1):

Algorithm 1 generates an optimal event-driven speed

schedule and has a running time of O(max{n4, n · G}),
where n is the number of jobs to be scheduled and G is the

time of evaluating e(·) and c(·) and their first and second

derivatives for all the constraints.

Proof: The correctness of Theorem 1 depends on

Lemma 1 and Lemma 2. First, Lemma 1 guarantees that

running jobs in the canonical manner does not hurt the

optimality. Second, we claim that Wi,i′ ≥ Pi,i′ is the

necessary condition to ensure a feasible schedule; this has

been proved in [14]. Combining these two observations

and Lemma 2, we conclude that Algorithm 1 generates

an optimal event-driven schedule. Note that the convex

program in Algorithm 1 can be solved using the interior-

point method [15] with the solutions for variables s′l bounded

by arbitrarily small errors.

Now, we analyze the running complexity. Note |Z| ≤ 2n
and thus, |Z| = O(n). Sorting Z takes time O(n log n).
The number of scheduling intervals Ti,i′ is O(n2). There

are O(n2) variables for Pi,i′ and Wi,i′ . Calculating Pi,i′

takes time O(n2). (A straightforward way of calculating

Pi,i′ takes time O(n3). Here is one alternative way with

faster running time: We map each pair (rj , dj) of a job

Jj to each corresponding time in Z and result a convex

bipartite graph. Working on this convex bipartite graph

improves the calculation time of getting Pi,i′ to be O(n2).)
Before we get to solve the convex program CP1, we pay

time O(n2) for the preliminary work. Note that CP1 has

O(n2) constraints. We use the interior-point method [15] to

solve CP1 optimally (arbitrarily close to optimal). Thus, it

takes time O(max{n3, n2 · O(n2), n · G(e(·), c(·))}) =
O(max{n4, n · G(e(·), c(·))}), where G(·) is the time of

evaluating e(·) and c(·) and their first and second derivatives

for all the constraints [16].

B. Minimizing energy consumption under limited number of
speed changes

In this section, we consider speed schedules under a

limited number of speed changes. Let M be the upper

bound of the number of speed changes that a speed schedule

Ψ is allowed to schedule jobs. We study the problem

P2: minimizing the total energy consumption subject to

satisfying all the jobs’ deadline constraints and bounding

the number of clock speed changes by M .

We now provide a lemma that guarantees that the number

of constraints in our convex program is polynomial in the

number of jobs in J – the same lemma ensures also that

an optimal schedule for P2 can be an event-driven DVS

schedule.

Lemma 3 (Upper Bound of # of Scheduling Intervals):
An optimal algorithm OPT has its speed changes only

happen at time points in the set Z = R ∪D.

Proof: We prove Lemma 3 by using the contradiction

method. Without loss of generality, assume that OPT has

206

M line-segments to indicate the time intervals in which the

processor executes jobs at different speeds. Let t be the first

(earliest) time such that t is a speed switching point and t is

neither a release time nor a deadline of a job. Thus, at time

t − ε, either the processor is idle (that is, no job is being

executed) or some job, say Jj , has not been finished and it

is being executed at this point.

1) Assume the processor is idle at time t− ε. At time t,
a new job must be released; since otherwise, in order

to save more energy without violating the bound of

number of speed changes, the processor can keep the

same speed until the next speed change (if the next

speed at time t is larger than the one at time t − ε)
or the processor can immediately slow down its speed

at the time when the processor finished the last job

before time t−ε (if the next speed at time t is smaller

than this one at time t− ε). This contradiction shows

that t must be some release time.

2) Assume the processor is executing some job Jj at time

t − ε and t 	= dj . From Lemma 1, we know that

in this OPT, all the jobs are executed in a canonical

order. Particularly, if no job is released at time t, then

the processor should keep the same speed or fasten

(respectively, slow down) its speed before t in order

to reduce the total energy consumption. Thus, we have

that either at time t some job is released or all the jobs

have been completed by time t.

Based on the above discussion, we claim that Lemma 3

holds, due to the convexity of the energy consumption

function e(·) with e(0) = 0.

