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Abstract— Mixed-criticality real-time systems, where tasks may 

be associated with different criticality and assurance levels, have 

attracted much attention in the recent past. In this paper, we 

consider partitioning-based multiprocessor scheduling of mixed-

criticality real-time task sets. Guaranteeing feasibility in this 

setting is shown to be NP-Hard. With a focus on fixed-priority 

preemptive scheduling on each processor, we identify the two 

main aspects of the problem, namely the task allocation and 

priority assignment dimensions. For the task allocation dimension, 

we propose and compare bin-packing-inspired heuristics, based 

on offline task ordering according to utilization and criticality.  

For the priority assignment dimension, we compare the well-

known Rate Monotonic priority assignment policy with Audsley’s 

priority assignment algorithm. Through simulations, we also 

assess and discuss the relative importance of these two primary 

dimensions on the overall mixed-criticality feasibility problem for 

multiprocessor platforms. 

Keywords- real-time scheduling, multiprocessor systems, mixed-

criticality, partitioning-based scheduling, fixed-priority scheduling 

I.  INTRODUCTION 

Hard real-time systems – systems where guaranteeing 
temporal predictability even under worst-case scenarios is of 
the utmost importance, have received significant attention in 
research efforts over the past several decades. As a result, there 
exists a well-established theory for both uniprocessor and 
multiprocessor hard real-time systems. In particular, the hard 
real-time scheduling of periodic tasks, common in real-time 
applications, has been the subject of intensive research [7][17].  

For periodic real-time applications executed on a single 
processor, priority-driven scheduling has been recognized as an 
effective framework to guarantee the timing constraints of tasks 
[17]. In fixed-priority scheduling, each task is assigned a fixed 
priority that is determined statically. Among fixed-priority 
algorithms, Rate Monotonic Scheduling (RMS), where the 
priority of a task is inversely proportional to its period, is 
known to be optimal for task sets where the relative deadlines 
are equal to the periods [16].  Among dynamic-priority 
policies, the Earliest-Deadline-First (EDF) policy is known to 
be optimal [16]. 

For multiprocessor real-time systems, existing approaches 
typically fall in the partitioning or global-scheduling  classes 
[17]. In global scheduling, there is effectively a single queue of 
ready jobs that are allocated across multiple processors, and 

hence, a task can migrate from one processor to another at run-
time. In contrast, in partitioning-based approaches, each task is 
statically allocated to a single processor. While global 
approaches can offer better processor utilization for some task 
sets, they can also incur greater run-time overhead and cache 
affinity problems due to potential migrations. In addition, it has 
been shown that some task sets are not schedulable with a 
global approach despite having low overall utilization [10]. An 
important advantage of partitioning-based approaches is that 
the well-established uniprocessor scheduling theory is 
applicable to the scheduling of the subset of tasks allocated to 
individual processors [18].  

    More recently, there has been a growing interest in analyzing 
real-time systems that execute tasks of different criticalities. 
Recent work on these so-called mixed-criticality systems has 
included the development of system models that explicitly take 
task criticality into account [4][5][12][20][21]. Much work in 
this area stems from the observation that several important 
classes of real-time applications include different 
functionalities at varying levels of importance, requiring 
different assurance levels. In particular, these settings mandate 
that the deadlines of higher-criticality tasks be guaranteed with 
a higher degree of assurance than those of lower-criticality 
tasks. 

In traditional (i.e., not mixed-criticality) hard real-time 
models,  a single worst-case execution time (WCET) estimate 
is associated with each task and is used when determining if a 
task set is schedulable. As noted in [21], this often leads to 
system under-utilization – the designers have to choose the 
most conservative WCET estimate for every task, regardless of 
criticality levels. In practice, even for a given task, a different 
WCET estimate may be available for each criticality level: 
Larger estimates for higher criticality levels can be obtained 
through exhaustive analysis, even though the probability of 
observing these larger WCETs at run-time may be quite low. 
Conversely, smaller WCET estimates can be obtained for lower 
criticality levels through less-rigorous methods, for example by 
considering the average value observed in real system traces.    

As a result, a main feature of the mixed-criticality models 
explored in [21][14][15][4] and adopted in this paper is the 
specification of a WCET function for each task, i.e., the 
specification for each task of a WCET corresponding to each 
criticality level in the system. It is intended that each WCET 
estimate have a level of assurance that is appropriate for its 
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corresponding criticality level.  Fundamental in the application 
of this model is the following principle [5][21]: In assessing the 

delay that can be experienced by a given task τ, the feasibility 
analysis must consider, for higher-priority tasks, the WCET 
values corresponding to the same level of criticality (i.e., 

assurance) as that of τ.  

    This principle has important implications for both real-time 
systems theory and practice. First, by allowing the use of looser 
(less pessimistic) WCET estimates when determining the 
timeliness of low-criticality tasks during feasibility analysis, 
system utilization can be significantly improved [21].  Second, 
a comprehensive theory of mixed-criticality system analysis 
eventually may enable formal certification by civilian 
authorities [4].  

However, the development of such a comprehensive new 
theory poses several challenges. For example, in his seminal 
paper, Vestal observed that rate-monotonic priority assignment 
is not optimal for fixed-priority mixed-criticality single-
processor scheduling [21]. Consequently, he proposed the use 
of Audsley’s priority assignment algorithm [2], despite the 
relatively high complexity associated with it. In another 
negative result, it has been shown that the general problem of 
mixed-criticality feasibility analysis is NP-Hard in the strong 
sense on one processor, even for settings where the jobs have 
the same ready time and there are only two distinct criticality 
levels [4].  However, the practical promise of the framework is 
high enough that additional research efforts need to be (and 
have been, [4][5][12][20][21]) applied to the problem, even 
though they may be forced, in the final analysis, to offer only 
“approximate” solutions. More details about related work in the 
area can be found in Section VI. 

