2011 IEEE International Conference on High Performance Computing and Communications

Optimal Speed Scaling Algorithms under Speed Change Constraints

Zhi Zhang, Fei Li, Hakan Aydin
Department of Computer Science
George Mason University
Fairfax, Virginia 22030
Email: {zzhang$8, lifei, aydin} @cs.gmu.edu

Abstract—In this paper, we investigate energy-aware real-
time scheduling algorithms with speed change constraints. A
processor is equipped with variable clock frequency (speedy)
feature and is used to schedule a set of given jobs with
deadlines. Each speed change involves time/energy overhead
and recent studies show that it also impacts negatively the
processor’s lifetime reliability. Motivated by this, we study the-
oretical energy-aware scheduling problems with consideration
of number and cost of speed changes. We associate a cost
with each speed change to reflect its negative impact on the
processor’s lifetime reliability. We design speed schedules to
satisfy all jobs’ deadlines and optimize the energy consumption
and the total cost incurred due to speed changes. Four related
problems based on this framework are considered. We develop
algorithms that perform arbitrarily close to the optimal and
we also analyze their time complexities.

Keywords-speed scaling algorithms; real-time scheduling;
energy management; dynamic voltage scaling

I. INTRODUCTION

Energy management remains an important problem for
computer systems, and in particular, for real-time embedded
systems. In this paper, we study energy-aware real-time job
scheduling algorithms. We target on designing and analyzing
algorithms for maximizing energy-usage efficiency with the
consideration of system performance requirements.

The rapid advance of processor design technologies pro-
vides faster processors. Modern processors, such as those
supported by Intel SpeedStep and AMD PowerNOW! tech-
nologies, have been equipped with a feature to vary the
clock frequencies dynamically. The operating system is able
to adjust the processor’s clock frequency (speed) on the fly
along with the supply voltage to execute jobs and reduce
energy consumption at lower speeds. This functionality is
called speed scaling and also dynamic voltage scaling [1].
Speed scaling is expected to satisfy some quality-of-service
measures as well as to reduce overall energy cost, by ma-
nipulating modern processors’ multiple speeds. In a seminal
paper [2], Yao et al. initiated the algorithmic study of speed
scaling techniques to schedule a given set of jobs with time
constraints. Under the speed f(t) at time ¢, the processor
consumes energy e( f(¢)) per time unit and the function e(-)
is assumed to be convex. The objective is to construct a
schedule satisfying all the jobs’ deadline constraints and to
minimize the total energy consumption, which is defined

978-0-7695-4538-7/11 $26.00 © 2011 IEEE
DOI 10.1109/HPCC.2011.35

202

as [ e(f(t))dt. The algorithm in [2] has a running time of
O(n?), where n is the number of jobs to be scheduled. Li et
al. [3] improved the result to O(n?logn). Many settings and
metrics based on this framework are studied in the literature,
such as maximizing throughput [4], or minimizing the sum
of energy consumption and (weighted) flow time of jobs [5],
[6].

Existing studies considered energy minimization through
speed scaling without much attention to the impact of
speed changes. Such changes typically involve time and
energy overhead. Moreover, recent studies indicate that the
lifetime reliability of a CMOS circuit is directly related
to the number and span of speed changes. For example,
in [7], it is reported that (hardware) failures, such as cracks
and fatigue failures, are created not by sustained high
temperatures, but rather by the repeated heating and cooling
of sections of the processor. This phenomenon is referred to
as ‘thermal cycling’. Thermal cycling is caused by the large
difference in thermal expansion coefficients of metallic and
dielectric materials, and leads to cracks and other permanent
failures. Using MTTF (Mean-Time-To-Failure) to describe
the expected processor’s life, the following Coffin-Manson
formula [8] is used to characterize a processor’s lifetime
reliability:

1
Co(AT,,, — AT,)1z’

MTTF x 1)
where C, is a material dependent constant, AT,,, is the
entire temperature cycle-range of the device, AT, is the
portion of the temperature range in the elastic region, g is the
Coffin-Manson exponent, and z is the frequency (number of
occurrences per unit time) of thermal cycles [8]. Typically,
AT, <« AT, and 6 < ¢ < 9 for silicon materials.
Simplifying Equation (1), we have

MTTF (2)

1

Co- ATy -z

Equation (2) clearly indicates that an algorithm which
frequently changes the processor’s speeds results in large
x and AT,,,. Thus, such a schedule may introduce a large
temperature cycle-range and therefore affect the processor’s
reliability adversely. Simulations in [7] have confirmed that
various speed-scaling energy-aware policies have different

IEEE
computer
® psouety



Table I
SUMMARY OF THE RESULTS IN THIS PAPER. (ALL THE ALGORITHMS RUN IN POLYNOMIAL TIME.)

[ algorithms ] objectives to minimize [ constraints |
Algorithm 1 | sum of energy consumption and costs of speed changes -
Algorithm 2 energy consumption bounded number of speed changes

Algorithm 3

number of speed changes

bounded energy consumption

Algorithm 4 energy consumption

bounded span of frequencies used

impacts on processor’s reliability in terms of MTTFE. The
number of speed changes (z in Equation (2)) is a critical
factor in determining a processor’s reliability (MTTF in
Equation (2)) under the thermal cycling phenomena.

