On Partitioned Scheduling of Fixed-Priority
Mixed-Criticality Task Sets

Owen R. Kelly

Hakan Aydin Baoxian Zhao

Department of Computer Science
George Mason University
Fairfax, VA 22030 - USA
okelly@gmu.edu aydin@cs.gmu.edu bzhao@gmu.edu

Abstract— Mixed-criticality real-time systems, where tasks may
be associated with different criticality and assurance levels, have
attracted much attention in the recent past. In this paper, we
consider partitioning-based multiprocessor scheduling of mixed-
criticality real-time task sets. Guaranteeing feasibility in this
setting is shown to be NP-Hard. With a focus on fixed-priority
preemptive scheduling on each processor, we identify the two
main aspects of the problem, namely the task allocation and
priority assignment dimensions. For the task allocation dimension,
we propose and compare bin-packing-inspired heuristics, based
on offline task ordering according to utilization and criticality.
For the priority assignment dimension, we compare the well-
known Rate Monotonic priority assignment policy with Audsley’s
priority assignment algorithm. Through simulations, we also
assess and discuss the relative importance of these two primary
dimensions on the overall mixed-criticality feasibility problem for
multiprocessor platforms.

Keywords- real-time scheduling, multiprocessor systems, mixed-
criticality, partitioning-based scheduling, fixed-priority scheduling

I INTRODUCTION

Hard real-time systems — systems where guaranteeing
temporal predictability even under worst-case scenarios is of
the utmost importance, have received significant attention in
research efforts over the past several decades. As a result, there
exists a well-established theory for both uniprocessor and
multiprocessor hard real-time systems. In particular, the hard
real-time scheduling of periodic tasks, common in real-time
applications, has been the subject of intensive research [7][17].

For periodic real-time applications executed on a single
processor, priority-driven scheduling has been recognized as an
effective framework to guarantee the timing constraints of tasks
[17]. In fixed-priority scheduling, each task is assigned a fixed
priority that is determined statically. Among fixed-priority
algorithms, Rate Monotonic Scheduling (RMS), where the
priority of a task is inversely proportional to its period, is
known to be optimal for task sets where the relative deadlines
are equal to the periods [16]. Among dynamic-priority
policies, the Earliest-Deadline-First (EDF) policy is known to
be optimal [16].

For multiprocessor real-time systems, existing approaches
typically fall in the partitioning or global-scheduling classes
[17]. In global scheduling, there is effectively a single queue of
ready jobs that are allocated across multiple processors, and

* This work was supported by U.S. National Science Foundation Awards
CNS-1016855 and CNS-0546244 (CAREER award).

hence, a task can migrate from one processor to another at run-
time. In contrast, in partitioning-based approaches, each task is
statically allocated to a single processor. While global
approaches can offer better processor utilization for some task
sets, they can also incur greater run-time overhead and cache
affinity problems due to potential migrations. In addition, it has
been shown that some task sets are not schedulable with a
global approach despite having low overall utilization [10]. An
important advantage of partitioning-based approaches is that
the well-established uniprocessor scheduling theory is
applicable to the scheduling of the subset of tasks allocated to
individual processors [18].

More recently, there has been a growing interest in analyzing
real-time systems that execute tasks of different criticalities.
Recent work on these so-called mixed-criticality systems has
included the development of system models that explicitly take
task criticality into account [4][5][12][20][21]. Much work in
this area stems from the observation that several important
classes of real-time applications include different
functionalities at varying levels of importance, requiring
different assurance levels. In particular, these settings mandate
that the deadlines of higher-criticality tasks be guaranteed with
a higher degree of assurance than those of lower-criticality
tasks.

In traditional (i.e., not mixed-criticality) hard real-time
models, a single worst-case execution time (WCET) estimate
is associated with each task and is used when determining if a
task set is schedulable. As noted in [21], this often leads to
system under-utilization — the designers have to choose the
most conservative WCET estimate for every task, regardless of
criticality levels. In practice, even for a given task, a different
WCET estimate may be available for each criticality level:
Larger estimates for higher criticality levels can be obtained
through exhaustive analysis, even though the probability of
observing these larger WCETSs at run-time may be quite low.
Conversely, smaller WCET estimates can be obtained for lower
criticality levels through less-rigorous methods, for example by
considering the average value observed in real system traces.

As a result, a main feature of the mixed-criticality models
explored in [21][14][15][4] and adopted in this paper is the
specification of a WCET function for each task, i.e., the
specification for each task of a WCET corresponding to each
criticality level in the system. It is intended that each WCET
estimate have a level of assurance that is appropriate for its

corresponding criticality level. Fundamental in the application
of this model is the following principle [5][21]: In assessing the
delay that can be experienced by a given task 7, the feasibility
analysis must consider, for higher-priority tasks, the WCET
values corresponding to the same level of criticality (i.e.,
assurance) as that of T.

This principle has important implications for both real-time
systems theory and practice. First, by allowing the use of looser
(Iess pessimistic)y WCET estimates when determining the
timeliness of low-criticality tasks during feasibility analysis,
system utilization can be significantly improved [21]. Second,
a comprehensive theory of mixed-criticality system analysis
eventually may enable formal certification by civilian
authorities [4].

