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Abstract—In this paper, we present an energy-aware standby-
sparing technique for periodic real-time applications. A standby-
sparing system consists of a primary processor where the
application tasks are executed using Dynamic Voltage Scaling
(DVS) to save energy, and a spare processor where the backup
tasks are executed at maximum voltage/frequency, should there
be a need. In our framework, we employ Earliest-Deadline-First
(EDF) and Earliest-Deadline-Late (EDL) scheduling policies on
the primary and spare CPUs, respectively. The use of EDL
on the spare CPU allows delaying the backup tasks on the
spare CPU as much as possible, enabling energy savings. We
develop static and dynamic algorithms based on these principles,
and evaluate their performance experimentally. Our simulation
results show significant energy savings compared to existing
reliability-aware power management (RAPM) techniques for
most execution scenarios.

Index Terms—Energy Management, Real-Time Systems, Relia-
bility, Dynamic Voltage Scaling, Standby-Sparing, EDF Schedul-
ing.

I. INTRODUCTION

Energy management is a frequent design concern for real-
time embedded systems. Dynamic Voltage Scaling (DVS) is
a widely studied technique to reduce energy consumption,
involving simultaneous scaling of the CPU supply voltage
and frequency [1]. Another approach is Dynamic Power Man-
agement (DPM), where the system components are put to
idle/sleep states when they are not in use [2]. The real-time
execution semantics mandate that the timing constraints (the
feasibility requirement) be met at run-time even when task
response times may increase as a consequence of the energy
management techniques [3].

In addition to feasibility and energy management, reliability
and fault tolerance are other important objectives for real-
time embedded systems. Computer systems are subject to
different types of faults [4]. Faults may occur at runtime due to
various reasons, including hardware defects, electromagnetic
interference, and cosmic ray radiations. Permanent faults may
bring a system component (e.g. the processor) to halt and can-
not be tolerated without some form of hardware redundancy.
Transient faults, on the other hand, are not persistent — they are
often triggered by electromagnetic interference and cosmic ray
radiations and disappear within a short time interval. Transient
faults are known to occur more frequently [5], [6] and they
raise growing concerns with the increase of component density
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in the CMOS circuits [7]. Restoring the system to a previous
safe state and repeating the computation is a common approach
to deal with the transient faults [4], [8].

Recent research suggests that the transient fault rates in-
crease significantly in systems where the supply voltage is
scaled down to save energy [7], [9]. As a result, a number of
energy management techniques that also consider reliability
were recently proposed [10]-[13]. These works, generally
called as the Reliability-Aware Power Management (RAPM)
framework, use time-redundancy for both DVS and reliability
preservation. RAPM techniques generally assume that the sys-
tem’s original reliability, which is defined as the probability of
completing all tasks successfully (without incurring transient
faults), is acceptable when all the tasks are executed at the
maximum CPU frequency. Hence, existing RAPM techniques
schedule a separate recovery job for every job that has been
slowed (scaled) down. The recovery job is executed only when
the corresponding scaled job incurs a transient fault, and at
the maximum frequency [13]. It is known that this approach
yields a reliability level which is no less than the system’s
original reliability, thereby preserving that level [13]. Most of
the existing RAPM techniques are developed for single CPU
systems and target preservation of the reliability only with
respect to transient faults. As a result, they cannot address
permanent faults that can effect the CPU. In addition, due to
the need to schedule a separate recovery job for every scaled
job on a single CPU, these techniques cannot handle large
tasks with utilization greater than 50% (i.e. those tasks have to
run at the maximum frequency). Very recently, a technique that
explored application of the RAPM on multiprocessor systems
in conjunction with global scheduling techniques (allowing
migration) has been proposed in [14].

In recent work, Ejlali et al. [15] proposed a novel technique
for co-management of energy and reliability in the form of
a standby-sparing system. The solution combines hardware
redundancy with DVS to save energy while preserving the
system’s original reliability and offer opportunities to tolerate
permanent processor faults. Specifically, the technique deploys
two processors, named primary and spare, respectively. The
application tasks are executed on the primary processor using
DVS. The spare does not use DVS and is reserved for execut-
ing backup tasks, if needed. Upon the successful completion of
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a primary task, the corresponding backup task is cancelled and
excessive energy consumption is avoided. However, should
the primary task fail, the backup runs to completion at the
maximum frequency. Hence, the solution statically constructs
the schedule on the spare CPU to delay the backups as much
as possible to minimize the overlap between the primary and
backup copies of the same task. The technique is also based
on the observation that many real-time jobs complete early in
actual executions [3], [13], [16], [17] and hence the backups
are often cancelled without even starting to execute — this
helps to improve the energy savings. In addition, more static
and dynamic slack for slow-down is available on the primary
processor where no CPU time is reserved for recovery.

