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Optimal Reward-Based Scheduling
for Periodic Real-Time Tasks

Hakan Aydin, Student Member, IEEE, Rami Melhem, Fellow, IEEE,
Daniel Mossé, Member, IEEE, and Pedro Mejia-Alvarez

Abstract—Reward-based scheduling refers to the problem in which there is a reward associated with the execution of a task. In our
framework, each real-time task comprises a mandatory and an optional part. The mandatory part must complete before the task’s
deadline, while a nondecreasing reward function is associated with the execution of the optional part, which can be interrupted at any
time. Imprecise computation and Increased-Reward-with-Increased-Service models fall within the scope of this framework. In this
paper, we address the reward-based scheduling problem for periodic tasks. An optimal schedule is one where mandatory parts
complete in a timely manner and the weighted average reward is maximized. For linear and concave reward functions, which are most
common, we 1) show the existence of an optimal schedule where the optional service time of a task is constant at every instance and
2) show how to efficiently compute this service time. We also prove the optimality of Rate Monotonic Scheduling (with harmonic
periods), Earliest Deadline First, and Least Laxity First policies for the case of uniprocessors when used with the optimal service times
we computed. Moreover, we extend our result by showing that any policy which can fully utilize all the processors is also optimal for the
multiprocessor periodic reward-based scheduling. To show that our optimal solution is pushing the limits of reward-based scheduling,
we further prove that, when the reward functions are convex, the problem becomes NP-Hard. Our static optimal solution, besides
providing considerable reward improvements over the previous suboptimal strategies, also has a major practical benefit: Run-time
overhead is eliminated and existing scheduling disciplines may be used without modification with the computed optimal service times.

Index Terms—Real-time systems, imprecise computation, periodic task scheduling, deadline scheduling, reward maximization.
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1 INTRODUCTION

IN a real-time system, each task must complete and
produce correct output by the specified deadline. How-
ever, if the system is overloaded, it is not possible to meet
each deadline. In the past, several techniques have been
introduced by the research community regarding the
appropriate strategy to use in overloaded systems of
periodic real-time tasks.

One class of approaches focuses on providing somewhat
less stringent guarantees for temporal constraints. In [16],
some instances of a task are allowed to be skipped entirely.
The skip factor determines how often instances of a given
task may be left unexecuted. A best effort strategy is
introduced in [11], aiming at meeting k deadlines out of n
instances of a given task. This framework is also known as
(n, k)-firm deadlines scheme. Bernat and Burns present in [2]
a hybrid and improved approach to provide hard real-time
guarantees to k out of n consecutive instances of a task.

The techniques mentioned above tacitly assume that a
task’s output is of no value if it is not executed completely.
However, in many application areas such as multimedia
applications [25], image and speech processing [5], [6], [9],
[27], time-dependent planning [4], robot control/navigation

e H. Aydin, R. Melhem, and D. Mossé are with the Computer Science
Department, University of Pittsburgh, Pittsburgh, PA 15260.
E-mail: {aydin, melhem,mosse}@cs.pitt.edu.

o P. Mejia-Alvarez is with CINVESTAV-IPN. Seccidn de Computacion, Av.
LP.N. 2508, Zacatenco, México, DF. 07300.
E-mail: pmejia@computacion.cs.cinvestav.mx.

Manuscript received 25 Feb. 2000; accepted 23 Oct. 2000.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 111563.

systems [12], [29], medical decision making [13], informa-
tion gathering [10], real-time heuristic search [17], and
database query processing [28], a partial or approximate but
timely result is usually acceptable.

The imprecise computation [7], [19], [21] and IRIS (Increased
Reward with Increased Service) [14], [15], [18] models were
proposed to enhance the resource utilization and graceful
degradation of real-time systems when compared with hard
real-time environments where worst-case guarantees must
be provided. In these models, every real-time task is
composed of a mandatory part and an optional part. The
former should be completed by the task’s deadline to
provide output of acceptable (minimal) quality. The
optional part is to be executed after the mandatory part,
while still before the deadline, if there are enough resources
in the system that are not committed to running mandatory
parts for any task. The longer the optional part executes, the
better the quality of the result (the higher the reward).

The algorithms proposed for imprecise computation
applications concentrate on a model that has an upper
bound on the execution time that could be assigned to the
optional part [7], [21], [26]. The aim is usually to minimize
the (weighted) sum of errors. Several efficient algorithms
have been proposed to solve optimally the scheduling
problem of aperiodic imprecise computation tasks [21], [26].
A common assumption in these studies is that the quality of
the results produced is a linear function of the precision
error; consequently, the possibility of having more general
error functions is usually not addressed.