A. Contributions

In this paper, we incorporate speed change constraints into
speed-scaling scheduling algorithms. Limiting the number of
speed changes is important for emerging reliability objec-
tives in real-time embedded systems. The main purpose of
this paper is to undertake a theoretical investigation of speed
scaling algorithms by considering the costs and number of
speed changes. Our contribution can be seen as the extension
of the Yao et al’s classical speed scaling algorithm [2]
to incorporate the number and costs of speed changes.
We consider four optimization problems and develop their
corresponding solutions. We also analyze the running time
complexities. The results in this paper are summarized in
Table I.

We note that our results remain valid for arbitrary convex
energy consumption functions e(-) with e(0) = 0. We do not
require that e(-) should be in some single closed function
form; it may be given by various closed formulas in different
frequency ranges. A recent study considered the energy
minimization for settings where the frequency of the bus and
the memory can be adjusted independently, but without the
speed change constraints [9]. In this paper, we assume that
only the CPU’s clock frequency can be adjusted. Extending
our results to the settings of [9] is left as a future work.

B. Paper organization

In Section II, we formulate the problem of optimizing
energy consumption and cost/number of speed changes into
four combinatorial optimization problems. In Section III, we
provide convex-programming-based algorithmic solutions to
these problems and analyze their complexity. Related work
is introduced in Section IV and conclusive remarks are given
in Section V.

II. MODELS AND PROBLEM DEFINITION

We consider a single-processor setting. The processor has
variable clock frequencies (speeds). Under a speed f, the
processor consumes energy e( f) per time unit and we simply
assume that the function e(-) is convex and e(0) = 0. This
setting is a generalization of the power model used in Yao’s
paper [2] and its successors [3], [10].

203

We note that in scaling speeds, the processor’s fre-
quency and supply voltage are both adjusted (dynamic volt-
age/frequency scaling). Hence, in the rest of the paper, we
will understand that frequency/speed change always involves
the corresponding voltage change [2].

We consider scheduling a set of n real-time jobs J
{J1, Ja, ..., Ju}. Each job J; has a release time r; € RT,
a processing time (also called worst-case execution time)
p; € RY and a deadline d; € R*. Under the speed f, it
takes time p;/f to complete the job .J;. We consider pre-
emptive scheduling and assume that the cost of preemption
is negligible.

The objective in this study is to design scheduling algo-
rithms to finish all the jobs before their deadlines by consid-
ering the objectives of minimizing the energy consumption,
as well as the number and cost of speed changes.

Definition 1 (Speed Schedule): A speed schedule can be
viewed as a piece-wise constant curve, specifying the speed
the processor employs in each time interval. Assume that the
CPU speed changes m times during the execution. Then the
speed schedule W is defined by m intervals and the speed
used in each of these intervals. Let the m time intervals be:

Il = (t07 tl], IQ = (tl, t2]7

s Im = (tmfla tm]

The triple (t;_1, t;, s;) corresponds to the ‘" time
interval I; = (t;—1, t;] (0 < i < 'm and ¢y = 0) in which the
processor runs at a speed s; > 0. Hence, the speed scheduler
U is specified by m triples:

\II : {(tO: tl? 51)7 (t17 t?v 52)7 ey (tm717 tm7 Sm)}

Figure 1 illustrates an example schedule. The schedule
employs 4 distinct speeds f1, fo, f3, fs4 in 6 time intervals,
where s1 = 54 = f1, 52 = 56 = f4, 53 = fo, and 55 = f3.

1 speed (clock frequency)

fa

f3
f2
f1

|
|
|
|
|
| 5
Il = time

>

te

0 B3 tats

Figure 1. A piecewise curve describing the time intervals and the
processor’s speeds in each interval



We call time t; a speed switching point. Without loss of
generality, we assume that the processor is in idle state
initially at time 0 (sg = 0) and gets back to the idle state
after processing all the jobs (s,,+1 = 0). Thus, a schedule
with m time intervals have m + 1 speed switching points
to, t1, .vy tm.

The total energy consumption of such a schedule is
calculated as:

m
E\IJ = Ze(sz)(tl — tifl).

i=1

For the example in Figure 1, we have

e(f1)(t1 —0) +e(fa)(t2 — t1) + e(f2)(ts — t2)
+e(f1)(ta —t3) +e(f3)(ts — ta) +e(fa)(te — t5)
= e(fi)(ti +ta—t3) +e(fa)(ta —t1 +t6 — t5)
+e(f2)(ts — t2) + e(fs)(ts — ta).

To incorporate the penalty of changing clock frequencies,
we consider that each speed change from the frequency
s; (in interval I;) to the frequency s;+1 (in interval ;)
involves a cost c; ;41 € R+ (ci,i+1 may, for example,
reflect the speed change’s negative impact on the processor’s
lifetime reliability). In [11], analysis and simulation results
show the exponential (s® with o > 2) and super-linear
(s'1€) dependencies of the power on voltage (speed) s and
temperature.