This research effort has been partly motivated by the 
observation that much of the existing and growing literature on 
mixed-criticality systems targets uniprocessor systems, yet 
many real-time applications are expected to, and do already run 
on multi-processor and emerging multi-core platforms. 
Consequently, we believe a preliminary analysis of mixed-
criticality systems for multiprocessor settings will prove useful.  

There are two dimensions in which one can explore 
different approaches and their effect on the overall 
schedulability of mixed-criticality task sets with fixed priority 
assignments. The priority assignment dimension, to guarantee 
the feasibility of fixed-priority task sets on uniprocessor 
systems, is already a difficult problem [21]. While RMS 
priority assignment is simple and well-known, an optimal 
solution can be generated by the computationally-expensive 
priority assignment algorithm developed by Audsley [2]. The 
consideration of task allocation on multi-processor platforms 
adds a new dimension and simultaneously makes the problem 
intractable (even for the special case where all tasks have the 
same criticality). Bin packing heuristics such as First-Fit and 
Best-Fit have been used extensively in the literature for the 
traditional partitioning problem, especially after first ordering 
tasks according to utilization [17][18]. Alternatively, in mixed-
criticality settings, grouping tasks according to criticality (as 
opposed to utilization) on separate processors appears to be an 
intuitive solution, though its impact on feasibility is not 
immediately clear.   

The primary focus of this work is the exploration of 
these two dimensions, i.e., task allocation and priority-
assignment strategies for periodic fixed-priority mixed-
criticality task sets.  Specifically, we identify the main 
algorithmic solutions for each dimension and compare them 
experimentally.  Moreover, we undertake an evaluation of the 
relative importance of each of these dimensions 
experimentally. For example, we believe it is interesting to ask 
whether the use of a criticality-aware task allocation heuristic 
eliminates or reduces the need for running Audsley’s priority 
assignment algorithm on each processor, or if the use of 
Audsley's algorithm reduces the need for a criticality-aware 
allocation heuristic. 

The remainder of this paper is organized as follows. In 
Section II, we present our model and notation. Section III re-
visits the fundamental principles of feasibility analysis for 
fixed-priority mixed-criticality task sets on uniprocessor 
systems. Section IV elaborates on the two dimensions of our 
problem (task allocation and priority assignment) and  
illustrates the trade-offs involved in the multi-processor case 
through examples. Section V presents our experimental 
evaluation.  Related work and concluding remarks are provided  
in Sections VI and VII, respectively.  

II. SYSTEM MODEL AND NOTATION 

We consider a task set Γ that is comprised of n independent, 

periodic, mixed-criticality tasks τ1, …, τn. The period of task τi, 
which is equal to the relative deadline of its jobs, is denoted by 

Ti. We assume there are k ≤ n distinct criticality levels in the 

system, and that Li denotes the criticality level of task τi  (larger 
Li values indicate higher criticalities). 

Following the convention in existing mixed-criticality 

research, we assume that the WCET values for task τi are 
specified as a function, Ci , where Ci(X) corresponds to the 

WCET estimate of  τi  at criticality level X.  Ci(X) is assumed to 
be no smaller than Ci(X-1) [5]. Similarly, the utilization values 

of task τi are specified as a function, ui( ) , where ui(X) denotes 

the utilization of τi at criticality level X and is defined as the 

ratio of Ci(X) to Ti. We define the nominal utilization of task τi 
to be the value of its utilization function at its criticality level, 
i.e., ui(Li). 

Tasks are scheduled using a partitioning-based approach on 
a set of m homogeneous processors identified as {P1, …, Pm}. 

The subset of tasks allocated to processor Pi is denoted by Γi. 
On each processor, tasks are scheduled by a preemptive fixed-
priority scheduling algorithm. Task priorities are identified by 
positive integers beginning with 1, which represents the highest 

priority. The priority of task τi is denoted by ρi. 

III. PRELIMINARIES 

In this section, we overview the basics of fixed-priority 
mixed-criticality feasibility analysis on uniprocessor systems, 
since it forms the basis of our partitioned-scheduling 
framework after the task allocation phase. Specifically, we use 
the mixed-criticality feasibility analysis methodology 
introduced in [21]. In particular, when evaluating whether a 
periodic task will meet its deadlines in all its instances, the 



WCET values used in the representation of higher-priority 
tasks must be of the same criticality level as that of the task 
under evaluation [5][21]. We determine whether a set of tasks 
allocated to a processor is schedulable given a particular fixed 
priority assignment by checking whether the worst-case 
response time for each task is less than or equal to its relative 
deadline. The worst-case response time of a task is incurred by 
a job that is released at a critical instance of the task, that is, by 
a job of the task that is released at the same time as jobs of all  
higher-priority tasks [16]. As described in [21], the worst-case 

response time Ri of task τi is therefore the smallest fixed-point 
solution of: 

 

Notice that, in the computation of the worst-case response time 

of task τi, the interference of higher-priority tasks is evaluated 
at the WCET values that correspond to the criticality level Li 
[21]. Therefore, the assignment of priorities to individual tasks 
is of  utmost importance in mixed-criticality scheduling [21].  

Example 1: Consider two tasks, τ1 and τ2, running on a 
uniprocessor system with the following parameters: 

τ1: T1=20, C1(1)=4, C1(2)=16, L1=1 

τ2: T2=50, C2(1)=12.5, C2(2)=17.5, L2=2 

With RM priority assignment, task τ1 has the higher priority 
despite having the lower criticality level – a situation referred 

to as criticality inversion in [20]. Because τ2 has high 
criticality, its worst-case response time is calculated using the 
high-criticality WCET of each task. The task diagram in Fig. 1 

represents the evaluation of the schedulability of τ2 with RM 
priority assignment under critical-instant phasing. With C1(2) 

used as the WCET for τ1, the response time of τ2 exceeds its 
deadline. As a result, the task set is not schedulable with RM 
priority assignment. 

