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ABSTRACT

While Dynamic Voltage Scaling (DVS) and Dynamic Power
Management (DPM) techniques are widely used in real-time
embedded applications, their complex interaction is not fully
understood. In this research effort, we consider the prob-
lem of minimizing the expected energy consumption on set-
tings where the workload is known only probabilistically.
By adopting a system-level power model, we formally show
how the optimal processing frequency can be computed ef-
ficiently for a real-time embedded application that can use
multiple devices during its execution, while still meeting the
timing constraints. Our evaluations indicate that the new
technique provides clear (up to 35%) energy gains over the
existing solutions that are proposed for deterministic work-
loads. Moreover, in a non-negligible part of the parameter
spectrum, the algorithm’s performance is shown to be close
to that of a clairvoyant algorithm that can minimize the
energy consumption with the advance knowledge about the
exact workload.

Categories and Subject Descriptors

H.4.1 [Operating Systems]: Process Management—Schedul-
ing ; D.4.7 [Operating Systems]: Organization and De-
sign—Real-time systems and embedded systems

General Terms

Algorithms, Performance

1. INTRODUCTION
Energy management has become one of the most impor-

tant goals in modern embedded system design, especially
for battery-operated systems. In this regard, Dynamic volt-
age scaling (DVS) is recognized as one of most effective and
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fundamental techniques. By considering the strictly con-
vex relationship between the supply voltage and CPU power
consumption, DVS attempts to save energy by scaling down
the frequency along with the supply voltage. Early DVS
studies can be classified in two categories: The inter-task
DVS schemes [2, 10, 12] focus on allotting the CPU time
to multiple tasks and perform frequency scaling only at task
preemption/completion points. On the other hand, in intra-
task DVS schemes [9, 17–19], the frequency changes can oc-
cur while a task is executing (in its allocated CPU time).
In recent DVS research [1,7], the concept of energy-efficient
frequency is introduced after the researchers have observed
that processing frequencies below a certain threshold can
have negative effects on the system-wide energy consump-
tion. This energy-efficient frequency is computed by balanc-
ing the off-chip device energy and CPU energy consumed
during the task’s execution.

Another widely-used energy management technique is Dy-
namic Power Management (DPM) that attempts to put the
idle system components into low-power states whenever pos-
sible. In fact, off-chip devices (such as I/O devices and
the main memory) have an active state and at least one
low-power sleep state. However, significant transition en-
ergy/time overheads are involved in state transitions of the
devices. In fact, a minimum idle interval length (called the
device break-even time) is needed in DPM to justify the tran-
sition of the device to the sleep state. DPM reduces energy
by putting the device into low power sleep state when the
idle time is predicted to be no less than the device break-even
time. DPM has been well-studied in the recently proposed
power management schemes targeting different task/device
settings [3,6,14,15].

While the research efforts that focus on only on DVS
or DPM are many, solutions that propose integrating both
policies under a unified framework are relatively few [4, 5,
8, 13, 20]. Authors in [13] apply a stochastic DPM policy
by using the different DVS voltage levels as multiple ac-
tive power modes. The work in [20] proposes a DVS-DPM
policy that maximizes the operational lifetime of an em-
bedded system powered by a fuel cell based hybrid power
source. The frequency scaling level is chosen in [8] by in-
vestigating the trade-offs between the DVS-enabled CPU
and the DPM-enabled devices. The SYS-EDF algorithm is
a heuristic-based energy management scheme for periodic
real-time tasks [4].

The growing importance of system-wide energy manage-
ment clearly mandates integration of both policies. Yet most
of the existing solutions, while noteworthy, adopt heuristic-
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based solutions with no performance guarantees. In fact,
it is somewhat surprising that the full solution for a single
real-time embedded application using both DVS and DPM
policies was published only recently [5]. That work captures
the intriguing trade-off between DVS and DPM policies in
a precise way.

                  device break-even time 

execution time                                   

                                        deadline 

Figure 1: The interplay of DVS and DPM

DVS and DPM solutions often work against each other.
As shown in Figure 1, if the processing frequency is low-
ered through DVS to save energy, the task execution time
is extended. As a result, the idle time is shortened, which
prevents DPM from putting the devices into the low-power
sleep states. On the other hand, the device energy can be
reduced by executing the task at higher frequency to obtain
enough idle time for putting the devices to the low power
sleep state while this results in additional transition energy
overhead and CPU energy consumption. Moreover, the ap-
plication may be using multiple devices with different power
and break-even time characteristics, making an optimal so-
lution non-trivial. An exact and formal characterization of
the interplay between DVS and DPM for a real-time appli-
cation using multiple devices was recently obtained in [5].
In the same work, an algorithm to compute the optimal
processing frequency was also derived. However, the solu-
tion in [5] is derived assuming a known, worst-case work-
load. In other words, the solution is optimal only for de-
terministic workloads. As we show later in this paper, if
the workload exhibits probabilistic behavior, minimizing ex-
pected energy is more important and the algorithm in [5]
(called DET throughout this work) becomes sub-optimal,
even overly pessimistic.

