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Abstract—The scheduling for mixed-criticality (MC) systems,
where multiple activities have different certification requirements
and thus different criticality on a shared hardware platform,
has recently become an important research focus. In this work,
considering that multicore processors have emerged as the de
facto platform for modern embedded systems, we propose a
novel and efficient criticality-aware task partitioning algorithm
(CA-TPA) for a set of periodic MC tasks running on multicore
systems. We employ the state-of-the art EDF-VD scheduler
on each core. Our work is based on the observation that
the utilizations of MC tasks at different criticality levels can
have quite large variations; hence when a task is allocated, its
utilization contribution on different processors may vary by large
margins and this can significantly affect the schedulability of
tasks. During partitioning, CA-TPA sorts the tasks according to
their utilization contributions on individual processors. Several
heuristics are investigated to balance the workload on processors
with the objective of improving the schedulability of tasks under
CA-TPA. The simulation results show that our proposed CA-TPA
scheme is effective, giving much higher schedulability ratios when
compared to the classical partitioning schemes.

Keywords- Mixed-Criticality Systems; Real-Time Embedded
Systems; Scheduling; Partitioning;

I. INTRODUCTION

In modern real-time embedded systems, the ever-increasing
complexity demands the integration of multiple functionalities
on a common computing platform, in view of the space, power,
and cost constraints. For example, the IMA (Integrated Modu-
lar Avionics) initiative provides guidelines for hosting multiple
avionics components on shared systems to tackle increased
complexity and cost [1]. In such integrated systems, various
application activities with diverse certification requirements
and different levels of importance (criticality) may coexist.
For instance, in the avionics certification standard DO-178
B/C, there are five design assurance levels, ranging from A
to E, categorized according to the degree of damage caused
by run-time failures [21]. To incorporate different certification
requirements and enable efficient management of application
activities, the concept of Mixed-Criticality (MC) real-time
systems has been proposed in [32]. Since that seminal work,
numerous MC scheduling algorithms have been proposed for
various task models and system settings [3], [4], [7], [12],
[15], [171, [18], [20], [22], [31], [33], [35].

Unlike traditional real-time systems where the worst-case
requirements of all tasks must be satisfied, the execution of
an MC task will depend on its criticality level and the system’s

current operation mode. In fact, the basic principle of the
mixed-criticality model is to have two or more criticality
levels, where tasks at the k (> 1) criticality level normally have
k different worst-case execution requirements [32]. Moreover,
the (k—1)" level execution requirement of a task is no greater
than its kK level execution requirement. An MC system starts
its execution at the lowest operation mode (i.e., level 1). As
soon as a high criticality task with criticality level higher than i
takes more time than its level-i execution requirement without
indicating its completion at runtime, the system makes a mode
transition to the (i + 1)*-level operation mode where only the
tasks at criticality level (i + 1) or higher can be executed.
Specifically, all current level-i tasks are discarded and no
future level-i tasks are released to accommodate the increased
execution requirements of high criticality tasks until the system
goes back to level-1 operation mode when it becomes idle [32].

Following the above MC scheduling principle, most of
the existing studies have focused on independent MC tasks
running on single-processor systems. The algorithms proposed
for uniprocessor MC scheduling can be generally classified
into two categories: Fixed-Priority based scheduling algo-
rithms (FP) and Earliest-Deadline-First (EDF) based schedul-
ing algorithms. For FP, the common approach has been to
resort to the Response Time Analysis (RTA) technique [7],
[11], [18], [33], [35]. An alternative to the fixed-priority
MC scheduling is slack scheduling that was first studied
in [13], where low-criticality jobs can exploit slack generated
by the high-criticality jobs when they only use their low-
criticality execution budgets [14], [26], [29]. Moreover, by
exploiting the period transformation technique [30], MC tasks
can be split into two or more parts with each part having
proportionally reduced timing parameters (e.g., execution time
and period) [6], [18]. On the other hand, the dynamic priority
MC scheduling based on EDF was first studied by Baruah
and Vestal in [8]. Some recent analysis for deadline-based
scheduling of MC tasks can be found in [12], [15], [17], in
addition to the studies with reservation-based approach [25]
and elastic task models [31].

The most notable EDF-based scheduling scheme for MC
tasks is the recently proposed EDF with virtual deadlines
(EDF-VD) algorithm [3], [4], [5]. The basic idea of EDF-
VD is to have virtual (and smaller) deadlines (and thus higher
priorities) for high-criticality tasks when the system operates at



low-criticality operation mode in order to improve the system
schedulability. Several recent studies have been reported based
on demand-bound functions (DBF) to further improve the
analysis and virtual deadline assignment for MC tasks under
EDF-VD on single processor systems [15], [16], [17], [34].