An alternative model allows tasks to get increasing
reward with increasing service (IRIS model) [14], [15], [18]
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without an upper bound on the execution times of the tasks
(although the deadline of the task is an implicit upper
bound) and without the separation between mandatory and
optional parts [14]. A task executes for as long as the
scheduler allows it to, before its deadline. Typically, a
nondecreasing concave reward function is associated with
each task’s execution time. In [14], [15], the problem of
maximizing the total reward in a system of aperiodic
independent tasks is addressed. The optimal solution with
static task sets is presented, as well as two extensions that
include mandatory parts and policies for dynamic task
arrivals.

Note that the imprecise computation and IRIS models are
closely related since the performance metrics can be defined
as duals (maximizing the total reward vs. minimizing the
total error). Similarly, a concave reward function corre-
sponds to a convex error function and vice versa. We use
the term “Reward-based scheduling” to encompass sche-
duling frameworks, including Imprecise Computation and
IRIS models, where each task can be logically decomposed
into a mandatory and an optional subtask. A nondecreasing
reward function is associated with the execution of each
optional part.

An interesting question concerns the types of reward
functions that represent realistic application areas. A linear
reward function [19], [21] models the case where the benefit
to the overall system increases uniformly during the optional
execution. Similarly, a concave reward function [14], [15],
[18], [25] addresses the case where the greatest increase in
reward (i.e., refinement in the output quality) is obtained
during the first portions of optional executions. Linear and
general concave functions are considered as the most
realistic and typical in the literature since they adequately
capture the behavior of many application areas like image
and speech processing [5], [6], [9], [27], multimedia
applications [25], time-dependent planning [9], robot con-
trol/navigation systems [29], real-time heuristic search [17],
information gathering [10], and database query processing
[28]. For completeness, in this paper, we show that the case
of convex reward functions is an NP-Hard problem and thus
focus on linear and concave reward functions. Reward
functions with 0/1 constraints, where no reward is accrued
unless the entire optional part is executed, or as step
functions have also received some interest in the literature.
Unfortunately, this problem has been shown to be
NP-Complete in [26].

Periodic reward-based scheduling remains relatively
unexplored, since the important work of Chung et al. [7].
In that paper, the authors classified the possible applica-
tion areas as “error noncumulative” and “error cumula-
tive.” In the former, errors (or optional parts left
unexecuted) have no effect on the future instances of
the same task. Well-known examples of this category are
tasks which receive, process and transmit periodically
audio, video or compressed images [5], [6], [9], [25], [27]
and information retrieval tasks [10], [28]. For instance, a
real-time video application where, at each period, an
imperfect but decent quality image is produced first from
received data and subsequently refined within the
capacity of the available resources, can be readily modeled
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by an error noncumulative reward-based task. In “error
cumulative” applications, such as radar tracking, an
optional instance must be executed completely at every
(predetermined) k invocations. The authors further proved
that the case of error-cumulative jobs is an NP-Complete
problem. In this paper, we restrict ourselves to error
noncumulative applications.

Recently, a QoS-based resource allocation model
(QRAM) has been proposed for periodic applications [25].
In that study, the problem is to optimally allocate several
resources to the various applications such that they
simultaneously meet their minimum requirements along
multiple QoS dimensions and the total system utility is
maximized. In one aspect, this can be viewed as a
generalization of optimal CPU allocation problem to multi-
ple resources and quality dimensions. Further, dependent
and independent quality dimensions are separately
addressed for the first time in that work. However, a
fundamental assumption of that model is that the reward
functions and resource allocations are in terms of utilization
of resources. Our model follows the Imprecise Computation
model more closely, where the reward accrued has to be
computed separately over all task instances and the
problem is to find the optimal service times for each
instance and the optimal schedule with these assignments.

1.1 Aspects of the Periodic Reward-Based
Scheduling Problem

The difficulty of finding an optimal schedule for a periodic

reward-based task set has its origin in two objectives that

must be simultaneously achieved, namely:

1. Meeting deadlines of mandatory parts at every
periodic task invocation.

2. Scheduling optional parts to maximize the total (or
average) reward.

These two objectives are both important, yet often
incompatible. In other words, hard deadlines of mandatory
parts may require sacrificing optional parts with great value
to the system.

The analytical treatment of the problem is complicated
by the fact that, in an optimal schedule, optional service
times of a given task may vary from instance to instance,
which makes the framework of classical periodic schedul-
ing theory inapplicable. Furthermore, this fact introduces a
large number of variables in any analytical approach.
Finally, by allowing nonlinear reward functions to better
characterize the optional tasks” contribution to the overall
system, the optimization problem becomes computationally
harder.

