
Reliability-Aware Dynamic Voltage Scaling for
Energy-Constrained Real-Time Embedded Systems

Baoxian Zhao, Hakan Aydin
Department of Computer Science

George Mason University
Fairfax, VA 22030

bzhao@gmu.edu, aydin@cs.gmu.edu

Dakai Zhu
Department of Computer Science

University of Texas at San Antonio
San Antonio, TX 78249

dzhu@cs.utsa.edu

Abstract— The Dynamic Voltage Scaling (DVS) technique
is the basis of numerous state-of-the-art energy management
schemes proposed for real-time embedded systems. However,
recent research has illustrated the alarmingly negative impact
of DVS on task and system reliability. In this paper, we consider
the problem of processing frequency assignment to a set of
real-time tasks in order to maximize the overall reliability,
under given time and energy constraints. First, we formulate the
problem as a non-linear optimization problem and show how
to obtain the static optimal solution. Then, we propose on-line
(dynamic) algorithms that detect early completions and adjust
the task frequencies at run-time, to improve overall reliability.
Our simulation results indicate that our algorithms perform
comparably to a clairvoyant optimal scheduler that knows the
exact workload in advance.

I. INTRODUCTION

With the proliferation of battery-powered embedded com-
puting devices, energy management has become critically
important with the prospects of extending the battery life,
which is typically limited. The Dynamic Voltage Scaling
(DVS) technique [1], [2] is recognized as the basis of
numerous energy management solutions. DVS exploits the
fact that the dynamic power consumption is a strictly convex
function of the CPU speed, and attempts to save energy
by reducing the supply voltage and frequency at run-time.
DVS has been well studied in many power management
schemes that target real-time embedded systems with timing
constraints [3], [4], [5], [6].

On the other hand, recent research [7], [8] has shown
that DVS has a significant and negative effect on the sys-
tem reliability, primarily because of significantly increased
transient fault rates at low supply voltage and frequency
levels. Therefore, there is a growing awareness about the
need to apply DVS only after careful evaluation, especially
for mission-critical real-time embedded applications where
both high level of reliability and low energy consumption
are important. Nevertheless, at present, there are only a few
studies investigating the system reliability and energy effi-
ciency requirements simultaneously [8], [9], [10], [11]. The
trade-off between system reliability and energy consumption
is first studied by Zhu et al. in [8]. In [8], two fault rate
models for DVS settings are also suggested. [9] proposed a
reliability-aware power management (RA-PM) scheme that

This work is supported by US National Science Foundation grants CNS-
0720647, CNS-0720651 and CNS-546244 (CAREER Award)

dynamically schedules a recovery job at task dispatch time
whenever DVS is applied, preserving the overall (original)
reliability. The scheme is further extended to multiple tasks
with a common deadline [10] and to periodic real-time tasks
[11].

Previous research mostly focused on saving energy as
much as possible through DVS while maintaining original
system reliability, typically by scheduling recovery tasks for
potential fault scenarios. Here, we consider a totally different
case by addressing the settings where the system has a given
fixed energy budget for its operation. The system is allowed
to consume energy within this allowance. Our objective is to
determine the task frequency (speed) assignments in order
to maximize the system reliability (i.e. the probability of
completing the application successfully) within the given
energy budget and timing constraint. Or equivalently, we
consider determining optimal energy allocations for each
task, while precisely characterizing/quantifying the effects
of DVS on the system reliability.

In this research effort, after presenting our system models
and assumptions in Section II, we first address and solve
the static version of the problem, where all tasks execute
their worst-case workload (Section III). Then, we extend
our framework to dynamic settings and propose three on-
line reclaiming algorithms that detect early completions and
adjust the task frequencies at run-time, with the objective
of improving the application’s reliability by making the best
use of excess energy at run-time (Section IV). The exper-
imental evaluation (presented in Section V) indicates that
our dynamic algorithms perform comparably to a clairvoyant
optimal scheduler that knows the exact workload in advance.

To the best of our knowledge, this research effort is
the first to address the problem of maximizing the overall
reliability of a real-time embedded application within the
given energy and time constraints.