In the following, we design algorithms for the problem

P2. Similar to the case of P1, we sort all the values in Z in

increasing order and index them as z1, z2, . . . , zn′ where

n′ ≤ 2n. Thus, the whole time is divided into n′ − 1 non-

overlapping intervals (zi, zi+1] in which the processor runs

at possible positive speeds, ∀1 ≤ i ≤ n′ − 1. The interval

Ti,i′ := (zi, zi′] (i′ ≥ i+ 1) is a scheduling interval. There

are at most
(
n′
2

)
= n′(n′−1)

2 = O(n2) such scheduling

intervals. For each scheduling interval Ti,i′ , we calculate its

corresponding workload Pi,i′ and processing capacity Wi,i′

as those in Equation (5) and Equation (6), given the speed

s′l assumed for each interval (zl−1, zl].

The remaining task is to determine s′l such that all the jobs

in J can be finished by their deadlines and the objective is

to bound the number of speed changes by M . Note that the

following piece-wise function is a convex one.

ci,i+1 = c(|si − si+1|) =
{
ε, if |s′i − s′i+1| < δ,

H, otherwise.

where H is a large positive number, and ε is a small positive

constant. c(·) is convex since it can be represented by c(x) =

max{y1(x), y2(x)} for x ∈ R
+, where y1(x) = ε, ∀x ≥ 0,

y2(x) = H , ∀x ≥ δ and y2(x) = 0, ∀0 ≤ x < δ.

By using the above function c(·), we set the objective to

minimizing the energy consumption
∑|Z|

l=1 e(s
′
l)(zl − zl−1)

subject to the total cost incurred due to speed changes

bounded by the sum of M · H and the costs associated

with those intervals running at similar frequencies (where

the frequency difference is bounded by a specified input

value δ). To ensure that the final schedule has no more than

M speed changes, we need to set H
 ε · |Z|.
We present the algorithm (Algorithm 2) for this problem

using the convex programming technique.

Algorithm 2 BOUNDED # OF SPEED CHANGES (M)

Input: A job set J := {J1, J2, . . . , Jn} and Jj =
{rj , dj , pj}. The upper bound of number of speed

changes M
Output: A piecewise curve describing the time intervals

and the speeds at which the processor runs in these

intervals

1: Let R = {r1, r2, . . . , rn}, D = {d1, d2, . . . , dn},
and Z = R ∪D.

2: Sort Z in increasing order. Let the distinct values be zi,
1 ≤ i ≤ |Z|. (Without loss of generality, assume Z has

exactly |Z| distinct elements and z1 = 0.)

3: Define Ti,i′ = (zi, zi′], for any 1 ≤ i < i′ ≤ |Z|. Define

s′l for each (zl−1, zl]. Set s′1 = 0 and s′|Z|+1 = 0.

4: for each pair (i, i′) with 1 ≤ i < i′ ≤ |Z| do
5: calculate

Pi,i′ =

∑
j pj

zi′ − zi
, zi < rj < dj ≤ zi′ .

6: define

Wi,i′ =

i′∑
l=i+1

s′l, i < l ≤ i′.

7: end for
8: Solve the convex program CP2:

min .

|Z|∑
l=2

e(s′l)(zl − zl−1)

subject to Wi,i′ ≥ Pi,i′ , ∀ 1 ≤ i < i′ ≤ |Z|
|Z|+1∑
l=2

c(|s′l − s′l−1|) ≤M ·H + ε · |Z|

s′l ≥ 0.

9: return a schedule running jobs in canonical order using

speeds {s′l}.

Theorem 2 (Optimal Schedule for P2): Algorithm 2 gen-

erates a schedule arbitrarily close to the optimal and has a

running time of O(max{n4, n · G}), where G is the time

207

of evaluating e(·) and its first and second derivatives for all

the constraints.

Proof: It is obvious that CP2 in Algorithm 2 is a

convex program and it can be solved to obtain the optimal

values for variables s′l (up to arbitrarily small errors). In the

following, we illustrate that Algorithm 2 solves our problem

P2 correctly and we analyze its running complexity.

Lemma 3 guarantees that for P2, we only need to consider

a speed schedule’s speed switching points from the time

points in Z. Similar to the analysis of P1, we conclude

that Algorithm 2 generates an optimal solution. The running

complexity of Algorithm 2 is similar to that of Algorithm 1.

The details can be found in our technical report [12].

C. Minimizing number of speed changes subject to bounded
energy consumption

In this section, we study the problem of minimizing the

number of speed changes subject to satisfying all jobs’

deadline constraints and energy consumption bounded by

a given budget. This problem is motivated by budgeting

energy consumption during execution in energy-constrained

environments.