Although the task’s actual workload cannot be predicted
in advance with full accuracy, its probability distribution
function can be obtained or estimated through profiling [9,
17–19]. Our primary goal in this paper is to determine the
optimal processing frequency to minimize the expected en-
ergy at the system-level, when the cumulative distribution of
the application’s workload is known. We consider both DVS
and DPM features and formally characterize the expected
energy. We illustrate our technique by first focusing on an
application using a single-device and show how the optimal
frequency can be derived in linear-time. Then, we extend
the solution to the case of multiple devices. Our solutions
also ensure that the timing constraint of the application is
met in every execution scenario. Our experimental evalua-
tion shows that our solution yields energy savings of up to
35% over the DET algorithm [5] by exploiting the probabilis-
tic information. Moreover, it approaches the performance of
a clairvoyant algorithm that can compute the best solution
using the workload information before-hand. To the best of
our knowledge, this study is the first to exploit DVS and
DPM properties optimally to minimize the expected system-
level energy consumption, for workloads that are known only
probabilistically before execution.

2. SYSTEM MODELS

2.1 Application Model
We consider a real-time embedded application that is in-

voked repetitively with the period P . Such applications are
known as frame-based systems in the literature [5, 11, 17].
Whenever invoked, the application must complete its exe-
cution within the relative deadline d, which is assumed to
be equal to P . The application’s workload, characterized by
the number of cycles, is assumed to be known only prob-
abilistically: it can assume values between a lower bound
and an upper bound that are given by best-case execution
cycles (bcc) and worst-case execution cycles (wcc), respec-
tively. The cumulative distribution function for the applica-
tion’s workload is:

F (x) = p(X ≤ x) (1)

where X is the random variable for the application’s CPU
cycle demand and p(X ≤ x) represents the probability that
the application will not require more than x cycles within
a given frame. To approximate the cumulative distribu-
tion function F (x), we use the effective histogram tech-
nique [17, 18]. Specifically, we assume that the applica-
tion’s workload function is partitioned into n cycle groups:
(b0, b1], (b1, b2], ..., (bn−1, bn], where b0 = bcc, bn = wcc and
bi < bi+1. As shown in Figure 2, the probability of execut-
ing the application with no more than x cycles is estimated
conservatively as F (bi+1), when x is in the interval (bi, bi+1].
Notice that F (bn) = 1. Through profiling, the probability
distributions for the cycle groups can be obtained [17, 18].
Also, we define the size of the cycle group i as ci = bi − bi−1

for i > 0 and ci = bi for i = 0.
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Figure 2: Histogram-based estimation of the appli-
cation’s probabilistic workload

We assume a DVS-enabled system where the processing
frequency f can change from a minimum frequency fmin

to a maximum frequency fmax. All frequency values are
normalized with respect to fmax. Finally, the utilization of
the application is defined as U = wcc

d
≤ 1 and WCET =

wcc
fmax

denotes its worst-case execution time when its executes
its maximum possible workload wcc with fmax.

2.2 Device Model
The real-time embedded application uses a set of m de-

vices D = {D1, D2, .., Dm} during its execution. Each de-
vice Di can be either in active or sleep (low-power) state,
and is defined with the following parameters:

• P i
a: The device power consumption in active state

• P i
s : The device power consumption in sleep state
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• Ei
as (Ei

sa): The energy overhead associated with active-
to-sleep (sleep-to-active) state transition

• T i
as (T i

sa): The time overhead associated with active-
to-sleep (sleep-to-active) state transition

Due to the periodic execution pattern, each active-to-sleep
transition for a device will be eventually followed by a sleep-
to-active transition. As a result, to conveniently represent
the overheads, we define Ei

tr = Ei
as +Ei

sa as the total device
transition energy overhead and T i

tr = T i
as + T i

sa as the total
transition delay. Following recent literature [3, 5, 6, 14–16],
we assume inter-task device scheduling. In inter-task de-
vice scheduling, all devices used by the real-time application
must be in active state while it executes. In fact, the ab-
sence of knowledge about the exact time instants when the
application will need a specific device and non-trivial state
transition costs easily justifies the inter-task device schedul-
ing paradigm [3,5,6,15].

However, the devices can be put to sleep state when appli-
cation finishes its execution within a frame (until the begin-
ning of the next frame). Considering the non-trivial energy
and time overheads associated with state transitions, the
device break-even time Bi is defined to represent the lower
bound on the idle interval length so that putting the de-
vice to sleep state can be justified at run-time. In addition,
no idle interval can be smaller than T i

tr; hence, Bi is given
as [3–6]:

Bi = max(T i
tr,

Ei
tr − T i

trP
i
s

P i
a − P i

s

)

2.3 Energy Model
The total system energy consumption within a frame is the

sum of static and dynamic energy consumptions. Following
previous DPM work [3–6], we assume that shutting down the
entire system within a frame is not an option (hence, static
power is not manageable) and concentrate on the dynamic
energy consumption Ed. Ed is a function of several factors,
including the CPU frequency f and power characteristics
and states of individual devices (such as main memory and
I/O modules). For simplicity, we assume that all device
active powers are given in excess of the device sleep powers,
as in [4–6].