As multicore processors have become the de facto im-
plementation platform for modern systems, there is a re-
newed interest in developing scheduling algorithms for mul-
ticore/multiprocessor systems. There are two traditional ap-
proaches to the multiprocessor scheduling problem: parti-
tioned and global scheduling. A recent empirical study on
multiprocessor scheduling shows that partitioned scheduling
generally outperforms global scheduling in terms of the fea-
sibility performance [9]; this is primarily due to the fact that
the private processor ready queues and avoiding migration at
runtime typically result in lower online overheads.

The first work that addresses mixed-criticality scheduling
in the context of multiprocessor systems was reported in [2].
Based on global scheduling, a few studies have investigated
the schedulability analysis for MC tasks running on multi-
processor systems [19], [24], [27]. For partitioned scheduling
based studies, tasks are first sorted either according to their
utilizations [20], [23], [28] or their criticality levels [22].
In general, the existing partitioned based MC scheduling
usually adopts the traditional well-known heuristics and con-
sider task/system utilizations, such as First-Fit Decreasing
(FFD), Best-Fit Decreasing (BFD), and Worst-Fit Decreasing
(WFD). It has been shown that a hybrid partitioned scheme,
which allocates high-criticality tasks using WFD and low-
criticality tasks using FFD, can effectively improve system
schedulability [22], [28] when compared to the schemes that
consider only either utilization or criticality. To achieve better
schedulability, a partitioning scheme that exploits the DBF-
based schedulability test (with a much higher complexity) was
reported in [20]. A comprehensive review of mixed-criticality
scheduling algorithms can be found in [10].

The existing partitioned based MC scheduling schemes
normally consider only a task’s utilization at its highest criti-
cality level (i.e., its maximum utilization) [22], which usually
results in pessimistic estimates of available system utilization
and thus degraded system schedulability. However, from the
schedulability conditions of the EDF-VD scheduler [3], [4],
we can see that, in addition to its maximum utilization, an
MC task’s utilizations at other criticality levels play also an
important role.

Based on this observation, in this work, we propose a
Criticality-Aware Task Partitioning Algorithm (CA-TPA) for a
set of mixed-criticality tasks running on a multicore system
using the partitioned EDF-VD approach. Specifically, con-
sidering the significant variations of a task’s utilizations at
different criticality levels, we define the utilization contribution
of an MC task at a given criticality level, which is exploited
to guide the allocation of tasks to cores. CA-TPA adopts a
probe-based approach to ensure that, when allocating an MC
task, the overall system utilization increases by the smallest
amount. Moreover, a workload imbalance factor is introduced

with the aim of obtaining balanced workload partitioning on
cores, in order to improve system schedulability. Hence, our
work differs from the existing studies that rely on only the
maximum utilizations of MC tasks at their corresponding
criticality levels.

The remainder of this paper is organized as follows. Sec-
tion II presents system models and reviews the schedulability
conditions of the EDF-VD algorithm. Our novel CA-TPA
scheme is presented in Section III. Simulation results are
discussed in Section IV and Section V concludes the paper.

II. SysTEM MODELS AND PRELIMINARIES

In this section, we first present the system and task models.
The schedulability conditions for MC tasks under EDF-VD
on uniprocessor systems are briefly reviewed, followed by the
description of the problem to be addressed in this work.

A. System and Task Models

We consider a multicore system that consists of M homoge-
neous processing cores, which are denoted as {#y, ..., Py} and
have identical functions and capabilities. There are K > 1 criti-
cality levels for application tasks running on the system, where
the system starts its operations at level-1 criticality. There are
a set of N mixed-criticality (MC) tasks ¥ = {ry,..., 7y}

An MC task 7; is characterized by three parameters:
7 = {C,pi,t;}. Here, ¢; (1 < ¢ < K) indicates 7;’s
criticality level (i.e., its own criticality) and p; is its period.
We consider implicit-deadline periodic tasks: p; represents
task 7;’s period as well as its relative deadline. The vector
C; =<ci(1),...,ci(£;) > represents the worst-case execution
times (WCETSs) of task 7; at each criticality level, where the
WCET at a higher level is generally no less than that at a lower
level (i.e., ci(1) < ¢i(2) < ... < ¢i({;)). Assuming that the first
instance of each task arrives at time 0, the j”’ task instance (or
job) of task t; arrives at time rl.’ = (j—1): p; and must complete
its execution by its absolute deadline d{ = j- pi. By focusing
on partitioned scheduling, we assume that the subset of tasks
allocated to core #,, is denoted as ¥,, (m=1,...,M). A
partition of tasks to cores is represented by I' = {¥y,..., ¥y},
where ¥ = Ufrf:] ¥Y,,.

