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Abstract—In this paper, we present an energy-aware standby-
sparing technique for periodic real-time applications. A standby-
sparing system consists of a primary processor where the
application tasks are executed using Dynamic Voltage Scaling
(DVS) to save energy, and a spare processor where the backup

tasks are executed at maximum voltage/frequency, should there
be a need. In our framework, we employ Earliest-Deadline-First
(EDF) and Earliest-Deadline-Late (EDL) scheduling policies on
the primary and spare CPUs, respectively. The use of EDL
on the spare CPU allows delaying the backup tasks on the
spare CPU as much as possible, enabling energy savings. We
develop static and dynamic algorithms based on these principles,
and evaluate their performance experimentally. Our simulation
results show significant energy savings compared to existing
reliability-aware power management (RAPM) techniques for
most execution scenarios.
Index Terms—Energy Management, Real-Time Systems, Relia-

bility, Dynamic Voltage Scaling, Standby-Sparing, EDF Schedul-
ing.

I. INTRODUCTION

Energy management is a frequent design concern for real-

time embedded systems. Dynamic Voltage Scaling (DVS) is

a widely studied technique to reduce energy consumption,

involving simultaneous scaling of the CPU supply voltage

and frequency [1]. Another approach is Dynamic Power Man-

agement (DPM), where the system components are put to

idle/sleep states when they are not in use [2]. The real-time

execution semantics mandate that the timing constraints (the

feasibility requirement) be met at run-time even when task

response times may increase as a consequence of the energy

management techniques [3].

In addition to feasibility and energy management, reliability

and fault tolerance are other important objectives for real-

time embedded systems. Computer systems are subject to

different types of faults [4]. Faults may occur at runtime due to

various reasons, including hardware defects, electromagnetic

interference, and cosmic ray radiations. Permanent faults may

bring a system component (e.g. the processor) to halt and can-

not be tolerated without some form of hardware redundancy.

Transient faults, on the other hand, are not persistent – they are

often triggered by electromagnetic interference and cosmic ray

radiations and disappear within a short time interval. Transient

faults are known to occur more frequently [5], [6] and they

raise growing concerns with the increase of component density

in the CMOS circuits [7]. Restoring the system to a previous

safe state and repeating the computation is a common approach

to deal with the transient faults [4], [8].

Recent research suggests that the transient fault rates in-

crease significantly in systems where the supply voltage is

scaled down to save energy [7], [9]. As a result, a number of

energy management techniques that also consider reliability

were recently proposed [10]–[13]. These works, generally

called as the Reliability-Aware Power Management (RAPM)

framework, use time-redundancy for both DVS and reliability

preservation. RAPM techniques generally assume that the sys-

tem’s original reliability, which is defined as the probability of

completing all tasks successfully (without incurring transient

faults), is acceptable when all the tasks are executed at the

maximum CPU frequency. Hence, existing RAPM techniques

schedule a separate recovery job for every job that has been

slowed (scaled) down. The recovery job is executed only when

the corresponding scaled job incurs a transient fault, and at

the maximum frequency [13]. It is known that this approach

yields a reliability level which is no less than the system’s

original reliability, thereby preserving that level [13]. Most of

the existing RAPM techniques are developed for single CPU

systems and target preservation of the reliability only with

respect to transient faults. As a result, they cannot address

permanent faults that can effect the CPU. In addition, due to

the need to schedule a separate recovery job for every scaled

job on a single CPU, these techniques cannot handle large

tasks with utilization greater than 50% (i.e. those tasks have to

run at the maximum frequency). Very recently, a technique that

explored application of the RAPM on multiprocessor systems

in conjunction with global scheduling techniques (allowing

migration) has been proposed in [14].

In recent work, Ejlali et al. [15] proposed a novel technique

for co-management of energy and reliability in the form of

a standby-sparing system. The solution combines hardware

redundancy with DVS to save energy while preserving the

system’s original reliability and offer opportunities to tolerate

permanent processor faults. Specifically, the technique deploys

two processors, named primary and spare, respectively. The

application tasks are executed on the primary processor using

DVS. The spare does not use DVS and is reserved for execut-

ing backup tasks, if needed. Upon the successful completion of
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a primary task, the corresponding backup task is cancelled and

excessive energy consumption is avoided. However, should

the primary task fail, the backup runs to completion at the

maximum frequency. Hence, the solution statically constructs

the schedule on the spare CPU to delay the backups as much

as possible to minimize the overlap between the primary and

backup copies of the same task. The technique is also based

on the observation that many real-time jobs complete early in

actual executions [3], [13], [16], [17] and hence the backups

are often cancelled without even starting to execute – this

helps to improve the energy savings. In addition, more static

and dynamic slack for slow-down is available on the primary

processor where no CPU time is reserved for recovery.