If the application executes c cycles at the frequency f

within a given frame, it will complete its execution within
t = c

f
time units. Within that frame, the interval [0, c

f
] is

called the execution period. Similarly, the interval [ c
f
, d] is

called the slack period. During the slack period, the CPU
is idle and the devices used by the application can be po-
tentially put to sleep states by incurring transition energy
overheads. However, such a transition for a device Di is
energy-efficient if only if d − Bi > c

f
. For example, in Fig-

ure 3, the device D1 can be put to sleep state during the
slack period, while D2 is forced to remain in active mode.

Let DA denote the subset of devices that are forced to
remain in active state during the slack period, due to short
idle interval lengths. On the other hand, the devices in
D − DA can be transitioned to sleep state during the slack
period to save energy. The dynamic energy consumption
Ed(f) within a frame can be formally expressed as [5]:

Ed(f) = Ee(f) + Es(f) + Et(f) (2)

where

                   B2

B1

        

0                 
f

c
                         d

  Execution period     Slack period 

Figure 3: Execution and slack periods of an appli-
cation

Ee(f) = (af
3 +

m∑
i=1

P
i
a)

c

f
(3)

is the sum of the energy consumed by the CPU (af3 · c
f
) and

the devices (
∑m

i=1 P i
a

c
f
) during the execution period;

Es(f) =
∑

i|Di∈DA

P
i
a(d −

c

f
) (4)

is the energy consumed by the devices that remain in active
state during the slack period, and,

Et(f) =
∑

i|Di∈(D−DA)

E
i
tr (5)

is the transition energy incurred by the devices in D − DA,
which need to be activated at the beginning of the next
frame.

3. SYSTEM-LEVEL ENERGY: STOCHAS-

TIC CASE

3.1 Motivational Example
By using a system-level energy model very similar to that

given in Section 2.3, the work in [5] derived a precise char-
acterization of the interplay between DVS and DPM, and
then showed how to obtain the optimal frequency to min-
imize system-level energy. A fundamental characteristic of
that solution is that it assumes a deterministic workload
equal to wcc. While provisioning for worst-case scenarios
is important to guarantee the timing constraints, in prac-
tice, many real-time embedded applications complete early
without consuming their worst-case workloads. Further, al-
though the actual number of execution cycles cannot be
known in advance exactly, its probability distribution can
be obtained through profiling [17, 18]. This, in turn, pro-
vides new and significant opportunities to minimize the ex-
pected system-level energy consumption, while meeting the
application’s deadline, as the following example illustrates.

                 B 

WCET                                     

0       10   11                        d= 35

                (b)

                 B 

WCET                                   

0          11   12                     d=35

                      (a) 

Figure 4: An application with WCET = 12 (a) and
with WCET = 10 (b), using the IBM Microdrive
device

Let us consider an application with deadline d = 35ms

running on a system with maximum frequency 1GHz, using
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a single IBM Microdrive device (Pa = 1.3 Watt, Etr = 12
Joules and B = 24ms, as specified in [3, 5]). To start with,
the analysis in [5] considers only the WCET information
as the basis; hence, if d − B < WCET , the DET algo-
rithm [5] would assume that the device will need to be kept
in active mode during the slack period. For example, if
wcc = 12 × 106, DET would choose the optimal frequency
as f = 0.34Ghz (effectively planning to complete the appli-
cation just at the deadline in the worst-case) since WCET =
12ms > d−B = 11ms – as seen in Figure 4.a. Now assume
that the application’s workload is known probabilistically,
and that it changes between bcc = 2×106 and wcc = 12×106

according to the normal distribution with the mean bcc+wcc
2

and the standard derivation wcc−bcc
12

. While DET solution
indeed minimizes energy for the worst-case workload, one
can compute that the expected energy consumption with
f = 0.34Ghz is EDET = 47.71 Joules. On the other hand,
by executing the application at f = 0.76GHz, one can ob-
tain an expected energy consumption of E = 29.70 Joules,
a savings of 35% over that of DET, while still meeting the
deadline. In fact, improvements due to a probabilistic anal-
ysis do also exist when WCET ≤ d−B. For instance, if we
change wcc as 10×106, as showed in Figure 4.b, then we find
out that DET will yield the frequency f = 0.91Ghz with
the corresponding expected energy EDET = 27.79 Joules.
But if we use f = 0.69Ghz, the expected energy becomes
E = 26.45 Joules, leading to approximately 5% additional
energy savings. As this example suggests, minimizing the
expected energy consumption while exploiting the subtle in-
teraction between DVS and DPM warrants a full analysis.