Let E∗ denote the optimal (minimum) energy consump-

tion required to satisfy all the jobs’ time constraints in J.

Let Eb denote the energy budget that we are given. In our

problem setting for P3, we always have Eb ≥ E∗. The

objective is to minimize the total number of clock speed

changes m subject to keeping the total consumed energy

EΨ bounded by Eb. That is,

min . m, subject to

m∑
i=1

e(si)(zi − zi−1) ≤ Eb.

Actually, P3 is the dual problem of P2. We can use

P2’s objective as our P3’s constraint and P2’s constraint∑|Z|
l=1 c(s

′
l, s

′
l−1) ≤M ·H+ε|Z| as P3’s objective. We still

use the function

ci,i+1 = c(|si − si+1|) =
{
ε, if |s′i − s′i+1| < δ,

H, otherwise.

where H is a large positive number, and ε is a small positive

constant. We immediately have the following algorithm.

Theorem 3 (Optimal Schedule for P3): Algorithm 3 gen-

erates a schedule close to optimal arbitrarily and has a

running time of O(max{n4, n · G}), where G is the time

of evaluating e(·) and its first and second derivatives for all

the constraints.

Proof: Note that Lemma 3 holds for the problem P3

as well. The proof of Theorem 3 is almost the same as the

one for P2 (see Theorem 2). We skip the details.

D. Minimizing energy consumption subject to bounded span
of frequencies

In this section, we study the problem of minimizing the

energy consumption subject to the span of frequencies used

Algorithm 3 BOUNDED ENERGY BUDGET (Eb)

Input: A job set J := {J1, J2, . . . , Jn} and Jj =
{rj , dj , pj}. The energy budget Eb

Output: A piecewise curve describing the time intervals

and the speeds at which the processor runs in these

intervals

1: Let R = {r1, r2, . . . , rn}, D = {d1, d2, . . . , dn},
and Z = R ∪D.

2: Sort Z in increasing order. Let the distinct values be zi,
1 ≤ i ≤ |Z|. (Without loss of generality, assume Z has

exactly |Z| distinct elements and z1 = 0.)

3: Define Ti,i′ = (zi, zi′], for any 1 ≤ i < i′ ≤ |Z|. Define

s′l for each (zl−1, zl]. Set s′1 = 0 and s′|Z|+1 = 0.

4: for each pair (i, i′) do
5: calculate

Pi,i′ =

∑
j pj

zi′ − zi
, zi < rj < dj ≤ zi′ .

6: define

Wi,i′ =

i′∑
l=i+1

s′l, i < l ≤ i′.

7: end for
8: Solve the convex program CP3:

min .

|Z|+1∑
l=2

c(s′l, s′l−1)

subject to Wi,i′ ≥ Pi,i′ , ∀ 1 ≤ i < i′ ≤ |Z|
|Z|∑
l=2

e(s′l)(zl − zl−1) ≤ Eb

s′l ≥ 0.

9: return a schedule running jobs in canonical order using

speeds {s′l}.

in the schedule bounded by a given number. Let EΨ and m
denote the total energy consumed and the total number of

speed changes by the schedule Ψ to complete the jobs in J
by their deadlines. Let Q be a given upper bound of the span

of the speeds used by Ψ. Let smax = max1≤i≤m{si} and

smin = min1≤i≤m{si}. The objective is to minimize EΨ

subject to smax−smin ≤ Q. We note here that P4 generalizes

the problem P2, given Q is allowed to be sufficiently large.

Let us consider the following idea for P4: Assume we

have the min-energy schedule for a given job set J. (This

min-energy schedule can be achieved by the algorithms

in [2], [3] in time O(n2 log n).) We then realize that the

processor has to run at a speed smax during an interval

[z, z′]; otherwise, some job belonging to this interval cannot

be finished by its deadline. This speed smax ensures the

highest speed to guarantee the feasibility of finishing J.

208

According to P4, all the speeds of a schedule that we are

going to design should be in the range of [smax−Q, smax].
This range indicates that the processor should keep running

at speed ≥ smax − Q all along the schedule before all

the jobs are finished. We thus proceed as if we have “two

virtual processors” for the single variable-speed processor:

One (called A), which is running at speed smax−Q, and the

other one (called B) which is running with variable speeds

within range [0, Q].
Based on above ideas, to solve P4, we partition the job

set into two parts: some parts of jobs that can be finished

by running A with constant speed smax−Q, and some parts

of jobs can be finished by the variable speed processor B.