 

Figure 1.  RM Priority Assignment Results in Criticality Inversion 

 

Figure 2.  Alternative Priority Assignment 

Consider next the case in which τ2 is assigned higher 

priority than τ1 (Fig. 2). Because τ1 has low criticality, C2(1) is 

used when determining the response time of τ1. As shown in 
Fig. 2, the task set is schedulable with this priority assignment. 
Note that, if the feasibility of this task set were considered 
using a traditional model, with the larger, more-pessimistic 

WCET estimate used for each task, then the task set would not 
be schedulable under either of the two possible priority 
assignments. This simple example illustrates how the use of a 
mixed-criticality model, combined with proper priority 
assignment, can offer increased processor utilization. 

IV. DIMENSIONS OF MIXED-CRITICALITY FIXED-PRIOITY  

 PARTITIONED SCHEDULING 

Our focus in this paper is the problem of scheduling a 
mixed-criticality task set on a fixed number of processors such 
that the tasks are statically allocated to processors, and such 
that the subset allocated to each processor is scheduled by a 
preemptive, fixed-priority algorithm in a feasible manner. In 
this section, we identify the two main dimensions of the 
problem and the algorithmic solutions applicable in each. Then 
we characterize the integrated schemes that can be formed 
through a combination of the solutions proposed for each 
dimension. We first formally define the Mixed-Criticality 
Fixed-Priority Partitioning problem (MCFP–PARTITION). 

Problem MCFP-PARTITION: Partition a given set of 

periodic, independent, mixed-criticality tasks, τ1 … τn , with 
relative deadlines equal to periods, upon m homogeneous 
multiprocessors, and determine fixed priorities for each, such 
that the set of tasks allocated to each CPU is feasible.  

Proposition 1: MCFP–PARTITION is NP-Hard in the 
strong sense.  

Proposition 1 follows from the classical result on the 
intractability of scheduling a set of n real-time tasks on m 
processors even when the tasks have identical criticality levels 
and share the same release time and deadline [11]. 

This result implies that one has to work with heuristic 
solutions to tackle this problem, unless  P = NP.  To better 
explore the possibilities, we consider the two main dimensions 
of the problem separately:  

1. Task Allocation. Partition the tasks τ1 … τn on the 
processor set P1 … Pm. 

2. Priority Assignment. For i ∈ {1, …, m}, given the 

subset of tasks Γi allocated to Pi, assign a priority level 

ρj to each task τj ∈ Γi. 

A. Task Allocation 

 The bin-packing-inspired partitioning heuristics that have 
been applied to the multiprocessor scheduling of traditional 
task sets [17][18] can also be applied in the mixed-criticality 
context. These include: 

First-Fit (FF) – The order of processors is fixed and each 
task is allocated to the first processor on which it "fits", i.e., on 
which it can be successfully scheduled along with the other 
tasks already allocated to that processor. 

Best-Fit (BF) – Each task is allocated to the processor with 
the smallest unused capacity among those processors on which 
it fits. 

(1) 



Worst-Fit (WF) – Each task is allocated to the processor 
with the largest unused capacity among those processors on 
which it fits. 

When these heuristics are applied to traditional task sets, 
the determination of whether a subset of tasks is schedulable on 
a processor is a matter of applying the schedulability analysis 
results derived for traditional task sets. When applied to mixed-
criticality task sets, schedulability is determined in the context 
of the chosen mixed-criticality system model – in our case by 
considering the response-time formula (1).  

In bin-packing-inspired partitioning techniques, such as FF, 
BF, and WF, it has been shown that ordering tasks first 
according to a certain criterion, and then processing them in 
that order, generally improves performance.  For example, 
ordering tasks according to decreasing utilization values proves 
helpful [17][18]. The resulting heuristics are referred to as 
First-Fit-Decreasing (FFD), Best-Fit-Decreasing (BFD), and 
Worst-Fit-Decreasing (WFD), respectively. We consider two 
options for ordering tasks prior to the application of the 
traditional partitioning heuristics: 

Decreasing Utilization (DU): In this approach, “large” 
tasks with high utilization values are allocated first, in a way 
that is similar to the application of algorithms such as FFD, 
BFD, and WFD to traditional task sets. However, because each 
mixed-criticality task is associated with multiple utilization 
values (one for each criticality level), such an ordering requires 
that a single utilization value be identified for each task.  In this 
paper, when ordering mixed-criticality tasks by utilization, we 
use each task's nominal utilization, i.e., ui(Li) – the value of the 
task's utilization function at the criticality level of the task.  

Decreasing Criticality (DC): Tasks are ordered according 
to criticality, and tasks at the same criticality level are further 
ordered by decreasing nominal utilization. This approach has 
the advantage of grouping tasks with identical or similar 
criticalities on the same processor. Hence, this approach 
reduces instances of criticality inversion (described in [20]), 
which occur when a low-criticality task is assigned higher 
priority than a high-criticality task. However, allowing the 
assignment of tasks of different criticalities to the same 
processor may, in some cases, offer improved processor 
utilization. 