3.2 Deriving Expected Energy Function
Given a processing frequency f and a cumulative distri-

bution function for the workload, the expected energy con-
sumption Em within a frame can be written as the sum of
three components: the expected energy consumption in the
execution period Ee(f), that in the slack period Es(f), and
the expected transition energy overhead Et(f):

Em(f) = Ee(f) + Es(f) + Et(f) (6)

Let us elaborate on each of these components separately.
The execution period energy Ee(f): During its execu-
tion, the application will execute a given cycle x in the range
[bcc, wcc] with a certain probability. In fact, this probability
is equal to (1−F (x)), where F (x) is the cumulative distribu-
tion function defined in Equation (1) [17,18]. Consequently,
the expected value of overall (CPU + device) energy con-
sumption during the execution period can be written as:

Ee(f) =
∑wcc

x=1((1 − F (x))af3 1
f

+
∑m

i=1 P i
a(1 − F (x)) 1

f
)

=
∑wcc

x=1(af3 +
∑m

i=1 P i
a)(1 − F (x)) 1

f
(7)

Further, by applying the histogram-based estimation tech-
nique, Ee(f) can be formally re-written as:

Ee(f) =

n−1∑
j=0

(af
3 +

m∑
i=1

P
i
a)

cj

f
(1 − F (bj)) (8)

The slack period energy Es(f): The energy consump-
tion during the slack period is due to devices that are forced
to remain in active state when their completion time within
the frame does not allow an energy-efficient transition. Specif-
ically, when the application completes at time t > d − Bi

for a given device Di, that device will consume a total en-
ergy of P i

a(d− t) during the slack period by staying in active
mode. Completion at each of such time instants occurs with
a certain probability; hence, we find:

Es(f) =

m∑
i=1

d∑
Z=d−Bi

p(t = Z)P i
a(d − t) (9)

where p(t = Z) is the probability that the application will
complete exactly at time Z.

The transition energy Et(f): When the application
completes at time t < d−Bi the device Di can and should be
transitioned to sleep state during the slack period. However,
each such transition will result in an energy overhead of Ei

tr.
If t is the completion time, the expected value of Ei

tr is
p(t ≤ d − Bi) Ei

tr. Observe that:

p(t ≤ d − Bi) = p(
X

f
≤ d − Bi) = p(X ≤ f(d − Bi))

where X is the random variable for the cycle demand of the
application and f is the processing frequency. Recalling that
p(X ≤ x) = F (x), we get:

Et(f) =

m∑
i=1

F ((d − Bi)f) · Ei
tr (10)

At this point, we are ready to develop our solution for the
problem of minimizing the expected overall energy Em(f)
while considering the probabilistic distribution of execution
cycles while satisfying the deadline constraint.

4. SINGLE-DEVICE MODEL
In this section, we consider the case where the application

uses only m = 1 device during its execution and derive the
optimal frequency to minimize the expected energy by ex-
ploiting the interaction between DPM and DVS. This also
allows us to lay the technical background for the more gen-
eral case that will be addressed in Section 5. For simplicity,
we use the notations P 1

a = Pa, B1 = B and E1
tr = Etr

throughout the section. Using the findings from Section 3.2,
the single-device problem can be formally expressed as to
minimize:

E(f) =
∑n−1

j=0 (af3 + Pa)
cj

f
(1 − F (bj))

+F ((d − B)f)Etr

+
∑d

Z=d−B P (x = Z)Pa(d − x) (11)

Subject to:
wcc

f
≤ d (12)

fmin ≤ f ≤ fmax (13)

Above, (12) encodes the deadline constraint while (13) in-
dicates the feasible frequency ranges supported by the sys-
tem. A non-trivial difficulty with the above optimization
problem is that the unknown f appears as a parameter in
the cumulative distribution function which may be of arbi-
trary form, making a closed form solution unlikely. However,
notice that F ((d−B)f) can have only one of the n + 1 dis-
tinct values that correspond to F (bi) (0 ≤ i ≤ n) in the
optimal solution. This property suggests an iterative ap-
proach: our original problem will be divided into to n + 1
sub-problems by letting F ((d−B)f) = F (b0), ..., F (bn) suc-
cessively. Each sub-problem will be attacked by assuming
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that F ((d−B)f) = F (bi) and the expected energy consump-
tion corresponding to that sub-problem will be recorded.
Finally, the frequency that leads to the minimal energy con-
sumption in any of the sub-problems will be selected as the
global optimal.

In the following, we focus on the solution of these subprob-
lems. Notice that when F ((d − B)f) = F (bi) (0 ≤ i ≤ n),
the expression (10) can be readily re-written as a function
of F (bi). Further, the properties of the histogram-based ap-
proach and simple algebraic manipulation show that, when
F ((d − B)f) = F (bi), (9) is equivalent to:

n−1∑
j=i

(F (bj+1) − F (bj))Pa(d −
bj+1

f
)

Hence, the ith sub-problem can be formally defined as to
minimize:

E
i(f) =

∑n−1
j=0 (af3 + Pa)

cj

f
(1 − F (bj)) + F (bi)Etr

+
∑n−1

j=i (F (bj+1) − F (bj))Pa(d −
bj+1

f
) (14)

Subject to:
wcc

f
≤ d (15)

bi−1

f
< d − B ≤

bi

f
(16)

fmin ≤ f ≤ fmax (17)

where1 the new additional constraint (16) is the sufficient
and necessary condition to enforce F ((d−B)f) = F (bi). Let

flow,i = max(fmin, wcc
d

,
bi−1

d−B
+ε) and fup,i = min(fmax, bi

d−B
).