Despite these innovative aspects, the solution presented in
[15] has some important limitations. First, it is limited to non-
preemptive and aperiodic jobs for which a static schedule on
a single processor is already given. Then starting from the
latest deadline and moving backward, the latest time to initiate
backup task on the spare, and the speed for the primary task,
are determined in a mechanical way. However, most of the
real-time applications on embedded devices are periodic in
nature and these techniques are not directly applicable for a
wide-spectrum of scenarios. In particular, for periodic applica-
tions that are invoked repetitively, it is not trivial to determine
the latest time for initiating the corresponding backup tasks
in the absence of a finite-horizon schedule that can be easily
determined for aperiodic jobs. Second, periodic applications
are often executed by preemptive scheduling policies as non-
preemptive execution may result in arbitrarily low system
utilization [18]. In preemptive execution settings, the greedy
speed assignment technique of [15] cannot be readily applied.

The main contribution of this paper is the proposal for
a standby-sparing solution in energy-aware scheduling of
preemptive periodic real-time applications. By considering a
general system-level power model, we show how the schedules
on both CPUs and the frequency assignments for the primary
tasks can be determined for periodic preemptive executions.
Specifically, we apply the Earliest-Deadline-First (EDF) pol-
icy on the primary CPU with DVS, while the backups are
executed on the spare CPU according to the EDL (Earliest-
Deadline-Late) policy [19]. Both EDF and EDL assign pri-
orities based on the job deadlines, however EDL delays the
jobs as much as possible to obtain idle intervals as ecarly as
possible in the schedule [19]. We use this important feature of
EDL to postpone the execution of backups on the spare CPU
and to determine the frequency assignment efficiently for the
primary at job dispatch times.

Due to its dual-CPU structure, our solution can withstand
the permanent fault of a single CPU. Also, since the backups
execute without voltage scaling, the system’s original relia-
bility (in terms of resilience with respect to transient faults)
is preserved [13]. Finally, the joint use of EDF and EDL on
the primary and secondary CPUs allows us to minimize the
overlap between the two copies at run-time and reduce the
energy cost due to the backup executions. Based on these prin-
ciples, we present two variants, Aggressive Standby-Sparing
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Technique (ASSPT) and Conservative Standby-Sparing Tech-
nique (CSSPT), that differ on the way they use the available
slack at run-time for frequency assignment. Our experimental
evaluation underlines energy savings potential of our solutions,
in addition to their clear benefits on the reliability side.

The rest of this paper is organized as follows. Section II
presents our system model. Section III introduces the neces-
sary background information for reliability-aware and standby-
sparing scheduling frameworks, as well as the main principles
of our approach. Section IV provides the details of our
solution. In Section V, we evaluate the energy consumption
of our algorithms for various settings. Concluding remarks are
provided in Section VI.

II. SYSTEM MODEL

We consider a set of periodic real-time tasks U =
{Ty,...,T,}. Each periodic task T; has worst-case execution
time ¢; under the maximum CPU frequency, and the period p;.
The hyperperiod H is defined as the least common multiple
of task periods p1, ..., p,. The relative deadline of task T is
assumed to be equal to its period. The j** job of T}, denoted
as J;;, arrives at time (j—1)-p; and has a deadline of j-p,. The
utilization of a task T}, u;, is defined as <. The total utilization
Ui 1s the sum of all the individual task utilizations.

We consider a standby-sparing system that consists of a
primary CPU and a spare CPU [4], [15]. The main copy of
each job J;; runs on the primary CPU, which is assumed
to have the DVS capability, while the backup copy, denoted
by B;;, runs on the spare CPU without any voltage scaling
(i.e. at the maximum frequency). The frequency f of the
primary CPU is adjustable up to a maximum frequency fr,qz-
We normalize all frequency values with respect to fraz,
i.e. fmae = 1.0. A job J;; may take up to < time units when
executed at frequency f. Note that the backup B;; takes at
most ¢; time units since it is executed without voltage scaling.