II. MODELS AND PROBLEM DESCRIPTION

A. Power Model
With DVS, the clock frequency is reduced by reducing

the supply voltage [12] since there is an almost linear rela-
tionship between the supply voltage and operating frequency
[13]. In this paper, we focus on the DVS technique and
adopt the system-level power model proposed in [8] and

978-1-4244-2658-4/08/$25.00 ©2008 IEEE 633

subsequently used in [9], [10]. Hence, the system power
consumption P is given by:

P = Ps + h̄(Pind +Pd) = Ps + h̄(Pind +Ce f f m) (1)

where Ps is the static power, Pind is the frequency-
independent active power and Pd is the frequency-dependent
active power. The static power, which may be removed
only by powering off the whole system, includes the power
to maintain basic circuits, keep the clock running and the
memory in sleep modes [14]. Pind is a constant independent
of processing frequencies (i.e. the power consumed by off-
chip devices such as main memory and external devices)
and can be efficiently removed by putting systems into sleep
states [13], [15]. Pd is the power mainly consumed by CPU,
in addition to any power that depends on the frequencies
[13]. h̄ represents system states and indicates whether active
powers are currently consumed in the system. Specifically,
when the system is active, h̄ = 1; otherwise, the system
is in sleep modes or turned off and h̄ = 0. The effective
switching capacitance Ce f and the dynamic power exponent
m (which is, in general, no smaller than 2) are system-
dependent constants and f is the processing frequency.

Since there exists an excessive time and energy overhead
associated with turning on/off a system [16], we assume that
the system is always active. As Ps is not manageable, we will
ignore the static power and concentrate on the frequency-
independent active power Pind and frequency-dependent ac-
tive power Pd in our analysis.

Although DVS can reduce energy consumption because
of the low frequency-dependent active power Pd at reduced
processing frequencies, the application will take more time
to complete at low frequencies. As a result, increased total
energy may be consumed because of the prolonged device
active times (due to the frequency-independent active power
Pind). Therefore, considering the system-level power, lower
frequencies may be not be always best for energy saving
and it is shown in [14] that there exists a minimum energy-
efficient voltage/frequency pair. In [17], the energy-efficient
frequency for our power model is given as:

fee = m

√

Pind
(m−1)Ce f

(2)

Hence, it is not energy-efficient to run any task at a
frequency below fee; doing otherwise will result in more
energy consumption. Note that if fee exceeds the maximum
available frequency level fmax, then the system should not
reduce its speed below fmax [18]. In the following discussion,
we use the dynamic power exponent m as 3.

B. Fault Model
During the execution of an application, a fault may occur

due to various reasons, such as hardware failure, software
errors and the effect of electromagnetic interference and
cosmic ray radiations. Since transient faults occur much
more frequently than permanent faults [19], [20], [21], in this
paper, we focus on transient faults, and develop feasible DVS

solutions with a given energy budget to maximize overall
reliability.

Traditionally, transient faults have been modeled through
Poisson distribution with an average arrival rate λ [22]. How-
ever, considering the effects of voltage scaling on transient
faults [7], [8], the average arrival rate λ will depend on the
system processing frequency and supply voltage. Therefore,
the fault rate at frequency f (and its corresponding voltage
level) can be generally modeled as

λ (f) = λ0 ·g(f) (3)

where λ0 is the average fault rate corresponding to the
maximum frequency fmax = 1 (and supply voltage Vmax).
That is, g(fmax) = 1.

In general, transient fault rates are exponentially-related
to the circuit’s critical charge (which is the smallest charge
required to cause a soft error in a circuit node) [23]. In our
analysis and simulations, we focus on the exponential fault
rate model proposed in [8]:

λ (f) = λ0 ·g(f) = λ0 ·10
d(1− f)
1− fmin (4)

where the exponent d (> 0) is a constant, indicating the
sensitivity of fault rates to voltage scaling. That is, reducing
the supply voltage and frequency for energy savings results
in exponentially increased fault rates. The maximum average
fault rate is assumed to be λmax = λ010d , which corresponds
to the lowest frequency fmin (and the supply voltage Vmin).

C. Application Model
In this work, we consider a real-time application that

consists of a set of n independent tasks: T1,T2, ...,Tn. All
tasks in the application should complete their executions
by the common deadline D. Note that, if the application is
periodic, D can also represent the period (or, frame length).

The worst-case execution cycles (WCC) of task Ti is de-
noted by ci. We consider a system with DVS capability where
the clock frequency can vary from a minimum available
frequency fmin to a maximum frequency fmax (normalized
to 1.0). The execution time of task Ti under the frequency
fi is given by ci

fi . The utilization U of the task set is given
as ∑ ci

D· fmax
= ∑ ci

D ; in other words, it corresponds to the load
under maximum frequency.