However, the development of such a comprehensive new
theory poses several challenges. For example, in his seminal
paper, Vestal observed that rate-monotonic priority assignment
is not optimal for fixed-priority mixed-criticality single-
processor scheduling [21]. Consequently, he proposed the use
of Audsley’s priority assignment algorithm [2], despite the
relatively high complexity associated with it. In another
negative result, it has been shown that the general problem of
mixed-criticality feasibility analysis is NP-Hard in the strong
sense on one processor, even for settings where the jobs have
the same ready time and there are only two distinct criticality
levels [4]. However, the practical promise of the framework is
high enough that additional research efforts need to be (and
have been, [4][5][12][20][21]) applied to the problem, even
though they may be forced, in the final analysis, to offer only
“approximate” solutions. More details about related work in the
area can be found in Section VL.

This research effort has been partly motivated by the
observation that much of the existing and growing literature on
mixed-criticality systems targets uniprocessor systems, yet
many real-time applications are expected to, and do already run
on multi-processor and emerging multi-core platforms.
Consequently, we believe a preliminary analysis of mixed-
criticality systems for multiprocessor settings will prove useful.

There are two dimensions in which one can explore
different approaches and their effect on the overall
schedulability of mixed-criticality task sets with fixed priority
assignments. The priority assignment dimension, to guarantee
the feasibility of fixed-priority task sets on uniprocessor
systems, is already a difficult problem [21]. While RMS
priority assignment is simple and well-known, an optimal
solution can be generated by the computationally-expensive
priority assignment algorithm developed by Audsley [2]. The
consideration of task allocation on multi-processor platforms
adds a new dimension and simultaneously makes the problem
intractable (even for the special case where all tasks have the
same criticality). Bin packing heuristics such as First-Fit and
Best-Fit have been used extensively in the literature for the
traditional partitioning problem, especially after first ordering
tasks according to utilization [17][18]. Alternatively, in mixed-
criticality settings, grouping tasks according to criticality (as
opposed to utilization) on separate processors appears to be an
intuitive solution, though its impact on feasibility is not
immediately clear.

The primary focus of this work is the exploration of
these two dimensions, i.e., task allocation and priority-
assignment strategies for periodic fixed-priority mixed-
criticality task sets. Specifically, we identify the main
algorithmic solutions for each dimension and compare them
experimentally. Moreover, we undertake an evaluation of the
relative importance of each of these dimensions
experimentally. For example, we believe it is interesting to ask
whether the use of a criticality-aware task allocation heuristic
eliminates or reduces the need for running Audsley’s priority
assignment algorithm on each processor, or if the use of
Audsley's algorithm reduces the need for a criticality-aware
allocation heuristic.

The remainder of this paper is organized as follows. In
Section II, we present our model and notation. Section III re-
visits the fundamental principles of feasibility analysis for
fixed-priority mixed-criticality task sets on uniprocessor
systems. Section IV elaborates on the two dimensions of our
problem (task allocation and priority assignment) and
illustrates the trade-offs involved in the multi-processor case
through examples. Section V presents our experimental
evaluation. Related work and concluding remarks are provided
in Sections VI and VII, respectively.

II. SYSTEM MODEL AND NOTATION

We consider a task set I" that is comprised of n independent,
periodic, mixed-criticality tasks Ty, ..., T,. The period of task T;,
which is equal to the relative deadline of its jobs, is denoted by
T;. We assume there are k <n distinct criticality levels in the
system, and that L; denotes the criticality level of task t; (larger
L; values indicate higher criticalities).

Following the convention in existing mixed-criticality
research, we assume that the WCET values for task T; are
specified as a function, C;, where C;(X) corresponds to the
WCET estimate of T; at criticality level X. Ci(X) is assumed to
be no smaller than Ci(X-1) [5]. Similarly, the utilization values
of task T; are specified as a function, u;() , where u;(X) denotes
the utilization of T; at criticality level X and is defined as the
ratio of Cy(X) to T;. We define the nominal utilization of task 7;
to be the value of its utilization function at its criticality level,
i.e., ui(Li).

Tasks are scheduled using a partitioning-based approach on
a set of m homogeneous processors identified as {Py, ..., P,,}.
The subset of tasks allocated to processor P; is denoted by I7.
On each processor, tasks are scheduled by a preemptive fixed-
priority scheduling algorithm. Task priorities are identified by
positive integers beginning with 1, which represents the highest
priority. The priority of task T; is denoted by p;.

III. PRELIMINARIES

In this section, we overview the basics of fixed-priority
mixed-criticality feasibility analysis on uniprocessor systems,
since it forms the basis of our partitioned-scheduling
framework after the task allocation phase. Specifically, we use
the mixed-criticality feasibility analysis methodology
introduced in [21]. In particular, when evaluating whether a
periodic task will meet its deadlines in all its instances, the

WCET values used in the representation of higher-priority
tasks must be of the same criticality level as that of the task
under evaluation [5][21]. We determine whether a set of tasks
allocated to a processor is schedulable given a particular fixed
priority assignment by checking whether the worst-case
response time for each task is less than or equal to its relative
deadline. The worst-case response time of a task is incurred by
a job that is released at a critical instance of the task, that is, by
a job of the task that is released at the same time as jobs of all
higher-priority tasks [16]. As described in [21], the worst-case
response time R; of task 7 is therefore the smallest fixed-point

solution of:
Ri
Sl 0
J

R =
TR =p;
Notice that, in the computation of the worst-case response time
of task 7, the interference of higher-priority tasks is evaluated
at the WCET values that correspond to the criticality level L;
[21]. Therefore, the assignment of priorities to individual tasks
is of utmost importance in mixed-criticality scheduling [21].