Despite these innovative aspects, the solution presented in

[15] has some important limitations. First, it is limited to non-

preemptive and aperiodic jobs for which a static schedule on

a single processor is already given. Then starting from the

latest deadline and moving backward, the latest time to initiate

backup task on the spare, and the speed for the primary task,

are determined in a mechanical way. However, most of the

real-time applications on embedded devices are periodic in

nature and these techniques are not directly applicable for a

wide-spectrum of scenarios. In particular, for periodic applica-

tions that are invoked repetitively, it is not trivial to determine

the latest time for initiating the corresponding backup tasks

in the absence of a finite-horizon schedule that can be easily

determined for aperiodic jobs. Second, periodic applications

are often executed by preemptive scheduling policies as non-

preemptive execution may result in arbitrarily low system

utilization [18]. In preemptive execution settings, the greedy

speed assignment technique of [15] cannot be readily applied.

The main contribution of this paper is the proposal for

a standby-sparing solution in energy-aware scheduling of

preemptive periodic real-time applications. By considering a

general system-level power model, we show how the schedules

on both CPUs and the frequency assignments for the primary

tasks can be determined for periodic preemptive executions.

Specifically, we apply the Earliest-Deadline-First (EDF) pol-

icy on the primary CPU with DVS, while the backups are

executed on the spare CPU according to the EDL (Earliest-

Deadline-Late) policy [19]. Both EDF and EDL assign pri-

orities based on the job deadlines, however EDL delays the

jobs as much as possible to obtain idle intervals as early as

possible in the schedule [19]. We use this important feature of

EDL to postpone the execution of backups on the spare CPU

and to determine the frequency assignment efficiently for the

primary at job dispatch times.

Due to its dual-CPU structure, our solution can withstand

the permanent fault of a single CPU. Also, since the backups

execute without voltage scaling, the system’s original relia-

bility (in terms of resilience with respect to transient faults)

is preserved [13]. Finally, the joint use of EDF and EDL on

the primary and secondary CPUs allows us to minimize the

overlap between the two copies at run-time and reduce the

energy cost due to the backup executions. Based on these prin-

ciples, we present two variants, Aggressive Standby-Sparing

Technique (ASSPT) and Conservative Standby-Sparing Tech-

nique (CSSPT), that differ on the way they use the available

slack at run-time for frequency assignment. Our experimental

evaluation underlines energy savings potential of our solutions,

in addition to their clear benefits on the reliability side.

The rest of this paper is organized as follows. Section II

presents our system model. Section III introduces the neces-

sary background information for reliability-aware and standby-

sparing scheduling frameworks, as well as the main principles

of our approach. Section IV provides the details of our

solution. In Section V, we evaluate the energy consumption

of our algorithms for various settings. Concluding remarks are

provided in Section VI.

II. SYSTEM MODEL

We consider a set of periodic real-time tasks Ψ =
{T1, ..., Tm}. Each periodic task Ti has worst-case execution

time ci under the maximum CPU frequency, and the period pi.
The hyperperiod H is defined as the least common multiple

of task periods p1, . . . , pn. The relative deadline of task Ti is

assumed to be equal to its period. The jth job of Ti, denoted

as Jij , arrives at time (j−1)·pi and has a deadline of j ·pi. The

utilization of a task Ti, ui, is defined as ci

pi

. The total utilization

Utot is the sum of all the individual task utilizations.

We consider a standby-sparing system that consists of a

primary CPU and a spare CPU [4], [15]. The main copy of

each job Jij runs on the primary CPU, which is assumed

to have the DVS capability, while the backup copy, denoted

by Bij , runs on the spare CPU without any voltage scaling

(i.e. at the maximum frequency). The frequency f of the

primary CPU is adjustable up to a maximum frequency fmax.