For these two processors, we apply two algorithms.

1) First, we run EDF (earliest-deadline-first policy) over

all the jobs using speed smax −Q, assuming smax −
Q > 0. (If smax ≤ Q, we simply use Yao et al.’s

algorithm [2], [3] as our solution.) If a job Jj cannot be

finished by its deadline, we simply cut the unfinished

processing time part at its deadline dj and name it J ′j
with remaining processing time p′j .

2) Second, for those unfinished processing time parts of

jobs, we run an optimal algorithm to find out min-

energy schedule. This step can be solved using a

convex program.

The idea of partitioning the jobs into finished part and

unfinished part using speed smax − Q provides us the fea-

sibility of calculating the schedule’s speed switching points

using a convex program. Algorithm 4 shows the details of

our algorithm. To save space, we skip the analysis, which is

similar to that of Theorem 2.

IV. RELATED WORK

The first theoretical energy-efficient job scheduling model

is studied by Yao et al. [2]. In this model, jobs have

release times and deadlines, and a continuous spectrum

of speeds is available. This framework is by far the most

extensively studied algorithmic speed scaling problem. A

straightforward implementation has running time of O(n3).
Li et al. [3] improved this result, giving a O(n2 log n)-time

algorithm, and this is by far the best algorithm. Li et al. [3]

and Kwon and Kim [17] also studied the discrete setting

in which the processor has k discrete speeds. Kwon and

Kim [17] achieved a O(n3)-time algorithm. Li et al. [3] got

a O(k ·n log n) algorithm in minimizing the total consumed

energy. In above min-energy models, the number or cost of

frequency changes is unrestricted. Our work studies min-

energy speed schedulers with considerations of number and

cost frequency changes and it is a natural next step in this

line of research.

V. CONCLUSIONS

Motivated by enhancing processor’s lifetime reliability

from the perspective of designing speed-scaling algorithms,

Algorithm 4 BOUNDED SPAN OF FREQUENCIES USED (Q)

Input: A job set J := {J1, J2, . . . , Jn} and Jj =
{rj , dj , pj}. The bounded span of frequencies used

Q
Output: A piecewise curve describing the time intervals

and the speeds at which the processor runs in these

intervals

1: Let R = {r1, r2, . . . , rn}, D = {d1, d2, . . . , dn},
and Z = R ∪D.

2: Sort Z in increasing order. Let the distinct values be zi,
1 ≤ i ≤ |Z|. (Without loss of generality, assume Z has

exactly |Z| distinct elements.)

3: Define Ti,i′ = (zi, zi′], for any 1 ≤ i < i′ ≤ |Z|. Define

s′l for each (zl−1, zl]. Set s′1 = 0 and s′|Z|+1 = 0.

4: Calculate the min-energy E∗ and the maximum speed

smax that E∗ has.

5: if smax ≤ Q then
6: return E∗ as the solution;

7: else
8: simulate the the jobs in J over a machine with a

constant speed smax −Q. For any unfinished job Jj ,

cut it by the deadline. Name it Jj′ . Jj′ has a remaining

processing time p′j .

9: solve the convex program CP4:

min .

|Z|∑
l=2

e(s′l)(zl − zl−1)

subject to Wi,i′ ≥ Pi,i′ , ∀ 1 ≤ i < i′ ≤ |Z|
0 ≤ s′l ≤ Q.

{If Jj is an unfinished job Jj′ after we finish step

8, then the remaining processing time p′j is used in

calculating Pi,i′ as in Equation (5).}
10: return a schedule running jobs in canonical order

using speeds {s′l + smax −Q}.
11: end if

we investigate energy-aware scheduling algorithms in this

paper. Our contributions include a few scheduling algorithms

for one model and three variants, optimizing energy con-

sumption and number/cost of frequency changes. We apply

the convex programming techniques for the general model.

Based on this framework, we develop three polynomial-

time optimal solutions for three important variants. The

algorithms that we provide are proved arbitrarily close to

optimal.