In [7], Chung et al. proposed the strategy of assigning
statically higher priorities to mandatory parts. This decision,
as proven in that paper, effectively achieves the first
objective mentioned above by securing mandatory parts
from the potential interference of optional parts. Optional
parts are scheduled whenever no mandatory part is ready
in the system. In [7], the simulation results regarding the
performance of several policies which assign static or
dynamic priorities among optional parts are reported. We
call the class of algorithms that statically assign higher
priorities to mandatory parts Mandatory-First Algorithms.
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In our solution, we do not decouple the objectives of
meeting the deadlines of mandatory parts and maximizing
the total (or average) reward. We formulate the periodic
reward-based scheduling problem as an optimization
problem and derive an important and surprising property
of the solution for the most common (i.e., linear and
concave) reward functions. Namely, we prove that there is
always an optimal schedule where optional service times of a
given task do not vary from instance to instance. This important
result immediately implies that the optimality (in terms of
achievable utilization) of any policy which can fully use the
processor in the case of hard-real time periodic tasks also
holds in the context of reward-based scheduling (in terms of
total reward) when used with these optimal service times.
Examples of such policies are RMS-h (Rate Monotonic
Scheduling with harmonic periods) [20], EDF (Earliest
Deadline First) [20], and LLF (Least Laxity First) [23]. We
also extend the framework to homogeneous multiprocessor
settings and prove that any policy which can fully utilize all
the processors is also optimal for scheduling periodic
reward-based tasks (in terms of total reward) on multi-
processor environments.

Following these existence proofs, we address the
problem of efficiently computing optimal service times
and provide polynomial-time algorithms for linear and/or
general concave reward functions. Note that using these
optimal and constant optimal service times has also
important practical advantages: 1) The runtime overhead
due to the existence of mandatory/optional dichotomy and
reward functions is removed and 2) existing RMS (with
harmonic periods), EDF, and LLF schedulers may be used
without any modification with these optimal assignments.

The remainder of this paper is organized as follows: In
Section 2, the system model and basic definitions are given.
The main result about the optimality of any periodic policy
which can fully utilize the processor(s) is obtained in
Section 3. In Section 4, we first analyze the worst-case
performance of Mandatory-First approaches. We also
provide the results of simulations run on a synthetic task
set, in order to compare the performance of policies
proposed in [7] against our optimal algorithm. Then, we
examine whether the optimality of identical service times
still holds if the model is modified by dropping some
fundamental assumptions (Section 5). In Section 6, we show
that the concavity assumption is also necessary for
computational efficiency by proving that allowing convex
reward functions results in an NP-Hard problem. We
present details about the specific optimization problem that
we use in Section 7. We conclude by summarizing our
contribution and discussing future work.

2 SysSTEM MODEL

We first develop and present our solution for uniprocessor
systems, then we show how to extend it to the case of
homogeneous multiprocessor systems.

We consider a set T of n periodic real-time tasks
T1,T5,...,T,. The period of T; is denoted by P,, which is
also equal to the deadline of the current invocation. We
refer to the jth invocation of task T; as Tj;. All tasks are
assumed to be independent and ready at ¢ = 0.

Each task 7, consists of a mandatory part M; and an
optional part O;. The length of the mandatory part is
denoted by m;; each task must receive at least m; units of
service time before its deadline in order to provide output
of acceptable quality. The optional part O; becomes ready
for execution only when the mandatory part M; completes;
it can execute as long as the scheduler allows before the
deadline.

Associated with each optional part of a task is a reward
function R;(t;;) which indicates the reward accrued by task
Tj; when it receives ¢;; units of service beyond its mandatory
portion. R;(t;;) is of the form:

) = i)

where f; is a nondecreasing, concave, and continuously
differentiable function over nonnegative real numbers and
o; is the length of the entire optional part O,. We underline
that f;(t;;) is nondecreasing: The benefit of task 7;; cannot
decrease by allowing it to run longer. Notice that the
reward function R;(¢) is not necessarily differentiable at
t = 0;. Note also that, in this formulation, by the time the
task’s optional execution time ¢ reaches the threshold value
o;, the reward accrued ceases to increase. Clearly, the
reward of executing an optional part O; for an amount of
time t; > o; will be the same as the reward for executing for
o0; time units. Therefore, it is not beneficial to execute O; for
more than o, time units since 7; has completed its
mandatory and optional parts for that period.