We normalize all frequency values with respect to fmax,

i.e. fmax = 1.0. A job Jij may take up to ci

f
time units when

executed at frequency f . Note that the backup Bij takes at

most ci time units since it is executed without voltage scaling.

We adopt a system-level power model used in previous

reliability-aware power management research [13]. Specifi-

cally, the power consumption consists of a static and a dynamic

component. The static power, Ps, is dominated by the leakage

current of the system. The dynamic power Pd includes a

frequency-dependent power component Pdep, and a frequency-

independent power component Pind, driven by the modules

such as memory and I/O subsystem in the active state.

P = Ps + Pd (1)

Pd = Pind + Pdep (2)

The frequency-dependent component Pdep of the power con-

sumption can be expressed as:

Pdep = Ce · V
2

dd · f (3)

where, Ce is the system’s effective switching capacitance. The

processor supply voltage Vdd has an almost linear relationship

with frequency f . Therefore, Equation (3) can be rewritten as,

Pdep = Ce · f
3 (4)
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Fig. 1. Static power management for a single task

The energy consumption of a processor from t = t1 to

t = t2 is defined as
∫ t2

t1
P (t)dt where P (t) is the power

consumption at time t. As in [13], we assume that due to

periodic execution settings, turning on and off the system at

run-time is not feasible, hence the static power Ps is not man-

ageable. Hence, our solutions focus on managing the dynamic

power Pd. Existing research indicates that arbitrarily slowing

down a task is not always energy-efficient [20]–[22], due to

the existence of the frequency-independent dynamic power

Pind. In other words, there exists a processing frequency below

which the total energy consumption of a task increases. This

frequency is called the energy-efficient speed (fee) and it can

be computed analytically in advance [9], [21].

At job completion times, an acceptance (or, consistency) test

is performed to determine the occurrence of transient faults [4].

If a fault is detected, we can still continue with the backup job

on the spare CPU. Otherwise we can immediately cancel or

terminate the backup task. The cost of running the acceptance

test is assumed to be included in the worst-case execution time

of jobs [13].

III. PRELIMINARIES

In this section, we first present the fundamentals and

a comparison of RAPM and energy-aware standby-sparing

techniques on a simple example with a single job. Then, we

introduce the main principles and mechanism of our solution

for general preemptive periodic tasks.

Consider a single job J1 with deadline D = 10 ms and

worst-case execution time of c = 4 ms under fmax. Assuming

fee < 0.4, we observe that we can maximize energy savings

by executing the job at f = 0.4 as shown in Fig. 1. Using

the parameters from [9], [13] by setting the transient fault rate

at fmax to λ0 = 10−7, and fault rate sensitivity to voltage

scaling d = 2, we can compute the probability of failure

(defined as 1 - reliability) as 2.15 × 10−8 which represents

a reliability degradation of two orders of magnitude compared

to the original probability of failure figure of 4× 10−10.

To preserve the original reliability while applying DVS,

RAPM schedules a recovery job before the deadline when

scaling down the job [13]. The recovery job is executed only

when a transient fault is detected at the end of J1. Given the

low probability of occurrence of transient faults, only 4 ms

of CPU time is reserved for recovery, implying that it may be

executed at fmax if needed. Consequently, the execution of J1

is slowed down only to f = 4

6
= 0.66 in the RAPM solution.

[13] indicates that this solution is guaranteed to preserve the

original reliability of the job.

Despite this important feature, a number of observations are

in order. First, tasks with utilization larger than 50% cannot

J1
Recovery

D=1060

Fig. 2. RAPM for a single task

D=1060

J1

Backup cancelled

Early completion

7

0 7 D=10Primary CPU

Spare CPU

B 1

Fig. 3. Standby-sparing system for a single task

be managed by RAPM, since it is not possible to assign a

full and separate recovery to such jobs. Even for small tasks,

reserving recovery time on a single CPU system affects the

slow-down and energy savings prospects. Second, by its very

nature, RAPM cannot be used to withstand the permanent fault

of the single CPU.

The standby-sparing technique [15] is an alternative with

some interesting features. As seen in Fig. 3, the technique

uses two processors, effectively with the potential of tolerating

the permanent fault of a single CPU. The first (primary)

processor executes the job J1 at f = 0.4; and the second

(spare) processor is used to execute the backup job B1.

