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Abstract—This paper considers real-time cluster-based wireless
sensor networks where the nodes harvest energy from the
environment. We target performance sensitive applications that
have to collectively send their information to cluster head by a
predefined deadline, such as in distributed real-time monitoring
and detection. The nodes are equipped with Dynamic Modu-
lation Scaling (DMS) capable wireless radios. The problem is
to determine the time slots and modulation levels that will be
used by each node while communicating with the cluster-head
in order to achieve energy-neutral (perpetual) operation and
maximize energy reserves. We propose a solution that adjusts
underlying TDMA slots to enable high-energy nodes to transmit
faster and thus produce larger slack for low-energy nodes, while
meeting the performance constraint. We present an optimal
mixed integer programming based solution. We also develop
fast heuristics that are shown to provide approximate solutions
through comprehensive experiments with actual solar energy
harvesting profiles.

I. INTRODUCTION

Power management in wireless sensor networks (WSNs)
remains as a critical challenge, considering the long-term
deployment requirements of these systems and the scarce
availability of the battery power. Recently, there has been a
growing interest in using energy harvesting solutions in WSNs.
Using environmental energy harvesting technology to charge
the storage units that power the wireless sensor nodes offers
multiple benefits [1]. Energy harvesting reduces or eliminates
the need for a direct connection to a power main or the
requirement to change potentially inaccessible or expensive
batteries. It is also a sustainable and environmentally friendly
approach to energy production. For nodes installed in harsh
and inaccessible environments, energy harvesting provides
long term system life that reduces the need for maintenance.

Employing energy harvesters requires careful selection of
harvesting source, converter and consumption circuits, and
energy storage unit. Heat, vibration, and radiation are among
common harvested energy types varying by availability and
conversion efficiency factors. The choice of storage unit de-
pends on the desirable output voltage, energy density, charge-
discharge efficiency, memory effect, and weight [2]. Typically,
energy harvesting solutions need to be integrated within the
global energy management frameworks implemented in actual
systems. Approaches to this problem include cross-layer duty
cycling strategies [3] and relay node selection for data transfer

[4]. It is nevertheless still an open question as to whether
energy harvesting methods based upon predictable but non-
controllable environmental energy sources can be used to
support low-power wireless systems that demand performance-
sensitive network performance. Due to the variability in the
availability of the harvested energy, energy depletion and
potential system shutdown might pose serious problems for
safety-critical and industrial systems.

This paper considers deadline-driven cluster-based wireless
sensor networks whose energy storage devices are powered
by harvesting non-controllable, but predictable energy sources
(such as solar or wind energy). Cluster-based WSNs offer
multiple advantages such as increasing scalability, hierar-
chical routing, energy saving through data aggregation, and
minimizing topology maintenance [5]. As shown in Fig. 1,
a cluster-based system has a coordinator node that directly
communicates with all of the other nodes under its control
[6]. Each sensor node transmits its data to the cluster-head
periodically. The cluster-head has to finish the data collection
from all the nodes within a specified deadline. Once it has
collected each node’s data, the cluster head in turn commu-
nicates with the base station directly or through the network
to complete data delivery. In this paper, we focus on intra-
cluster communication. For example, consider a target tracking
application in which all nodes in a site periodically send their
recording to the cluster head. For timely tracking of the target,
data delivery in every period must be guaranteed. Delayed data
will be overridden by new contents and lose their importance..
Another example is utility companies and municipalities that
require the constant monitoring of water flow, for the purposes
of correctly billing customers, as well as for quickly detecting
the main breaks. A WSN could harvest energy from sources
such as solar, or miniature water dynamos, and provide con-
stant monitoring of the lines. The objective is to ensure enough
time and energy for all nodes along a time horizon to be able
to complete their data transmission in a timely manner. This
requires an energy aware time slot assignment for each epoch
in the time horizon given the energy profile of the nodes.