B. Priority Assignment 

The objective in this dimension is the assignment of a 
priority to each task such that, for each processor, the subset of 
tasks allocated to the processor is schedulable given the 
assigned priorities. That is, the priorities must be chosen such 
that the response time computed for each task through (1), on 
its assigned processor, is no larger than the task’s deadline. In 
this paper, we consider two priority-assignment schemes: 

RM Priority Assignment ([16]) – In this solution, higher 
priorities are assigned to tasks with smaller periods. Because it 
is optimal among fixed-priority algorithms for traditional task 
sets in which relative deadlines are equal to periods, RM 
scheduling is widely used. Despite the fact that it is not optimal 
for mixed-criticality task sets (noted in [21] for the more-
general case of Deadline-Monotonic scheduling), its simplicity 

warrants its consideration. The complexity of RM assignment 
is O(ni log ni) on each CPU, where ni is the number of tasks 
allocated to processor Pi, since one needs to order tasks 
according to their periods before the priority assignment. 

Audsley's Optimal Priority Assignment algorithm ([2]) – 
Priorities are assigned in order, from lowest to highest. In each 
iteration, the algorithm determines if some task can be assigned 
the next priority. If so, it assigns that priority, removes the task 
from the subset of tasks that have not yet received an 
assignment, then recursively assigns the remaining priorities to 
the remaining subset of tasks in the same manner. If, in some 
step, an appropriate task cannot be found for the next priority 
level, the task set is not schedulable with a fixed-priority 
algorithm. Audsley's algorithm has the advantage of being 
optimal for mixed-criticality task sets as well as for traditional 
task sets [21]. A disadvantage, however, is its increased 
complexity relative to RM scheduling – The algorithm requires 
O(ni

2
 + ni) tests (where ni is the number of tasks allocated to Pi), 

and in each test feasibility is checked using Time-Demand 
Analysis, which may take pseudo-polynomial time [17].   

C. Integrated Schemes 

     Given the two main options in each of the two primary 

dimensions of the problem,  for a given partitioning heuristic 

such as FF, one can obtain a total of four schemes to address 

the mixed-criticality partitioning problem, which we denote by 

DU-RM, DU-Audsley, DC-RM and DC-Audsley. Here, the 

first component of the scheme (DU or DC) indicates whether 

the tasks are ordered according to utilization or criticality prior 

to task allocation. The second component (RM or Audsley) 

refers to the priority assignment strategy on each CPU.  

Obviously, each of these options has its own complexity and 

performance figures. For example, Audsley’s priority 

assignment scheme is optimal on a given CPU, but its 

complexity is much higher than the simple RM assignment. 

Also, it is not immediately clear whether ordering tasks 

according to utilization or criticality is always the better 

choice. Next, we provide two examples to illustrate how the 

potential choices may impact feasibility.   
Example 2: Consider the task set given in Table I, to be 

scheduled on two processors, P1 and P2.  Assume that, for task 
allocation, we use the First-Fit (FF) heuristic. 

TABLE I.  EXAMPLE TASK SET 

 Ti Ci(1) Ci(2) ui(1) ui(2) Li 

τ1 20 4 16 0.2 0.8 1 

τ2 50 12.5 17.5 0.25 0.35 2 

τ3 40 12 18 0.3 0.45 2 

τ4 10 4 5 0.4 0.5 1 

 
First, consider the DU-RM scheme, where tasks are ordered 

according to their nominal utilizations (typed in bold in Table 
I)  and RM priorities are used. With DU ordering, the tasks are 

allocated in the order of τ3, τ4, τ2, and τ1. Fig. 3 depicts the 
result of the application of DU-RM to this task set. The critical 
instant phasing that arises from using RM priorities on each 

CPU is shown.  τ3 and τ4 are successfully allocated to P1. Note 
that the high-criticality WCET values for both tasks are used 



when determining whether τ3 meets its deadlines. Neither τ1  

nor τ2 fit on P1, so they need to both be placed on P2.  However, 

as analyzed in Example 1 (Section III), τ2 will miss its deadline 

when it is assigned to the same processor as τ1 with RM 
priorities. Therefore, the task set in this example is not 
schedulable with DU-RM. 

 

Figure 3.  Task Set not Schedulable with DU-RM 

However, if τ2 is assigned higher priority than τ1  (Fig. 4), 
then we obtain the second case discussed in Example 1 
(Section III), leading to a feasible schedule. This observation 
effectively implies that the DU-Audsley scheme (by 
considering all possible priority assignments) would be able to 
successfully partition the given mixed-criticality task set. 

Now consider the addition of a new task, τ5 , with the 
following parameters: T5 = 15, C5(1) = 3, C5(2) = 4.5, L5 = 2. 

With these parameters, τ5's utilization function has the values 
u5(1) = 0.2 and u5(2) = 0.3. Fig. 5 shows the result of the 
application of DU when any fixed-priority assignment can be 
used, i.e., when we are not constrained to use RM priority 
assignments. This scenario is effectively equivalent to the 
application of the DU-Audsley scheme on the augmented task 

set.  Considered in the order of decreasing utilization, τ3 and τ4 

are allocated to P1; then τ2 and τ5  are allocated to P2. We then 

consider whether τ1 can be allocated, with τ3 and τ4, to P1. If τ1 

were assigned lowest priority on P1, τ3 would use 12 units of 

time during τ1's first period and τ4 would use 8 units; τ1 would 

therefore receive no CPU time. We also find that neither τ3 nor 

τ4 can be assigned lowest priority. Having determined that τ1 
cannot be allocated to P1, we consider next whether it can be 

allocated, with τ2 and τ5, to P2. None of these three tasks meets 
its deadlines if assigned lowest priority. For example, as shown 

in Fig. 5, τ1 misses its deadline if assigned lowest priority. We 
have therefore determined that the task set is not schedulable 
with DU under any fixed-priority assignment, which implies 
that DU-Audsley would fail to obtain a feasible partitioning. 