By executing B1, if needed, at the maximum frequency the

technique preserves the original reliability as RAPM does.

Moreover, observe that the start time of B1 is delayed as much

as possible to minimize the overlap with the primary. This is

very helpful for saving energy, since if/when J1 completes

successfully without presenting its worst-case workload (as

shown by the completion of J1 at t = 7 in Fig. 3), the backup

can be immediately cancelled.

In [15], the authors assumed that a static schedule from

t = 0 to the latest deadline is already given for a set of

aperiodic jobs that are executed in non-preemptive fashion.

This assumption allows determining the scaled frequency on

the primary at each job dispatch time through a greedy

technique. However, for periodic tasks that may generate large

number of jobs executed by a dynamic-priority event-driven

policy such as EDF, and that may be subject to preemptions

at arbitrary times, this technique is not directly applicable.

As to the potential of the standby-sparing technique for

preemptive periodic applications, consider the execution of

two periodic tasks T1 and T2. The period and worst-case

execution time of T1 are given by 20 and 8, respectively.

Similarly, the period and worst-case execution time of T2 are

given by 50 and 20, respectively. The total utilization of the

task set is 0.8 and the well-known results [3], [17] suggest

that the tasks can be executed at f = 0.8 to save energy while
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Fig. 4. Standby-sparing system for periodic tasks
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Fig. 5. Taking advantage of early completions (fault-free execution)

meeting all the deadlines by the preemptive Earliest-Deadline-

First (EDF) policy during the hyperperiod H = 100, which is

the least common multiple of p1 and p2.

In fact, this is precisely the solution adopted for the primary

CPU, as shown on the top schedule of Fig. 4. Note that there

are 5 jobs of T1 and 2 jobs of T2 within the hyperperiod. The

schedule at the bottom of Fig. 4 shows the solution for the

spare CPU. Observe that there is a separate backup job Bij
corresponding to each primary job Jij . Moreover, the backup

jobs are delayed as much as possible, and occasionally are

preempted themselves, on the spare CPU. We will shortly

discuss how to obtain this ideal “delayed” schedule on the

spare. As discussed previously, such a delayed execution

pattern is very useful as the backups can be cancelled as

soon as the corresponding primaries complete at run-time

successfully.

The benefits of this approach are further emphasized by

the potential of early completions on the primary: Figure 5

shows a fault-free scenario, where tasks complete early. We

observe that the backup tasks can be avoided entirely in many

scenarios. For instance, J11 completes early at time 5. Since

B11 was scheduled to start at time 12, it can be cancelled

without even starting. As a result, the primary immediately

dispatches J21. J21 is preempted at time 20, but its backup is

still dispatched at t = 22, its scheduled startup time. When J21

completes early at t = 30, we can cancel the remaining part of

the backup task, B21, immediately. The rest of the schedules,

which contain other early completions, can be easily followed.

Comparing the schedules of the spare CPU on Fig. 4 and 5,

we note that only two backup jobs (out of seven) are partially

executed during the actual execution with early completions.

Note that early completions give also potential for dynamic

reclaiming [3] on the primary CPU; we will explain in the

next section how our technique benefits from this dimension

as well.

Now we focus on how to determine the schedule on the

spare CPU in a compact way. In one of the influential studies,

Chetto et al. investigated some important properties of periodic

real-time schedules when priorities are assigned according to

the deadlines (the smaller the deadline, the higher the priority)

[19]. They distinguished between the traditional EDF (called

EDS in [19]) that executes ready tasks as soon as possible,

and a variant, called Earliest Deadline Late (EDL), that delays

the tasks as much as possible while preserving feasibility. An

important advantage of EDL is the fact that it creates idle

intervals early in the schedule by delaying periodic tasks.

This feature has been exploited for various purposes in the

literature; for example, to execute soft real-time jobs as soon

as possible without compromising the timeliness of periodic

hard real-time tasks [18]. Both EDF and EDL are “optimal” in

the sense that all real-time jobs can meet their deadlines under

each preemptive policy whenever it is possible to do so.

To compute the idle intervals for any schedule S for a task

set ψ, an availability function δ is defined as follows.

δSψ(t) =

{

1 if the processor is idle at time t

0 otherwise
(5)
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The total amount of time the processor is idle for any time

interval [t1, t2] can be easily obtained by taking the sum

of δSψ over the interval [t1, t2] and we denote this sum by

∆S
ψ(t1, t2).