Along with the fact that the processor’s reliability is a con-
vex function of the temperature change (see Equation (2)),
we assume that the cost of a speed change is a convex
function of the difference between the previous and the new
speed values. For instance, switching from f; to f; may be
more costly than switching from f4 to fs, if f1 < f3 < f4.
Consequently, the function ¢(-) is convex and ¢; ;41 is the
value of ¢(-) for |s; — s;41].

EY =

Ciit+1 = C(|8i — Si+1‘), where S0 = Sm+1 = 0. (3)

We now present the formulation of four optimization
problems.

Pi. [Minimizing sum of energy consumption and costs
incurred due to speed changes.]
Let EY denote the total energy consumed by the
schedule ¥ to complete a set of jobs J by their
deadlines. Assume ¥ has m time intervals. The total
cost associated with all the clock speed changes during
this schedule is Zi"lo ¢ii+1 where so and s,,41 are
defined as 0 (see Equation (3)). In this problem, we seek
to minimize EY + 8" ci i1, where 3 is a given
constant. After normalizing c;;11, we can remove [3
and formulate our problem as

m m
min . (Z e(si)(ti —ti—1) + Z c§7i+1) ,
i=0

i=1

where 59 = spp1 = 0 and ¢,y = ciir1/B. (Note
that ¢/(-) = ¢(+)/8 is still a convex function.) We can
rename c; ;. as Cjit1-
P>. [Under a fixed number of clock speed changes.]

Let E¥ and m denote the total energy consumed and
the total number of speed changes in the schedule ¥ to
complete the jobs in J by their deadlines, respectively.
Let M be the upper bound on the number of speed
changes. The objective is to minimize E¥ subject to
m < M. That is,

min.z e(si)(ti —t;—1), subjectto m < M.
i=1

The problem Ps considers the number of speed changes
as a constraint.
P3. [Under a fixed energy budget.]

Let E* denote the optimal (minimum) energy consump-
tion required to complete all the jobs in J by their
deadlines. (We do not have to know E* beforehand.)
Let E® denote the energy budget that we are given. In
this problem setting, we always have E” > E*. Let
the schedule ¥ have m time intervals. The objective
is to minimize the total number of speed changes m
during the schedule subject to the constraint that the
total energy consumption EV is bounded by E®. That
is,

m
min. m, subject to Ze(si)(ti —ti1) < E".
i=1
P4. [Under a bound of span of frequencies used.]
Let E¥ and m denote the total energy consumed and
the total number of time intervals of an schedule ¥ to
complete the jobs J by their deadlines, respectively. Let
sMAX = maxi<j<m{s;} and s™ = minj<i<m{si},
with s™aX > gmin > ( n other words s™2* and
s™i% are the maximum and minimum speed used in ¥
while executing the jobs. The difference s™?* — s™in
is defined as the span of the frequencies used in W.
Let @ be the given upper bound on the span of the
speeds that we do not want to exceed. The objective is

to minimize E¥ subject to s™* — s™in < (). That is,
min . Z e(s;)(t;i—t;_1), subject to s™™*—s™in < Q.

For the problem P,, we bear the understanding that
running the processor with a smaller speed span (small
smax _ gmin (difference) results in less fluctuation of
temperature (reduced AT, in Equation (2)), and
thus, improves the chip’s lifetime reliability (improved
MTTF in Equation (2)).
In the following, we present convex-programming-based
algorithmic solutions for the problems Py, Ps, Ps, and Py.
We analyze their performance as well. Note that Yao et



al. [2] and Li et al. [3] presented algorithms to minimize
the total energy consumption. The algorithms in [2] and [3]
have no restrictions over the number of processor’s speed
changes. The models that we discussed above have their own
algorithmic challenges. As we shall see, our solutions are
different from [2], [3] that had the objective of minimizing
energy alone. The problem P, generalizes the well-studied
Yao et al.’s model in [2], when we set the upper bound of
speed changes M to a very large number.

III. ALGORITHMS AND ANALYSIS

In this section, we provide algorithmic solutions for the
problems P; — Pjy.

A. Minimizing the sum of energy consumption and cost
incurred due to speed changes

Assume the schedule W has m time intervals I;
(ti—1, t;] (1 < i < m) and within each interval I;, the
processor keeps running at constant speed s; > 0. The
system does not consume any energy after finishing the last
job. The objective is

m

min . (Z e(ss)(t;

—ti—1) + Z Ci,i+1> ) 4
i=1 i=0
where ¢; ;11 is scaled by a factor 5 from its definition in
Equation (3).

Define OPT as an optimal algorithm minimizing the
sum of energy consumption and the costs incurred due
to speed changes (Equation (4)). Our job is to determine
all the candidate values that #; in Equation (4) can take.
We note that the function c(-) is assumed to be a general
convex function, hence determining the optimal schedule’s
speed switching points heavily depends on the function c(-)
itself. In our technical report [12], we show that for an
arbitrary convex cost function c(-), it is possible that the
processor will need to change its speed in each time slot
to optimize Equation (1). Instead of designing algorithms
for some specific functions c(-), we study a large class
of algorithms called event-driven DVS (dynamic voltage
scaling) algorithms. The purpose of introducing an event-
driven DVS algorithm for the problem P; is to show that
there exists an optimal convex-programming-based solution,
and this solution’s framework can be proved to generate
optimal solutions for the other three problems Po, Ps, and
Py.