 

Figure 4.  Task Set becomes Schedulable with Change in Priorities on P2 

Now consider ordering these five tasks according to 
decreasing criticality (with ties broken according to decreasing 

nominal utilization), giving the processing order of τ3, τ2, τ5, τ4, 
and τ1 for the First-Fit technique. Further, assume the simple 
priority assignment RM on each CPU, yielding the integrated 
scheme DC-RM. We consider whether the example task set 

(augmented with τ5) is schedulable with DC-RM. The result of 
the application of DC-RM is shown in Fig. 6. With RM priority 
assignments on each CPU, the task set is schedulable. 

 

Figure 5.  Addition of Task τ5 

Example 2 demonstrates that sometimes, by simply 
modifying the task ordering scheme (in this case by switching 
from DU with Audsley's optimal priority assignment to DC 
with simple RM priority assignment), one can successfully 
partition mixed-criticality task sets. This last result may raise 
the question of whether ordering tasks according to criticality 
before partitioning is always preferable to ordering according 
to task utilization (i.e. the question of whether DC dominates 
DU). However, the answer is negative, as shown in the next 
example. 

 

Figure 6.  Task Set Schedulable with DC-RM 

  Example 3:  Consider the task set given in Table II. Again, 
assume the tasks are partitioned using the First-Fit (FF) 
scheme.  

TABLE II.  TASK SET SCHEDULABLE BY DU-RM BUT NOT DC-AUDSLEY 

 Ti Ci(1) Ci(2) ui(1) ui(2) Li 

τ1 40 14 24 .35 .6 2 

τ2 80 24 32 .3 .4 2 

τ3 120 66 72 .55 .6 1 

τ4 400 180 200 .45 .5 1 

 
The tasks are listed in the order in which they would be 

allocated by the Decreasing-Criticality (DC) heuristic. We first 
consider whether they are schedulable by DC-Audsley. In other 
words, while processing tasks according to decreasing 
criticality, we will try all possible priority assignments on each 
CPU in an attempt to find at least one feasible solution.  As 

shown in Fig. 7, tasks τ1 and τ2 are successfully allocated to P1, 

with τ1 assigned the higher priority. τ3 cannot be allocated, with 

τ1 and τ2, to P1. One way to see this is to note that the sum of 

the low-criticality utilizations of tasks τ1, τ2, and τ3 is greater 

than one. τ3 is therefore allocated to P2, and τ4 is considered 
next. Because the sum of the low-criticality utilizations of tasks 

τ1, τ2, and τ4 is greater than one, it is clear that τ4 cannot be 



allocated to P1. We also find that, regardless of its priority 

assignment relative to τ3, τ4 cannot be assigned to P2. The case 

in which τ4 is assigned the lower priority is shown in Fig. 7. 
We therefore conclude that the task set is not schedulable by 
DC-Audsley. 

 

Figure 7.  Task Set is not Schedulable by DC-Audsley 

 

Figure 8.  Task Set is Schedulable by DU-RM 

 Now consider whether the same task set is schedulable if 
the tasks are processed according to their utilization values, i.e., 
using the DU heuristic. Furthermore, assume the simple RM 
priority policy is adopted on each CPU – in other words, 
assume we do not try all possible priority assignments. The 
order in which these tasks are considered for allocation by DU 

is τ1, τ3, τ4, and τ2. As shown in Fig. 8, tasks τ1 and τ3 are 

successfully allocated to P1 with RM priority assignments. τ4 
cannot be allocated to P1 with RM priority assignments and is 

therefore allocated to P2. τ2 cannot be allocated to P1, but as 
shown in Fig. 8, it is successfully allocated to P2 when RM 
priority assignments are employed. The task set is therefore 
schedulable by DU-RM, despite not being schedulable by DC-
Audsley – the more sophisticated Decreasing Criticality 
ordering heuristic that tries all possible priority assignments on 
each CPU. Given these examples, we can offer the following 
important remark:  

Remark 1:  The decreasing-utilization (DU) and 
decreasing-criticality (DC) partitioning heuristics are 
incommensurable, in the sense that there exist task sets that are 
successfully scheduled by one but not the other. 

V. EXPERIMENTAL EVALUATION 

In this section, we undertake an experimental evaluation of 
the four mixed-criticality partitioning heuristics, namely, DU-
RM, DU-Audsley, DC-RM, and DC-Audsley. In addition to 
establishing the relative ordering of these schemes over a broad 
spectrum of system parameters, we are interested in assessing 
the impact of choices in each dimension (i.e., task allocation vs.  
priority assignment) on overall scheduling performance.  

For that purpose, a simulator was developed in the Java 
programming language.  For a system with a maximum of k 

criticality levels, the criticality level of each task was 
determined randomly between 1 and k.  In simulation studies 
for traditional, single-criticality systems, the load index is often 
controlled by generating a task set for a target total utilization. 
For mixed-criticality systems, as each task has k utilization 
levels corresponding to k criticality levels, we chose to control 
the load of the system by varying the sum, denoted by Utot

max
, 

of each task's utilization at the highest criticality level.  In other 

words, Utot
max

 = Σ ui(k).  For a given Utot
max

 value, we generated 
the ui(k) values (utilizations at the maximum criticality level) 
for a task set using the UUnifast-Discard algorithm proposed in 
[8].  For a given task, once ui(k) was identified, the utilization 
values at intermediate criticality levels were generated using a 
uniform distribution between 0.4*ui(k) and ui(k).  

The minimum and maximum task periods were set to 1 and 
1000 ms, respectively. As in [8], task periods were generated 
using a log-uniform distribution. Results were generated for 1, 
2, 4, and 8 criticality levels, and for 4 and 8 CPUs. For each 
Utot

max
 value, 1000 task sets were generated and the scheduling 

of each task set was attempted with each of the four mixed-
criticality partitioning heuristics. As we considered 4- and 8-
CPU systems separately, we present the results as a function of 
the normalized Utot

max
, which is defined as the ratio of Utot

max
 to 

the number of CPUs – in other words, it is given by the 
quantity (Utot

max
/m). We considered task sets containing 40 and 

60 tasks, separately. 