Our focus in this paper is the use of Dynamic Modulation
Scaling (DMS) as an energy management technique to support
real-time energy harvesting WSNs [7]. Similar to the Dynamic
Voltage Scaling technique that uses the processor voltage and
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frequency as a control knob [8], [9], DMS adjusts the radio
modulation levels and constellation sizes, and hence trades off
the energy expenditure with communication latency [7]. In our
target application, the nodes in the cluster communicate with
the coordinator using DMS to save energy. By assigning time
slots and modulation levels to individual nodes, the system’s
energy and timing constraints can be simultaneously satisfied.
We are motivated to use DMS for several reasons. Since the
radio is the dominant energy consumer within wireless sensor
nodes, it is more beneficial to manage this trade-off than other
energy management techniques, such as DVS [10]. Finally,
DMS-enabled radios are supported by embedded wireless
standards such as 802.15.4 [11].

A seminal work in theorizing the fundamentals of DMS
is [7]. In order to schedule packets in time-invariant chan-
nels, the authors suggest deploying DMS in data link layer
accompanied with TDMA. Packets are scheduled based on
EDF and are assigned a static scaling factor based on their
maximum size. This requires sending a control packet to
communicate the factor with the receiver. For a single packet
in a time-variant channel the authors propose a DMS approach
based on sampling the channel quality. [12] targets maxi-
mizing system resilience to network-wide workload bursts,
or avoiding shortage in harvested energy by maximizing the
minimum battery level among the nodes in the network while
meeting the system constraints. The authors use a joint DVS-
DMS power management scheme. Nodes produce a list of all
possible speed assignment combinations they can be assigned
to, along with their respective remaining energy supplies. A
binary search is then performed over all possible values of
remaining battery level reported by nodes at the first level
to check the feasibility. The above algorithm is implemented
in both centralized and distributed versions. Our work is
different since we guarantee energy neutrality at the end of
period, and so we consider a larger scheduling horizon. The
model in [13] addresses precedence, interference, and timing

constraints to minimize joint communication and computation
energy. A heuristic method is proposed that converts the
problem into a graph model and assigns slots with maximum
parallelism in order to achieve the maximum static slack. [14]
studies dynamic slack reclamation in applications that discard
redundant data by simply sending the header. The authors
suggest nodes to probe the channel after transmission time
of the header of their predecessors in the schedule. If channel
was found free, they apply DMS to reclaim the dynamic slack
due to redundancy. Our work is different from the above
two references as the energy is restricted in our model by
harvesting source.

In our setting, the problem is to determine the time slots
and modulation levels that will be used by individual nodes
to maximize the summation of node energy levels, while
meeting the time constraints and energy neutrality require-
ments [15] given the predicted harvested energy. The central
node periodically transmits a beacon packet that assigns time
slots and modulation levels to all of the nodes in the sys-
tem. Each node transmits using its time slot and modulation
level. To find the optimum time slot and modulation level
assignments, we have developed an optimal algorithm using
mixed binary integer programming technique. We have also
developed two fast heuristic algorithms. The mixed binary
integer programming solution is optimal in the sense that it
will find a feasible solution that avoids energy depletion while
meeting communication deadlines, if one exists. It will also
maximize the aggregate energy reserves of the nodes. The
two fast algorithms reduce computational complexity at the
risk of occasionally failing to find some feasible solutions,
or generating a sub-optimal solution in terms of maximizing
energy reserves. In our solution, energy-rich nodes are allowed
to increase their communication speeds, thereby providing the
low-energy nodes with large time slack and ability to slow
down without violating the timing constraints.

We experimentally evaluate the tradeoffs between our op-
timal but more computationally intensive algorithm and the
simpler heuristic approaches. Our results indicate that while
the optimal algorithm enables the use of energy storage units
with smaller capacities and tighter deadlines, the two fast
algorithms are competitive in terms of maximizing energy
reserves when they generate feasible solutions.

II. SYSTEM MODEL

In a cluster-based WSN, each sensor node consists of an
energy harvesting element such as a solar panel or a wind
turbine, an energy storage unit such as rechargeable battery
or super capacitor, a CPU, and a DMS-capable radio. Nodes
communicate directly with a gateway or cluster-head, which
serves as the system coordinator. The gateway will often, but
not always, be connected to a back-end network. Compared
to the nodes the gateway has ample computational capabilities
and is powered either by easily replaceable batteries or a main
power supply. Each node periodically senses its environment
and after a processing step sends these readings in the form of
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Fig. 2: Transmission slots in super-frames of length D in consecutive epochs

wireless data packets to the gateway. We assume the require-
ment for real-time communication between the gateway and
each node, which is specified by a fixed deadline. To ensure
real-time performance and to avoid channel contention, the
cluster uses frame-based transmission scheduling techniques
such as Time Division Multiple Access (TDMA) or Guaran-
teed Time Slot (GTS) assignments during the contention free
period of the ZigBee/802.15.4 superframe [6].