Definition 2 (Event-Driven DVS Algorithm): For event-
driven DVS algorithms, speed changes (speed switching
points) only happen at jobs’ release times and/or deadlines.

We note here that event-driven DVS algorithms have the
distinct advantage of keeping the run-time overhead due to
DVS low, as opposed to DVS algorithms that require speed
change at arbitrary points during execution: The CPU sched-
uler, that is invoked at task release times and deadlines, can
also regulate the frequency according to the pre-determined

205

speed schedule during the same invocation. As a result, we
believe that our result regarding the optimality of event-
driven DVS algorithms will prove very useful in practice.

Let J = {J1, J2, ..., Jn} denote the n jobs to be
scheduled. A job J; is represented by a triple (75, d;, p;).
Let R = {Tl, T2, «.., Tn} and D = {dl, da, ..., dn}We
use Z = RU D to denote the union of all the release time
and deadlines of jobs. Note |Z| = |RUD| < |R|+|D| < 2n.
We sort all the values in Z in increasing order and index
them as 21, 22, ..., 2z, where n’ < 2n. Without loss
of generality, we assume z; = 0. Before the last deadline
Zn, the time range is divided into n’ — 1 non-overlapping
intervals (z;, 2z;+1], V 1 <i <n’— 1. We name the interval
T, := (2, 2] (i’ > i+1) as a scheduling interval. There
= % = O(n?) such scheduling
intervals. For each scheduling interval T; ;;, we can compute
its corresponding workload denoted by a variable P; ;; and
processing capacity denoted by a variable W ;, given the
speed s; assumed for each interval (z_1, 2.

’
are at most |y

Zj pj

Zi — Z4

i/
Yo ospi<l<i,

l=i+1

Py = , where z; <7r; <d; <zy. (5)

Wi i (6)

where s; is the speed variable to denote at which speed the
processor runs in the interval (z-1, 2] (s} = s{4,; = 0).
In order to complete all the jobs by their deadlines, the pro-
cessing capacity should be at least the workload requirement
for each time interval.

The remaining task is to determine s; such that all the
jobs in J can be finished by their deadlines and the objective

£|2 e(s))(z1—2z1-1) +Z}i‘2+1 c(|s]—sj_;|) is minimized.
We formulate this problem using a convex program C P, as
below:

12| 1Z]+1
min. S el )+ ellsh - sia)
=2 =2
subject to Wi,i’ > Pfi’i/, V1i<i< i < |Z|

5220.

In the following, we provide the analysis of correctness
and time complexity for Algorithm 1, that computes an
event-driven DVS schedule for the problem P;.

For a given set of real-time jobs with known processing
times, preemptive EDF is optimal in the sense that any
feasible job set can be also scheduled in a feasible manner
by the EDF policy [13]. We have:

Lemma I (EDF Optimality): An optimal preemptive al-
gorithm can have its jobs executed in a canonical (deadline)
order, that is, for any two or more jobs ready to be executed
for a given time, the job with the earliest deadline has the
highest priority, with ties broken arbitrarily.



Algorithm 1 CONVEX-PROGRAMMING-BASED SOLUTION

Input: A jobsetJ :={Ji, Jo, ..., J,} where J; denoted
by {rj, d;, p;}

Output: A piecewise curve describing the time intervals
and the speeds at which the processor runs in these

intervals
1: Let R = {7‘1, T2y «uuy ’I"n}, D = {dl, d2, Ceey dn},
and Z = RUD.

Sort Z in increasing order. Let the distinct values be z;,
1 < < |Z]|. (Without loss of generality, assume Z has
exactly |Z| distinct elements and z; = 0.)

: Define T ;» = (2, 2], forany 1 < i < ¢’ < |Z|. Define

s; for each (z-1, z]. Set s{ =0 and 5], ., =0.
4: for each pair (7, ¢') with 1 <i < i < |Z( do
5:  calculate
> ;P
Pi,i’: J J,Zi<7’j<dj§2i/.
Zit — Z4
6:  define .
1
Wi,i’ = Z 82, <1< 7.
I=i+1
7: end for
8: Solve the convex program C'P;:
12| 1Z]+1
min. Y e(s)(z—z-1) + Y ellsi — sj-u])
1=2 1=2
subject to Wi > P, YV1<i<i <|Z|
51> 0.

return a schedule running jobs in canonical order using
speeds {s]}.

Lemma 2 (Convexity of CP;): The formulation C'P; in
Algorithm 1 is a convex program.

Proof: We study the objective first. Note that all the z-
values are chosen from Z = RU D. Thus, e(s])(z — z1-1)
is a non-negative linear combination of the convex function
e(s;), which is convex as well. The norm |s} — s;_,| of an
affine function s} — s;_; is a convex function. Note that all
the variables |s;—s;_, | are non-negative, so, by the definition
of function ¢(-), ¢(|s} — sj_|) is a non-decreasing function.
As the cost function ¢(+) is assumed convex, the composition
c(|s; — s;_,|) preserves convexity.

We then study the constraints. All the constraints are con-
vex ones (actually, linear ones). (Note that all the calculated
values P; ;» are constants but not variables in our formulation
C'P,. We can rewrite Wi,i/ > Pi,i/ as Wi,i/ *Pi,i’ 757;’1'/ =0,
where d; ;» > 0.) [ |

Let G(-) denote the running time of evaluating e(-)
and ¢(-) and their first and second derivatives for all the
constraints in the convex program C'P;.