Having nondecreasing concave reward functions means
that, while a task 7} receives service beyond its mandatory
portion M;, its reward monotonically increases. However,
its rate of increase decreases or remains constant with time.
Note that the first derivative of a nondecreasing concave
function is nonincreasing. The concavity assumption im-
plies that the early portions of an optional execution are not
less important than the later ones, which adequately
captures many application areas mentioned in the intro-
duction. We concentrate on concave reward functions,
including linear reward functions.

A schedule of periodic tasks is feasible if mandatory
parts meet their deadlines at every invocation. Given a
feasible schedule of the task set T, the average reward of
task T; is defined as:

if 0 < tij § 0;
if ti]‘ > 04,

(1)

p PP
REW; =53 Ri(ti)) 2)
=1

where P is the hyperperiod, that is, the least common
multiple of P, P», ..., P,, and t;; is the service time assigned
to the jth instance of optional part of task 7;. That is, the
average reward of 7T; is computed over the number of its
invocations during the hyperperiod P in an analogous way
to the definition of average error in [7].}

The average weighted reward of a feasible schedule is
then given by:

1. We note that the results we prove easily extend to the case in which
one is interested in maximizing the total reward >=;%," fi(t;)).
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Fig. 1. A schedule produced by the Mandatory-First Algorithm.
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Fig. 2. An optimal schedule.
n
REWy = Z w; REW, (3) As can be seen, the optimal strategy in this case consisted
4 2 Ly

=1

where w; is a constant in the interval (0, 1], indicating the
relative importance of optional part O;. Although this is the
most general formulation, it is easy to see that the weight w;
can always be incorporated into the reward function R;(),
by replacing it by w; R;(). Thus, we will assume that all
weight (importance) information is already expressed in the
reward function formulation and that REWy, is simply
equal to > | REW,.

Finally, a schedule is optimal if it is feasible and it
maximizes the average weighted reward.

2.1 A Motivating Example

Before describing our solution to the problem, we
present a simple example based on a synthetic task
set, which shows the performance limitations of any
Mandatory-First algorithm. Consider two tasks where
Pr=4,m;=1,00=1,P, =8 mg =3,00 =5. Assume that
the reward functions associated with optional parts are
linear and f;(¢1) = kit1, f2(t2) = koto. Furthermore, suppose
that k; associated with the reward accrued by 75 is
negligible when compared to k; (i.e., ki > k). In this case,
the “best” algorithm among “Mandatory-First” approaches
should produce the schedule shown in Fig. 1.

Above, we assumed that the Rate Monotonic Priority
Assignment is used whenever more than one mandatory
tasks are simultaneously ready, as in [7]. Yet, following
other (dynamic or static) priority schemes would not
change the fact that the processor will be busy executing
solely mandatory parts until ¢ =5 under any Mandatory-
First approach. During the remaining idle interval [5, 8], the
best algorithm would have chosen to schedule O; com-
pletely (which brings most benefit to the system) for one
time unit and O, for two time units. However, an optimal
algorithm would produce the schedule depicted in Fig. 2.

of delaying the execution of M, in order to be able to
execute “valuable” O; and we would still meet the
deadlines of all mandatory parts. By doing so, we would
succeed in executing two instances of Oy, in contrast to any
Mandatory-First scheme which can execute only one
instance of O;. Remembering that k; > ks, one can
conclude that the reward accrued by the “best” Manda-
tory-First scheme may only be around half of that accrued
by the optimal one, for this example. Also, observe that in
the optimal schedule, the optional execution times of a
given task did not vary from instance to instance. In the
next section, we prove that this pattern is not a mere
coincidence. We further perform an analytical worst-case
analysis of Mandatory-First algorithms in Section 4.

3 OPTIMALITY OF FULL-UTILIZATION POLICIES FOR
PERIODIC REWARD-BASED SCHEDULING

We first formalize the Periodic Reward-Based Scheduling
problem. The objective is finding optimal {t;;} values to
maximize the average reward. By substituting the average
reward expression given by (2) in (3), we obtain our
objective function:

b/P;

n R
maximize g FE R;(t5).
=1

i=1

The first constraint that we must enforce is that the total
processor demand of mandatory and optional parts during
the hyperperiod P may not exceed the available computing
capacity, that is:

n_ P/P;

ZZ(Tm +tij) < P.

=1 j=1

Note that this constraint is necessary, but by no means
sufficient for feasibility of the task set with {m,} and {t;;}
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values. Next, we observe that optimal ¢;; values may not be
less than zero since negative service times do not have any
physical interpretation. In addition, the service time of an
optional instance of T; does not need to exceed the upper
bound o; of reward function R;(t) since the reward accrued
by T; ceases to increase after ¢;; = o;. Hence, we obtain our
second constraint set:
Ogt,ijgoi i:17...,n

The constraint above allows us to readily substitute f;()
for R;() in the objective function. Finally, we need to express
the “full” feasibility constraint, including the requirement
that mandatory parts complete in a timely manner at every
invocation. Note that it is sufficient to have one feasible
schedule with the involved {m;} and optimal {¢;;} values:

There exists a feasible schedule with {m;} and {t;;} values.