Example 1: Consider two tasks, T, and T,, running on a
uniprocessor system with the following parameters:

1, T1=20, Cy(1)=4, C,(2)=16, L,=1
Tr: T2:50, C2(1)2125, C2(2):175, L2:2

With RM priority assignment, task T, has the higher priority
despite having the lower criticality level — a situation referred
to as criticality inversion in [20]. Because 7T, has high
criticality, its worst-case response time is calculated using the
high-criticality WCET of each task. The task diagram in Fig. 1
represents the evaluation of the schedulability of t, with RM
priority assignment under critical-instant phasing. With C(2)
used as the WCET for 71, the response time of T, exceeds its
deadline. As a result, the task set is not schedulable with RM
priority assignment.

o smmiccmn dandliea

\.2 1150 TO UTauiiiic l.

= — = — = i

151 | G | 151 | & | 151 |
0 5 10 15 20 25 30 35 40 45 50

Figure 1. RM Priority Assignment Results in Criticality Inversion

G T ? :

10 125 165 30 25 30 35 40 45 50

t
0 5

Figure 2. Alternative Priority Assignment

Consider next the case in which T, is assigned higher
priority than 7, (Fig. 2). Because T, has low criticality, C,(1) is
used when determining the response time of T, As shown in
Fig. 2, the task set is schedulable with this priority assignment.
Note that, if the feasibility of this task set were considered
using a traditional model, with the larger, more-pessimistic

WCET estimate used for each task, then the task set would not
be schedulable under either of the two possible priority
assignments. This simple example illustrates how the use of a
mixed-criticality model, combined with proper priority
assignment, can offer increased processor utilization.

IV. DIMENSIONS OF MIXED-CRITICALITY FIXED-PRIOITY
PARTITIONED SCHEDULING

Our focus in this paper is the problem of scheduling a
mixed-criticality task set on a fixed number of processors such
that the tasks are statically allocated to processors, and such
that the subset allocated to each processor is scheduled by a
preemptive, fixed-priority algorithm in a feasible manner. In
this section, we identify the two main dimensions of the
problem and the algorithmic solutions applicable in each. Then
we characterize the integrated schemes that can be formed
through a combination of the solutions proposed for each
dimension. We first formally define the Mixed-Criticality
Fixed-Priority Partitioning problem (MCFP-PARTITION).

Problem MCFP-PARTITION: Partition a given set of
periodic, independent, mixed-criticality tasks, t; ... T, , with
relative deadlines equal to periods, upon m homogeneous
multiprocessors, and determine fixed priorities for each, such
that the set of tasks allocated to each CPU is feasible.

Proposition 1: MCFP-PARTITION is NP-Hard in the
strong sense.

Proposition 1 follows from the classical result on the
intractability of scheduling a set of n real-time tasks on m
processors even when the tasks have identical criticality levels
and share the same release time and deadline [11].

This result implies that one has to work with heuristic
solutions to tackle this problem, unless P = NP. To better
explore the possibilities, we consider the two main dimensions
of the problem separately:

1. Task Allocation. Partition the tasks T, ... T, on the
processor set Py ... Py,
2. Priority Assignment. For i € {1, ..., m}, given the

subset of tasks I'j allocated to P;, assign a priority level
p;j to each task 1; € I’

A. Task Allocation

The bin-packing-inspired partitioning heuristics that have
been applied to the multiprocessor scheduling of traditional
task sets [17][18] can also be applied in the mixed-criticality
context. These include:

First-Fit (FF) — The order of processors is fixed and each
task is allocated to the first processor on which it "fits", i.e., on
which it can be successfully scheduled along with the other
tasks already allocated to that processor.

Best-Fit (BF) — Each task is allocated to the processor with
the smallest unused capacity among those processors on which
it fits.

Worst-Fit (WF) — Each task is allocated to the processor
with the largest unused capacity among those processors on
which it fits.

When these heuristics are applied to traditional task sets,
the determination of whether a subset of tasks is schedulable on
a processor is a matter of applying the schedulability analysis
results derived for traditional task sets. When applied to mixed-
criticality task sets, schedulability is determined in the context
of the chosen mixed-criticality system model — in our case by
considering the response-time formula (1).

In bin-packing-inspired partitioning techniques, such as FF,
BF, and WF, it has been shown that ordering tasks first
according to a certain criterion, and then processing them in
that order, generally improves performance. For example,
ordering tasks according to decreasing utilization values proves
helpful [17][18]. The resulting heuristics are referred to as
First-Fit-Decreasing (FFD), Best-Fit-Decreasing (BFD), and
Worst-Fit-Decreasing (WFD), respectively. We consider two
options for ordering tasks prior to the application of the
traditional partitioning heuristics:

Decreasing Utilization (DU): In this approach, “large”
tasks with high utilization values are allocated first, in a way
that is similar to the application of algorithms such as FFD,
BFD, and WFD to traditional task sets. However, because each
mixed-criticality task is associated with multiple utilization
values (one for each criticality level), such an ordering requires
that a single utilization value be identified for each task. In this
paper, when ordering mixed-criticality tasks by utilization, we
use each task's nominal utilization, i.e., ui(L;) — the value of the
task's utilization function at the criticality level of the task.

Decreasing Criticality (DC): Tasks are ordered according
to criticality, and tasks at the same criticality level are further
ordered by decreasing nominal utilization. This approach has
the advantage of grouping tasks with identical or similar
criticalities on the same processor. Hence, this approach
reduces instances of criticality inversion (described in [20]),
which occur when a low-criticality task is assigned higher
priority than a high-criticality task. However, allowing the
assignment of tasks of different criticalities to the same
processor may, in some cases, offer improved processor
utilization.