We assume that the adaptive mixed criticality (AMC)
scheme is adopted to manage the executions of the MC tasks
at runtime on each core, in conjunction with the EDF-VD
algorithm [7]. Specifically, it is assumed that the system pro-
vides run-time support to monitor the execution of individual
jobs. Under the AMC scheme, if the current operation mode
of a core P, is at level k (1 < k < K) and a task 7;
(€ ¥,,) runs for a duration longer than its k-level WCET c;(k)
(k < ¢;) without signaling completion, a mode-switch occurs
on core P, and its operation mode changes to level-(k + 1).
At that moment, all tasks in ¥, with their criticality levels no
more than k will be dropped to accommodate the additional
execution requirements for tasks in ¥, with criticality levels
k or higher [7].



B. Schedulability Conditions of EDF-VD

The EDF-VD scheduler for MC tasks running on a single
processor was first proposed by Baruah et al. in [3], [5].
The key idea is to have virtual (and smaller) deadlines
for high-criticality tasks to improve system schedulability.
Specifically, based on EDF scheduling, each high-criticality
task is assigned a virtual deadline (which is smaller than
its original deadline) and thus has higher priority when the
system runs at low-criticality mode. This helps high-criticality
tasks complete their low-criticality executions earlier. Hence,
when the system switches to high-criticality mode, the high-
criticality execution requirements of high-criticality tasks can
be ensured by restoring their original deadlines and discarding
low-criticality tasks. In this paper, once tasks are partitioned
to cores, we assume that EDF-VD is adopted on each core P,
to schedule its subset of MC tasks ¥,,.

Before presenting our partitioned scheme, we first review
the schedulability conditions for a set of MC tasks running on
a single processor under the EDF-VD scheduler [3], [4], [5].
For the ease of presentation and discussion, some notations
are defined as follows:

o ui(k) = # the utilization of task 7; at level k (< ¢;);

o Lj={1;| £ = j}: the tasks at criticality level j;

o Uj(k): the level-k utilization of tasks with criticality level

J» which is defined as:

Uit = Y (o)
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o U(k): the total level-k utilization of tasks with criticality
level k or higher. From Equation (1), we have:

K
Uk) = Z U;(k)

=k

2)

. U;P’"(k): the level-k utilization of tasks on core #,, with
criticality level j. We have:

Uj" (k) = ui(k)
Ve N -C/)

3)

Based on the above definitions, a simple sufficient schedu-
lability condition for the tasks that are allocated to core P,
under the EDF-VD scheduler can be given by the following
equation (from Theorem 3.4 in [4]):

K
Z UPnk) <1
k=1

In essence, the condition says that, if core #,, can accommo-
date the maximum utilization demands of all its tasks at their
own criticality levels, the tasks are schedulable under EDF-
VD (which actually reduces to EDF since no virtual deadline
is needed for any task [4]). From the above equation, we can
easily get the following proposition:

“4)

Proposition 1. For a set of N tasks with K criticality levels
running on a system with M cores, a given partition I' =

{¥1,..., Yy} is feasible if Equation (4) holds for all the cores
P,m=1,....M

Although Proposition 1 provides a simple utilization-based
sufficient schedulability condition for the partitioned EDF-VD
scheduling, the condition represented by Equation (4) is rather
pessimistic in that only the worst-case utilization demands
of MC tasks on each core are considered. By incorporating
tasks’ utilizations at different (and lower) criticality levels,
an improved sufficient schedulability condition for MC tasks
under the EDF-VD scheduler was developed in [5], which can
be summarized in the following theorem.