In our model, each task Ti is allowed to have a different
frequency-independent power figure Pindi , since each task
may require access to different subsets of external devices.
We assume that the system is energy-constrained in the sense
that it has a fixed energy budget E, which is not replenishable
during execution and cannot be exceeded in any interval of
length D.

The reliability of a task is defined as the probability of
completing the task successfully (i.e. without encountering
errors triggered by transient faults) [8], [9], [10]. Assuming
that the transient faults follow a Poisson distribution, the
reliability of the task Ti with its WCC ci is Ri(fi) = e−λ (fi)∗

ci
fi

[8], where fi is its execution frequency and λ (fi) is defined
as in (4). The reliability of a real-time system depends on

634

the correct execution of all tasks in an application [17]. In
our application model, which consists of n tasks, the system
reliability is therefore, R = ∏n

i=1 Ri(fi).

III. RELIABILITY-AWARE DVS: STATIC SOLUTION

In this section, we formalize and optimally solve the prob-
lem of finding task-level frequency assignments to maximize
the system reliability, with a given energy budget E during a
period D. Recall that, the probability of completing the task
Ti without a fault (that is, its reliability) at the processing
frequency fi is Ri(fi) = e−λ (fi)∗

ci
fi , where λ (fi) is given

by (4). Hence, Ri(fi) is a strictly concave and increasing
function of fi.

The total (i.e. frequency-dependent and frequency-
independent) energy consumption of Ti at the frequency fi
can be expressed as [9]:

Ei(fi) = Pindi
ci
fi

+Ce f ci f 2
i (5)

Notice that Ei(fi) is a strictly convex function and is mini-
mized when fi = feei (Section II-A).

Let ϕi(fi) = λ (fi) ·
ci
fi . Our problem can be formally stated

as to find fi (1 ≤ i ≤ n) values so as to maximize:

R =
n

∏
i=1

Ri = e−∑n
i=1 ϕi(fi) (6)

Subject to:
n
∑
i=1

ci
fi
≤ D (7)

n
∑
i=1

Ei(fi) ≤ E (8)

fmin ≤ fi ≤ fmax (1 ≤ i ≤ n) (9)

Above, the inequality (7) corresponds to the deadline con-
straint, while (8) encodes the hard energy constraint. The
constraint set (9) gives the range of feasible frequency
assignments.

Considering the well-known features of the exponential
functions, we can re-express our objective as to minimize

n
∑
i=1

ϕi(fi) (10)

subject to the constraints (7), (8) and (9). In the rest of
the paper, this optimization problem will be called Energy-
Constrained Reliability Management (ECRM) problem.

Now, let Elimit be the minimum energy that must be
allocated to the given task system to allow their completion
before or at the deadline (period boundary) D. Given the
task parameters, Elimit can be computed by the polynomial-
time algorithm developed in [18]. As a by-product, the
same algorithm yields also the optimal task-level frequency
assignments (f l1, f l2, ..., f ln) when the total energy con-
sumption is exactly Elimit . Obviously, if E < Elimit , then
there is no solution to our problem, since the system would
lack the minimum energy needed for timely completion.

Also, let Emax = ∑n
i=1 Ei(fmax) be the energy consumption

of the task set when all tasks run at fmax. As another
boundary condition, when E ≥ Emax, executing all tasks
at the maximum frequency is the optimal solution (since
Ri(fi) is monotonically increasing with fi and the system
has sufficient energy to run at fmax continuously). Therefore,
in the remaining of the paper, we will focus exclusively on
settings where Elimit ≤ E < Emax.

Lemma 1: In the optimal solution to ECRM, ∀i fi ≥ feei ,
where feei = (

Pindi
2Ce f

)
1
3 is the energy-efficient frequency for Ti.