Notice that flow,i corresponds to the lower bound2 on the
feasible frequency range for the problem while fup,i is the
upper bound to the frequency range. It is obvious that
if fup,i < flow,i, the feasible region for this subproblem is
empty. On the other hand, the case of fup,i ≥ flow,i can
be solved precisely. Observe that Ei(f) is a strictly convex
function. Therefore, the frequency fi that minimizes Ei(f)
without considering constraints (15), (16) and (17) can be
found by setting its derivative to zero:

fi = (
Pa(

∑n−1
j=0 cj(1 − F (bj)) −

∑n−1
j=i (F (bj+1) − F (bj))bj+1)

2a
∑n−1

j=0 cj(1 − F (bj))
)

1
3

(18)
The convex nature of Ei(f) justifies the following two basic
properties for any Δ > 0:
PROPERTY 1. ∀f, f > fi, E

i(fi) ≤ Ei(f) ≤ Ei(f + Δ)
PROPERTY 2. ∀f, f < fi, E

i(fi) ≤ Ei(f) ≤ Ei(f − Δ)
Based on these properties, one can obtain the following:

Theorem 1. The optimal frequency for the ith subprob-
lem is equal to f∗

i = max{flow,i, min{fup,i, fi}}, whenever
fup,i ≥ flow,i.

Once we evaluate the optimal solutions to all n + 1 sub-
problems (each requiring O(n) time), one can easily find

1For mathematical convenience, we define
∑n−1

j=n x = 0 for

any value of x and we assume
bi−1

f
< d − B automatically

holds when i = 0.
2In the definition of flow,i, ε is a small number arbitrar-
ily close to 0, which is introduced to enforce the constraint
bi−1

f
< d − Bi with the strict inequality requirement.

the global optimal (in time O(n2)). However, the proce-
dure can be further speeded up by observing that once fi

is computed, fi+1 can be easily evaluated, since fi+1 =

fi −
(F (bi+2)−F (bi+1))bi+2

2a
∑n−1

j=0
cj(1−F (bj))

. The denominator in this expres-

sion is indeed a constant (independent of i) and can be com-
puted just once when evaluating f0. Thus, one can easily
design an algorithm that computes the fi values bottom-up,
by keeping track of the best candidate seen so far across
the n + 1 iterations. This optimization will help reduce the
complexity to just O(n log n), where the dominant term will
be due to the process of sorting the bi and F (bi) values in
increasing order. If they are already sorted in the input, the
overall complexity is just O(n).

5. MULTIPLE-DEVICE MODEL
In this section, we address the general problem where the

application uses m devices D1, . . . , Dm (with corresponding
break-even times B1, . . . , Bm). We assume the device in-
dices reflect the ordering of the break-even times, as shown
in Figure 8. With multiple devices, the problem gains a new
dimension. By adjusting the processing frequency f , the ap-
plication’s execution time within a frame can be controlled
through DVS; but this has a direct impact on the applica-
bility of DPM. Specifically, when the application completes
at time t such that (d − Bi) < t < (d − Bi−1), the devices
D1, . . . , Di−1 can be transitioned to the sleep state during
the slack period. However, the devices Di, . . . , Dm should
remain in active state throughout the frame. Obviously, the
probabilistic behavior of the workload adds another non-
trivial complexity layer to the problem.

                   Bm

Bi

……   ……     B1

0   WCET  d-Bm   d-Bi      d-B1          d

Figure 8: An application using m devices and break-
even times

The problem can be formally stated as to minimize the
expected energy consumption Em(f) given by (6), where the
execution period, slack period, and transition energy figures
are given by (8), (9), and (10), respectively. Again, the
optimal frequency f should satisfy the deadline constraint
wcc
f

≤ d and the feasible frequency range constraint fmin ≤
f ≤ fmax.

Similar to the case of single-device, the general problem
can be seen to give rise to multiple sub-problems by as-
suming that the product F ((d − Bi)f) is equal to a spe-
cific F (bj) for each device Di. Specifically, in the opti-
mal solution, F ((d − Bi) f) (1 ≤ i ≤ m) can be equal to
F (bai) (0 ≤ ai ≤ n). In other words, ai will be equal to the
index of the cycle group (given in the histogram) that the
application is assumed to be executing at time t = d−Bi, in
the subproblem that corresponds to each tentative optimal
solution. Since the cycle group j (from bj to bj+1) should be
executed before the cycle group j+1 (from bj+1 to bj+2), one
can infer that ai ≥ ai+1 in a subproblem. Therefore, each
sub-problem will be defined by a unique ordered sequence of
a1, . . . , am.