The clustered topology and the presence of the computa-
tionally powerful gateway enable a coordinated set of DMS
node level settings that guarantee, when possible, both real-
time communication and energy neutrality constraints. The
energy neutrality condition [15] requires that each node be
able to sustain itself by harvesting energy and regulating its
energy consumption according to the initial energy reserves as
well as predicted harvesting profiles. Time is divided into a
set of energy harvesting epochs. For concreteness and without
loss of generalityy, we consider harvesting solar power and
consider a 24-hour scheduling horizon. Epoch is a time length
during which the rate of harvested energy is approximated
to be constant. For example, in a period of 24 hours, 48
epochs of length 30 minutes exist. Using techniques such as
those discussed in [16], the gateway possesses a function or
table that predicts for each epoch the amount of energy that
will be harvested by the nodes in the cluster. The gateway
uses its knowledge of the currently available stored energy
and the predicted amount of the newly harvested energy to
assign modulation levels at each node for the entire epoch.
The solution must make sure that all deadlines are met and
the energy neutrality condition is satisfied, whenever possible.

The gateway is responsible for running the algorithms and
then letting each node know what its modulation level will be
for the duration of the epoch. As shown in Fig. 2, each epoch
consists of a repeating set of super-frames, each of length D.
The super-frame itself is divided into a set of variable-length
transmission slots assigned to different nodes. xji represents
the transmit time the scheduler assigns to node i in each
superframe during epoch j, which is adjustable through DMS.
The transmission time for a node is identical for different
super-frames within an epoch but may vary for different
epochs. Hence, with γ super-frames within each epoch, node i
receives a total of tji = xji ·γ transmission time during epoch j.
Although not shown in the figure, in practice each super-frame
could also include space for a gateway generated beacon used
for management purposes.

The energy consumption of a node during an epoch is
the sum of sensing, processing, and radio transmission en-

ergy figures. Our previous work [17] shows that managing
transmit energy yields more energy saving than CPU energy
management. We assume sensing and processing energy com-
ponents are constant and only the radio energy consumption is
manageable. Energy consumption due to radio usage has two
components: electronic circuitry power and transmit (receive)
power [7]. Electronic circuitry power consumption Pe is due
to activities such as filtering, modulation and upconverting.
It is linearly proportional to the symbol rate Rs, and can be
expressed as Pe = Ce ·Rs, where Ce is a radio specific con-
stant. The transmit power Ps is a function of the modulation
level b and is given by Ps = (Cs · φ(b)) · Rs., For DMS the
modulation level is taken from a set of size B, {b1, b2, ..., bB}
where bi < bi+1, i = 1, . . . , B − 1. The function φ(b)
depends on the modulation scheme. For example, for QAM,
φ(b) = 2b − 1. The coefficient Cs is constant with respect
to modulation level and depends on receiver implementation,
operating temperature, distance, and propagation environment.
The time required to send one bit is calculated as:

Tbit(b) =
1

Rs · b
(1)

Assuming QAM and combining the expressions above for
electronic circuitry power, transmit power, and transmit time,
the energy to send one bit can be derived as [7]:

Ebit(b) = (Ps + Pe) · Tbit(b) =
Cs · (2b − 1) + Ce

b
(2)

We observe that the energy consumption is independent of
the symbol rate, and decreasing the modulation level substan-
tially reduces energy consumption, at the expense of higher
transmission time. This observation demonstrates the potential
importance of DMS. The amount of DMS effectiveness is
reflected in the ratio of Cs