Proof: This follows from the observation that executing
Ti at a speed lower than feei would result in more energy
consumption for Ti (Section II.A). As a result, if a task were
to execute at a speed lower than feei in the optimal solution,
then increasing its speed to feei would actually decrease its
energy consumption (still satisfying (8)) and increase the
overall reliability considering the positive impact of higher
speeds on task reliability – giving a contradiction.
Thanks to Lemma 1, the constraint (9) can be re-written as:

flowi ≤ fi ≤ fmax (1 ≤ i ≤ n) (11)

where flowi is max(fmin, feei).
Lemma 2: If Elimit ≤ E < Emax, in the optimal solution

to ECRM, the total energy consumption ∑n
i=1 Ei(fi) must be

exactly equal to E.
Proof: Assume that the statement is false. Since E <

Emax by assumption, there must be a speed fi < fmax. In this
case, it should be possible to increase fi by ε > 0 such that
(fi + ε) ≤ fmax and ∑ j 6=i E j(f j)+ Ei(fi + ε) ≤ E. It is clear
that the deadline and energy constraints are still satisfied
after this modification. Further, the overall system reliability
has obviously improved, due to the execution of Ti at a speed
higher than fi. Thus, the proposed solution cannot be optimal
and we reach a contradiction.
Lemma 2 allows us to conclude that if Elimit ≤ E < Emax,
then we can re-write the constraint (8) as an equality.

n
∑
i=1

Ei(fi) = E (12)

Consequently, we obtain a new non-linear (convex) opti-
mization problem ECRM’, defined as to find fi (1 ≤ i ≤ n)
values so as to minimize:

n
∑
i=1

ϕi(fi) (13)

Subject to:
n
∑
i=1

ci
fi
≤ D (14)

n
∑
i=1

Ei(fi) = E (15)

flowi ≤ fi ≤ fmax (1 ≤ i ≤ n) (16)
The problem ECRM’ can be solved, for instance, by

Quasi-Newton techniques developed for constrained non-
linear optimization [24]. The technique exploits the well-
known Kuhn-Tucker optimality conditions for non-linear

635

programs [25] in an iterative fashion by transforming the
original problem to a quadratic programming problem [24].
A theoretical complication with this approach is that it is
practically impossible to express the maximum number of
iterations as a function of the number of unknowns which,
in this case, corresponds to the number of tasks n. However,
in our experience, the algorithm is rather fast: for instance on
a 1 GHz CPU with 1 GB memory, our implementation was
able to return the optimal solution in less than 1.8 seconds
even for task sets with 1000 tasks.

However, we also developed a heuristic algorithm that
runs in polynomial-time. This algorithm, named ECRM-
LU, satisfies the deadline, energy and frequency range con-
straints. Further, it yields solutions that are extremely close
to the optimal solution. ECRM-LU proceeds as follows.
We temporarily ignore the deadline constraint (14) and
solve the problem ECRM’ only by considering the energy
constraint (15) and frequency range constraints (16). Notice
that, by excluding the deadline constraint, the problem is
transformed to a separable convex optimization problem with
n unknowns, 2n inequality constraints and a single equality
constraint. This problem, in turn, can be solved in time O(n3)
through iteratively manipulating the Kuhn-Tucker optimality
conditions in a way similar to the technique illustrated in
algorithm given in [18]. Now, if this solution satisfies also
the deadline constraint (14), obviously, it is also the solution
to ECRM’. Otherwise, we re-write the constraint set (16) as:

f li ≤ fi ≤ fmax (1 ≤ i ≤ n) (17)

where f li is the frequency assignment to task Ti in the
solution where all tasks complete at exactly D and with
energy allocation Elimit . Recall that { f li} values can be also
computed in time O(n3). By enforcing the constraint set
(17), we make sure that the final speed assignments satisfy
also the deadline constraint. Once again, this version of the
problem where the deadline constraint is handled implicitly
by enforcing the lower bounds on frequency assignments can
be solved in time O(n3). Hence, the overall time complexity
of ECRM-LU is also O(n3). Interestingly, our extensive
simulation studies show that ECRM-LU performs very well
compared to the optimal solution through the almost entire
spectrum: the reliability figures yielded by ECRM-LU are
close to the optimal one by a margin of 0.03%, when

E
Elimit

≥ 1.02. In a tiny portion of the interval where 1.0 ≤
E

Elimit
< 1.02, we observed a difference of at most 1%.

IV. DYNAMIC RELIABILITY-AWARE SCHEDULING

The static solution presented in the previous section is
optimal under the assumption that all tasks will present their
worst-case workload (i.e. their WCCs). While provisioning
for worst-case scenarios is imperative in real-time systems,
in practice, many real-time tasks complete early without
consuming their WCCs. In fact, numerous DVS studies pub-
lished in recent past were based on detecting and reclaiming
unused CPU time (i.e. the dynamic slack) to enhance energy
savings by reducing the processing frequency at run-time

[3], [26], [27], [5]. A similar opportunity exists here: the
excess energy that arises from early completions of tasks,
can be used to increase the speeds of tasks at run-time, to
improve the system reliability. Clearly, utmost care must be
exercised to make sure that the system remain within its
energy allowance (budget), before making such adjustments.