B. Priority Assignment

The objective in this dimension is the assignment of a
priority to each task such that, for each processor, the subset of
tasks allocated to the processor is schedulable given the
assigned priorities. That is, the priorities must be chosen such
that the response time computed for each task through (1), on
its assigned processor, is no larger than the task’s deadline. In
this paper, we consider two priority-assignment schemes:

RM Priority Assignment ([16]) — In this solution, higher
priorities are assigned to tasks with smaller periods. Because it
is optimal among fixed-priority algorithms for traditional task
sets in which relative deadlines are equal to periods, RM
scheduling is widely used. Despite the fact that it is not optimal
for mixed-criticality task sets (noted in [21] for the more-
general case of Deadline-Monotonic scheduling), its simplicity

warrants its consideration. The complexity of RM assignment
is O(ny; log n;) on each CPU, where n; is the number of tasks
allocated to processor P;, since one needs to order tasks
according to their periods before the priority assignment.

Audsley's Optimal Priority Assignment algorithm ([2]) —
Priorities are assigned in order, from lowest to highest. In each
iteration, the algorithm determines if some task can be assigned
the next priority. If so, it assigns that priority, removes the task
from the subset of tasks that have not yet received an
assignment, then recursively assigns the remaining priorities to
the remaining subset of tasks in the same manner. If, in some
step, an appropriate task cannot be found for the next priority
level, the task set is not schedulable with a fixed-priority
algorithm. Audsley's algorithm has the advantage of being
optimal for mixed-criticality task sets as well as for traditional
task sets [21]. A disadvantage, however, is its increased
comglexity relative to RM scheduling — The algorithm requires
O(n;” + ny) tests (where n;is the number of tasks allocated to P;),
and in each test feasibility is checked using Time-Demand
Analysis, which may take pseudo-polynomial time [17].

C. Integrated Schemes

Given the two main options in each of the two primary
dimensions of the problem, for a given partitioning heuristic
such as FF, one can obtain a total of four schemes to address
the mixed-criticality partitioning problem, which we denote by
DU-RM, DU-Audsley, DC-RM and DC-Audsley. Here, the
first component of the scheme (DU or DC) indicates whether
the tasks are ordered according to utilization or criticality prior
to task allocation. The second component (RM or Audsley)
refers to the priority assignment strategy on each CPU.
Obviously, each of these options has its own complexity and
performance figures. For example, Audsley’s priority
assignment scheme is optimal on a given CPU, but its
complexity is much higher than the simple RM assignment.
Also, it is not immediately clear whether ordering tasks
according to utilization or criticality is always the better
choice. Next, we provide two examples to illustrate how the
potential choices may impact feasibility.

Example 2: Consider the task set given in Table I, to be
scheduled on two processors, P, and P,. Assume that, for task
allocation, we use the First-Fit (FF) heuristic.

TABLE L EXAMPLE TASK SET
T; GO [G2 | w® [u@ L;
T 20 4 16 0.2 0.8 1
T, 50 12.5 17.5 0.25 0.35 2
T; 40 12 18 0.3 0.45 2
Ty 10 4 5 0.4 0.5 1

First, consider the DU-RM scheme, where tasks are ordered
according to their nominal utilizations (typed in bold in Table
I) and RM priorities are used. With DU ordering, the tasks are
allocated in the order of T3, T4, Tp, and T,. Fig. 3 depicts the
result of the application of DU-RM to this task set. The critical
instant phasing that arises from using RM priorities on each
CPU is shown. 7; and T, are successfully allocated to P;. Note
that the high-criticality WCET values for both tasks are used

when determining whether T; meets its deadlines. Neither T,
nor T, fit on Py, so they need to both be placed on P,. However,
as analyzed in Example 1 (Section III), T, will miss its deadline
when it is assigned to the same processor as T, with RM
priorities. Therefore, the task set in this example is not
schedulable with DU-RM.

0

Lol
~
s
|| A
[
~
al

(=]
w
-

C

[

U

N
=]
N
n
w
@]
w
[l
3

C

Iy
vl
v
=]

Figure 3. Task Set not Schedulable with DU-RM

However, if 7, is assigned higher priority than T, (Fig. 4),
then we obtain the second case discussed in Example 1
(Section III), leading to a feasible schedule. This observation
effectively implies that the DU-Audsley scheme (by
considering all possible priority assignments) would be able to
successfully partition the given mixed-criticality task set.

Now consider the addition of a new task, Ts , with the
following parameters: Ts= 15, Cs(1) = 3, Cs(2) = 4.5, Ls=2
With these parameters, Ts's utilization function has the values
us(1) = 0.2 and us(2) = 0.3. Fig. 5 shows the result of the
application of DU when any fixed-priority assignment can be
used, i.e., when we are not constrained to use RM priority
assignments. This scenario is effectively equivalent to the
application of the DU-Audsley scheme on the augmented task
set. Considered in the order of decreasing utilization, T; and T,
are allocated to Py; then T, and 15 are allocated to P,. We then
consider whether T; can be allocated, with T3 and T4, to Py. If T
were assigned lowest priority on Py, T3 would use 12 units of
time during T,'s first period and T4 would use 8 units; T; would
therefore receive no CPU time. We also find that neither T3 nor
T, can be assigned lowest priority. Having determined that T,
cannot be allocated to P, we consider next whether it can be
allocated, with T, and 7s, to P,. None of these three tasks meets
its deadlines if assigned lowest priority. For example, as shown
in Fig. 5, 7; misses its deadline if assigned lowest priority. We
have therefore determined that the task set is not schedulable
with DU under any fixed-priority assignment, which implies
that DU-Audsley would fail to obtain a feasible partitioning.

o . .
JEa B3 —Ea Ew faw

(augmented with 7s) is schedulable with DC-RM. The result of
the application of DC-RM is shown in Fig. 6. With RM priority
assignments on each CPU, the task set is schedulable.