Ce
. A high ratio shows when dynamic

power is the dominant factor and therefore applying DMS is
most effective. In other words, there is an effective modulation
level below which DMS is no longer beneficial, as shown in
[7]. Its value can analytically be determined by setting the first
derivative of the radio energy to zero. We are assuming that
the minimum modulation level b1 is determined by considering
the maximum of the effective modulation level, and the lowest
level supported by the modulation scheme.
M packets each of length ρ bits are sent by each node in

every super-frame. Each node is assigned a fixed modulation
level in a given epoch, but the assignment may vary from
epoch to epoch, and from node to node. Since there are
γ super-frames within each epoch, during the jth epoch,
for the ith node with modulation level of bji , the total



communication time and energy consumption are given by
tji = (γ ·M · ρ) · Tbit(bji ) and eji = (γ ·M · ρ) · Ebit(bji ),
respectively. Our algorithms assume that if all the nodes use
the maximum modulation levels, in the absence of the energy
constraints, it is possible to meet the deadline in each super-
frame; i.e., n · M ·ρ

Rs·bB
≤ D. Obviously no solution can exist if

that condition is not satisfied.
Due to the short duration of an epoch, (e.g., 15-30 minutes),

we assume that the harvesting power is constant in an epoch
[18]. There are several techniques for forecasting how much
energy will be harvested during the epoch from uncontrollable
but predictable environmental sources, including using an
autoregressive filter [15], a round-based approach [19], or
an exponentially weighted moving average method [20]. In
order to consider environmental temporary conditions, [21]
introduces a short term factor as the ratio of observed and
predicted energy in the last epoch. This, combined with a
degrading weight factor is applied to the predicted model to
improve the accuracy. Our approach is independent of the
prediction technique but assumes its availability.
P ji denotes the harvested power prediction during epoch

j, for node i. The process of energy conversion from the
energy harvesting panel to electrical energy consumable by the
node components is subject to several harvesting, conversion,
storing, and consumption inefficiencies. We assume that these
factors are already analyzed and factored in the reported value
of P ji . On node i, the harvested energy is stored in the energy
storage unit with capacity Ji. The energy level at the beginning
of the first epoch and the target energy at the end of the
operation period (with Υ epochs) are denoted by E0

i and
ETargeti , respectively. The energy level of node i at the end
of epoch j is denoted by Lji .

III. PROBLEM FORMULATION

We now formulate the problem we are addressing. Assume
there are Υ consecutive epochs for which we have available
energy predictions. Given a set of n wireless energy harvesting
nodes, each equipped with DMS-capable radios and operating
in an environment with a known energy harvesting profile,
we aim to determine the modulation level for each node in
every epoch, so as to maximize the sum of energy levels at the
end of the Υ epoch, while guaranteeing the deadline in every
communication super-frame and ensuring the energy neutrality
throughout the operation. Specifically, the optimization prob-
lem can be formulated as:

Maximize
n∑
i=1

LΥ
i (3)

Subject to
n∑
i=1

xji ≤ D, ∀j : 1 ≤ j ≤ Υ (4)

0 < Lji ≤ Ji, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ Υ− 1
(5)

ETargeti ≤ LΥ
i ≤ Ji, ∀i : 1 ≤ i ≤ n (6)

The objective is to maximize the sum of remaining energy

levels across all nodes at the end of the Υ epoch,
n∑
i=1

LΥ
i ,

as specified in (3). The real-time communication performance
requirement is encoded in the constraint set (4): all nodes
should complete their transmission within time D, the length
of the super-frame. The choice of the objective function is to
increase the system’s resilience against temporary changes in
energy resource and potential prediction inaccuracies.

In addition, it is necessary to avoid both battery overflow
and underflow conditions, as well as guarantee energy neu-
trality (constraint sets (5) and (6)). Prevention of the battery
underflow condition assures the battery level never drops to
zero. By preventing the battery overflow we make sure that the
battery level at the end of each super-frame does not exceed
the node’s storage capacity. Finally, the energy neutrality
constraint will ensure that the energy level at the end of the
last epoch should not be less than a given target level ETargeti .
A natural choice is ETargeti = E0

i , which makes sure that the
system is able to sustain itself by relying on the harvested
power only [15].

Given that the modulation level for a given node i is only
one of the B distinct values, we can use a binary indicator
variable αjil to specify whether the lth modulation level was
selected for node i in epoch j, or not. In fact, after a series
of additional algebraic manipulations, it is possible to re-
encode the problem as an instance of a Mixed Binary Integer
Programming Problem. The full steps of the derivation can be
found in the appendix.