Theorem 1 (Optimal Event-Driven Schedule for P1):

206

Algorithm 1 generates an optimal event-driven speed
schedule and has a running time of O(max{n*, n-G}),
where n is the number of jobs to be scheduled and G is the
time of evaluating e(-) and c¢(-) and their first and second
derivatives for all the constraints.

Proof: The correctness of Theorem 1 depends on
Lemma 1 and Lemma 2. First, Lemma 1 guarantees that
running jobs in the canonical manner does not hurt the
optimality. Second, we claim that W, > F;; is the
necessary condition to ensure a feasible schedule; this has
been proved in [14]. Combining these two observations
and Lemma 2, we conclude that Algorithm 1 generates
an optimal event-driven schedule. Note that the convex
program in Algorithm 1 can be solved using the interior-
point method [15] with the solutions for variables s; bounded
by arbitrarily small errors.

Now, we analyze the running complexity. Note |Z| < 2n
and thus, |Z| = O(n). Sorting Z takes time O(nlogn).
The number of scheduling intervals T; ;+ is O(n?). There
are O(n?) variables for P;; and W, ;. Calculating P; ;
takes time O(n?). (A straightforward way of calculating
P, ;s takes time O(n?®). Here is one alternative way with
faster running time: We map each pair (rj, d;) of a job
J; to each corresponding time in Z and result a convex
bipartite graph. Working on this convex bipartite graph
improves the calculation time of getting P; ;» to be O(n?).)
Before we get to solve the convex program C'P;, we pay
time O(n?) for the preliminary work. Note that C'P; has
O(n?) constraints. We use the interior-point method [15] to
solve C'P; optimally (arbitrarily close to optimal). Thus, it
takes time O(max{n3, n?-0(n?), n-G(e(-), c(-))}) =
O(max{n*, n-G(e(-), c(-))}), where G(-) is the time of
evaluating e(-) and ¢(-) and their first and second derivatives
for all the constraints [16]. [ |

B. Minimizing energy consumption under limited number of
speed changes

In this section, we consider speed schedules under a
limited number of speed changes. Let M be the upper
bound of the number of speed changes that a speed schedule
U is allowed to schedule jobs. We study the problem
P2: minimizing the total energy consumption subject to
satisfying all the jobs’ deadline constraints and bounding
the number of clock speed changes by M.

We now provide a lemma that guarantees that the number
of constraints in our convex program is polynomial in the
number of jobs in J — the same lemma ensures also that
an optimal schedule for P, can be an event-driven DVS
schedule.

Lemma 3 (Upper Bound of # of Scheduling Intervals):
An optimal algorithm OPT has its speed changes only
happen at time points in the set Z = RU D.

Proof: We prove Lemma 3 by using the contradiction
method. Without loss of generality, assume that OPT has



M line-segments to indicate the time intervals in which the
processor executes jobs at different speeds. Let ¢ be the first
(earliest) time such that ¢ is a speed switching point and ¢ is
neither a release time nor a deadline of a job. Thus, at time
t — ¢, either the processor is idle (that is, no job is being
executed) or some job, say .J;, has not been finished and it
is being executed at this point.

1) Assume the processor is idle at time ¢ — €. At time ¢,
a new job must be released; since otherwise, in order
to save more energy without violating the bound of
number of speed changes, the processor can keep the
same speed until the next speed change (if the next
speed at time ¢ is larger than the one at time ¢ — ¢€)
or the processor can immediately slow down its speed
at the time when the processor finished the last job
before time ¢ — € (if the next speed at time ¢ is smaller
than this one at time ¢ — ¢€). This contradiction shows
that ¢ must be some release time.

Assume the processor is executing some job J; at time
t —eand t # d;. From Lemma 1, we know that
in this OPT, all the jobs are executed in a canonical
order. Particularly, if no job is released at time ¢, then
the processor should keep the same speed or fasten
(respectively, slow down) its speed before ¢ in order
to reduce the total energy consumption. Thus, we have
that either at time ¢ some job is released or all the jobs
have been completed by time ¢.

2)

Based on the above discussion, we claim that Lemma 3
holds, due to the convexity of the energy consumption
function e(-) with e(0) = 0. [ |

In the following, we design algorithms for the problem
P-. Similar to the case of Py, we sort all the values in Z in
increasing order and index them as 21, 22, ..., 2, Where
n’ < 2n. Thus, the whole time is divided into n’ — 1 non-
overlapping intervals (z;, z;+1] in which the processor runs
at possible positive speeds, V1 < ¢ < n’ — 1. The interval
T, := (2, zir] @’ > i+ 1) is a scheduling interval. There
are at most (5‘,) = w = O(n?) such scheduling
intervals. For each scheduling interval T; ;/, we calculate its
corresponding workload P; ;; and processing capacity W, ;/
as those in Equation (5) and Equation (6), given the speed
s; assumed for each interval (z_1, 2.

The remaining task is to determine s; such that all the jobs
in J can be finished by their deadlines and the objective is
to bound the number of speed changes by M. Note that the
following piece-wise function is a convex one.