In our future research, we will study the relationship

between the frequency and the temperature/heat generated

by the processor in order to get a better understanding

processor’s lifetime reliability. Then we can provide a more

precise model on processor’s lifetime reliability and algo-

rithmic solutions for it.

209

ACKNOWLEDGMENT

This material is based upon work supported by the

U.S. National Science Foundation under Grants No.

CCF-0915681, CNS-1016855 and CNS-546244 (CAREER

Award). Any opinions, findings, and conclusions or rec-

ommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the

National Science Foundation.

REFERENCES

[1] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez,
“Power-aware scheduling for periodic real-time tasks,” IEEE
Transactions on Computers, vol. 53, no. 10, pp. 584–600,
2004.

[2] F. Yao, A. Demers, and S. Shenker, “A scheduling model
for reduced CPU energy,” in Proceedings of the 36th An-
nual IEEE Symposium on Foundations of Computer Science
(FOCS), 1995, pp. 374–382.

[3] M. Li, A. C. Yao, and F. F. Yao, “Discrete and continous
min-energy schedules for variable voltage processors,” Pro-
ceedings of the National Academy of Sciences of the USA,
vol. 103, no. 11, pp. 3983–3987, 2005.

[4] H.-L. Chan, W.-T. Chan, T.-W. Lam, L.-K. Lee, K.-S. Mak,
and P. W. H. Wong, “Energy efficient online deadline schedul-
ing,” in Proceedings of the 18th Annual ACM-SIAM sympo-
sium on Discrete algorithms (SODA), 2007, pp. 795–804.

[5] S. Albers and H. Fujiwara, “Energy-efficient algorithms for
flow time minimization,” ACM Transactions on Algorithms
(TALG), vol. 3, no. 4, p. Article No. 49, 2007.

[6] K. Pruhs, P. Uthaisombut, and G. Woeginger, “Getting the
best response for your erg,” ACM Transactions on Algorithms
(TALG), vol. 4, no. 3, p. Article No. 38, 2008.

[7] A. K. Coskun, R. Strong, D. M. Tullsen, and T. S. Rosing,
“Evaluating the impact of job scheduling and power man-
agement on processor lifetime for chip multiprocessors,” in
Proceedings of the 11th ACM International Joint Conference
on Measurement and Modeling of Computer Systems (SIG-
METRICS/Performance), 2009, pp. 169–180.

[8] “Failure mechanisms and models for semiconductor devices,
JEDEC publication JEP122C,” http://www.jedec.org.

[9] H. Yun, P.-L. Wu, A. Arya, T. Abdelzaher, C. Kim, and
L. Sha, “System-wide energy optimization for multiple DVS
components and real-time tasks,” in Proceedings of the 22nd
Euromicro Conference on Real-Time Systems (ECRTS), 2010,
pp. 133–142.

[10] M. Li, B. J. Liu, and F. F. Yao, “Min-energy voltage allocation
for tree-structured tasks,” Journal of Combinatorial Optimiza-
tion, vol. 11, no. 3, pp. 305–319, 2006.

[11] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, “Full chip
leakage-estimation considering power supply and temperature
variations,” in Proceedings of the 2003 International Sympo-
sium on Low Power Electronics and Design (ISLPED), 2003,
pp. 78–83.

[12] Z. Zhang, F. Li, and H. Aydin, “Optimal speed scal-
ing algorithms under speed change constraints,” Depart-
ment of Computer Science, George Mason University,
http://cs.gmu.edu/ lifei/papers/speed scheduling.pdf, Tech.
Rep., 2011.

[13] M. Dertouzos, “Control robotics: the procedural control of
physical processes,” in Proceedings of the IFIP Congress,
1974, pp. 807–813.

[14] S. Baruah, “A general model for recurring real-time tasks,”
in Proceedings of the 19th IEEE International Real-Time
Systems Symposium (RTSS), 1998, pp. 114–122.

[15] Y. Nesterov and Nemirovskii, Interior-Point Polynomial
Methods in Convex Programming. Society for Industrial
and Applied Mathematics (SIAM), 1994.

[16] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-
bridge University Press, 2004.

[17] W.-C. Kwon and T. Kim, “Optimal voltage allocation tech-
niques for dynamically variable voltage processors,” ACM
Transactions on Embedded Computing Systems (TECS),
vol. 4, no. 1, pp. 211–230, 2005.

210