IV. HEURISTIC ALGORITHMS

The Mixed-Integer Programming is known to be NP-Hard;
however, problem instances of moderate size can be solved
by existing optimization packages. Nonetheless it is very
desirable to develop schemes that run fast and yield good
performance while satisfying all the constraints. For this
purpose, we developed and evaluated two fast algorithms,
which are described next.

A. Uniform Modulation Level Assignment

A basic heuristic is to assign equal modulation levels
(transmission times) for all nodes and epochs. This uniform
assignment is not energy aware and does not discriminate
between energy-poor and energy-rich nodes. Consequently, the
slot assignment is the same for all epochs. Because the energy
consumption is an increasing function of the modulation level,
the problem reduces to finding the smallest modulation level
that meets the deadline during a super-frame:

b∗ = min{bk|n ·
M · ρ
Rs · bk

≤ D}

The term n · M ·ρ
Rs·bk

in the above equation is the total time
that it takes for all nodes in the cluster to complete their
transmission with modulation level of bk. We are interested
in the smallest value of bk that meets the deadline constraint
since further increasing the modulation level only increases
the energy consumption which is clearly against the nature



of the objective function. The minimum time-feasible uniform
modulation level is also energy-feasible if and only if it also
meets the energy constraints. Otherwise, no larger value of
modulation level will meet those constraints. Smaller mod-
ulation levels (b < b∗) will not meet the time constraints.
Evaluating b∗ may involve scanning through all choices of
modulation levels in the worst case. For a candidate b value,
the scheme (whose pseudo-code is provided in Algorithm 1)
computes the energy levels at the end of all the epochs for
all nodes (the Lji values), and checks the energy neutrality
conditions. Hence the overall time complexity is linear in the
number of nodes, specifically, O(B + n · Υ). The algorithm
returns the index of the common modulation level and an
indicator showing if the solution was energy-feasible or not.

Algorithm 1 Uniform Modulation Level Assignment
1: r = 1
2: while (n ·M · ρ) · Tbit(br) > D do
3: r = r + 1
4: e(br) = (γ ·M · ρ) · Ebit(br)
5: for i = 1 : n do
6: for j = 1 : Υ do
7: Lji = min{Ji, Lj−1

i + P ji ·D · γ − e(br)}
8: for i = 1 : n do
9: for j = 1 : Υ− 1 do

10: if Lji < 0 then
11: return (r, Infeasible)
12: for i = 1 : n do
13: if LΥ

i < ETargeti then
14: return (r, Infeasible)
15: return (r, Feasible)

B. Greedy Modulation Level Assignment

One major drawback of Uniform is that some nodes are
prevented from lowering their modulation levels (i.e., they do
not exploit the maximum transmission slack that can be used
by DMS). In fact, there may be problem instances where the
energy-feasibility cannot be satisfied by assigning a uniform
modulation level, while reducing the levels of individual nodes
may lead to a feasible solution.

Our Greedy scheme (Algorithm 2) takes the output of the
Uniform heuristic as the base case. Specifically, the lowest
uniform modulation level br that meets the deadline constraint
is taken as the initial assignment for all the nodes. Then the
algorithm iterates over all the epochs and all the nodes, and
attempts to reduce the modulation levels of selected nodes
by exactly one level (i.e., their modulation levels are set to
br−1). In each iteration, and for every epoch, the algorithm
tentatively selects the nodes with the minimum amount of
remaining energy for the purpose of slowdown. Decreasing the
modulation level of a node within one epoch only by one level
gives other nodes a chance to reduce their transmission speed
as well. This is further justified by the convexity of energy
consumption function and the objective of saving energy as

much as possible. After such adjustments, the energy neutrality
and feasibility conditions are re-checked.

Algorithm 2 Greedy Modulation Level Assignment

1: Set r = Uniform()
2: Set bji = br ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ Υ
3: if r == 1 then
4: if Uniform returned Infeasible then
5: return (Infeasible)
6: else
7: return ({bji})∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ Υ
8: /* r > 1 and Greedy starts iterations */
9: t(br) = γ ·M · ρ · Tbit(br)