We adopt a system-level power model used in previous
reliability-aware power management research [13]. Specifi-
cally, the power consumption consists of a static and a dynamic
component. The static power, P, is dominated by the leakage
current of the system. The dynamic power P, includes a
frequency-dependent power component Py, and a frequency-
independent power component P, 4, driven by the modules
such as memory and I/O subsystem in the active state.

P=P,+P, 1)
)

The frequency-dependent component Py, of the power con-
sumption can be expressed as:

Piep =Ce - V3 - f

Pd:Bnd+Pdep

3)

where, C, is the system’s effective switching capacitance. The
processor supply voltage V44 has an almost linear relationship
with frequency f. Therefore, Equation (3) can be rewritten as,

Pdep:Ce'f3 (4)
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Fig. 1. Static power management for a single task

The energy consumption of a processor from ¢ = t; to
t = ty is defined as j;tf P(t)dt where P(t) is the power
consumption at time ¢. As in [13], we assume that due to
periodic execution settings, turning on and off the system at
run-time is not feasible, hence the static power P; is not man-
ageable. Hence, our solutions focus on managing the dynamic
power P;. Existing research indicates that arbitrarily slowing
down a task is not always energy-efficient [20]-[22], due to
the existence of the frequency-independent dynamic power
P;,q. In other words, there exists a processing frequency below
which the total energy consumption of a task increases. This
frequency is called the energy-efficient speed (f..) and it can
be computed analytically in advance [9], [21].

At job completion times, an acceptance (or, consistency) test
is performed to determine the occurrence of transient faults [4].
If a fault is detected, we can still continue with the backup job
on the spare CPU. Otherwise we can immediately cancel or
terminate the backup task. The cost of running the acceptance
test is assumed to be included in the worst-case execution time
of jobs [13].

III. PRELIMINARIES

In this section, we first present the fundamentals and
a comparison of RAPM and energy-aware standby-sparing
techniques on a simple example with a single job. Then, we
introduce the main principles and mechanism of our solution
for general preemptive periodic tasks.

Consider a single job J; with deadline D = 10 ms and
worst-case execution time of ¢ = 4 ms under f,4,. Assuming
fee < 0.4, we observe that we can maximize energy savings
by executing the job at f = 0.4 as shown in Fig. 1. Using
the parameters from [9], [13] by setting the transient fault rate
at fraz 10 Ag = 1077, and fault rate sensitivity to voltage
scaling d = 2, we can compute the probability of failure
(defined as I - reliability) as 2.15 x 10~8 which represents
a reliability degradation of two orders of magnitude compared
to the original probability of failure figure of 4 x 10719,

To preserve the original reliability while applying DVS,
RAPM schedules a recovery job before the deadline when
scaling down the job [13]. The recovery job is executed only
when a transient fault is detected at the end of J;. Given the
low probability of occurrence of transient faults, only 4 ms
of CPU time is reserved for recovery, implying that it may be
executed at f,q, if needed. Consequently, the execution of .J;
is slowed down only to f = % = 0.66 in the RAPM solution.
[13] indicates that this solution is guaranteed to preserve the
original reliability of the job.

Despite this important feature, a number of observations are
in order. First, tasks with utilization larger than 50% cannot
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Fig. 3. Standby-sparing system for a single task

be managed by RAPM, since it is not possible to assign a
full and separate recovery to such jobs. Even for small tasks,
reserving recovery time on a single CPU system affects the
slow-down and energy savings prospects. Second, by its very
nature, RAPM cannot be used to withstand the permanent fault
of the single CPU.

The standby-sparing technique [15] is an alternative with
some interesting features. As seen in Fig. 3, the technique
uses two processors, effectively with the potential of tolerating
the permanent fault of a single CPU. The first (primary)
processor executes the job J; at f = 0.4; and the second
(spare) processor is used to execute the backup job Bj.
By executing B, if needed, at the maximum frequency the
technique preserves the original reliability as RAPM does.
Moreover, observe that the start time of B; is delayed as much
as possible to minimize the overlap with the primary. This is
very helpful for saving energy, since if/when J; completes
successfully without presenting its worst-case workload (as
shown by the completion of J; at ¢ = 7 in Fig. 3), the backup
can be immediately cancelled.