1. misses its deadline
T, misses its deadline

P e I e e e Wl
P1] Ty [kl Ty (el Ty [Etaa] T fEal | T ke
4] 5 io i5 185 225 25 30 35 40 45 50
Figure 5. Addition of Task Ts
Example 2 demonstrates that sometimes, by simply

modifying the task ordering scheme (in this case by switching
from DU with Audsley's optimal priority assignment to DC
with simple RM priority assignment), one can successfully
partition mixed-criticality task sets. This last result may raise
the question of whether ordering tasks according to criticality
before partitioning is always preferable to ordering according
to task utilization (i.e. the question of whether DC dominates
DU). However, the answer is negative, as shown in the next
example.

Figure 6. Task Set Schedulable with DC-RM

Example 3: Consider the task set given in Table II. Again,
assume the tasks are partitioned using the First-Fit (FF)
scheme.

TABLE II. TASK SET SCHEDULABLE BY DU-RM BUT NOT DC-AUDSLEY
T; G Gi(2) ui(1) ui(2) Li

T 40 14 24 35 .6 2

T, 80 24 32 3 4 2

T; 120 66 72 55 .6 1

Ty 400 180 200 45 .5 1

o] 5 10 125 165 3¢ 25 30 35 40 45 50

Figure 4. Task Set becomes Schedulable with Change in Priorities on P,

Now consider ordering these five tasks according to
decreasing criticality (with ties broken according to decreasing
nominal utilization), giving the processing order of T3, T,, Ts, T4,
and T, for the First-Fit technique. Further, assume the simple
priority assignment RM on each CPU, yielding the integrated
scheme DC-RM. We consider whether the example task set

The tasks are listed in the order in which they would be
allocated by the Decreasing-Criticality (DC) heuristic. We first
consider whether they are schedulable by DC-Audsley. In other
words, while processing tasks according to decreasing
criticality, we will try all possible priority assignments on each
CPU in an attempt to find at least one feasible solution. As
shown in Fig. 7, tasks T, and T, are successfully allocated to Py,
with 7, assigned the higher priority. T; cannot be allocated, with
T, and Ty, to P;. One way to see this is to note that the sum of
the low-criticality utilizations of tasks 7T, T,, and T3 is greater
than one. T; is therefore allocated to P,, and T4 is considered
next. Because the sum of the low-criticality utilizations of tasks
Ty, Ty, and T, is greater than one, it is clear that T, cannot be

allocated to P;. We also find that, regardless of its priority
assignment relative to T3, T, cannot be assigned to P,. The case
in which 1, is assigned the lower priority is shown in Fig. 7.
We therefore conclude that the task set is not schedulable by
DC-Audsley.

T
-
e
192
AF
e
(VX
'S
[
192
e
3
—
w

0

Figure 7. Task Set is not Schedulable by DC-Audsley

1, compietes before its deadiine ——

12

T T,
2 “Z =4

ES
|

*Z

s cipa i) 3

-3

24 1na

o 24 80 108

Figure 8. Task Set is Schedulable by DU-RM

Now consider whether the same task set is schedulable if
the tasks are processed according to their utilization values, i.e.,
using the DU heuristic. Furthermore, assume the simple RM
priority policy is adopted on each CPU - in other words,
assume we do not try all possible priority assignments. The
order in which these tasks are considered for allocation by DU
is T, T3, T4, and T,. As shown in Fig. 8, tasks T, and 13 are
successfully allocated to P; with RM priority assignments. T,
cannot be allocated to P; with RM priority assignments and is
therefore allocated to P,. T, cannot be allocated to P;, but as
shown in Fig. 8, it is successfully allocated to P, when RM
priority assignments are employed. The task set is therefore
schedulable by DU-RM, despite not being schedulable by DC-
Audsley — the more sophisticated Decreasing Criticality
ordering heuristic that tries all possible priority assignments on
each CPU. Given these examples, we can offer the following
important remark:

Remark 1: The decreasing-utilization (DU) and
decreasing-criticality (DC) partitioning heuristics — are
incommensurable, in the sense that there exist task sets that are
successfully scheduled by one but not the other.

V. EXPERIMENTAL EVALUATION

In this section, we undertake an experimental evaluation of
the four mixed-criticality partitioning heuristics, namely, DU-
RM, DU-Audsley, DC-RM, and DC-Audsley. In addition to
establishing the relative ordering of these schemes over a broad
spectrum of system parameters, we are interested in assessing
the impact of choices in each dimension (i.e., task allocation vs.
priority assignment) on overall scheduling performance.

For that purpose, a simulator was developed in the Java
programming language. For a system with a maximum of k

-+

criticality levels, the criticality level of each task was
determined randomly between 1 and k. In simulation studies
for traditional, single-criticality systems, the load index is often
controlled by generating a task set for a target total utilization.
For mixed-criticality systems, as each task has k utilization
levels corresponding to k criticality levels, we chose to control
the load of the system by varying the sum, denoted by U, ",
of each task's utilization at the highest criticality level. In other
words, U™ = X uy(k). For a given Uy, ™ value, we generated
the u;(k) values (utilizations at the maximum criticality level)
for a task set using the UUnifast-Discard algorithm proposed in
[8]. For a given task, once uj(k) was identified, the utilization
values at intermediate criticality levels were generated using a

uniform distribution between 0.4*u;(k) and u;(k).