Theorem 1 (Theorem 3 in [5]). The MC tasks allocated to
core Py, are schedulable by the EDF-VD algorithm if, for any

k=1,...,K—1, the condition below holds:
‘P
ZU "(i) + min { U (K), 5 UWK) l_[(l ~), (5)
o) 2
g‘l‘m(k)

(k)

where A; =0 and for j > 1,
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In Equation (6), 4 (0 < 2 < 1) is defined as a reduction
factor for the virtual deadlines for high-criticality tasks to
allow them to complete their low-criticality workload as soon
as possible. In particular, suppose that the inequality (5) holds
for a specific k, but does not hold for any smaller value. The
system can operate as follows: when the system runs at level /
(£ k—1), we discard all jobs of tasks in Ly, ..., £;;. For any
task 7, € L; (j=1+1,...,K), its virtual (relative) deadline
is set as p;(I) = A1 - pi(l) where p;(1) = p;. As soon as the
system switches to criticality level k, we cancel all jobs of
tasks in £,..., Lx—1; then we reset the original deadlines of
task ;€ L; (j=k K —1). The deadlines of tasks in Lg
can be set accordingly based on the values of the min term on
the left side of Inequality (5). In this way, all tasks can meet
their timing constraints accordingly. The detailed mechanism
for setting tasks’ virtual deadlines and formal feasibility proofs
can be found in [5].

Based on Theorem 1, we can easily obtain the following
proposition regarding the schedulability of MC tasks under
the partitioned EDF-VD scheduling:

Proposition 2. For a set of N tasks with K criticality levels
running on a system with M cores, a given partition I’ =
{¥1,...,Yu} is feasible if, for every core P, m = 1,..., M,
there exists at least one k = 1,...,K — 1, such that Inequal-

ity (5) holds.

As a special case, when a system has only two criticality
levels (i.e., K = 2), which is denoted as a dual-criticality



system, the task set is schedulable under partitioned EDF-VD
if, for every core P, (m = 1,..., M), the following holds [3]:

U1
Uty 4 minf o), — 2 0Ly @)
1 - Uz " (2)

From Theorem 1, once tasks are partitioned to cores, we
can see that there are (K — 1) conditions for each core in a
K-level MC system. However, only one condition is required
to hold on each core to satisfy the schedulability condition for
the partitioned EDF-VD scheduling. Hence, we can define the
available utilization for condition-k on core P, as:

AYn(k) = 6% (k) — P (k). (8)

Above, 8%»(k) and p¥»(k) are defined as the terms on the
left- and right-hand side of the Inequality (5), respectively.
The core utilization of P,, can be further defined as:

0, if YAY"(k) <0, k=1,...,K—-1 (9a)

max {1 — AY"(k)}, otherwise. (9b)
YAm (k)20

Ut =

Similarly, the system utilization U** and average core utiliza-
tion U®8 can be defined, respectively, as follows:

U = ma{Um=1,...,M}, (10)
M Y,
U™

U®™s = Z”’; (11)
M

III. CriTicALITY-AWARE TASK PARTITIONING

The problem that we address in this paper can be defined as:
The MCX(N, M) Partition Problem: For a set of N mixed-
criticality tasks with K criticality levels running on a system
with M homogeneous cores, find a task-to-core partitioning T’
where tasks on each core can be scheduled under the EDF-VD
scheduler.

Note that, when K = 1, the MCX(N, M) partition problem
can be reduced to the classical real-time task partitioning
problem, which is a well-known NP-hard problem. Therefore,
the MCX(N, M) partition problem is NP-hard as well. Hence,
in what follows, we focus on efficient partitioning heuristics.

In general, partitioning tasks to cores involves two main
steps: a) sort the tasks according to certain criteria, and, b)
find an appropriate core for each task by processing the tasks
according to the order determined in a). Instead of exploiting
the maximum utilizations of tasks and the simple (but quite
pessimistic) schedulability condition in Equation (4), we focus
on the improved schedulability condition as represented in
Inequality (5).

In fact, instead of solely depending on tasks’ maximum
utilizations at their corresponding criticality levels, the schedu-
lability conditions in Inequality (5) rely on tasks’ utilizations at
all criticality levels. Considering the potential large variations
of tasks’ utilizations at various criticality levels, it is crucial
to take such variations into consideration when designing the
two essential steps of partitioning heuristics.