In [15], the authors assumed that a static schedule from
t = 0 to the latest deadline is already given for a set of
aperiodic jobs that are executed in non-preemptive fashion.
This assumption allows determining the scaled frequency on
the primary at each job dispatch time through a greedy
technique. However, for periodic tasks that may generate large
number of jobs executed by a dynamic-priority event-driven
policy such as EDF, and that may be subject to preemptions
at arbitrary times, this technique is not directly applicable.

As to the potential of the standby-sparing technique for
preemptive periodic applications, consider the execution of
two periodic tasks 77 and 75. The period and worst-case
execution time of 7} are given by 20 and 8, respectively.
Similarly, the period and worst-case execution time of 75 are
given by 50 and 20, respectively. The total utilization of the
task set is 0.8 and the well-known results [3], [17] suggest
that the tasks can be executed at f = 0.8 to save energy while
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meeting all the deadlines by the preemptive Earliest-Deadline-
First (EDF) policy during the hyperperiod H = 100, which is
the least common multiple of p; and po.

In fact, this is precisely the solution adopted for the primary
CPU, as shown on the top schedule of Fig. 4. Note that there
are 5 jobs of 7% and 2 jobs of I within the hyperperiod. The
schedule at the bottom of Fig. 4 shows the solution for the
spare CPU. Observe that there is a separate backup job B;;
corresponding to each primary job J;;. Moreover, the backup
jobs are delayed as much as possible, and occasionally are
preempted themselves, on the spare CPU. We will shortly
discuss how to obtain this ideal “delayed” schedule on the
spare. As discussed previously, such a delayed execution
pattern is very useful as the backups can be cancelled as
soon as the corresponding primaries complete at run-time
successfully.

The benefits of this approach are further emphasized by
the potential of early completions on the primary: Figure 5
shows a fault-free scenario, where tasks complete early. We
observe that the backup tasks can be avoided entirely in many
scenarios. For instance, Ji; completes early at time 5. Since
By1 was scheduled to start at time 12, it can be cancelled
without even starting. As a result, the primary immediately
dispatches Jo1. Jo1 is preempted at time 20, but its backup is
still dispatched at t = 22, its scheduled startup time. When Jo
completes early at £ = 30, we can cancel the remaining part of
the backup task, By, immediately. The rest of the schedules,
which contain other early completions, can be easily followed.

Taking advantage of early completions (fault-free execution)

Comparing the schedules of the spare CPU on Fig. 4 and 5,
we note that only two backup jobs (out of seven) are partially
executed during the actual execution with early completions.
Note that early completions give also potential for dynamic
reclaiming [3] on the primary CPU; we will explain in the
next section how our technique benefits from this dimension
as well.

Now we focus on how to determine the schedule on the
spare CPU in a compact way. In one of the influential studies,
Chetto et al. investigated some important properties of periodic
real-time schedules when priorities are assigned according to
the deadlines (the smaller the deadline, the higher the priority)
[19]. They distinguished between the traditional EDF (called
EDS in [19]) that executes ready tasks as soon as possible,
and a variant, called Earliest Deadline Late (EDL), that delays
the tasks as much as possible while preserving feasibility. An
important advantage of EDL is the fact that it creates idle
intervals early in the schedule by delaying periodic tasks.
This feature has been exploited for various purposes in the
literature; for example, to execute soft real-time jobs as soon
as possible without compromising the timeliness of periodic
hard real-time tasks [18]. Both EDF and EDL are “optimal” in
the sense that all real-time jobs can meet their deadlines under
each preemptive policy whenever it is possible to do so.

To compute the idle intervals for any schedule S for a task
set 1, an availability function § is defined as follows.

0=,

if the processor is idle at time t
otherwise

(6))
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The total amount of time the processor is idle for any time
interval [t1, t2] can be easily obtained by taking the sum
of 55 over the interval [t1, t3] and we denote this sum by
AZ(ty, ta).