The minimum and maximum task periods were set to 1 and
1000 ms, respectively. As in [8], task periods were generated
using a log-uniform distribution. Results were generated for 1,
2, 4, and 8 criticality levels, and for 4 and 8 CPUs. For each
U™ value, 1000 task sets were generated and the scheduling
of each task set was attempted with each of the four mixed-
criticality partitioning heuristics. As we considered 4- and 8-
CPU systems separately, we present the results as a function of
the normalized U™, which is defined as the ratio of U™ to
the number of CPUs — in other words, it is given by the
quantity (U "/m). We considered task sets containing 40 and
60 tasks, separately.

In Fig. 9, we present the percentage of task sets successfully
scheduled (success ratio) for task sets with 40 tasks and 4
criticality levels, scheduled upon 4 CPUs, as a function of the
load (normalized U, ™). We first observe that the percentage
of task sets successfully scheduled decreases with increasing
load for all the schemes. This is in accordance with the existing
theory [18], which indicates that with increasing load the
likelihood of finding a feasible partition decreases, even for
single-criticality systems. However, it is interesting to note
that even at normalized U, ™ values equal to or slightly
exceeding 1 (i.e., when U™ = m), almost all the task sets are
scheduled successfully. This is due to the flexibility provided
by the mixed-criticality feasibility test: Even though a task’s
utilization at the maximum criticality level (that contributes to
U,™) may be large, the specific utilization value that is
considered in the feasibility test (in other words, its effective
utilization) depends on its own criticality and the criticality
levels of tasks that are assigned lower priority and allocated to
the same CPU. Consequently, we observe that in particular,
with 4 criticality levels and optimal priority assignment (which
can be obtained through Audsley’s algorithm), the performance
is almost 100% even for normalized U™ values around 1.2.
With increasing load, the success ratio drops, but still remains
at or above 50% for the DC-Audsley and DU-Audsley schemes
when the normalized U™ does not exceed 1.7.

As to the relative performance of the schemes, we observe
that for a given task-ordering policy (DC or DU), employed
before the partitioning phase, using Audsley's priority
assignment algorithm on each CPU offers significantly
improved performance relative to using RM priority
assignment. This is not surprising, given that Audsley's
algorithm is optimal in this setting, while RMS is not.
Moreover, the very fact that DU-Audsley outperforms DC-RM

throughout the entire spectrum suggests that the selection of the
priority assignment scheme is more critical than the selection
of the task ordering algorithm used prior to partitioning.

184

e
©

e
)

=
>

Percentage Scheduled

o
[

(=]

Figure 9. Impact of Normalized U™ (4 CPUs, 40 Tasks)

However, for a given priority assignment scheme (RM or
Audsley), we observe that ordering tasks according to
criticality gives better performance than ordering according to
utilization in this setting. Even though the offline ordering of
tasks according to utilization is known to improve
schedulability for the general real-time partitioning problem
[18], these results suggest that avoiding or reducing criticality
inversions by grouping tasks according to criticality proves
more important in the average case. With DU ordering, low-
criticality tasks are more likely to be co-allocated with high-
criticality tasks on the same processor, and depending on the
specific period values, a large number of criticality inversions
may be unavoidable.

Fig. 10 presents the results for the same setting (4 CPUs
and 4 criticality levels), but with 60-task sets instead of 40-task
sets. The relative ordering of the schemes remains the same,
but one notable difference is that the performance of the DU
schemes slightly worsens compared to the trends seen in Fig. 9
with 40-task sets. This is primarily due to two effects: First,
with a larger number of tasks allocated to the same number of
CPUs, the average number of tasks per CPU increases and the
negative impact of each criticality inversion (which occurs
more commonly with the DU schemes) is more pronounced.
Second, the average size (utilization) of each task decreases,
and the potential benefits of ordering tasks according to
utilization become less important for feasibility [18].

The plots in Fig. 11 and Fig 12. were generated with the
same parameter settings used for Fig. 9 and Fig. 10,
respectively, except that the number of CPUs was increased
from 4 to 8. Because the number of tasks per set was held
constant (at 40 and 60), this increase in the number of CPUs
results in a decrease in the average number of tasks per CPU.
Consequently, criticality inversions have less impact in terms
of an increase in effective utilization. In fact, looking at Fig.
11, we notice that the DU schemes now perform as good as,
and in fact, slightly better than the corresponding DC schemes
when the number of tasks per CPU is smallest. With a slight
increase in the number of tasks per CPU, as seen in Fig. 12, the
DC schemes start to outperform the DU schemes (for a given
load and priority assignment policy). Consequently, we can
state that with an increase in the number of tasks per CPU, a
reduction in the number of criticality inversions through a

decreasing-criticality (DC) ordering becomes more important
for the improvement of schedulability. In fact, when this ratio is
lower than a certain threshold, the DU schemes perform as
good as the corresponding DC schemes.

—©— DC-Audsley|

Percentage Scheduled

Figure 10. Impact of Normalized U™ (4 CPUs, 60 Tasks)

In our analysis so far, we have assumed 4 criticality levels.
Next, we analyze the impact of varying the number of
criticality levels. In Fig. 13, results are plotted for the four
schemes as a function of the number of criticality levels, with
task sets with 40 tasks each scheduled on 4 CPUs, and with a
normalized U™ value set to 2 (U™ = 2*4 = 8) . Recall
that individual task utilizations, for a given Uy™ value, are
generated by considering the number of distinct criticality
levels, k. Task utilizations at the maximum criticality level are
chosen such that their sum is equal to Uy ™™ — in this case
equal to 8, and task utilization values at intermediate criticality
levels are generated randomly, but such that they decrease with
decreasing criticality level.