10: t(br−1) = γ ·M · ρ · Tbit(br−1)
11: for j = 1 : Υ do
12: for i = 1 : n do
13: Lji = min{Ji, Lj−1

i + P ji ·D · γ − e
j
i}

14: Sort all Lji values for all the nodes in the jth epoch

15: Slackj = D · γ −
n∑
i=1

tji

16: Q = {1, . . . , n}
17: while Q 6= ∅ and Slackj ≥ (t(br−1)− t(br)) do
18: Slackj = Slackj − (t(br−1)− t(br))
19: index = node index with minimum Lji value in Q
20: bjindex = br−1

21: Ljindex = min{Ji, Lj−1
index + P jindex ·D · γ − e

j
index}

22: Q = Q− {index}
23: for i = 1 : n do
24: if Lji < 0 then
25: return (Infeasible)
26: for i = 1 : n do
27: if LΥ

i < ETargeti then
28: return (Infeasible)
29: return ({bji})∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ Υ

The algorithm invokes Uniform at the beginning. Moreover,
it requires sorting the remaining energy levels at the end of
each epoch. Each sort takes O(n log(n)), and there are Υ total
epochs. At most n−1 nodes will require changing modulation
level, the complexity of which is outweighed by the sorting
complexity. As a result, the algorithm has an overall time
complexity of O(Υ · n · log(n) +B).

V. EXPERIMENTAL EVALUATION

In order to evaluate the performance differences between
the optimal algorithm and fast heuristics under a wide variety
of experimental settings, we implemented a simulation system
using Matlab. We used the IBM Cplex toolbox to solve the
mixed integer programming problems.

For energy harvesting we used the solar profile trace
measurements from [22]. The measurement was obtained by
sampling solar radiation at intervals of 30 seconds during
a two-month period in Hamburg, Germany. Due to space
limitations, we present results for three representative days in
that period. In a cluster with nodes distributed across an area,



Fig. 3: Effect of the super-frame size (deadline) on the performance of different algorithms over the course of Day 1, 3, 5

nodes may not have completely homogeneous solar energy
collection profiles. To reflect this effect, we define a spatial
absorption coefficient for each node that varies randomly from
90 to 100 percent of the solar profile value. The initial energy
level of the nodes (E0

i ) also varies by a factor up to 10%
in different nodes. To enforce energy neutrality, we require
ETargeti = E0

i for all nodes.
For DMS, we adopted the radio parameters from [7] by

assigning Cs = 12 · 10−9, Ce = 15 · 10−9 and the symbol
rate of Rs = 62500Hz. Nodes communicate via packets of
size ρ = 128 bytes. Each node transmits one packet within
a single super-frame. The cluster has n = 10 nodes, and
the daily energy profile is divided into Υ = 48 epochs in
our simulation. The length/deadline of a single super-frame is
selected in the range of [25, 80]ms. There are four available
modulation levels, selected from the set {2, 4, 6, 8}.
The impact of the super-frame size: We first analyze the im-
pact of the super-frame size (deadline) on the performance.
Fig. 3 shows the normalized energy levels for different algo-
rithms over the course of three days. In data points that one
scheme does not have a value, that scheme cannot come up
with a feasible solution. In all these experiments, the initial
energy is set to the half the battery capacity (i.e., all nodes
start at 50% energy levels). Performance of the algorithms
is measured in terms of the remaining energy of all nodes
when a feasible schedule is available. In general, larger super-
frame sizes produce higher levels of remaining energy. This
is because large super-frame sizes imply larger deadlines,
which enable the system to use slower transmission speeds for
individual nodes using DMS, leading to more energy savings.
Notice that for Day 1, only the Optimal algorithm could find
a feasible schedule when D < 37ms. Above this threshold
Greedy performs as well as the optimal approach, while the
simpler Uniform achieved energy values within 10% of the
other two. We repeated this experiment over a week and in four
of the days, there was at least one point for which only Optimal
was able to find a feasible solution. The days were chosen to
show the observed patterns. The plots of the remaining days
are removed to avoid repetition.