Following a reasoning similar to the case of the single-
device, one can obtain the corresponding formulation of the
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Figure 5: Normalized expected
energy as a function of wcc

(P = 44ms)
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Figure 6: Normalized expected
energy as a function of bcc
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(P = 44ms and wcc = 20 × 106)
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Figure 7: Normalized Expected
Energy as a function of the appli-
cation’s period (U = 0.5)

subproblem for a given sequence a1, . . . , am as to minimize:

Ea1,..,am(f) =
∑m

i=1

∑n−1
j=ai

(F (bj+1) − F (bj))P
i
a(d −

bj+1

f
)

+
∑n−1

j=0 (af3 +
∑m

i=1 P i
a)

cj

f
(1 − F (bj))

+
∑m

i=1 F (bai)E
i
tr (19)

Subject to:

wcc

f
≤ d (20)

bai−1

f
< d − Bi ≤

bai

f
(1 ≤ i ≤ m) (21)

fmin ≤ f ≤ fmax (22)

where Ea1,..,am(f) is the expected energy consumption with
the specific values of a1, .., am, and the new additional con-
straints (21) are the sufficient and necessary conditions to
enforce F ((d − Bi)f) = F (bai). For a given sub-problem,

we can define f ′
low = max(fmin, wcc

d
,

bai−1

d−Bi
+ ε(∀i)) and

f ′
up = min(fmax,

bai

d−Bi
(∀i)). By following steps similar to

those in Section 4, we can conclude that if f ′
up < f ′

low, the
corresponding subproblem does not have a solution. For the
case where f ′

up ≥ f ′
low, the solution f ′

a is given by:

f
′
a = (

α − γ

β
)

1
3 (23)

where α = (
∑n−1

j=0

∑m

i=1 P i
acj(1 − F (bj)),

β = 2a
∑n−1

j=0 cj(1 − F (bj)), and,

γ =
∑m

i=1

∑n−1
j=ai

P i
a(F (bj+1) − F (bj))bj+1).

Theorem 2. The subproblem of minimizing Ea1,..,am(f)
admits an optimal solution f∗

a = max{f ′
low, min{f ′

up, f ′
a}},

whenever f ′
up ≥ f ′

low.

As a quick inspection of the formula for f ′
a reveals, it

takes only O(mn) steps to solve each sub-problem. How-
ever, the apparent computational difficulty comes from the
large number of subproblems. In fact, the total number of
sub-problems is given by the number of multisets of cardi-
nality m, with elements taken from a finite set of cardinality

n, which is equal to (n+m−1)!
m!(n−1)!

. This gives O(nm) potential

subproblems, which is prohibitively large.
Nevertheless, it is possible to develop a faster solution by

observing that most of the subproblems have indeed empty
feasible regions and that it is necessary and sufficient to
consider only at most m(n + 1) + 3 subproblems, each of
which is uniquely defined by a separate combination of the

cycle group index j and device index i. The full details of this
faster algorithm of overall complexity O(mn log mn) with
the accompanying proofs are presented in the Appendix.

6. EXPERIMENTAL EVALUATION
To evaluate the performance gains yielded by our solu-

tion, we constructed a discrete-event simulator in C. In our
simulator, we implemented the following three schemes:

• The optimal scheme, denoted by OPT and developed
in this paper, which minimizes the expected system en-
ergy based on the application’s probabilistic workload
information, by integrating DVS and DPM in an opti-
mal way.

• The scheme DET (proposed in [5]), which minimizes
the system energy consumption again by considering
both DVS and DPM features, but by assuming a de-
terministic workload (equal to wcc).

• The clairvoyant scheme (CLR), that computes the op-
timal frequency by using the knowledge about the ac-
tual workload (number of cycles) of the application in
advance. While it is not a practical scheme (since no
algorithm can know the exact workload in advance),
CLR is included in our comparison to assess the ex-
tent at which our algorithm’s performance approaches
absolute ideal bounds by exploiting the probabilistic
information.

To be consistent with the experimental settings in [5], we
performed our experiments by using the actual device spec-
ifications from [3] and the CPU power consumption is mod-
eled after the Intel XScale specifications [17]. The appli-
cation uses three devices during its execution: IBM Micro-
drive (B = 24ms) , Realtek Ethernet Chip (B = 20ms) and
Simple Tech Flash Card (B = 4ms). The frame length P

varied from 40ms to 100ms; the application’s execution cy-
cles are generated using normal distribution with the mean
(bcc+wcc)

2
and standard derivation (wcc−bcc)

12
. This guaran-

tees that 99.7% of the cycles fall in the range [bcc, wcc] and
cycles values outside this range are not considered. The
[bcc, wcc] range is divided into n = 100 cycle groups of equal
size. The maximum CPU frequency is assumed to be 1GHz