We express this constraint in English and not through
formulas since the policy or algorithm producing this
schedule including optimal t;; assignments need not be
specified at this point.

To recapture all the constraints, the periodic reward-
based scheduling problem, which we denote by REW-PER,
is to find {t;;} values so as to:

n_p P/P

maximize Z Z fi(tij) (4)
n_p n_P/P

subject to me, + Z tiy <P (5)

OStUSOL ’L':L...,’ll

There exists a feasible schedule with {m;} and {t;;} values.
(7)

Before stating our main result, we underline that if
Y1 $mi > P, it is not possible to schedule mandatory
parts in a timely manner and the optimization problem has
no solution. Note that this condition is equivalent to
>_iz1'p>1, which indicates that the task set would be
unschedulable, even if it consisted of only mandatory parts.

Hence, hereafter, we assume that > 7, 5 < 1.

Theorem 1. Given an instance of Problem REW-PER, there
exists an optimal solution where the optional parts of a task T;
receive the same service time at every instance, that is,
tj=tin 1 <j<k< P . Furthermore, any periodic hard-real
time scheduling pollcy which can fully utilize the processor
(EDF, LLF, RMS-h) can be used to obtain a feasible schedule
with these assignments.

Proof. Our strategy to prove the theorem will be as follows:
We will drop the feasibility condition (7) and obtain a
new optimization problem whose feasible region strictly
contains that of REW-PER. Specifically, we consider a
new optimization problem, denoted by MAX-REW,

where the objective function is again given by (4), but
only the constraint sets (5) and (6) have to be satisfied.
Note that the new problem MAX-REW does not a priori
correspond to any scheduling problem since the feasi-
bility issue is not addressed. We then show that there
exists an optimal solution of MAX-REW where
tij=ti, 1<j<k< P. Then, we will return to
REW-PER and demonstrate the existence of a feasible
schedule (i.e., satisfiability of (7)) under these assign-
ments. The reward associated with MAX-REW'’s optimal
solution is always greater than or equal to that of
REW-PER’s optimal solution, for MAX-REW does not
consider one of the REW-PER’s constraints. This will
imply that this specific optimal solution of the new
problem MAX-REW is also an optimal solution of
REW-PER.

Now, we show that there exists an optimal solution of
MAX-REW where t;; = tj, 1 <j<k< %

Claim 1. Let {t;;} be an optimal solution to MAX-REW,
1<i<n 1<j<g=gq. Then, {t};}, where
tin +to+ ...+ t'iq,
gdi

=t =t =

iq; i

by =ty =...
I<i<n 1<j<gq

is also an optimal solution to MAX-REW.

e  We first show that {#};} values satisfy the constraints
(5) and (6) if {t;;} already satisfy them. Since
Pty =2 0 t;; = qit; the constraint (5) is not
violated by the transformation. Also, by assumption,
tij < 0;Vj, which implies max;{t;;} < o;. Since ¢},
which is the arithmetic mean of t,t,...,t;, is
necessarily less than or equal to max;{t;}, the
constraint set (6) is not violated either by the
transformation.
e  Furthermore, the total reward does not decrease by
this transformation since > %, fi(t;) < ¢; fi(t}). The
proof of this statement is presented in the Appendix.

Using Claim 1, we can commit to finding an optimal
solution of MAX-REW by setting

tin=tp=...=1j, =1

In this case, EP/P fi(ti)) =% fi(t;) and ZP/P’ =%t
Hence, this version of MAX- REW can be rewritten as:

n
maximize Z fi(t) (8)
i=1
n P n P
subject to ; pltis ; 2 m 9)
Ogtigoi i:1,...,n. (].0)
Finally, we prove that the optimal solution ¢, ts, . . ., ¢,

of MAX-REW above automatically satisfies the feasibility
constraint (7) of our original problem REW-PER. Having
equal optional service times for a given task greatly
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simplifies the verification of this constraint. Since
ti,t2,...,t, (by assumption) satisfy (9), we can write
Yoin, P -5t < P or, equivalently, Y77 ’”’Tft' <1.