In this section, we develop on-line (dynamic) reliability-
aware schemes for reclaiming the excess energy at run-time.
In the following algorithms, we assume that n tasks in the
real-time embedded application are executed in the order
T1,T2, ...,Tn. The three dynamic algorithms that we developed
are:

• BR: dynamic basic reclaiming algorithm. In this solu-
tion, an initial speed assignment is made by solving
the static problem presented in the preceding section,
assuming worst-case workload for each task. However,
at task completion points, the excess energy that may
be available (due to early completions) is effectively
re-cycled within the system: a new speed (frequency)
assignment is made for the remaining tasks by consid-
ering the remaining (updated) energy budget and time
to deadline. This new assignment is again obtained by
invoking our optimal solution to the problem ECRM.

• GRE: dynamic greedy algorithm. Although BR satisfies
the energy and deadline constraints, it is pessimistic in
the sense that it assumes WCCs for all tasks when re-
distributing the excess energy. An alternative approach
may be to allocate the excess energy entirely to the
next task1 Tnext at task completion points, relying on
the fact that Tnext is also likely to complete early and
release excess energy for the use of the remaining
tasks. In the mean time, the reliability of Tnext will
be significantly improved due to execution at higher
speeds. GRE still preserves feasibility in terms of timing
and energy constraints: compared to the initial static
solution obtained by ECRM, the task speeds never
decrease (guaranteeing the timely completion) and only
the excess energy that is obtained at run-time is re-
assigned.

• AGR: dynamic aggressive algorithm. This scheme rep-
resents the most speculative solution, in the sense that it
counts on probable early completions before execution,
and makes speed assignments accordingly. The main
idea is to aggressively give sufficient energy to the
current task by still leaving minimum required energy
for the tasks to follow, based on their WCCs. It is
speculative, because under a worst-case scenario (where
most of the tasks present high workload), many tasks
in the chain would be forced to execute at low speeds
to guarantee the completion within the energy budget,
significantly lowering the overall reliability. However, in
settings where the actual workload is likely to deviate
from the worst-case with high probability, this strategy

1Note that if the next task cannot be assigned the entire excess energy
due to the maximum frequency limitations, then the following task(s) will
be able to reclaim energy at the next task completion points.

636

will (and, as we show in the performance evaluation
section, does) pay off. Specifically, AGR is implemented
through the following steps: First, Elimit (which is de-
fined as the minimum energy needed to complete all
the tasks by their deadline (Section III)) is computed.
Next, a speed assignment (f l1, f l2, . . . , f ln) based on
WCCs of all tasks but with energy allocation equal to
Elimit is computed. T2, . . . ,Tn are tentatively assigned the
frequencies (f l2, . . . , f ln) and their energy consumption
with these assignments and WCCs (Ereserve) are evalu-
ated. Then, the entire remaining energy (i.e. E−Ereserve)
is allocated to the first task T1, allowing it to execute
as fast as possible within the given constraints. At
task completion points, the above steps are repeated by
considering the early completions and actual remaining
energy for remaining tasks. The fact that this solution
preserves the energy and deadline constraints follows
from the properties of the speed assignments that cor-
responds to Elimit , which corresponds to the minimum
energy needed for a feasible solution.

V. SIMULATION RESULTS AND DISCUSSION

To evaluate the performance of our dynamic algorithms
under varying workload conditions, we designed a discrete-
event simulator in C. In our simulator, we implemented five
schemes:

• The static scheme which computes the processing fre-
quencies using the optimal solution to problem ECRM
assuming the worst-case workload for each task. Static
does not use any on-line component in the sense that
no dynamic speed adjustment is performed, regardless
of the actual workload.

• The basic reclaiming scheme (BR), that re-allocates
unused energy at task completion points, by re-invoking
the algorithm to optimally solve the problem ECRM for
the remaining tasks.

• The greedy reclaiming scheme (GRE), that re-allocates
unused energy entirely to the next task whenever pos-
sible, at task completion points.

• The aggressive scheme (AGR), that aggressively allo-
cates the maximum possible amount of energy for the
current task, while still leaving a minimal energy for
the remaining tasks to allow timely completion.