We first evaluate the effect of the worst-case execution
time on the expected energy consumption with the frame
length (period) = 44ms as in [5], by changing wcc from
10 × 106 to 40 × 106 cycles with bcc = 0 (Figure 5). No-
tice that wcc = 40 × 106 corresponds to an almost fully
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utilized system. In Figure 5, all energy consumptions are
normalized to that of OPT when wcc = 40 × 106. As
we can see, the performance of our solution OPT is very
close to that of the clairvoyant scheme CLR, especially when
wcc ≤ 30 × 106. When wcc ≤ 15 × 106, DET can achieve
the same performance as CLR and OPT. The reason is that,
in the case of very low workload, the application can be exe-
cuted with the energy-efficient frequency (fee) [5] while still
meeting the deadline and leaving enough idle time to turn
off all the devices. However, when wcc increases beyond
20 × 106, DET chooses the frequency (f = U) to minimize
the system energy under the wcc case, while OPT can still
use fee to achieve better expected energy savings by con-
sidering the probabilistic workload information. But once
wcc > 25 × 106, OPT has to also increase the frequency to
enforce longer idle intervals for device state transitions. In
fact, when wcc = 35 × 106, considering the interaction of
DVS and DPM, OPT is forced to use the frequency f = U

just like DET . These results suggest that OPT is able to
achieve performance levels that are practically indistinguish-
able from the clairvoyant algorithm, except when the worst-
case workload is very high.

Figure 6 shows the relative performance of three schemes
as a function of the actual workload variability. Specifi-
cally, we consider an application with period= 44ms, wcc =
20 × 106, and we vary the ratio bcc

wcc
. Clearly, the lower this

ratio, the more the actual workload deviates from the worst-
case. The energy values are normalized with respect to OPT
when bcc = wcc. We observe that the performance of OPT
is almost identical to that of CLR, when bcc

wcc
≤ 0.6, exhibit-

ing performance gains of around 35% over DET. However,
when the ratio exceeds 0.7, OPT is forced to use the same
processing frequency as that of DET . This is primarily due
to the fact that large bcc values do not leave much oppor-
tunities to optimistically increase the frequency to create
long device idle intervals. In fact, when bcc = wcc, all three
schemes achieve exactly the same performance.

In Figure 7, we study the impact of varying the application
period on the energy consumption by setting U = wcc

P
= 0.5.

The energy values are normalized with respect to that of
DET when P = 40ms. As we expect, the energy consump-
tion decreases as we increase the period, and increasing slack
amounts enable more device state transitions. The perfor-
mance of OPT is in fact indistinguishable from that of the
clairvoyant scheme CLR. OPT provides energy savings of up
to 35% over DET, though the savings tend to decrease with
increasing period. This is because, increasing the period
while keeping the device break-even times constant enables
also DET to put the devices to sleep states, even when plan-
ning according to worst-case workload scenarios.

7. CONCLUSIONS
In this work, we considered the problem of optimally in-

tegrating DVS and DPM policies for real-time embedded
applications characterized by probabilistic workload profiles
and we presented algorithms to minimize the expected system-
wide energy. Our solution is based on the precise character-
ization of the expected energy components, using DVS and
DPM properties. First, we solved the problem for an ap-
plication using a single device and then generalized it to
multiple devices. By observing the special characteristics
of the optimal solution for the multiple-device case, we also
suggested a faster algorithm which significantly reduces the

search space. Our experimental evaluation shows that our
algorithm can achieve significant energy savings compared
to the previous algorithm proposed in [5] for deterministic
workloads and performs comparably even to a clairvoyant
optimal scheduler that knows the exact workload in advance.
To the best of our knowledge, this is the first solution to the
system-wide energy management problem based on the op-
timal combination of DVS and DPM for probabilistic work-
loads.
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APPENDIX
Fast Algorithm for the Multiple-Device Model

In this appendix, we present the details of our fast solution to
the expected energy minimization problem for multiple devices.
First, we note that for each sub-problem that targets minimizing
the expected energy consumption Eh(f) = Ea1,..,am (f) corre-
sponding to a specific a1,a2,..,ai,..am combination, the frequency
range constraints (20)-(22) can be captured in a single constraint
of the form:

xh ≤ f ≤ yh (24)

where xh = max(fmin, U = wcc
d

,
bai−1

d−Bi
+ ε(∀i)), and yh =

min(fmax,
bai

d−Bi
(∀i)). Observe that the sub-problem has a non-

empty feasible region if and only if xh ≤ yh. We construct a

sequence S, which contains the following (n+1)m points: b0
d−B1

,
b1

d−B1
,... bn

d−B1
,... , b0

d−Bm
, b1

d−Bm
,... bn

d−Bm
. This sequence can

be sorted in time O(mn log mn) in non-decreasing order. Observe
that these points correspond to possible frequency ranges de-
fined through the constraints (21) over all possible sub-problems.
Then, the sequence S is updated by eliminating the points that
correspond to the infeasible frequency ranges (i.e. those below
max(fmin, U) or above fmax), by removing the duplicate points,
and finally by inserting max(fmin, U) and fmax in proper posi-
tion. After these operations, the points z0, z1, . . . in sequence S
are in total order and their cardinality is at most m (n + 1) + 2.
The following holds:

Lemma 1. For each sub-problem with non-empty feasible re-
gion, xh and yh are obtained from two consecutive points zi and
zi+1 in S, when xh < yh.