A. Task Ordering and Utilization Contribution

To incorporate utilizations of tasks at different levels in the
first step, we present the concept of utilization contribution of
tasks. Specifically, a task 7;’s utilization contribution at level-k
criticality is defined as:

Mi(k)_
Uk’
where U(k) is the total level-k utilization of all tasks with
criticality levels k or higher (see Equation (2)). The utilization

contribution of 7; to the system (by considering all valid
criticality levels) can be further defined as:

G =max{€ik) | k=1,...,4}.

k) = k=1,...,0. (12)

13)

From the above definitions, we can see that the utilization
contribution of a task essentially represents its largest weight in
system utilizations among all its valid criticality levels. Hence,
following the same principle as in the classical partitioning
heuristics that order tasks based on their utilizations (e.g.,
Best-Fit-Decreasing -BFD- and Worst-Fit-Decreasing -WFD-
heuristics), in this work, we sort tasks (i.e., determine the or-
dering priority of tasks) based on their utilization contributions
in the first step before allocating them to processing cores.
For this purpose, we define a relational operator > with the
following ordering priority rules:

o If task 7; has larger utilization contribution than task 7;,

we say that 7; has higher ordering priority than 7; and
this is denoted as 7; > 7;

« If the two tasks have the same utilization contribution, the
tie is broken in favor of the task with higher criticality
level. That is, if ¢; = €; A {; > {;, we have 7; > 7};

« If there is still a tie, the task with smaller index is assigned
higher ordering priority: 7;,>7; it i < jAG; = €A = ¢}

Note that, in this step, all tasks in ¥ are considered together
to calculate each task’s utilization contribution. Based on the
above ordering rules, each task will be assigned a unique
ordering priority. The tasks are sorted according to their
ordering priority before the partitioning step.

B. Target Core Selection and Utilization Increment

To generalize the ideas in the above example, the key
point in our core selection heuristic is to take the utilization
variations of tasks at different criticality levels into consider-
ation. Specifically, from Condition (5), we can see that, the
utilizations of tasks at all valid criticality levels can affect
their schedulability on a certain core. Moreover, since each
core has a distinct subset of MC tasks, the utilizations of
cores at each criticality level can vary (see Equation (3)). Thus,
the allocation of a task to different cores can result in quite
different schedulability results and large variations in resulting
average core utilizations, which is in sharp contrast to the
scheduling of non-MC tasks.

To quantify the impact of allocating a task 7; to core P,
the increment of core utilization on P, is defined as:

AT = g nin) _ e (14)



Algorithm 1: Outline of CA-TPA
Input: ¥ (the task set); M (the number of cores);
Output: A feasible partitioning I' or FAILURE;

1 Initiate T = {¥,,}, where ¥,, =0 (m =1, ..., M);

2 Sort tasks in ¥ based on their utilization contributions;
3 for (each 7; € ¥) do

4 A = oo;

5 for (each #,,) do

6 Calculate %Y%) from Equation (15);

7 Calculate A*"Y'%) from Equation (14);

8 if ({¥,, U (1;}} is feasible and AY"Y} < A) then
9 ‘ A = AU = e

10 end

1 end

12 if (A == ) then

13 I' = 0; //not feasible on any core;

14 Return FAILURE;

15 end

16 Y, =Y, U{r;}; /fallocate ; to Py;

17 Update UY(k)(k = 1,...,K) and U"-;
18 end

9 Return I';

-

Here the new core utilization % *»V{7 of core P, by assuming
that 7; is allocated to the core, can be found as:

oo, if YAYU (k) <0, k=1,...,K -1 (152)

PUln) _
7= max {1—AYYTI()), otherwise  (15b)
VAW’“U{T”(/()ZO
where AY"Yil(k) = g¥YT(k) — ¥V (k). Note that, if
¥Vt = oo, that indicates that task 7; cannot be feasibly

allocated to core #,, based on the condition in Inequality (5).

C. Criticality-Aware Task Partitioning Algorithm (CA-TPA)

Based on the above discussions, we adopt a probe-based
approach when allocating a task to cores. Specifically, by
checking all cores in the system, a task 7; will be allocated
to the core #,, that has the minimum increment for its core
utilization, should 7; be allocated to #,,. That is, AT»Vi7i} =
min{AYV7x = 1,..., M}. If more than one cores have the
same minimum core utilization increment, the tie is broken
by allocating the task to the core with smaller index.

The outline of our CA-TPA algorithm is summarized
in Algorithm 1. First, the task-to-core partition I" and the
subset of tasks for each core are initialized (line 1). Then,
all tasks are sorted according to the decreasing order of their
utilization contributions (line 2). For each task in the above
order, CA-TPA probes all cores by calculating its new core
utilization and utilization increment assuming that task 7; is
allocated to it (lines 5 to 11). For all cores that can feasibly
accommodate 7; under the EDF-VD scheduler according to
the schedulability condition in Inequality (5), the core P,
with the smallest utilization increment is identified (line 9).
If 7; cannot be feasibly allocated to any core, CA-TPA fails

to obtain a feasible partitioning and quits (lines 12 — 14).
Otherwise, task 7; is allocated to the target core P, by
updating its subset of tasks W, and related parameters (lines
16 and 17). Once all tasks are successfully allocated to cores,
the feasible partition I' is found and returned (line 19).