• The clairvoyant scheme (Bound), that knows the actual
workload of each task in advance and computes the
optimal speed assignments to maximize the reliability
by solving the problem ECRM accordingly. Obviously,
Bound is not a practical scheme (since it assumes the
knowledge of the actual workload in advance); however,
it characterizes the upper bound on the performance of
any static or dynamic algorithm.

We considered task sets with 8 tasks, with the frame/period
length of D = 1000. The total utilization (U) of each task set
under maximum frequency is varied from 0.2 to 1.0 (full
load). The worst-case number of cycles (WCC) of each task
is randomly generated. To model the variations in the actual

workload, we use the ratio ACC
WCC , which denotes the ratio of

the average-case number of cycles (ACC) to the worst-case
number of cycles. The lower this ratio, the more the actual
workload deviates from the worst-case. For each task set
and utilization value, ACC

WCC is changed from 0.2 to 1.0. The
actual number of cycles of each task is generated randomly,
using normal distribution with mean ACC. For each point in
the graphs, 1000 task sets are used and the results that are
shown are the average of all runs.

We model a DVS-enabled CPU where the normalized pro-
cessing frequencies can change from fmin = 0.1 to fmax = 1.0.
We use a cubic frequency-dependent power component Pd
which is equal to unity at fmax. The frequency-independent
power component Pind for each task is normalized with
respect to Pd and is generated according to uniform distri-
bution in the range [0,2]. To analyze the impact of system’s
energy budget E on the performance, we varied E from Elimit
(minimum energy needed to meet the deadline, see Section
III) to Emax (energy consumption at fmax). The ratio E

Elimit
shown in the plots, is a measure of the available energy in
the system; for example, when E

Elimit
= 1.2 the system has

20% more energy than the minimum needed to meet the
deadline. We assume that the transient faults’ occurrence is
determined by Poisson distribution and given by Equation
(4), where λ0 = 10−9 and d = 3.

Fig. 1 shows the relationship between the probability of
failure when ACC

WCC = 0.5 and U = 0.4. As expected, the
probability of failure (defined as 1− reliability) generally
decreases with increasing energy budget (E

Elimit
ratio), since

more energy enables the system to use higher processing
speeds with improved reliability. The clairvoyant Bound
scheme achieves a constant probability of failure, because
even when E/Elimit = 1, all tasks can be executed at fmax
thanks to a priori knowledge of actual execution times,
which are, on the average, half of the worst-case in these
experiments – since processing speeds beyond fmax are not
available, giving more energy to Bound does not further help.
We observe that, among the other schemes, the static scheme
(which does not perform any dynamic energy reclamation)
performs worst and AGR is the best, with very close perfor-
mance to Bound when (E

Elimit
> 1.2). This result indicates that

aggressively giving maximum energy to the tasks that will
execute early typically pays off in these settings, since these
tasks are also likely to generate excess energy due to early
completions, which can be allocated to the later tasks. BR is
a little worse than GRE; but both perform consistently better
than Static, verifying the benefits of dynamic reclaiming.
Observe that once the available energy is 30% or more
compared to Elimit , all dynamic schemes perform almost the
same.

Fig. 2 illustrates how the probability of failure changes as
a function of task utilization U , for ACC

WCC = 0.5 and E/Elimit =
1.15. Again, the relative ordering of the schemes remains the
same. However, we observe an interesting phenomenon: as
we increase the utilization towards the range of 0.5−0.6, the
probability of failure first increases. After that threshold, it
starts to decrease. This pattern can be explained as follows:

637

 1e-07

 1e-06

 1e-05

 0.0001

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Th
e

pr
ob

ab
ilit

y
of

 fa
ilu

re

E/Elimit

Static
BR

GRE
AGR

Bound

Fig. 1. The probability of failure vs. E/Elimit with ACC
WCC = 0.5 and U = 0.4

 1e-07

 1e-06

 1e-05

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Th
e

pr
ob

ab
ilit

y
of

 fa
ilu

re

Utilization

Static
BR

GRE
AGR

Bound

Fig. 2. The probability of failure vs. utilization(U) with ACC
WCC = 0.5 and

E/Elimit = 1.15

increasing the utilization has direct effects on two impor-
tant factors on system reliability, but in reverse directions:
first, increasing the utilization results in increased execution
times, which means increased probability of being subject
to transient faults (under comparable fault rates). In fact, as
U approaches 0.5, this factor dominates and the probability
of failure increases. However, higher utilization values force
the system to adopt higher frequencies in order to meet the
deadline and the positive impact of this on reducing the fault
rates becomes the primary factor after a certain point. In fact,
after U = 0.8, all tasks are executed at speeds close to fmax
and then the probability of failure drops sharply to a minimal
value.