This implies that any policy which can achieve
100 percent processor utilization in classical periodic
scheduling theory (EDF, LLF, RMS-h) can be used to
obtain a feasible schedule for tasks, which now have
identical execution times m; +t; at every instance.
Hence, the “full feasibility” constraint (7) of REW-PER
is satisfied. Furthermore, this schedule clearly maximizes
the average reward since {t{;} values maximize
MAX-REW whose feasible region encompasses that of
REW-PER. O

Corollary 1. Optimal t; values for the Problemn REW-PER can be
found by solving the optimization problem given by (8), (9),
and (10).

We present the details of the solution of this concave
optimization problem in Section 7.

3.1 Extension to Multiprocessors

The existence proof of identical service times can be easily
extended to homogeneous multiprocessors. The original
formulation of REW-PER needs to be modified in order to
reflect the multiprocessor environment. Note that the
objective function (4), the lower and upper bound con-
straints (6) on optional service times, and the full feasibility
constraint (7) can be kept as they are. However, with
k processors, the system can potentially have a task set
whose total utilization is &k instead of 1. Hence, we need to
change the first constraint accordingly.

By doing so, we obtain the formulation of periodic
imprecise computation problem for k processors, denoted
as MULTI-REW:

P/P;

n
P
maximize E Fl E fi(tij)
14 =

=

(11)

n.p n P/P
subject to ZFmL + Z Z tiy <k-P (12)
=1 =1 =1

P
()gti,'goi i:l,...,n j:].,...,— (13)
' P;
There exists a feasible schedule on k processors with (14)

{m;} and {t;;} values.

Following exactly the same line of reasoning depicted in
Theorem 1, we can prove the following:

Theorem 2. Given an instance of Problem MULTI-REW, there
exists an optimal solution where the optional parts of a task T;
receive the same service time at every instance, that is,
tj=ta 1<j<k< %. Furthermore, any scheduling policy
which can achieve full utilization on k processors can be used
to obtain a feasible schedule with these assignments.

An example of such full-utilization policies for multi-

processors is provided by Bertossi and Mancini in [3]. We
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note that the PFair scheduling policy [1], which can also
achieve full-utilization, assumes that all the periods are
multiples of the slot length and hence it can not be used in
this context.

Corollary 2. Optimal t; values for the Problem MULTI-REW
can be found by solving the following optimization problem:

n
maximize Z fi(t) (15)
i=1
n P n P
subject to —t; <k-P-— —m; 16
‘] 27 2pm 10

Again, the details of the solution of this concave optimiza-
tion problem are given in Section 7.

4 EVALUATION AND COMPARISON WITH OTHER
APPROACHES

We showed through the example in Section 2 that the
reward accrued by any Mandatory-First scheme [7] may
only be approximately half of that of the optimal algorithm.
We now prove that, under worst-case scenario, the ratio of
the reward accrued by a Mandatory-First approach to the
reward of the optimal algorithm may be arbitrarily close to
zero. This is a consequence of Theorem 3, which allows us
to construct a specific instance of the problem by choosing
an arbitrarily large integer 7.

Theorem 3. There is an instance of periodic reward-based
scheduling problem where the ratio

Reward of the best Mandatory First scheme 2

Reward of the optimal scheme r

for any integer r > 2.

Proof. Consider two tasks 7} and T3 such that P,/P, =,
f1 (tl) = kl tl, fg(tz) = k‘Q t2 and k‘l/k’g = 7‘(7" - 1) Further-
more, let my =1 (roy) and

mo 2
Pl:m1+01+7:m1+r

-1’
which implies that o; = 7.

This setting suggests that, during any period of T3, a
scheduler has the choice of executing (parts of) O,
and/or M,, in addition to M.

Note that, under any Mandatory-First policy, during
the hyperperiod [0, P,], the processor will be continuously
busy executing mandatory parts until ¢t = P, — P, +m;.
Furthermore, the best algorithm among Mandatory-First
policies should use the remaining idle times by schedul-
ing O, entirely (since k; > kp) and t; = "2 = % units of
O,. The resulting schedule is shown in Fig. 3.

The average reward that the best mandatory-first

algorithm (MFA) can accrue is therefore:
fi(o1)

- T+ f2(t2)~

Ryra
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my

1-1

(2P |

Z

my

Fig. 4. An optimal schedule.

However, an optimal algorithm (shown in Fig. 4)
would choose delaying the execution of M5 for o; units of
time, at every period of T'. By doing so, it would have the
opportunity of accruing the reward of O; at every
instance.

The total reward of the above schedule is:

Tf1(01)

r

f1(01)-

The ratio of rewards for the two policies turns out to
be (for any r > 2)

Rura 1 folta)

Ropr =

1

r

1 ma 2
r(r—1) r my 1’

maor(r—1)

r fi(o1)

which can be made as close as possible to 0 by
appropriately choosing r. 0

Ropr

Theorem 3 gives the worst-case performance ratio of
Mandatory-First schemes. We also ran simulations using a
synthetic task set to investigate the relative performance of
Mandatory-First schemes proposed in [7] with different
types of reward functions and different mandatory/
optional workload ratios.