Theorem 1: (From [19]) Let 1 be any periodic task set and
S is a preemptive scheduling policy. At any time instant ¢,

AZPH0, 1) = AF(0, 1) (6)

Theorem 1 suggests that, EDL pushes the periodic tasks
as much as possible to maximize the idle intervals in the
earlier parts of the schedule. This makes EDL a very good
candidate for the spare processor, as we want to delay the
backup tasks as much as possible. Moreover, [19] presents a
recursive formulation for determining the idle intervals in the
EDL schedules. Let a be a vector {as,...,a.} denoting the
lengths of consecutive idle intervals during the hyperperiod H
in an EDL schedule. It is known that, in an EDL schedule,
idle intervals always appear at the release time of jobs [19].
As a result, there are at most z = > ., pﬁi elements in the
idle interval vector o and they can be computed offline for
use at run-time, in advance.

IV. OUR SOLUTION: ALGORITHM SSPT

In this section we present the details of our Standby-Sparing
Jor Periodic Tasks (SSPT) algorithm. On the primary CPU,
the application tasks are executed by the EDF policy, using
DVS whenever there is static or dynamic slack. The spare
CPU is reserved for the execution of backups following the
EDL schedule. The EDL schedule (Section III) is computed
in the offline pre-processing phase and the vector of idle
intervals « is constructed at the same time. Recall that EDL
schedule indicates by how much periodic tasks can be delayed
while still meeting their respective deadlines, if necessary by
executing at full speed. The backups are dispatched at times
indicated by the EDL schedule, and they are cancelled as
soon as the corresponding primary completes successfully. If
a transient fault is detected at the end of a primary copy, the
backup is allowed to complete its execution.

The scaled frequency of each job on the primary is de-
termined at its dispatch time. An important property of our
algorithm is that it attempts to reduce the overlap between the
primary and backup copies of a given job, since during such
an overlap region the energy consumption would be high due
to execution at f,,,, on the spare CPU. Specifically, when
dispatching the job J;; on the primary at time ¢, the algorithm
computes the aggregate amount of idle intervals from ¢ to
d;; in the EDL schedule (where d;; is the deadline of job
Jij): this sum represents the slack that can be used by the
primary copy before its deadline to reduce its frequency below
fmaz. Note that the intervals reserved in the EDL schedule
for the backups are not considered during the computation of
the available slack for slowdown: this is a critical feature of
the algorithm. Figure 6 illustrates the dispatch-time frequency
assignment scheme used by the SSPT algorithm. At time ¢,

Ji; is dispatched on the primary. There are two idle intervals
in the backup schedule before the deadline of J;;. Hence, J;;
can reclaim x1 + o units of static slack for slow-down.

This mechanism also allows to integrate the management of
dynamic slack, that can arise from early completions, to the
framework in seamless fashion. Specifically, when a primary
job J;; completes early on the primary, we can treat the
remaining time slots for the corresponding backup B;; in
the EDL schedule as de facto idle intervals after that point.
This increases slow down opportunities for future jobs on
the primary. Returning to our example in Fig. 6, if Bj; had
been cancelled prior to time ¢, we could have used the time
allocated for By to further slow down J;;. However, note that
no job is slowed down below the energy-efficient frequency
threshold. Also, the spare processor does not employ any
slack reclaiming technique and follows the pre-computed EDL
schedule.

S JIJ ——— 3
| .
t Primary CPU dlj
X X
1 2
—‘<> an B La? Bl_] Bkl Bl_]
t Spare CPU dij

Fig. 6. Determining the frequency on the primary at job dispatch time

We now discuss the steps of our algorithm. It is assumed
that during the pre-processing phase, an Initialization function,
which computes the EDL schedule to be used by the spare
and the vector of idle intervals, «, is invoked. The spare
then executes all the (non-cancelled) backup jobs at fi,uq
according to the static EDL schedule. At run-time, whenever
a job is released, it is dispatched immediately if the primary
processor is idle. Otherwise, a job is dispatched only if it has
a higher priority than the currently executing job according to
EDF policy. In that case, the current job is preempted. During
preemption we update the minimum additional time required
to complete the job (wy) in the worst-case (under maximum
frequency). The Dispatch procedure first checks for available
static and dynamic slack to reclaim. This is achieved by
computing the AZPE value through the o vector. Every time a
job is dispatched or resumed after preemption at time t, it can
use the idle intervals between ¢ and its deadline for slowdown.
If no such idle interval exists, the job runs at f,,,, on the
primary. At completion time of a primary job, we initiate the
corresponding acceptance test. If no error is detected, we can
cancel the backup on the spare immediately. In case of an
error, we can continue running the backup as scheduled. If
a primary job completes early, the dynamic slack is added
as idle interval to the a vector. The Update_alpha procedure