Fig. 3 shows the impact of the variability in the actual
workload (i.e. the ACC

WCC ratio) on the probability of failure,
with E/Elimit = 1.2 and U = 0.4. In general, we find that
the probability of failure increases with the increased ratio
of ACC

WCC . This is to be expected, because with the increased
ratio of ACC

WCC , at run-time, tasks execute longer and they are
subject to transient faults with higher probabilities. However,
observe that the dynamic schemes are able to significantly
reduce the probability of failure compared to Static thanks
to online reclaiming features, especially at low ACC

WCC ratios.
When ACC

WCC = 1.0, the probabilities of failure of Static, BR
and GRE converge to that of Bound, since there are no
early completions or excess energy at run-time. But, it is
interesting to note that the probability of failure of AGR

 1e-07

 1e-06

 1e-05

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Th
e

pr
ob

ab
ilit

y
of

 fa
ilu

re

ACC/WCC

Static
BR

GRE
AGR

Bound

Fig. 3. The probability of failure vs. the ACC
WCC ratio with U = 0.4 and

E/Elimit = 1.2

 1
 1.05

 1.1
 1.15

 1.2
 1.25

 1.3
 1.35

 1.4

 1e-07 1e-06 1e-05 0.0001

Re
qu

ire
d

E/
E l

im
it r

at
io

The acceptable probability of failure

Static
BR

GRE
AGR

Fig. 4. The acceptable probability of failure vs. the required E/Elimit ratio

is slightly higher at that point. This is because, when all
tasks take their WCC, the expected early completions do not
occur, while the aggressive nature of AGR still forces the
later tasks to execute at relatively low speeds, causing a loss
in reliability.

These patterns can be also used to establish guidelines
for system designers who need to figure out the minimum
amount of energy supply that must be provided to the system,
to achieve a certain target probability of failure. Fig. 4
establishes these thresholds for ACC

WCC = 0.5 and U = 0.4.
For example, the figure suggests that 15% additional energy
(beyond Elimit) must be provided to the system to achieve
a probability of failure of 10−6, if Static is the scheme to
be used. However, if dynamic schemes (e.g. BR or GRE)
are available, then 7% additional energy is sufficient. It
is also worthwhile to note that the difference between the
schemes becomes very important at low values for the target
probability of failure (e.g. smaller than 10−6); indicating that
in safety- or time-critical applications, the available energy
budget may be a prime factor for the achievable reliability.

VI. CONCLUSIONS

In this paper, we considered a real-time application con-
sisting of multiple tasks and showed how to compute energy
allocations (which translate to frequency assignments) to
maximize overall reliability, while considering a hard en-
ergy constraint. Both static optimal and on-line (dynamic)

638

schemes are developed in this paper. Our simulation results
indicate that our algorithms perform comparably to a clair-
voyant optimal scheduler that knows the exact workload in
advance. To the best of our knowledge, this problem was not
addressed in the research literature in the past.

In the past DVS research, it has been shown [28] that
executing tasks in different orders may give rise to different
energy savings, because of the different workload variability
exhibited by tasks. In a similar vein, it is likely that the
execution order will also have an impact on overall reliability,
in dynamic settings. We will consider this as a future research
direction.

REFERENCES

[1] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced cpu energy,” Proceedings of the 1st USENIX conference on
Operating Systems Design and Implementation (OSDI’94), 1994.

[2] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
cpu energy,” Proceedings of the 36th Annual Symposium on Founda-
tions of Computer Science (FOCS’95), 1995.

[3] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez, “Dynamic
and aggressive power-aware scheduling techniques for real-time sys-
tems,” Proceedings of the 22th IEEE Real-Time Systems Symposium
(RTSS’01), 2001.

[4] D. Mossé, H. Aydin, B. R. Childers, and R. Melhem, “Compiler-
assisted dynamic power-aware scheduling for real-time applications,”
Proceedings of Workshop on Compiler and OS for Low Power, 2000.

[5] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for
lowpower embedded operating systems,” Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP’01), 2001.

[6] S. Saewong and R. Rajkumar, “Practical voltage scaling for fixed
priority rt-systems,” Proceedings of the 9th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’03), 2003.