As a result, when there is only one criticality level, the
generated task sets correspond to traditional (single-criticality)
task sets with total utilization twice the number of CPUs
(U™ = 8). Consequently, none of the generated task sets can
be partitioned in a feasible manner at this high load value (as
suggested in [18]) when there is only one criticality level. But
when the number of criticality levels is increased to 2, the
criticality levels of some tasks drop from the maximum level
(2) to 1, and this allows for the possibility that their effective
utilizations drop in feasibility tests. This results in non-zero
success ratios for all the schemes (and highlights the
motivation for mixed-criticality levels). With 4 criticality
levels, DC-Audsley is able to schedule 35% of the task sets,
followed next in performance by DU-Audsley. At this high
normalized Uy level (of 2) the schemes using the RM
priority assignment can schedule only 5-10% of the task sets.

Results are plotted in Fig. 14 for the same parameters as
Fig. 13, except that task sets are scheduled on 8 CPUs rather
than 4. Normalized U,,™" is still 2, implying that U™ =
2 * 8 = 16. As discussed previously, this increase in the number
of CPUs, while other parameters (including normalized U, ™)
are kept constant, results in a decrease in the number of tasks
per CPU as well as an increase in the average task utilization.
Consequently, the number of criticality inversions decreases,
the performance of all schemes improves, and moreover, the
performance of the DU schemes becomes comparable to that of
the DC schemes.

= N

208 RIS

E] BN

2 T &

506 8

e NI

o RN

£ 04 ‘B N

8 TSR

5 W B,

o g2 | By
h::8

5 2 25

Normalized UT2%

Figure 11. Impact of Normalized Uy, (8 CPUs, 40 Tasks)

Percentage Scheduled

Figure 12. Impact of Normalized U™ (8 CPUs, 60 Tasks)

The heuristics evaluated in these results allocate tasks
according to the First-Fit (FF) algorithm after ordering tasks
according to criticality or utilization. We also repeated
experiments to compare this choice (FF) against other well-
known heuristics, namely Best-Fit (BF) and Worst-Fit (WF).
Specifically, we implemented versions of DU-Audsley, DC-
Audsley, DU-RM, and DC-RM that use BF and WF, as well as
FF. Providing all the plots for the resulting 12 combinations is
unrealistic given space constraints. We therefore present, for
BF and WF, only the results for DC-Audsley and note that the
results are fairly consistent for the other three schemes. Fig. 15
compares the performance of DC-Audsley when implemented
with the FF, BF, and WF allocation heuristics, for the case
where the parameters are the same as those used for Fig. 9. As
shown, the results from the FF and BF heuristics are almost the
same, and the results from WF are worse than those obtained
with FF or BF. These relative performance results for FF, BF,
and WF are consistent with those obtained with traditional
system models [18]. In Fig. 16, results are shown for the case
in which parameters are the same as those used for Fig. 15,
except that the number of CPUs is increased from 4 to 8. As
shown, the relative performance of the three heuristics remains
the same as the number of CPUs is increased. These results,
compounded with the fact that FF is simpler to implement than
BF, suggest that it is reasonable to select First-Fit as the basis
for the evaluated partitioning heuristics.

VI. RELATED WORK

In [21], Vestal proposed a model for mixed-criticality
systems that explicitly takes criticality into account. In the
same paper, the use of Audsley's Optimal Priority Assignment
algorithm [2] is suggested and is applied using the proposed
mixed-criticality model as the basis for schedulability analysis.
Period transformation is also considered in [21]. In [5], using

the model proposed in [21], it is shown that EDF is not optimal
for the scheduling of mixed-criticality task sets. There are
mixed-criticality task sets that are not schedulable by EDF, but
that are schedulable if job-level, dynamic priorities are used.
Also, EDF and RM are incomparable — there are mixed-
criticality task sets schedulable by EDF but not RM, and there
are others that are schedulable by RM but not by EDF. A
hybrid scheduling approach is proposed in [5] that dominates
both EDF and RM. The model proposed in [21] is explored
further in [3] and is considered in the context of certification of
mixed-criticality systems in [4], [14], and [15].

Percent Scheduled

Number of Criticality Levels

Figure 13. Impact of the Number of Criticality Levels (4 CPUs)

heduled
~.

Pare:

o

Figure 14. Impact of the Number of Criticality Levels (8 CPUs)

Another approach to the modeling of mixed-criticality
systems and the uniprocessor scheduling of such systems is
offered in [20], in which each task is assigned a nominal
WCET and an overload WCET. A key tenet of the model is the
guarantee that a task can execute for the duration of its
overload budget (i.e., overload WCET) provided that no
higher-criticality task exceeds its nominal WCET. The model
proposed in [20] is explored further in [12]. The scheduling of
mixed-criticality task sets on multiple CPUs is considered in
[13] using the uniprocessor scheduling algorithm proposed in
[20], which requires the offline calculation of "zero-slack"
instants, and an online component that changes a task's mode at
its zero-slack instant. In contrast, we apply traditional, fixed-
priority uniprocessor scheduling, but with schedulability
analysis performed using the model proposed by Vestal in [21],
and our focus is the assessment of variation in partitioning and
priority assignment approaches in terms of their impact on
schedulability in a mixed-criticality setting. Mixed-criticality,
multiprocessor scheduling is also considered in [19], which
extends the work presented in [1]. These papers propose a two-
level, hierarchical scheduling framework that makes use of
container tasks, with a different type of container task applied
to the scheduling of tasks at each criticality level. Our focus

differs in that we explore variation in task allocation and fixed-
priority assignment in the mixed-criticality setting.