Minimum battery size needed for energy neutrality: Larger
batteries both impose extra monetary cost and increase

the weight and size of each energy harvesting node. It is
therefore desirable to achieve the energy neutrality objectives
with smaller batteries. The next experiments investigate the
minimum battery size required to guarantee the feasibility
for each algorithm on Day 1 and Day 3 as a function of the
initial energy levels (Fig. 4). The super-frame size in this
setting is 80ms, and the energy values and battery storage
capacities are normalized. Optimal requires the smallest
battery capacity for every value of the initial energy among

Fig. 4: Effect of the initial energy level on the minimum battery
capacity necessary to guarantee time- and energy-feasibility



all schemes. The size of battery increases almost linearly
with initial energy for all of the algorithms. This is because
as we increase the initial energy, the minimum target energy
level to guarantee energy neutrality also grows (due to the
Etarget ≥ E0 condition): the battery must be large enough to
store the large initial energy as well as the energy required to
sustain the system for dark epochs at the end of the day. Also
it is interesting to note that for the entire Day 1 experiments,
and Day 3 when Einitial ≤ 0.3, Uniform fails to generate a
feasible schedule, regardless of the battery capacity. This is
because with low initial energy, the systems cannot sustain
themselves by relying on harvested energy only, when the
simple assignment of Uniform is used. This fact justifies
again the use of more intelligent algorithms for modulation
level assignments in conjunction with DMS.

Next, Fig. 5 shows how the super-frame size affects the
minimum battery capacity to guarantee feasible solution for
Day 1 and Day 3. As expected, for all schemes larger super-
frame sizes required smaller battery storage capacities, as
larger deadlines enable the system to save more energy through
DMS. Optimal outperforms Greedy and Uniform for large
super-frame sizes. It is interesting to note that, for Day 1,
Uniform does not produce any feasible solution, irrespective
of the super-frame size.

Fig. 5: Effect of the super-frame size on the minimum battery
capacity necessary to guarantee time- and energy-feasibility

VI. CONCLUSIONS

In this paper, we considered cluster-based energy-harvesting
wireless sensor networks with timeliness requirements. In this
framework, the nodes have to transmit their readings to the
cluster head in a timely manner to preserve the functionality.
We considered the impact of Dynamic Modulation Scaling on
these systems. The goal is to maximize the energy reserves
while meeting the timing constraints under the energy neutral-
ity conditions, which requires that the consumed energy never
exceeds the sum of harvested and stored energy during op-
eration. We proposed an optimal mixed integer programming
model to dynamically set modulation periods over an epoch for
which the amount of energy harvested could be predicted. We
also proposed two fast heuristics that traded off optimality for a
reduction in computational complexity. Using a real solar trace
we then compared the performance of all three algorithms.
We found that when very tight deadlines are required only
the Optimal approach can produce feasible schedules, but as
requirements are relaxed the heuristic approaches suffice. We
determined that if minimizing battery size and capacity is the
major requirement then the Optimal approach substantially
improves the number of feasible schedules. We also showed
that our proposed energy management framework considerably
improves system life at a lower battery cost.
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APPENDIX

DETAILS OF THE MIXED INTEGER PROGRAMMING
FORMULATION

In this section, we provide the details of the Mixed Inte-
ger Linear Programming formulation, which is basis for the
optimal solution.

Objective Function
Our objective function is to maximize the overall remaining

energy levels of all nodes at the end of last epoch (epoch #Υ).

Maximize

n∑
i=1

LΥ
i

A closed form expression for the epoch-end energy levels
(Li values) requires expressing the energy consumption of
each node as a function of the assigned modulation level.
Specifically, a node requires e(b) amount of energy to send
M packets of size ρ bits over the channel in one epoch, when
using the modulation level b:

e(b) = γ ·M · ρ · Cs(2
b − 1) + Ce
b

Let us introduce a binary indicator variable αjil to indi-
cate the corresponding modulation level choices from the set
{b1, · · · , bB} for node i during epoch j. Specifically, αjil is
set to 1 if and only if the lth modulation level was selected
for node i in epoch j; otherwise, it is 0. Then, the energy

consumption of a node i, in a given epoch j, can be expressed
as:

eji = αji1 ·e(b1)+αji2 ·e(b2)+· · ·+αjil ·e(bl)+· · ·+αjiB ·e(bB)
(7)

We add a constraint to show that exactly one of the B
options for modulation level will be chosen for node i in epoch
j:

B∑
l=1

αjil = 1, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ Υ

Epoch Energy Levels
For any node, the available energy at the end of each epoch

equals available energy at the end of the preceding epoch plus
the difference between the harvested and consumed energy
amounts during that epoch. Considering that node i cannot
store more than Ji units of energy, the remaining energy level
at node i at the end of epoch j may be obtained as:

Lji = min{Ji, Lj−1
i + γ ·D · P ji − e

j
i}

The overflow energy that may not be stored in the battery
of node i at the end of epoch j due to the capacity limits can
be expressed by variable θji (the excess energy which cannot
be stored and which is dissipated as heat). Overflow variables
are non-negative real numbers: θji ≥ 0. We can write:

Lji = Lj−1
i + γ ·D · P ji − e

j
i − θ

j
i

= E0
i +

j∑
k=1

(
γ ·D · P ki − e(bki )− θki

)
= E0

i +
j∑

k=1

(
γ ·D · P ki

)
− γ ·M · ρ

bki

(
Cs ·

(
2b

k
i − 1

)
+ Ce

)
− θki

Then the objective function can be re-written as:

Maximize

n∑
i=1

E0
i +

Υ∑
k=1

(
γ ·D · P ki − eki − θki

)
By substituting the value of eji from Eq. (7), we obtain:

Maximize

n∑
i=1

E0
i +

Υ∑
k=1

(
γ ·D · P ki −

γ ·M · ρ
bki

(
Cs ·

(
2b

k
i − 1

)
+ Ce

)
− θki

)
Since E0

i and γ ·D ·P ki are not a function of the modulation
level, this is equivalent to:



Minimize
n∑
i=1

Υ∑
k=1

(
γ ·M · ρ

bki

(
Cs ·

(
2b

k
i − 1

)
+ Ce

)
+ θki

)
(8)

By using our binary indicator variables {αkil}, this is equiv-
alent to:

Minimize
n∑
i=1

Υ∑
k=1

B∑
l=1

(
αkil · γ ·M · ρ

bl

(
Cs ·

(
2bl − 1

)
+ Ce

)
+ θki

)
(9)

Time Constraints
The real-time characteristic of the application requires all

nodes to complete their transmission within the deadline of
each super-frame, D:

n∑
i=1

tji
γ

=
n∑
i=1

(
M · ρ
Rs · bji

)
≤ D, ∀ 1 ≤ j ≤ Υ (10)

Energy Constraints
The energy consumption characteristics must prevent both

battery overflow and underflow conditions while guaranteeing
energy neutrality. The prevention of battery underflow assures
that the battery level never drops to zero. We may combine
the energy neutrality condition with the battery underflow
condition by defining variable ζji that shows the minimum
allowable battery level of node i at the end of epoch j.

Obviously, ζji = 0, 1 ≤ j ≤ Υ − 1, and, ζΥ
i = ETargeti =

E0
i :

Lji = E0
i +

j∑
k=1

(
γ ·D · P ki −

γ ·M · ρ
bki

(
Cs ·

(
2b

k
i − 1

)
+ Ce

)
− θki

)
≥ ζji , ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ Υ

Preventing battery overflow makes sure that the excess
energy which cannot be stored in the battery is not taken into
account to guarantee the energy constraints of the subsequent
epochs. In other words, the battery level at the end of each
super-frame should not exceed the node’s battery capacity.
Combining all these constraints, we get:

ζji ≤ E
0
i +

j∑
k=1

(
γ ·D · P ki −

γ ·M · ρ
bki

(
Cs ·

(
2b

k
i − 1

)
+ Ce

)
− θki

)
≤ Ji ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ Υ

Putting all the constraints together, we obtain the following
mixed integer programming formulation:

Minimize
θ,α

n∑
i=1

Υ∑
k=1

B∑
l=1

(
αkil · γ ·M · ρ

bl
(Cs · (2bl − 1) + Ce)

+ θki )

Subject to
n∑
i=1

B∑
l=1

(
αjil ·M · ρ
Rs · bl

)
≤ D, ∀j : 1 ≤ j ≤ Υ

ζji ≤ E
0
i +

j∑
k=1

(γ ·D · P ki

−
B∑
l=1

(
αkil · γ ·M · ρ

bl
(Cs · (2bl − 1) + Ce))− θki )

≤ Ji, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ Υ

αjil ∈ {0, 1},
∀i, j, l : 1 ≤ i ≤ n, 1 ≤ j ≤ Υ, 1 ≤ l ≤ B
B∑
l=1

αjil = 1, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ Υ

θji ≥ 0,∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ Υ