Theorem 1: (From [19]) Let ψ be any periodic task set and

S is a preemptive scheduling policy. At any time instant t,

∆EDL
ψ (0, t) ≥ ∆S

ψ(0, t) (6)

Theorem 1 suggests that, EDL pushes the periodic tasks

as much as possible to maximize the idle intervals in the

earlier parts of the schedule. This makes EDL a very good

candidate for the spare processor, as we want to delay the

backup tasks as much as possible. Moreover, [19] presents a

recursive formulation for determining the idle intervals in the

EDL schedules. Let α be a vector {a1, . . . , az} denoting the

lengths of consecutive idle intervals during the hyperperiod H
in an EDL schedule. It is known that, in an EDL schedule,

idle intervals always appear at the release time of jobs [19].

As a result, there are at most z =
∑n

i=1

H
pi

elements in the

idle interval vector α and they can be computed offline for

use at run-time, in advance.

IV. OUR SOLUTION: ALGORITHM SSPT

In this section we present the details of our Standby-Sparing

for Periodic Tasks (SSPT) algorithm. On the primary CPU,

the application tasks are executed by the EDF policy, using

DVS whenever there is static or dynamic slack. The spare

CPU is reserved for the execution of backups following the

EDL schedule. The EDL schedule (Section III) is computed

in the offline pre-processing phase and the vector of idle

intervals α is constructed at the same time. Recall that EDL

schedule indicates by how much periodic tasks can be delayed

while still meeting their respective deadlines, if necessary by

executing at full speed. The backups are dispatched at times

indicated by the EDL schedule, and they are cancelled as

soon as the corresponding primary completes successfully. If

a transient fault is detected at the end of a primary copy, the

backup is allowed to complete its execution.

The scaled frequency of each job on the primary is de-

termined at its dispatch time. An important property of our

algorithm is that it attempts to reduce the overlap between the

primary and backup copies of a given job, since during such

an overlap region the energy consumption would be high due

to execution at fmax on the spare CPU. Specifically, when

dispatching the job Jij on the primary at time t, the algorithm

computes the aggregate amount of idle intervals from t to

dij in the EDL schedule (where dij is the deadline of job

Jij ): this sum represents the slack that can be used by the

primary copy before its deadline to reduce its frequency below

fmax. Note that the intervals reserved in the EDL schedule

for the backups are not considered during the computation of

the available slack for slowdown: this is a critical feature of

the algorithm. Figure 6 illustrates the dispatch-time frequency

assignment scheme used by the SSPT algorithm. At time t,

Jij is dispatched on the primary. There are two idle intervals

in the backup schedule before the deadline of Jij . Hence, Jij
can reclaim x1 + x2 units of static slack for slow-down.

This mechanism also allows to integrate the management of

dynamic slack, that can arise from early completions, to the

framework in seamless fashion. Specifically, when a primary

job Jij completes early on the primary, we can treat the

remaining time slots for the corresponding backup Bij in

the EDL schedule as de facto idle intervals after that point.

This increases slow down opportunities for future jobs on

the primary. Returning to our example in Fig. 6, if Bkl had

been cancelled prior to time t, we could have used the time

allocated for Bkl to further slow down Jij . However, note that

no job is slowed down below the energy-efficient frequency

threshold. Also, the spare processor does not employ any

slack reclaiming technique and follows the pre-computed EDL

schedule.

t ijSpare CPU

t dij

Jij

Primary CPU

1
x x

2
Bmn B

ij
B

kl
B

ij

d

Fig. 6. Determining the frequency on the primary at job dispatch time

We now discuss the steps of our algorithm. It is assumed

that during the pre-processing phase, an Initialization function,

which computes the EDL schedule to be used by the spare

and the vector of idle intervals, α, is invoked. The spare

then executes all the (non-cancelled) backup jobs at fmax
according to the static EDL schedule. At run-time, whenever

a job is released, it is dispatched immediately if the primary

processor is idle. Otherwise, a job is dispatched only if it has

a higher priority than the currently executing job according to

EDF policy. In that case, the current job is preempted. During

preemption we update the minimum additional time required

to complete the job (wk) in the worst-case (under maximum

frequency). The Dispatch procedure first checks for available

static and dynamic slack to reclaim. This is achieved by

computing the ∆EDL
ψ value through the α vector. Every time a

job is dispatched or resumed after preemption at time t, it can

use the idle intervals between t and its deadline for slowdown.