An Example: To further illustrate how CA-TPA works, we
consider a dual-criticality system with two cores and five MC
tasks. The timing parameters of tasks are given in Table 1.

TABLE I
THE TIMING PARAMETERS OF TASKS
) | a@ | pi | G| w@) | w® | €d) | Q) Ci
T 24 - 61 1 0.394 - 0.257 - 0.257
T 15 28 86 2 0.175 | 0326 | 0.114 | 0.340 | 0.340
T3 30 - 96 1 0.313 - 0.204 - 0.204
T4 23 43 68 2 0.339 | 0.633 | 0.221 0.661 0.661
75 20 - 63 1 0.318 - 0.207 - 0.207

For comparison, we first show the task-to-core mapping
under the First-Fit-Decreasing (FFD) heuristic. The tasks are
sorted in decreasing order of their maximum utilizations at
their corresponding criticality levels (i.e., u;({;) for task T;),
giving the order of 74, 71, T2, Ts, 3. In FFD, a task is allocated
to the first core that can feasibly accommodate it based on the
pessimistic schedulability test in Equation (4). The results for
core utilizations after mapping the first four tasks to cores are
summarized in Table II. Here, we can see that FFD fails to
allocate task 73 as the schedulability test in Equation (4) fails
(actually, even the improved schedulability test in Equation (7)
fails) on both cores.

TABLE II
THE TASK ALLOCATIONS UNDER FFD
T4 NPy TPy | P s~APr | 13X

¥ {74} {ra} {14, 72} {14, 72} -
Uy 0 0 0 0
U;P' 2) 0.633 0.633 0.959 0.959

Y 0 {r1} {71} {71, 75}
UIPZ(I) 0 0.394 0.394 0.712
U,%(2) 0 0 0 0

In CA-TPA, tasks are ordered according to their utilization
contributions, which can be calculated based on Equations (12)
and (13) and are shown in Table I. Here, the order of tasks to
be allocated can be easily found as 74, 72, 71, 75 and 73.

After task 74 is first allocated to core %, we have
ulih = 0, (1) = 0339, U;'2 = 0.633 and
UY" = 0 + min{0.633, %} = 0.633 based on Equations (7)
to (9). There are two choices for mapping task 7,: cores
P, and P,. If task 7, is assigned to core P;, we have
2V = 0 + min{0.633 + 0.326, {2203 = 0.959 and
AYV) = 0,959 — 0.633 = 0.326 based on Equations (15)
and (14). However, if task 7, is assigned to core $,, we
can have Z*V'™ = 0 + min{0.326, %2} = 0.26 and
ATV = 026 — 0 = 0.26. Therefore, task 7, is mapped

onto core P, according to CA-TPA. Following these steps,




TABLE III
THE TASK ALLOCATIONS UNDER CA-TPA
T4~ P o ~NPo T ~NPr 75 ~ P 3P
¥ {4} {r4} {4} (14,75} {74, 75}
UT‘(I) 0 0 0 0.318 0.318
U;P‘ (1) 0.339 0.339 0.339 0.339 0.339
U;F' 2) 0.633 0.633 0.633 0.633 0.633
A4 0.633 0.633 0.633 0.951 0.951
be) 0 {2} {r2, 71} {r, 11} | {72, 71,73)
UT' (1) 0 0 0.394 0.394 0.707
U;P‘(l) 0 0.175 0.175 0.175 0.175
U;}‘ 2) 0 0.326 0.326 0.326 0.326
[P 0 0.26 0.654 0.654 0.967

all tasks can be feasibly allocated to cores according to
the schedulability condition in Inequality (5). The resulting
task-to-core mapping under CA-TPA is shown in Table III.

Complexity of CA-TPA: Recall that there are M cores and
N tasks in the system. As there are normally only a few
criticality levels (i.e., usually no greater than 6), K can be
assumed to be a constant in the complexity analysis. Here,
calculating Uj;(k) from Equation (1) can be done in time
O(N). The computation of U(k) from Equation (2) can also
be done in O(N). Hence, sorting the tasks in decreasing order
of their utilization contributions can be performed in time
O(N - logN). Next, from Algorithm 1, we can see that finding
a target core that can feasibly accommodate a given task can
be done in time O(M + N). Therefore, the time complexity of
CA-TPA can be found as O((M + N) - N).