In Fig. 9, we present the percentage of task sets successfully 
scheduled (success ratio) for task sets with 40 tasks and 4 
criticality levels, scheduled upon 4 CPUs, as a function of the 
load (normalized Utot

max
). We first observe that the percentage 

of task sets successfully scheduled decreases with increasing 
load for all the schemes. This is in accordance with the existing 
theory [18], which indicates that with increasing load the 
likelihood of finding a feasible partition decreases, even for 
single-criticality systems.  However, it is interesting to note 
that even at normalized Utot

max
 values equal to or slightly 

exceeding 1 (i.e., when Utot
max

 ≈ m), almost all the task sets are 
scheduled successfully. This is due to the flexibility provided 
by the mixed-criticality feasibility test: Even though a task’s 
utilization at the maximum criticality level (that contributes to 
Utot

max
) may be large, the specific utilization value   that is 

considered in the feasibility test (in other words,  its effective 
utilization) depends on its own criticality and the criticality 
levels of tasks that are assigned lower priority and allocated to 
the same CPU.   Consequently, we observe that in particular, 
with 4 criticality levels and optimal priority assignment (which 
can be obtained through Audsley’s algorithm), the performance 
is almost 100% even for normalized Utot

max
 values around 1.2. 

With increasing load, the success ratio drops, but still remains 
at or above 50% for the DC-Audsley and DU-Audsley schemes 
when the normalized Utot

max
 does not exceed 1.7. 

 As to the relative performance of the schemes, we observe 
that for a given task-ordering policy (DC or DU), employed 
before the partitioning phase, using Audsley's priority 
assignment algorithm on each CPU offers significantly 
improved performance relative to using RM priority 
assignment. This is not surprising, given that Audsley's 
algorithm is optimal in this setting, while RMS is not.  
Moreover, the very fact that DU-Audsley outperforms DC-RM  



throughout the entire spectrum suggests that the selection of the 
priority assignment scheme is more critical than the selection 
of the task ordering algorithm used prior to partitioning. 

 

Figure 9.  Impact of  Normalized Utot
max (4 CPUs, 40 Tasks) 

However, for a given priority assignment scheme (RM or 
Audsley), we observe that ordering tasks according to 
criticality gives better performance than ordering according to 
utilization in this setting. Even though the offline ordering of 
tasks according to utilization is known to improve 
schedulability for the general real-time partitioning problem 
[18], these results suggest that avoiding or reducing criticality 
inversions by grouping tasks according to criticality proves 
more important in the average case. With DU ordering, low-
criticality tasks are more likely to be co-allocated with high-
criticality tasks on the same processor, and depending on the 
specific period values, a large number of criticality inversions 
may be unavoidable. 

Fig. 10 presents the results for the same setting (4 CPUs 
and 4 criticality levels), but with 60-task sets instead of 40-task 
sets.  The relative ordering of the schemes remains the same, 
but one notable difference is that the performance of the DU 
schemes slightly worsens compared to the trends seen in Fig. 9 
with 40-task sets. This is primarily due to two effects: First, 
with a larger number of tasks allocated to the same number of 
CPUs, the average number of tasks per CPU increases and the 
negative impact of each criticality inversion (which occurs 
more commonly with the DU schemes) is more pronounced.  
Second, the average size (utilization) of each task decreases, 
and the potential benefits of ordering tasks according to 
utilization become less important for feasibility [18]. 

The plots in Fig. 11 and Fig 12. were generated with the 
same parameter settings used for Fig. 9 and Fig. 10, 
respectively, except that the number of CPUs was increased 
from 4 to 8. Because the number of tasks per set was held 
constant (at 40 and 60), this increase in the number of CPUs 
results in a decrease in the average number of tasks per CPU. 
Consequently, criticality inversions have less impact in terms 
of an increase in effective utilization.  In fact, looking at Fig. 
11, we notice that the DU schemes now perform as good as, 
and in fact, slightly better than the corresponding DC schemes 
when the number of tasks per CPU is smallest.  With a slight 
increase in the number of tasks per CPU, as seen in Fig. 12, the 
DC schemes start to outperform the DU schemes (for a given 
load and priority assignment policy). Consequently, we can 
state that with an increase in the number of tasks per CPU, a 
reduction in the number of criticality inversions through a 

decreasing-criticality (DC) ordering becomes more important 
for the improvement of schedulability. In fact, when this ratio is 
lower than a certain threshold, the DU schemes perform as 
good as the corresponding DC schemes. 

 

Figure 10.  Impact of Normalized Utot
max (4 CPUs, 60 Tasks) 

In our analysis so far, we have assumed 4 criticality levels. 
Next, we analyze the impact of varying the number of 
criticality levels. In Fig. 13, results are plotted for the four 
schemes as a function of the number of criticality levels, with 
task sets with 40 tasks each scheduled on 4 CPUs, and with a 
normalized Utot

max
 value set to 2 (Utot

max
 = 2*4 = 8) .  Recall 

that individual task utilizations, for a given Utot
max

 value, are 
generated by considering the number of distinct criticality 
levels, k. Task utilizations at the maximum criticality level are 
chosen such that their sum is equal to Utot

max
 – in this case 

equal to 8, and task utilization values at intermediate criticality 
levels are generated randomly, but such that they decrease with 
decreasing criticality level. 