If no such idle interval exists, the job runs at fmax on the

primary. At completion time of a primary job, we initiate the

corresponding acceptance test. If no error is detected, we can

cancel the backup on the spare immediately. In case of an

error, we can continue running the backup as scheduled. If

a primary job completes early, the dynamic slack is added

as idle interval to the α vector. The Update alpha procedure
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Algorithm Standby-Sparing for Periodic Tasks (SSPT)

Event - Jij is released at time t:
wi ← ci /* remaining execution time of Jij at fmax*/

if the processor is idle then

Dispatch(Jij, t)
else /* Jkl is running */

if priority(Jij) > priority(Jkl) then
/* preemption case */

wk ← wk − (Γk × fk)
/* Γk : execution time of Jkl in current dispatch */

Dispatch(Jij , t)
end if

Event - Jij completes at time t:
Run the acceptance test

if no error is detected then

Cancel the backup Bij on the spare processor

Update alpha(Jij, t)
end if

Function Dispatch(Jij, t)
slack ← ∆EDL

ψ (t, deadline(Jij))
fi ← Set Speed(wi, slack)
Dispatch Jij on the primary processor at frequency fi

end Function

performs this operation. If the backup Bij is scheduled to run

for b units of time at time t′ in the EDL schedule, and it is

subsequently cancelled, we add (αt′ = b) to the α vector. The

updated α vector is later used to determine the total idle time,

∆EDL
ψ (t1, t2) for any interval [t1, t2].
The Dispatch procedure invokes a Set Speed procedure that

takes into account the remaining execution time requirement of

task Ti under maximum frequency (namely, wi) andavailable

slack (denoted by the variable slack in the algorithm) to

determine the frequency assignment for the job. The Set Speed

procedure can use different heuristics to determine the exact

amount of slack to allocate to the job at dispatch time. In

this work, we focus on two efficient heuristics for slack

distribution.

Aggressive SSPT: We can allow a job to utilize the entire

available slack and slow down as much as possible. This is

based on the assumption that the job is also likely complete

early, leaving sufficient slack for the following jobs. Hence,

the frequency for ASSPT is determined as:

fi = max{fee,
wi

wi + slack
} (7)

Conservative SSPT: In many cases, it is possible to have

information about the average-case workload of the applica-

tions, in addition to the worst-case. In this scheme, a job is

not allowed to run at a frequency lower than the average-case

total utilization, Uavg of the task set. Note that f = Uavg
corresponds to the optimal frequency under the average-case

behavior. In other words, CSSPT tries to achieve a balanced

slack distribution among all jobs. The frequency assignment

for CSSPT is given as:

fi = max{fee, Uavg,
wi

wi + slack
} (8)

V. EXPERIMENTAL EVALUATION

In this section, we present experimental results to demon-

strate the performance of the SSPT framework. Our evalua-

tion involves comparison of the two SSPT variants, namely

ASSPT and CSSPT, against the RAPM technique proposed

for periodic task sets in [13]. Notice that a direct comparison

against the original energy-aware standby-sparing study [15]

is not possible; because [15] can deal neither with periodic

task sets nor preemptive scheduling, as explained in Section

III. Therefore, we limit our comparison to RAPM only.

Note that in terms of resilience and fault tolerance, SSPT

has clear advantages over RAPM. First, due to the inherent

hardware redundancy, SSPT can potentially continue to exe-

cute the task set even if one of the processors is subject to a

permanent fault. Second, SSPT deploys a separate backup task

for every periodic task in the application, while RAPM sched-

ules recoveries only for scaled tasks. Since the advantages of

SSPT over RAPM on this dimension are clear, this section

evaluates the energy consumption figures of the algorithms.