The Mandatory-First schemes differ by the policy
according to which optional parts are scheduled when
there is no mandatory part ready to execute. Rate-
Monotonic (RMSO) and Least-Utilization (LU) schemes
assign statically higher priorities to optional parts with
smaller periods and least utilizations, respectively.
Among dynamic priority schemes are Earliest-Deadline-
First (EDFO) and Least-Laxity-First (LLFO), which con-
sider the deadline and laxity of optional parts when
assigning priorities. Least Attained Time (LAT) aims at
balancing execution times of optional parts that are
ready by dispatching the one that executed least so far.

Finally, Best Incremental Return (BIR) is an on-line policy
which chooses the optional task contributing most to
the total reward at a given slot. In other words, at every slot
BIR selects the optional part O;; such that the difference
filti; + A) — fi(ti;) is the largest (here, t;; is the optional
service time O;; has already received and A is the minimum
time slot that the scheduler assigns to any optional task).
However, it is still a suboptimal policy since it does not
consider the laxity information. The authors indicate in [7]
that BIR is too computationally complex to be actually
implemented. However, since the total reward accrued by
BIR is usually much higher than the other five policies, BIR
is used as a yardstick for measuring the performance of
other algorithms. We have used a synthetic task set
comprised of 11 tasks whose total (mandatory + optional)
utilization is 2.3. Individual task utilizations vary from 0.03
to 0.6. We implemented all the MFA schemes mentioned
above and generated the schedule during the hyperperiod.
Considering exponential, logarithmic, and linear reward
functions as separate cases, we measured the reward ratio
of six Mandatory-First schemes with respect to our optimal
algorithm. The tasks’ characteristics (including reward
functions) are given in Table 1. In our experiments, we
first set mandatory utilization to 0 (which corresponds to
the case of all-optional workload), then increased it to 0.25,
0.4, 0.6, 0.8, and 0.91 subsequently.

Figs. 5 and 6 show the reward ratio of six Mandatory-
First schemes with respect to our optimal algorithm as a
function of mandatory utilization for different types of
reward functions. A common pattern appears: The optimal
algorithm improves more dramatically with the increase in
mandatory utilization. The other schemes miss the oppor-
tunities of executing “valuable” optional parts while
constantly favoring mandatory parts. The reward loss
becomes striking as the mandatory workload increases.
Figs. 5a and 5b show the reward ratio for the case of
exponential and logarithmic reward functions, respectively.
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TABLE 1
Task Characteristics
Taskid | P | m;+ o Jidt)) FA() §idta)
1 20 10 15(1—e_t) 7 ln(20t+1) bt
2 30 18 20(1 - 6_3?) 10 In(50 ¢ + 1) Tt
3 40 5 4(1—e 2In(10t+1) | 2¢
4 60 2 W0(1—e 9% | 5ln(5t+1) 4t
5 60 2 10 (1 — e*O'zt) 5 ln(25 t+1) 4t
6 80 12 5 (1 — e_t) 3 ln(3() t+1) 2t
7 90 18 17(1—e) 8n(8t+1) 6t
8 120 15 8 (1 - e*"’) 41n(6t+ 1) 3t
9 240 28 8(1- c_t) 41n(9¢t+ 1) 3t
10 270 60 12 (1 — 6*0"”) 6 ln(12 t+1) bt
11 2160 300 5 (1 - e_t) 3 ln(15 t+1) 2t
Reward Ratio with
Respect to Optimal Reward Ratio with
Respect to Optimal
- OPT
0.30 |
L BIR ..
0.20 ] = y, LAT ..
3 LLFO
0.10 | T S BDROC
LU e
01 02 03 04 05 06 07 08 09 Mandatory 01 02 03 04 05 06 07 08 09  Mandatory
Utilization Utilization

(b)

Fig. 5. The reward ratio of Mandatory-First schemes: strictly concave reward functions (a) exponential, (b) logarithmic functions.

The curves for these strictly concave reward functions are
fairly similar: BIR performs best among Mandatory-First
schemes and its performance decreases as the mandatory
utilization increases; for instance, the ratio falls below 0.75
(for both curves) when mandatory utilization is 0.6. Other
algorithms which are more amenable to practical imple-
mentations (in terms of runtime overhead) than BIR
perform even worse. However, it is worth noting that the
performance of LAT is close to that of BIR. This is to be
expected since task sets with strictly concave reward
functions usually benefit from “balanced” optional service
times. Finally, at high mandatory utilizations, the CPU time
that can be used for optional executions is naturally
diminished, which results in a convergence of all MFA
schemes for strictly concave reward functions: The total
reward is only slightly affected by the choice of optional
task to dispatch.