As a result, when there is only one criticality level,  the 
generated task sets correspond to traditional (single-criticality) 
task sets with total utilization twice the number of CPUs 
(Utot

max
 = 8). Consequently, none of the generated task sets can 

be partitioned in a feasible manner at this high load value (as 
suggested in [18]) when there is only one criticality level.  But 
when the number of criticality levels is increased to 2, the 
criticality levels of some tasks drop from the maximum level 
(2) to 1, and this allows for the possibility that their effective 
utilizations drop in feasibility tests. This results in non-zero 
success ratios for all the schemes (and highlights the 
motivation for mixed-criticality levels). With 4 criticality 
levels, DC-Audsley is able to schedule 35% of the task sets, 
followed next in performance by DU-Audsley.  At this high 
normalized Utot

max
 level (of 2)  the schemes using the RM 

priority assignment can schedule only 5-10% of the task sets.  

Results are plotted in Fig. 14 for the same parameters as 
Fig. 13, except that task sets are scheduled on 8 CPUs rather 
than 4. Normalized Utot

max
 is still 2, implying that Utot

max
 =  

2 * 8 = 16. As discussed previously, this increase in the number 
of CPUs, while other parameters (including normalized Utot

max
) 

are kept constant, results in a decrease in the number of tasks 
per CPU as well as an increase in the average task utilization.  
Consequently, the number of criticality inversions decreases, 
the performance of all schemes improves, and moreover, the 
performance of the DU schemes becomes comparable to that of 
the DC schemes.  



 

Figure 11.  Impact of Normalized Utot
max (8 CPUs, 40 Tasks) 

 

Figure 12.  Impact of  Normalized Utot
max (8 CPUs, 60 Tasks) 

The heuristics evaluated in these results allocate tasks 
according to the First-Fit (FF) algorithm after ordering tasks 
according to criticality or utilization.  We also repeated 
experiments to compare this choice (FF) against other well-
known heuristics, namely Best-Fit (BF) and Worst-Fit (WF). 
Specifically, we implemented versions of DU-Audsley, DC-
Audsley, DU-RM, and DC-RM that use BF and WF, as well as 
FF. Providing all the plots for the resulting 12 combinations is 
unrealistic given space constraints. We therefore present, for 
BF and WF, only the results for DC-Audsley and note that the 
results are fairly consistent for the other three schemes. Fig. 15 
compares the performance of DC-Audsley when implemented 
with the FF, BF, and WF allocation heuristics, for the case 
where the  parameters are the same as those used for Fig. 9. As 
shown, the results from the FF and BF heuristics are almost the 
same, and the results from WF are worse than those obtained 
with FF or BF. These relative performance results for FF, BF, 
and WF are consistent with those obtained with traditional 
system models [18]. In Fig. 16, results are shown for the case 
in which parameters are the same as those used for Fig. 15, 
except that the number of CPUs is increased from 4 to 8. As 
shown, the relative performance of the three heuristics remains 
the same as the number of CPUs is increased.  These results, 
compounded with the fact that FF is simpler to implement than 
BF,  suggest that it is reasonable to select First-Fit as the basis 
for the evaluated partitioning heuristics. 

VI. RELATED WORK 

In [21], Vestal proposed a model for mixed-criticality 
systems that explicitly takes criticality into account. In the 
same paper, the use of Audsley's Optimal Priority Assignment 
algorithm [2] is suggested and is applied using the proposed 
mixed-criticality model as the basis for schedulability analysis. 
Period transformation is also considered in [21]. In [5], using 

the model proposed in [21], it is shown that EDF is not optimal 
for the scheduling of mixed-criticality task sets. There are 
mixed-criticality task sets that are not schedulable by EDF, but 
that are schedulable if job-level, dynamic priorities are used. 
Also, EDF and RM are incomparable – there are mixed-
criticality task sets schedulable by EDF but not RM, and there 
are others that are schedulable by RM but not by EDF. A 
hybrid scheduling approach is proposed in [5] that dominates 
both EDF and RM. The model proposed in [21] is explored 
further in [3] and is considered in the context of certification of 
mixed-criticality systems in [4], [14], and [15]. 

 

Figure 13.  Impact of the Number of Criticality Levels (4 CPUs) 

 

Figure 14.  Impact of the Number of Criticality Levels (8 CPUs) 

Another approach to the modeling of mixed-criticality 
systems and the uniprocessor scheduling of such systems is 
offered in [20], in which each task is assigned a nominal 
WCET and an overload WCET. A key tenet of the model is the 
guarantee that a task can execute for the duration of its 
overload budget (i.e., overload WCET) provided that no 
higher-criticality task exceeds its nominal WCET. The model 
proposed in [20] is explored further in [12]. The scheduling of 
mixed-criticality task sets on multiple CPUs is considered in 
[13] using the uniprocessor scheduling algorithm proposed in 
[20], which requires the offline calculation of "zero-slack" 
instants, and an online component that changes a task's mode at 
its zero-slack instant. In contrast, we apply traditional, fixed-
priority uniprocessor scheduling, but with schedulability 
analysis performed using the model proposed by Vestal in [21], 
and our focus is the assessment of variation in partitioning and 
priority assignment approaches in terms of their impact on 
schedulability in a mixed-criticality setting. Mixed-criticality, 
multiprocessor scheduling is also considered in [19], which 
extends the work presented in [1]. These papers propose a two-
level, hierarchical scheduling framework that makes use of 
container tasks, with a different type of container task applied 
to the scheduling of tasks at each criticality level. Our focus 



differs in that we explore variation in task allocation and fixed-
priority assignment in the mixed-criticality setting. 