[7] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,
and K. Flautner, “Razor: circuit-level correction of timing errors for
low-power operation,” IEEE Micro, vol. 24, no. 6, pp. 10–20, 2004.

[8] D. Zhu, R. Melhem, and D. Mossé, “The effects of energy manage-
ment on reliability in real-time embedded systems,” Proceedings of
the IEEE/ACM International Conference on Computer Aided Design
(ICCAD’04), 2004.

[9] D. Zhu, “Reliability-aware dynamic energy management in dependable
embedded real-time systems,” Proceedings of the IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’06), 2006.

[10] D. Zhu and H. Aydin, “Energy management for real-time embedded
systems with reliability requirements,” Proceedings of the IEEE/ACM
International Conference on Computer Aided Design (ICCAD’06),
2006.

[11] ——, “Reliability-aware energy management for periodic real-time
tasks,” Proceedings of the IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’07), 2007.

[12] T. Pering, T. Burd, and R. Brodersen, “The simulation and evalua-
tion of dynamic power-aware scheduling for real-time applications,”
Proceedings of the 2000 International Symposium on Low Power
Electronics and Design (ISLPLED’00), 2000.

[13] T. Burd and R. Brodersen, “Energy efficient cmos microprocessor
design,” Proceedings of the 28th Hawaii International Conference on
System Sciences (HICSS’95), 1995.

[14] X. Fan, C. Ellis, and A. Lebeck, “The synergy between power-aware
memory systems and processor voltage,” Proceedings of Workshop on
Power-Aware Computer Systems (PACS’03), 2003.

[15] “Mobile pentium iii processor-m datasheet,” Order Number: 298340-
002,Oct 2001.

[16] E. M. Elnozahy, M. Kistler, and R. Rajamony, “Energy-efficient
server clusters,” Proceedings of Workshop on Power-Aware Computer
Systems (PACS’02), 2002.

[17] D. Zhu, R. Melhem, D. Mossé, and E. Elnozahy, “Analysis of an
energy efficient optimistic tmr scheme,” Proccedings of International
Conference on Parallel and Distributed Systems (ICPADS’04), 2004.

[18] H. Aydin, V. Devadas, and D. Zhu, “System-level energy management
for periodic real-time tasks,” Proceedings of the 27th IEEE Real-Time
Systems Symposium (RTSS’06), 2006.

[19] X. Castillo, S. McConnel, and D. Siewiorek, “Derivation and calibra-
tion of a transient error reliability model.” IEEE Trans. on Computers,
vol. 31, no. 7, pp. 658–671, 1982.

[20] R. K. Iyer and D. J. Rossetti, “A measurement-based model for
workload dependence of cpu errors,” IEEE Trans. on Computers,
vol. 33, pp. 518–528, 1984.

[21] R. K. Iyer, D. J. Rossetti, and M. Hsueh, “Measurement and modeling
of computer reliability as affected by system activity,” ACM Trans. on
Computer Systems, vol. 4, no. 3, pp. 214–237, Aug. 1986.

[22] Y. Zhang and K. Chakrabarty, “Energy-aware adaptive checkpointing
in embedded real-time systems,” Proceedings of Design, Automation
and Test in Europe (DATE’03), 2003.

[23] P. Hazucha and C. Svensson, “Impact of cmos technology scaling
on the atmospheric neutron soft error rate,” IEEE Trans. on Nuclear
Science, vol. 47, no. 6, pp. 2586–2594, 2000.

[24] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, “Nonlinear program-
ming: Theory and algorithms (third edition),” A John Wiley and Sons,
INC., pp. 576–585, 2005.

[25] D. Luenberger, “Linear and nonlinear programming,” Addison- Wesley,
Reading Massachusetts, 1984.

[26] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez, “Power-
aware scheduling for periodic real-time tasks,” IEEE Transactions on
Computers, vol. 53, no. 10, pp. 584–600, 2004.

[27] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage
and frequency scaling for precise energy and performance trade-off
based on the ratio of off-chip access to on-chip computation times,”
Proceedings of Design, Automation and Test in Europe (DATE’04),
2004.

[28] F. Gruian and K. Kuchcinski, “Uncertainty-based scheduling: energy-
efficient ordering for tasks with variable execution time,” Proceedings
of the 2003 International Symposium on Low Power Electronics and
Design (ISLPED’03), 2003.

639