€,

H,

if |8 — sl 4| <6
Ciit1 = c(|si — siva1]) = { 5 = il 7

otherwise.

where H is a large positive number, and e is a small positive
constant. c(-) is convex since it can be represented by ¢(z) =

207

max{yi (), y2(z)} for x € RT, where y;(z) = ¢, Vo > 0,
yo(x) = H,Vz > § and y2(x) =0, VO < z < 4.

By using the above function ¢(-), we set the objective to
minimizing the energy consumption Z}ill e(s))(zi — z1-1)
subject to the total cost incurred due to speed changes
bounded by the sum of M - H and the costs associated
with those intervals running at similar frequencies (where
the frequency difference is bounded by a specified input
value §). To ensure that the final schedule has no more than
M speed changes, we need to set H > ¢ |Z].

We present the algorithm (Algorithm 2) for this problem
using the convex programming technique.

Algorithm 2 BOUNDED # OF SPEED CHANGES (M)

Input: A job set J := {Ji, Ja, ..., J,} and J,
{rj, d;, p;}. The upper bound of number of speed
changes M

Output: A piecewise curve describing the time intervals
and the speeds at which the processor runs in these

intervals
1: Let R = {7‘1, T2y «uuy Tn}, D = {dl, da, ..., dn},
and Z = RUD.

2: Sort Z in increasing order. Let the distinct values be z;,
1 <4 < |Z]. (Without loss of generality, assume Z has
exactly |Z| distinct elements and z; = 0.)

3: Define T; i = (z;, 2], forany 1 <i <4’ <|Z|. Define

sy for each (21, z]. Set s) =0 and 5], ., =0.

. for each pair (i, ¢') with 1 <i < i <|Z| do

5:  calculate

A~

_ 2P

P = oz <1y <dj <z
Zit — Z4
6:  define .
7
Wi,i’ = Z 827 <1< i
l=i+1
7: end for
8: Solve the convex program C Ps:
12|
min . Ze(sf)(zl —21-1)
1=2
SubjeCt to Wi,i’ 2 P’L,i’v v 1 S 7 < ’L'/ S |Z|

|Z]+1

Y cllsi—sial) < M-H+e|Z]

1=2

51> 0.

9: return a schedule running jobs in canonical order using
speeds {s]}.

Theorem 2 (Optimal Schedule for P3): Algorithm 2 gen-
erates a schedule arbitrarily close to the optimal and has a
running time of O(max{n*, n-G}), where G is the time



of evaluating e(-) and its first and second derivatives for all
the constraints.

Proof: Tt is obvious that CPy in Algorithm 2 is a
convex program and it can be solved to obtain the optimal
values for variables s; (up to arbitrarily small errors). In the
following, we illustrate that Algorithm 2 solves our problem
Py correctly and we analyze its running complexity.

Lemma 3 guarantees that for P,, we only need to consider
a speed schedule’s speed switching points from the time
points in Z. Similar to the analysis of P;, we conclude
that Algorithm 2 generates an optimal solution. The running
complexity of Algorithm 2 is similar to that of Algorithm 1.
The details can be found in our technical report [12]. [ |

C. Minimizing number of speed changes subject to bounded
energy consumption

In this section, we study the problem of minimizing the
number of speed changes subject to satisfying all jobs’
deadline constraints and energy consumption bounded by
a given budget. This problem is motivated by budgeting
energy consumption during execution in energy-constrained
environments.

Let E* denote the optimal (minimum) energy consump-
tion required to satisfy all the jobs’ time constraints in J.
Let E® denote the energy budget that we are given. In our
problem setting for P3, we always have E” > E*. The
objective is to minimize the total number of clock speed
changes m subject to keeping the total consumed energy
EY bounded by E". That is,

m
min. m, subject to Ze(si)(zi —zi1) < E°.
i=1

Actually, P53 is the dual problem of P,. We can use
P2’s objective as our Ps’s constraint and Po’s constraint
S22 (s, s)_,) < M-H+¢|Z| as P3’s objective. We still
use the function

Ciiv1 = c(|8; — sip1|) = {

€, if |sj — si4] <9,

H, otherwise.

where H is a large positive number, and e is a small positive
constant. We immediately have the following algorithm.
Theorem 3 (Optimal Schedule for Ps3): Algorithm 3 gen-
erates a schedule close to optimal arbitrarily and has a
running time of O(max{n*, n-G}), where G is the time
of evaluating e(-) and its first and second derivatives for all
the constraints.
Proof: Note that Lemma 3 holds for the problem Ps
as well. The proof of Theorem 3 is almost the same as the
one for Py (see Theorem 2). We skip the details. [ |

D. Minimizing energy consumption subject to bounded span
of frequencies

In this section, we study the problem of minimizing the
energy consumption subject to the span of frequencies used

208

Algorithm 3 BOUNDED ENERGY BUDGET (E®)

Input: A job set J := {J1, Jo, ..., Jp} and J; =
{r;, d;, pj}. The energy budget E°

Output: A piecewise curve describing the time intervals
and the speeds at which the processor runs in these

intervals
1: Let R = {’I“l, T2, .., Tn}, D = {dl, da, ..., dn},
and Z = RUD.