194



Algorithm Standby-Sparing for Periodic Tasks (SSPT)

Event - J;; is released at time ¢:
w; < c¢; /* remaining execution time of J;; at fra.™/
if the processor is idle then
Dispatch(J;j, t)
/* Jg is running */
if priority(J;;) > priority(Jy;) then
/* preemption case */
WE — Wk — (Fk X .fk)
/* Ty, : execution time of J; in current dispatch */
Dispatch(J;;, t)
end if

else

Event - J;; completes at time ¢:
Run the acceptance test
if no error is detected then
Cancel the backup B;; on the spare processor
Update_alpha(J;j, t)
end if

Function Dispatch(J;;, t)

slack AgDL(t, deadline(J;;))

fi — Set_Speed(w;, slack)

Dispatch J;; on the primary processor at frequency f;
end Function

performs this operation. If the backup B;; is scheduled to run
for b units of time at time ¢’ in the EDL schedule, and it is
subsequently cancelled, we add (ar = b) to the « vector. The
updated « vector is later used to determine the total idle time,
ALPE(ty, to) for any interval [t1, to].

The Dispatch procedure invokes a Set_Speed procedure that
takes into account the remaining execution time requirement of
task T; under maximum frequency (namely, w;) andavailable
slack (denoted by the variable slack in the algorithm) to
determine the frequency assignment for the job. The Set_Speed
procedure can use different heuristics to determine the exact
amount of slack to allocate to the job at dispatch time. In
this work, we focus on two efficient heuristics for slack
distribution.

Aggressive SSPT: We can allow a job to utilize the entire
available slack and slow down as much as possible. This is
based on the assumption that the job is also likely complete
early, leaving sufficient slack for the following jobs. Hence,
the frequency for ASSPT is determined as:

.fi - max{feev

Dy (7

w; + slack

Conservative SSPT: In many cases, it is possible to have
information about the average-case workload of the applica-
tions, in addition to the worst-case. In this scheme, a job is
not allowed to run at a frequency lower than the average-case

total utilization, U,yg of the task set. Note that f = Ugyg
corresponds to the optimal frequency under the average-case
behavior. In other words, CSSPT tries to achieve a balanced
slack distribution among all jobs. The frequency assignment
for CSSPT is given as:

Wy

Ji = max{ fee, Unuvg, w; + slack

} ®)

V. EXPERIMENTAL EVALUATION

In this section, we present experimental results to demon-
strate the performance of the SSPT framework. Our evalua-
tion involves comparison of the two SSPT variants, namely
ASSPT and CSSPT, against the RAPM technique proposed
for periodic task sets in [13]. Notice that a direct comparison
against the original energy-aware standby-sparing study [15]
is not possible; because [15] can deal neither with periodic
task sets nor preemptive scheduling, as explained in Section
II1. Therefore, we limit our comparison to RAPM only.

Note that in terms of resilience and fault tolerance, SSPT
has clear advantages over RAPM. First, due to the inherent
hardware redundancy, SSPT can potentially continue to exe-
cute the task set even if one of the processors is subject to a
permanent fault. Second, SSPT deploys a separate backup task
for every periodic task in the application, while RAPM sched-
ules recoveries only for scaled tasks. Since the advantages of
SSPT over RAPM on this dimension are clear, this section
evaluates the energy consumption figures of the algorithms.

We designed a discrete event simulator using C++ to com-
pare the energy performance of the schemes. We evaluated
the effect of the system load (given by the task set utilization
Uiot) and the workload variability, on the system’s total
energy consumption. For each data point, we generated 1000
synthetic task sets each with 10 tasks. The utilization of each
task is generated using the UUnifast scheme proposed in
[23]. The task periods are generated randomly in the range
[10ms, 100ms].