We designed a discrete event simulator using C++ to com-

pare the energy performance of the schemes. We evaluated

the effect of the system load (given by the task set utilization

Utot) and the workload variability, on the system’s total

energy consumption. For each data point, we generated 1000
synthetic task sets each with 10 tasks. The utilization of each

task is generated using the UUnifast scheme proposed in

[23]. The task periods are generated randomly in the range

[10ms, 100ms].
To model the workload variability, we generated the actual

workload of each job according to probability distributions at

run-time. Specifically, the actual execution time of each job

(under fmax) varies between a worst-case WC and a best-

case BC value. We varied the ratio WC
BC

from 1 to 10 to

investigate the impact of the workload variability. Clearly, the

higher this ratio, the more the actual workload deviates from

the worst-case. While generating the actual workload of each

job, we considered uniform and normal distributions. In case

of the normal distribution, the mean is set to (WC +BC)/2,

and the standard deviation is set to ((WC − BC)/6). The

latter choice ensures that 99.7% of the actual execution times

lie within the worst-case and best-case execution time range

for the job [3] (values beyond the [BC,WC] range are not

considered).

The frequency-dependent power consumption is assumed

to be a cubic function of the CPU frequency and equal to

unity at fmax. The frequency-independent power Pind, and

the static power Ps are set to 10% and 5% of the maximum
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Fig. 7. Impact of System Utilization
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Fig. 8. Impact of Workload Variability

frequency dependent power, respectively. The energy figures

are normalized with respect to No Power Management (NPM)

scheme, which executes all the tasks on both CPUs at the

maximum frequency fmax.

We first examine the impact of the system utilization when
WC
BC

= 5 for uniform (Figure 7(a)) and normal (Figure 7(b))

distributions. In general, with increasing utilization, the slow-

down opportunities with DVS are less due to the feasibility

requirement, and the energy consumptions of all schemes

increase. CSSPT and ASSPT outperform RAPM for most of

the spectrum. The difference between ASSPT and RAPM di-

minishes once the utilization exceeds 0.7; but CSSPT exhibits

superior performance and energy gains up to 15%. This is

because, CSSPT distributes the slack in a fairer fashion among

jobs, in contrast to ASSPT that slows down each job as much

as possible without considering other ready or future jobs.

ASSPT also has typically more overlap between the primary

and the spare, as jobs on the primary run at a lower speed

and take longer to complete. Note that energy savings are

marginally higher when the actual workload follows a normal

distribution as shown in Figure 7(b).

Figures 8(a) and 8(b) show the impact of workload vari-

ability on the performance of the algorithms when the actual

execution time follows a uniform and normal distribution,

respectively. For this set of experiments, the total utilization

of the system is set to 0.7. The results show that, both CSSPT

and ASSPT outperform RAPM for most of the execution

scenarios. When the WC/BC ratio is set to 1, the performance

of each scheme is primarily determined by the available static

slack in the system. In that case CSSPT performs best due

to its balanced approach in determining the slow-down factor,

and RAPM performs better than ASSPT which aggressively

slows down each dispatched job at the expense of using high

frequency for other jobs. As the WC/BC ratio increases, there

is more dynamic slack for the algorithms to reclaim and the

energy consumption decreases correspondingly. Note that the

relative performance of RAPM deteriorates at large WC/BC

ratios, as it requires a separate recovery job for each scaled

job. CSSPT shows consistently superior performance for the

entire spectrum. Note that even with large WC/BC ratios,

the average execution time of each job is bounded by WC/2

and the energy consumption figures of all schemes show only

marginal decrease after a certain point.

VI. CONCLUSIONS

In this paper, we explored a hardware redundancy tech-

nique for periodic real-time tasks based on standby-sparing

technique. The main contribution of this research effort is an

energy-efficient scheduling algorithm for preemptive periodic

real-time tasks running on a standby-sparing system. The

framework uses the EDF algorithm on the primary CPU

and the EDL algorithm on the spare CPU. This allows
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executing the primary copies as soon as possible, while the

backups are delayed on the spare CPU. An advantage of this

framework is that often the execution of the backups can

be canceled upon the early and successful completion of the

primary copies. The proposed scheme uses the idle intervals

in the EDL schedule for efficiently sharing the slack among

tasks. This allows us to avoid the complex dynamic slack

management techniques. Simulation results underline potential

for energy savings compared to RAPM for most scenarios,

while provisioning for permanent faults and still preserving

the original reliability in terms of tolerance to transient faults.

The proposed algorithm is particularly efficient for low-to-

modest workload scenarios. To the best of our knowledge, this

is the first attempt for reliability- and energy-aware scheduling

of preemptive periodic real-time tasks on a standby-sparing

system.
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