Proof. Based on its definition, xh can be expressed as xh = zi

if zi = max{fmin, U}, otherwise, xh = zi + ε. Further, yh =
zj ∃ j. Assume that the lemma does not hold. In that case, j
must be greater than i + 1.

In this case, there exists a point z ∈ S such that zi < z < zj .
Hence, xh < z < yh should also hold. Since z ∈ S, it can

be expressed as
bj

d−Bk
for some existing j and k. Since xh =

max(fmin, wcc
d

= U,
bai−1

d−Bi
+ε(∀i)) < z, and then

bak−1

d−Bk
<

bj

d−Bk

holds and we conclude that bak−1 < bj . Because the value of
bi (∀i) is increasing with increasing index i, then j > ak − 1

holds. Similarly, since z < yh = min( fmax,
bai

d−Bi
(∀i)), then

bj

d−Bk
<

bak
d−Bk

follows and we obtain j < ak. But this implies

ak − 1 < j < ak, contradicting with the fact that j is an integer.
We reach a contradiction, showing the validity of the lemma.

Lemma 1 implies that the frequency range [xh, yh] is of the
following form whenever xh < yh:

xh =

{
zk, if zk = max{fmin, U}

zk + ε, otherwise.
(25)

yh = zk+1 (26)

where zk is a point in the ordered sequence S.

Lemma 2. Each given frequency range [xh, yh] xh ≤ yh uniquely
determines an original subproblem that minimizes Ea1,..,am (f)
where ai = j +1 (1 ≤ i ≤ m) and j satisfies both bj < (d−Bi)zk

and bj+1 ≥ (d − Bi)zk+1.

Proof. To prove this lemma, we will show that, given xh <
yh, one can uniquely compute ai (i = 1, .., m).

Based on the construction of S, we know that there must exist

w (0 ≤ w < n) such that bw
d−Bi

< zk (i.e. bw ≤ (d − Bi) xh).

In order to determine ai = j + 1, we must find suitable j sat-
isfying bj < (d − Bi) xh and (d − Bi)zk+1 ≤ bj+1 at the same

time. We claim that j = max{w| bw
d−Bi

< zk} is the unique

solution. In fact, if j < max{w| bw
d−Bi

< zk}, then
bj+1

d−Bi
≤

max{w| bw
d−Bi

< zk} < zk < zk+1, which is not possible. Simi-

larly, if j > max{w| bw
d−Bi

< zk},
bj

d−Bi
> zk, which contradicts

the assumption. Hence, j should be exactly max{w| bw
d−Bi

< zk}.

It is obvious that j exists and uniquely defined; consequently,
ai = j + 1 is uniquely determined.

From the above discussion, we see that even in the worst case,
we only need to consider m(n + 1) + 1 possible frequency ranges,
which is constructed by consecutive points in S. Further, as
Lemma 2 shows, each of these ranges uniquely determines a sub-
problem with non-empty feasible region. As a result, this enables
us to eliminate a large number of unnecessary subproblems.

Now we give a general solution for the lth problem (1 ≤ l ≤
m(n + 1) + 1) with the frequency range xl < yl, where xl and yl

are defined as in (25) and (26). The lth problem can be formally
expressed as to minimize:

Em,l(f) =
∑m

i=1

∑n−1
j=al,i

(F (bj+1) − F (bj))P
i
a(d −

bj+1

f
)

+
∑n−1

j=0 (af3 +
∑m

i=1 P i
a)

cj

f
(1 − F (bj))

+
∑m

i=1 F (bal,i
)E

al,i

tr (27)

Subject to:
xl ≤ f ≤ yl (28)

where Em,l(f) is the expected energy with m devices for the lth
problem and each al,i is determined by the frequency range [xl, yl]
(as stated in Lemma 2).

Using a method similar to that in Section 4 and 5, we can state:

Theorem 3. If there exists a feasible solution to the subprob-
lem of minimizing Em,l(f), that feasible solution is equal to f∗

m,l
=

max{xl, min{yl, fm,l}}, where fm,l = ( α−σ
β

)
1
3 ,

α =
∑n−1

j=0

∑m
i=1 P i

acj(1 − F (bj)),

β = 2a
∑n−1

j=0 cj(1 − F (bj)), and,

σ =
∑m

i=1

∑n−1
j=al,i

P i
a(F (bj+1) − F (bj))bj+1.

Also observe that the relationship between fm,l and fm,l+1 is
similar to that between fi and fi+1 in Section 4. Therefore, if
we store the constant values of α and β, then based on the result
of fm,l, we just need at most m steps to compute fm,l+1 (since
al+1,i is increased by at most 1 compared to al,i). Hence, starting
at fm,1, we need at most O(mn) steps to directly compute all
l subproblems. Note that, for completeness, one also needs to
compute the expected energy numbers for two cases where xl = yl

and compare against the best energy figure obtained through the
above process. In fact, this is the case only for two boundary
values max(fmin, wcc

d
= U) and fmax. The complexity of the

entire procedure is O(mn). However, one needs to construct the
set S and order the points therein, implying an overall complexity
of O(mn log(mn)).
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