Workload Imbalance Factor: When tasks are allocated to
cores under CA-TPA, it is possible to obtain a mapping with
imbalanced workloads among cores, where a few cores can be
over-loaded with remaining cores having large free capacities.
To prevent our task partitioning algorithm from allocating most
tasks to a few cores, we can define a workload imbalance
factor A, which is defined as:

U —min{U|m = 1,..., M}

Usys :
The parameter A can be utilized to control the variations
of core utilizations. When it becomes larger and reaches a
threshold @, which can be set prior to the task-to-core map-
ping, instead of selecting a target core according to CA-TPA,
without considering utilization variations, the new task can be
assigned directly to the core with the minimum core utilization
(e, min{fUY|m = 1,..., M}), subject to the schedulability
conditions in Inequality (5). Hence, as shown in the simulation
results, the imbalance factor can help obtain a mapping with
relatively balanced workloads among all cores.

A= (16)

IV. EvVALUATIONS AND DISCUSSIONS

To evaluate the performance of the proposed CA-TPA
scheme experimentally, we constructed a simulator. For com-
parison, we also implemented the well-known partitioning

heuristics Worst-Fit-Decreasing (WFD), First-Fit-Decreasing
(FFD), Best-Fit-Decreasing (BFD), as well as the Hybrid
scheme proposed in [28]. The Hybrid scheme first allocates
the high-criticality tasks using WFD, and in the second step,
allocates the low-criticality tasks using FFD. To assess the
feasibility of a core with a new task, these schemes use first
the utilization-based sufficient condition given in Equation (4).
In case the outcome is negative, then they check the second
and more involved sufficient schedulability condition as given
in Theorem 2. Below, we first give the parameter settings for
the simulations in Section IV-A and then, in Section IV-B,
we present the experimental results for all the schemes under
consideration.

A. Parameter settings

We compare these task partitioning schemes based on the
following performance metrics: a) Schedulability Ratio, which
is defined as the ratio of the number of task sets that satisfy the
schedulability condition to the total number of tested task sets;
b) system utilization (U™*); c) average core utilization (U™8)
and d) workload imbalance factor (A). The last three metrics
comprehensively evaluate the quality and workload balance of
the partitions generated by the evaluated schemes.

In Table IV, we provide the full parameter range we consid-
ered in the experiments, including the number of cores (M), a
threshold for workload imbalance factor A (@), the system
criticality level (K), and the normalized system utilization
(NSU) which is defined as the ratio of the aggregate raw
utilization of tasks at level-1 criticality to the number of
processors. The table also provides the ranges for the number
of tasks (N), task periods (P) and the increment factor (IFC)
defined as the ratio of WCETs for two consecutive criticality
levels for a given task.

TABLE IV
SYSTEM PARAMETERS FOR THE SIMULATIONS

Parameters ‘ Values/ranges
Number of cores (M) 2,4,8,16,32
System criticality level (K) [2,6]
Threshold for workload imbalance (@) [0.1,0.5]
Normalized system utilization (NS U) [0.4,0.8]
Number of tasks (N) [40,200]
Task periods (P) [50,2001,[200, 5001,[500, 2000]

Increment factor (/FC) [0.3,0.7]

In the simulations, the synthetic task sets are generated from
the above parameters as follows. First, the system criticality
level K is selected randomly in the range [2, 6]. For given M,
N and NS U values, the base task utilization at level 1 is set
as upase(1) = Y5M Then, for each task 7;, the period p; is
randomly selected in one of the three period ranges given in
Table IV. Next, the value of ¢;(1) is obtained uniformly in the
range of [0.2 - p; - Upgse(1), 1.8 - p; - upyse(1)]. Finally, the task
7;’s criticality level ¢; is selected randomly in the range [1, K]
and then the values of c¢;(k)(k = 2,...,{;) are obtained using
c;(1) and the value of IFC.
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Unless otherwise specified, the default values for the param-
eters are: M =8, K=4, NSU =0.6, a =0.7 and IFC = 04.
For the results reported below, each data point corresponds to
the average result of 50,000 task sets.