 

Figure 15.  Comparison of Partitioning Heuristics (4 CPUs) 

 

Figure 16.  Comparison of Partitioning Heuristics (8 CPUs) 

VII. CONCLUSIONS 

In this paper, we investigated fixed-priority, partitioning-
based approaches to the multiprocessor scheduling of mixed-
criticality task sets, and assessed the relative importance of the 
two primary dimensions of the problem - task allocation and 
priority assignment. We have identified four multiprocessor 
scheduling algorithms that result from choices made in these 
two dimensions. For task-allocation, tasks are ordered 
according to utilization (DU) or criticality (DC) before 
application of a partitioning heuristic such as First-Fit. For 
priority assignment on each processor, we considered the 
simple RM priority assignment, as well as the optimal priority 
assignment that can be obtained through Audsley’s algorithm 
[2]. We established that the DC and DU task ordering 
heuristics are incommensurable in the sense that there are tasks 
sets that can be scheduled by one, but not the other. Our 
experimental results suggest that in general, using Audsley’s 
priority assignment algorithm offers a significant advantage 
over RM assignment.  We observed that typically DC performs 
better than DU, but that the difference decreases with a 
decrease in the number of tasks per CPU.  

REFERENCES 

[1] J.H. Anderson, S.K. Baruah, B.B. Brandenburg. "Multicore operating-
system support for mixed criticality," Proceedings of the Workshop on 
Mixed Criticality: Roadmap to Evolving UAV Certification, April 2009. 

[2] N.C. Audsley. "Optimal priority assignment and feasibility of static 
priority tasks with arbitrary start times," Technical Report, The 
University of York, England, November 1991. 

[3] S. Baruah, V. Bonifaci, G. D'Angelo, H. Li, A. Marchetti-Spaccamela, 
N. Megow, L. Stougie. "Scheduling Real-Time Mixed-Criticality Jobs," 
Proceedings of the 35th International Symposium, Mathematical 
Foundations of Computer Science, pp. 90-101, 2010. 

[4] S. Baruah, H. Li, L. Stougie. "Towards the design of certifiable mixed-
criticality systems," Proceedings of the 16th IEEE Real-Time and 
Embedded Technology and Applications Symposium, pp. 13-22, April 
2010. 

[5] S. Baruah, S. Vestal. "Schedulability analysis of sporadic tasks with 
multiple criticality specifications," Proceedings of the 20th Euromicro 
Conference on Real-Time Systems, pp. 147-155, 2008. 

[6] E. Bini, G. Buttazzo. "Measuring the performance of schedulability 
tests," Real-Time Systems, vol. 30, pp. 129-154, May 2005. 

[7] G.C. Buttazzo. Hard Real-Time Computing Systems, 2nd ed. New York, 
NY: Springer, 2005. 

[8] R.I. Davis, A. Burns. "Priority assignment for global fixed priority pre-
emptive scheduling in multiprocessor real-time systems," Proceedings of 
the 30th IEEE Real-Time Systems Symposium, pp. 398-409, December 
2009. 

[9] R.I. Davis, A. Burns. "A survey of hard real-time scheduling algorithms 
and schedulability analysis techniques for multiprocessor systems," 
Technical Report YCS-2009-443, Department of Computer Science, 
University of York, 2009. 

[10] S.K. Dhall, C.L. Liu. "On a real-time scheduling problem," Operations 
Research, vol. 26, no. 1, pp. 127-140, February 1978. 

[11] M.R. Garey, D.S. Johnson. Computers and Intractability, A Guide to the 
Theory of NP-Completeness. New York, NY: W.H. Freeman and 
Company, 1979. 

[12] K. Lakshmanan, D. de Niz, R. Rajkumar. "Mixed-criticality task 
synchronization in zero-slack scheduling," Proceedings of the 17th IEEE 
Real-Time and Embedded Technology and Applications Symposium, 
pp. 47-56, April 2011. 

[13] K. Lakshmanan, D. de Niz, R. Rajkumar, G. Moreno. "Resource 
allocation in distributed mixed-criticality cyber-physical systems," 
Proceedings of the 30th IEEE International Conference on Distributed 
Computing Systems, pp. 169-178, June 2010. 

[14] H. Li, S. Baruah. "An algorithm for scheduling certifiable mixed-
criticality sporadic task systems," Proceedings of the 31st IEEE Real-
Time Systems Symposium, pp. 183-192, December 2010. 

[15] H. Li, S. Baruah. "Load-based schedulability analysis of certifiable 
mixed-criticality systems," Proceedings of the 10th ACM International 
Conference on Embedded Software, pp. 99-107, 2010. 

[16] C.L. Liu, J.W. Layland. "Scheduling algorithms for multiprogramming 
in a hard-real-time environment," Journal of the ACM, vol. 20, no. 1, pp. 
46-61, January 1973. 

[17] J.W.S Liu. Real-Time Systems. Upper Saddle River, NJ: Prentice Hall, 
2000. 

[18] J. M. Lopez, M. Garcia, J. L. Diaz, D. F. Garcia. “Utilization bounds for 
Multiprocessor Rate-Monotonic Systems”, Real-Time Systems, vol. 24, 
pp. 5 – 28, January 2003. 

[19] M.S. Mollison, J.P. Erickson, J.H. Anderson, S.K. Baruah, J.A. 
Scoredos. "Mixed-Criticality Real-Time Scheduling for Multicore 
Systems," Proceedings of the 10th IEEE International Conference on 
Computer and Information Technology, pp. 1864-1871, 2010. 

[20] D. de Niz, K. Lakshmanan, R. Rajkumar. "On the scheduling of Mixed-
Criticality Real-Time Task Sets," Proceedings of the 30th IEEE Real-
Time Systems Symposium, pp. 291-300, December 2009. 

[21]  S. Vestal. "Preemptive scheduling of multi-criticality systems with 
varying degrees of execution time assurance," Proceedings of the 28th 
IEEE International Real-Time Systems Symposium, pp. 239-243, 2007. 

 