1-—@®-@

tage Scheduled

&

Figure 16. Comparison of Partitioning Heuristics (8 CPUs)

VIL

In this paper, we investigated fixed-priority, partitioning-
based approaches to the multiprocessor scheduling of mixed-
criticality task sets, and assessed the relative importance of the
two primary dimensions of the problem - task allocation and
priority assignment. We have identified four multiprocessor
scheduling algorithms that result from choices made in these
two dimensions. For task-allocation, tasks are ordered
according to utilization (DU) or criticality (DC) before
application of a partitioning heuristic such as First-Fit. For
priority assignment on each processor, we considered the
simple RM priority assignment, as well as the optimal priority
assignment that can be obtained through Audsley’s algorithm
[2]. We established that the DC and DU task ordering
heuristics are incommensurable in the sense that there are tasks
sets that can be scheduled by one, but not the other. Our
experimental results suggest that in general, using Audsley’s
priority assignment algorithm offers a significant advantage
over RM assignment. We observed that typically DC performs
better than DU, but that the difference decreases with a
decrease in the number of tasks per CPU.

CONCLUSIONS

REFERENCES

[1] J.H. Anderson, S.K. Baruah, B.B. Brandenburg. "Multicore operating-
system support for mixed criticality," Proceedings of the Workshop on
Mixed Criticality: Roadmap to Evolving UAV Certification, April 2009.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

N.C. Audsley. "Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times," Technical Report, The
University of York, England, November 1991.

S. Baruah, V. Bonifaci, G. D'Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, L. Stougie. "Scheduling Real-Time Mixed-Criticality Jobs,"
Proceedings of the 35th International Symposium, Mathematical
Foundations of Computer Science, pp. 90-101, 2010.

S. Baruah, H. Li, L. Stougie. "Towards the design of certifiable mixed-
criticality systems," Proceedings of the 16th IEEE Real-Time and
Embedded Technology and Applications Symposium, pp. 13-22, April
2010.

S. Baruah, S. Vestal. "Schedulability analysis of sporadic tasks with
multiple criticality specifications," Proceedings of the 20th Euromicro
Conference on Real-Time Systems, pp. 147-155, 2008.

E. Bini, G. Buttazzo. "Measuring the performance of schedulability
tests," Real-Time Systems, vol. 30, pp. 129-154, May 2005.

G.C. Buttazzo. Hard Real-Time Computing Systems, 2nd ed. New York,
NY: Springer, 2005.

R.I. Davis, A. Burns. "Priority assignment for global fixed priority pre-
emptive scheduling in multiprocessor real-time systems," Proceedings of
the 30th IEEE Real-Time Systems Symposium, pp. 398-409, December
2009.

R.I. Davis, A. Burns. "A survey of hard real-time scheduling algorithms
and schedulability analysis techniques for multiprocessor systems,"
Technical Report YCS-2009-443, Department of Computer Science,
University of York, 2009.

S.K. Dhall, C.L. Liu. "On a real-time scheduling problem," Operations
Research, vol. 26, no. 1, pp. 127-140, February 1978.

M.R. Garey, D.S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. New York, NY: W.H. Freeman and
Company, 1979.

K. Lakshmanan, D. de Niz, R. Rajkumar. "Mixed-criticality task
synchronization in zero-slack scheduling," Proceedings of the 17th IEEE
Real-Time and Embedded Technology and Applications Symposium,
pp. 47-56, April 2011.

K. Lakshmanan, D. de Niz, R. Rajkumar, G. Moreno. "Resource
allocation in distributed mixed-criticality cyber-physical systems,"
Proceedings of the 30th IEEE International Conference on Distributed
Computing Systems, pp. 169-178, June 2010.

H. Li, S. Baruah. "An algorithm for scheduling certifiable mixed-
criticality sporadic task systems," Proceedings of the 31st IEEE Real-
Time Systems Symposium, pp. 183-192, December 2010.

H. Li, S. Baruah. "Load-based schedulability analysis of certifiable
mixed-criticality systems," Proceedings of the 10th ACM International
Conference on Embedded Software, pp. 99-107, 2010.

C.L. Liu, J.W. Layland. "Scheduling algorithms for multiprogramming
in a hard-real-time environment," Journal of the ACM, vol. 20, no. 1, pp.
46-61, January 1973.

J.W.S Liu. Real-Time Systems. Upper Saddle River, NJ: Prentice Hall,
2000.

J. M. Lopez, M. Garcia, J. L. Diaz, D. F. Garcia. “Utilization bounds for
Multiprocessor Rate-Monotonic Systems”, Real-Time Systems, vol. 24,
pp. 5 — 28, January 2003.

M.S. Mollison, J.P. Erickson, J.H. Anderson, S.K. Baruah, J.A.
Scoredos. '"Mixed-Criticality Real-Time Scheduling for Multicore
Systems," Proceedings of the 10th IEEE International Conference on
Computer and Information Technology, pp. 1864-1871, 2010.

D. de Niz, K. Lakshmanan, R. Rajkumar. "On the scheduling of Mixed-
Criticality Real-Time Task Sets," Proceedings of the 30th IEEE Real-
Time Systems Symposium, pp. 291-300, December 2009.

S. Vestal. "Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” Proceedings of the 28th
IEEE International Real-Time Systems Symposium, pp. 239-243, 2007.