B. Performance of the Mapping Schemes

Impact of NSU. Figure 1 shows the impact of the nor-
malized system utilization (NSU) on the performance of
the mapping schemes. When other parameters (such as the
number of cores M, threshold for workload imbalance factor
a and increment factor /FC) are fixed, higher normalized
system utilization generally means higher load and lower
schedulability ratio for all mapping schemes. Not surprisingly,
WED heuristic usually yields the lowest schedulability ratio.
As shown in Figure 1(a), CA-TPA can obtain the best schedu-
lability performance compared to the others (about 5% to 25%
more schedulable task sets compared to FFD, BFD and Hybrid
mapping schemes) due to its effort to minimize core utilization
during task-to-core assignments. Figures 1(b) to 1(d) further
show the performance with regard to the workload balance
generated by these schemes. These metrics are obtained by
considering only the schedulable task sets. Recall that be-
sides minimizing the increase in the core utilization, CA-TPA
employs a threshold for workload imbalance factor to avoid
as soon as possible severe imbalanced workload cases during
task mappings. Therefore, CA-TPA can generate the task-to-
core mapping with better or comparable system utilization,
average utilization and workload balance when compared to
FFD, BFD, and Hybrid heuristics.

Impact of the increment factor /FC. Next, we evaluate
the schemes with varying increment factors (IFC). The re-
sults are shown in Figure 2. Usually, a greater /FC causes

higher system workload and lower acceptance ratio from the
definition of /FC and the schedulability test as given in
Theorem 2. The results follow the similar trends as those
for varying NS U: our CA-TPA based scheme performs best
in terms of schedulability ratio and generates more balanced
workload than FFD and BFD heuristics. More specifically,
as CA-TPA scheme tries to bridge the gap between the total
task utilizations at different levels of criticality on every
processor core, it can typically obtain average core utilization
comparable to WFD as shown in Figure 2(c).

Impacts of the threshold for workload imbalance a.
Figure 3 illustrates the performance comparison among all
mapping schemes with different thresholds for workload im-
balance. As this threshold is only employed by CA-TPA to
tune workload imbalance during the task-to-core mapping,
other schemes’ performance remain constant with varying «
as shown in Figures 3(a) to 3(d). A greater value of @ usually
implies larger tolerance of workload imbalance for CA-TPA.
Consequently, when the value of « increases, CA-TPA at-
tempts to allocate tasks to processing cores with the minimum
increment in core utilizations without much consideration of
the workload balance (i.e., in a way similar to FFD) and thus
can effectively improve schedulability as shown in Figure 3(a).
However, this behavior results in greater workload imbalance
(i.e., higher system utilization and greater workload imbalance
factor), but CA-TPA still manages to generate more balanced
partitions compared to FFD and BFD schemes as shown in
Figures 3(b) and 3(d). Moreover, CA-TPA can achieve the
lowest average core utilization among all schemes as shown
in Figure 3(c).

Impact of the number of processor cores M. We further
evaluate the performance for all schemes with varying number
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of processor cores in the system and the results are shown in
Figure 4. More processor cores generally can provide more
capacity and more flexible processor core selections for tasks.
Thus, when the value of M increases, all mapping schemes
can obtain better schedulability performance as shown in
Figure 4(a). Similarly, CA-TPA yields better workload balance
than BFD and FFD and the lowest average core utilization
among all schemes as shown in Figures 4(b) to 4(d).

Impacts of the number of criticality levels K. Finally,
the performance evaluation for all schemes with different
system criticality levels is shown in Figure 5. Recall that the
normalized system utilization NSU represents the system’s
raw utilization at level 1. When the value of NSU is fixed,
a greater value of K implies more execution times for tasks
with highest criticality level running at level K. Thus, the
schedulability ratios of all schemes decrease quickly with the
increasing value of K as shown in Figure 5(a), but CA-TPA
still obtains the best acceptance ratio among all schemes as
explained above. Furthermore, CA-TPA generates better or

comparable workload balance compared to BFD, FFD and
Hybrid heuristics as shown in Figures 5(b) to 5(d).

V. CONCLUSIONS

For periodic implicit-deadline mixed-criticality (MC) tasks
running on multicore systems, in this paper, we proposed
an efficient criticality-aware task partitioning algorithm (CA-
TPA), where tasks on each core are scheduled by the EDF-
VD algorithm. Observing large variations of execution require-
ments of MC tasks at different criticality levels, we first intro-
duced the concept of utilization contributions of tasks to order
tasks. Then, we developed a criticality-aware task partitioning
approach with the objective of minimizing the utilization
increment on processing cores. Moreover, we explored the
workload imbalance factor together with a threshold to balance
system workload on the cores. We evaluated the proposed
CA-TPA mapping scheme through extensive simulations. The
results show that, when compared to the existing task mapping
schemes, CA-TPA can yield better balanced partitions and
offer improved schedulability ratios.
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