: Sort Z in increasing order. Let the distinct values be z;,
1 < < |Z|. (Without loss of generality, assume Z has
exactly |Z| distinct elements and z; = 0.)

: Define T; ;» = (z;, z¢], forany 1 < i < ¢’ < |Z|. Define
s; for each (z-1, 2. Set s| =0 and 5|, , =0.

4: for each pair (i, i') do
5. calculate
> D
Pi)i’: J ,zi<rj<dj§zi/.
Zir — Zj ’
6:  define y
K3
Wm'/ = Z SE, i< < i.
l=i+1
7: end for
8: Solve the convex program CPs:
1Z]+1
min . Z c(sy, s1_1)
1=2
subject to Wi > P, V1<i<i <|Z|
12|
b
Ze(sf)(zl —zi-1) < E
1=2
s, > 0.

9: return a schedule running jobs in canonical order using
speeds {s;}.

in the schedule bounded by a given number. Let E¥ and m
denote the total energy consumed and the total number of
speed changes by the schedule ¥ to complete the jobs in J
by their deadlines. Let @) be a given upper bound of the span
of the speeds used by ¥. Let s™* = maxi<j<m{s;} and
s™N = ming <;<,,{s;}. The objective is to minimize EY
subject to s™a% —sMin < () We note here that P, generalizes

the problem P, given @ is allowed to be sufficiently large.

Let us consider the following idea for P4: Assume we
have the min-energy schedule for a given job set J. (This
min-energy schedule can be achieved by the algorithms
in [2], [3] in time O(n%logn).) We then realize that the
processor has to run at a speed s™** during an interval
[z, Z']; otherwise, some job belonging to this interval cannot
be finished by its deadline. This speed s™®* ensures the
highest speed to guarantee the feasibility of finishing J.



According to Py, all the speeds of a schedule that we are
going to design should be in the range of [s™** —@Q, s™2%].
This range indicates that the processor should keep running
at speed > s™?* — () all along the schedule before all
the jobs are finished. We thus proceed as if we have “two
virtual processors” for the single variable-speed processor:
One (called A), which is running at speed s™** — (), and the
other one (called B) which is running with variable speeds
within range [0, Q).

Based on above ideas, to solve P4, we partition the job
set into two parts: some parts of jobs that can be finished
by running A with constant speed s™** — (), and some parts
of jobs can be finished by the variable speed processor B.
For these two processors, we apply two algorithms.

1) First, we run EDF (earliest-deadline-first policy) over
all the jobs using speed s™?* — (Q, assuming s™&* —
Q > 0. If sm® < @, we simply use Yao et al’s
algorithm [2], [3] as our solution.) If a job J; cannot be
finished by its deadline, we simply cut the unfinished
processing time part at its deadline d; and name it JJ’»
with remaining processing time p;.

Second, for those unfinished processing time parts of
jobs, we run an optimal algorithm to find out min-
energy schedule. This step can be solved using a
convex program.

2)

The idea of partitioning the jobs into finished part and
unfinished part using speed s™** — Q) provides us the fea-
sibility of calculating the schedule’s speed switching points
using a convex program. Algorithm 4 shows the details of
our algorithm. To save space, we skip the analysis, which is
similar to that of Theorem 2.

IV. RELATED WORK

The first theoretical energy-efficient job scheduling model
is studied by Yao et al. [2]. In this model, jobs have
release times and deadlines, and a continuous spectrum
of speeds is available. This framework is by far the most
extensively studied algorithmic speed scaling problem. A
straightforward implementation has running time of O(n?).
Li et al. [3] improved this result, giving a O(n? logn)-time
algorithm, and this is by far the best algorithm. Li et al. [3]
and Kwon and Kim [17] also studied the discrete setting
in which the processor has k discrete speeds. Kwon and
Kim [17] achieved a O(n?)-time algorithm. Li et al. [3] got
a O(k-nlogn) algorithm in minimizing the total consumed
energy. In above min-energy models, the number or cost of
frequency changes is unrestricted. Our work studies min-
energy speed schedulers with considerations of number and
cost frequency changes and it is a natural next step in this
line of research.

V. CONCLUSIONS

Motivated by enhancing processor’s lifetime reliability
from the perspective of designing speed-scaling algorithms,

209

Algorithm 4 BOUNDED SPAN OF FREQUENCIES USED (Q)
Input: A job set J := {Ji, Jo, ..., J,} and J;
{r;, dj, p;}. The bounded span of frequencies used

Q

Output: A piecewise curve describing the time intervals
and the speeds at which the processor runs in these

intervals
1: Let R={ry, ro, ..., mn}, D ={di, do, ..., dpn},
and Z = RU D.

Sort Z in increasing order. Let the distinct values be z;,
1 < < |Z|. (Without loss of generality, assume Z has
exactly |Z] distinct elements.)

Define T; ;» = (2;, #y], forany 1 <i <4’ < |Z|. Define
s) for each (z-1, 2. Set s{ =0 and s{, , =0.
Calculate the min-energy E* and the maximum speed
s™a* that £* has.