To model the workload variability, we generated the actual
workload of each job according to probability distributions at
run-time. Specifically, the actual execution time of each job
(under f,q4.) varies between a worst-case W' and a best-
case BC value. We varied the ratio Vg—g from 1 to 10 to
investigate the impact of the workload variability. Clearly, the
higher this ratio, the more the actual workload deviates from
the worst-case. While generating the actual workload of each
job, we considered uniform and normal distributions. In case
of the normal distribution, the mean is set to (WC + BC)/2,
and the standard deviation is set to ((WC — BC)/6). The
latter choice ensures that 99.7% of the actual execution times
lie within the worst-case and best-case execution time range
for the job [3] (values beyond the [BC, W (] range are not
considered).

The frequency-dependent power consumption is assumed
to be a cubic function of the CPU frequency and equal to
unity at f,qz. The frequency-independent power P4, and
the static power Ps are set to 10% and 5% of the maximum
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frequency dependent power, respectively. The energy figures
are normalized with respect to No Power Management (NPM)
scheme, which executes all the tasks on both CPUs at the
maximum frequency fpqz-

We first examine the impact of the system utilization when
Vg—g = 5 for uniform (Figure 7(a)) and normal (Figure 7(b))
distributions. In general, with increasing utilization, the slow-
down opportunities with DVS are less due to the feasibility
requirement, and the energy consumptions of all schemes
increase. CSSPT and ASSPT outperform RAPM for most of
the spectrum. The difference between ASSPT and RAPM di-
minishes once the utilization exceeds 0.7; but CSSPT exhibits
superior performance and energy gains up to 15%. This is
because, CSSPT distributes the slack in a fairer fashion among
jobs, in contrast to ASSPT that slows down each job as much
as possible without considering other ready or future jobs.
ASSPT also has typically more overlap between the primary
and the spare, as jobs on the primary run at a lower speed
and take longer to complete. Note that energy savings are
marginally higher when the actual workload follows a normal
distribution as shown in Figure 7(b).

Figures 8(a) and 8(b) show the impact of workload vari-
ability on the performance of the algorithms when the actual
execution time follows a uniform and normal distribution,
respectively. For this set of experiments, the total utilization
of the system is set to 0.7. The results show that, both CSSPT

1 2 3 4 5 6 7 8 9 10
WC/BC Ratio

(b) Normal Distribution, Utot = 0.7

Impact of Workload Variability

and ASSPT outperform RAPM for most of the execution
scenarios. When the WC/BC ratio is set to 1, the performance
of each scheme is primarily determined by the available static
slack in the system. In that case CSSPT performs best due
to its balanced approach in determining the slow-down factor,
and RAPM performs better than ASSPT which aggressively
slows down each dispatched job at the expense of using high
frequency for other jobs. As the WC/BC ratio increases, there
is more dynamic slack for the algorithms to reclaim and the
energy consumption decreases correspondingly. Note that the
relative performance of RAPM deteriorates at large WC/BC
ratios, as it requires a separate recovery job for each scaled
job. CSSPT shows consistently superior performance for the
entire spectrum. Note that even with large WC/BC ratios,
the average execution time of each job is bounded by WC/2
and the energy consumption figures of all schemes show only
marginal decrease after a certain point.

VI. CONCLUSIONS

In this paper, we explored a hardware redundancy tech-
nique for periodic real-time tasks based on standby-sparing
technique. The main contribution of this research effort is an
energy-efficient scheduling algorithm for preemptive periodic
real-time tasks running on a standby-sparing system. The
framework uses the EDF algorithm on the primary CPU
and the EDL algorithm on the spare CPU. This allows
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executing the primary copies as soon as possible, while the
backups are delayed on the spare CPU. An advantage of this
framework is that often the execution of the backups can
be canceled upon the early and successful completion of the
primary copies. The proposed scheme uses the idle intervals
in the EDL schedule for efficiently sharing the slack among
tasks. This allows us to avoid the complex dynamic slack
management techniques. Simulation results underline potential
for energy savings compared to RAPM for most scenarios,
while provisioning for permanent faults and still preserving
the original reliability in terms of tolerance to transient faults.
The proposed algorithm is particularly efficient for low-to-
modest workload scenarios. To the best of our knowledge, this
is the first attempt for reliability- and energy-aware scheduling
of preemptive periodic real-time tasks on a standby-sparing
system.
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