5. if sMa* < @ then
6: return FE* as the solution;
7: else
8:  simulate the the jobs in J over a machine with a
constant speed s™** — . For any unfinished job J;,
cut it by the deadline. Name it J;/. .J;s has a remaining
processing time p.
9:  solve the convex program CPjy:
1Z]
min . Z e(s))(z — 21-1)
1=2
subject to Wi > P, V1<i<i <|Z|
0<s <Q.
{If J; is an unfinished job J;/ after we finish step
8, then the remaining processing time pg is used in
calculating P, ;» as in Equation (5).}
10:  return a schedule running jobs in canonical order
using speeds {s] + s™** — Q}.
11: end if

we investigate energy-aware scheduling algorithms in this
paper. Our contributions include a few scheduling algorithms
for one model and three variants, optimizing energy con-
sumption and number/cost of frequency changes. We apply
the convex programming techniques for the general model.
Based on this framework, we develop three polynomial-
time optimal solutions for three important variants. The
algorithms that we provide are proved arbitrarily close to
optimal.

In our future research, we will study the relationship
between the frequency and the temperature/heat generated
by the processor in order to get a better understanding
processor’s lifetime reliability. Then we can provide a more
precise model on processor’s lifetime reliability and algo-
rithmic solutions for it.



ACKNOWLEDGMENT

This material is based upon work supported by the
U.S. National Science Foundation under Grants No.
CCF-0915681, CNS-1016855 and CNS-546244 (CAREER
Award). Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
National Science Foundation.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

REFERENCES

H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez,
“Power-aware scheduling for periodic real-time tasks,” IEEE
Transactions on Computers, vol. 53, no. 10, pp. 584-600,
2004.

F. Yao, A. Demers, and S. Shenker, “A scheduling model
for reduced CPU energy,” in Proceedings of the 36th An-
nual IEEE Symposium on Foundations of Computer Science
(FOCS), 1995, pp. 374-382.

M. Li, A. C. Yao, and F. F. Yao, “Discrete and continous
min-energy schedules for variable voltage processors,” Pro-
ceedings of the National Academy of Sciences of the USA,
vol. 103, no. 11, pp. 3983-3987, 2005.

H.-L. Chan, W.-T. Chan, T.-W. Lam, L.-K. Lee, K.-S. Mak,
and P. W. H. Wong, “Energy efficient online deadline schedul-
ing,” in Proceedings of the 18th Annual ACM-SIAM sympo-
sium on Discrete algorithms (SODA), 2007, pp. 795-804.

S. Albers and H. Fujiwara, “Energy-efficient algorithms for
flow time minimization,” ACM Transactions on Algorithms
(TALG), vol. 3, no. 4, p. Article No. 49, 2007.

K. Pruhs, P. Uthaisombut, and G. Woeginger, “Getting the
best response for your erg,” ACM Transactions on Algorithms
(TALG), vol. 4, no. 3, p. Article No. 38, 2008.

A. K. Coskun, R. Strong, D. M. Tullsen, and T. S. Rosing,
“Evaluating the impact of job scheduling and power man-
agement on processor lifetime for chip multiprocessors,” in
Proceedings of the 11th ACM International Joint Conference
on Measurement and Modeling of Computer Systems (SIG-
METRICS/Performance), 2009, pp. 169-180.

“Failure mechanisms and models for semiconductor devices,
JEDEC publication JEP122C,” http://www.jedec.org.

H. Yun, P-L. Wu, A. Arya, T. Abdelzaher, C. Kim, and
L. Sha, “System-wide energy optimization for multiple DVS
components and real-time tasks,” in Proceedings of the 22nd
Euromicro Conference on Real-Time Systems (ECRTS), 2010,
pp. 133-142.

M. Li, B. J. Liu, and F. F. Yao, “Min-energy voltage allocation
for tree-structured tasks,” Journal of Combinatorial Optimiza-
tion, vol. 11, no. 3, pp. 305-319, 2006.

H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, “Full chip
leakage-estimation considering power supply and temperature
variations,” in Proceedings of the 2003 International Sympo-
sium on Low Power Electronics and Design (ISLPED), 2003,
pp- 78-83.

210

[12]

[13]

[14]

[15]

[16]

[17]

Z. Zhang, F. Li, and H. Aydin, “Optimal speed scal-
ing algorithms under speed change constraints,” Depart-
ment of Computer Science, George Mason University,
http://cs.gmu.edu/ lifei/papers/speed_scheduling.pdf, Tech.
Rep., 2011.

M. Dertouzos, “Control robotics: the procedural control of
physical processes,” in Proceedings of the IFIP Congress,
1974, pp. 807-813.

S. Baruah, “A general model for recurring real-time tasks,”
in Proceedings of the 19th IEEE International Real-Time
Systems Symposium (RTSS), 1998, pp. 114-122.

Y. Nesterov and Nemirovskii, Interior-Point Polynomial
Methods in Convex Programming.  Society for Industrial
and Applied Mathematics (SIAM), 1994.

S. Boyd and L. Vandenberghe, Convex Optimization. Cam-
bridge University Press, 2004.

W.-C. Kwon and T. Kim, “Optimal voltage allocation tech-
niques for dynamically variable voltage processors,” ACM
Transactions on Embedded Computing Systems (TECS),
vol. 4, no. 1, pp. 211-230, 2005.