Fig. 6 shows the reward ratio for linear reward functions.
Although the reward ratio of Mandatory-First schemes
again decreases with the mandatory utilization, the de-

crease is less dramatic than in the case of concave functions
(see above). However, note that the ratio is typically less
than 0.5 for the five practical schemes. It is interesting to
observe that the reward of (impractical) BIR method now
remains comparable to that of optimal, even in the higher
mandatory utilizations: The difference is less than 15 per-
cent. In our opinion, the main reason for this behavior
change lies in the fact that, for a given task, the reward of
optional execution slots in different instances does not make
a difference in the linear case. In contrast, not executing the
“valuable” first slot(s) of a given instance creates a
tremendous effect for nonlinear concave functions. The
improvement of the optimal algorithm would be larger for a
larger range of k; values (where k; is the coefficient of the
linear reward function). We note that the worst-case
performance of BIR may be arbitrarily bad with respect to
the optimal one for linear functions, as Theorem 3 suggests.
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Fig. 6. The reward ratio of Mandatory-First schemes: linear reward
functions.

5 LimiTs ON THE OPTIMALITY OF IDENTICAL
SERVICE TIMES

We underline that Theorem 1 was the key to eliminate a
potentially exponential number of unknowns (¢;; values)
and thereby to obtain an optimization problem of n
variables. One is naturally tempted to ask whether the
optimality of identical service times is still preserved if
some fundamental assumptions of the model are relaxed.
Unfortunately, attempts to reach further optimality results
for extended/different models remain inconclusive, as the
following propositions suggest.

Proposition 1. The optimality of identical service times no longer

holds if the Deadline = Period assumption is relaxed.

Proof. We will prove the statement by providing a counter-
example. Assume that we allow the deadline of a task to
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TABLE 2
Two-Task System
wd | m; | o | By | Fi(t)
113 3] 8 t
21 7 |5 |16 t

be less than its period. Consider the two tasks shown in
Table 2.

Further, assume that the deadline of T, is
Dy = 10 < P,, while the deadline of T7 coincides with
its period, (i.e., d; = 8). Note that the tight deadline of 75
makes it impossible to schedule any optional part until
t = 13, after which we are able to schedule O, for three
units. This optimal schedule is shown in Fig. 7. On the
other hand, if one commits to identical service times per
instance, it is clear that we may not schedule any optional
part since we could not execute O in the first instance of
T, (Fig. 8). O

Next, suppose that the deadlines are equal to the periods,
but we have to adopt a static priority scheduling policy. It
was already mentioned in Section 3 that if the periods are
harmonic, then we can use RMS without compromising
optimality. But, in the general case where the periods are
not necessarily harmonic, this is not true even if we are
investigating the “best” schedule within the context of a given
static priority assignment.

Proposition 2. In the general case, the optimality of identical
service times no longer holds if we commit to a static priority
assignment.

Proof. Again, to prove the statement with a counter-
example, consider the task set shown in Table 3.

///
My Mi o
0 3 8 10 13 16
da
My ‘
0 3 10 16
Fig. 7. The optimal schedule for the task system in Table 2. ‘ ‘
M; 3 M 3
0 3 8 10 13 16
dy
My 3
0 3 10 16

Fig. 8. Best schedule with identical service times for the task system in Table 2.
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TABLE 3
Two-Task System

wd | my | o | By | Fi(t)
1 2 416 t
213 |0]8 t

As we have only two tasks, we will consider the cases
where T; or T have higher priority and show that, in
every case, the reward of the optimal schedule differs
from the one obtained with identical service times per
instance assumption.

Case 1—1 has higher priority: It is easy to see that
we can construct a schedule which fully utilizes the
timeline during the interval [0, lcm(6,8) = 24] (Fig. 9a).
This schedule is also immediately optimal since the
reward function is linear (observe that 0o, = 0 and, hence,
we do not receive any reward for executing O,). But, we
remark that we cannot execute O; for more than one unit
on its first instance in any feasible schedule—without
violating the deadline of 7. Therefore, we would have
ended up with a lower reward after executing one unit of
O, at each instance if we had committed to identical
service times (Fig. 9b).

Case 2—1, has higher priority: The optimality is
similarly compromised if 75 has higher priority. While
the optimal schedule (Fig. 10a) fully utilizes the timeline,
the best schedule with ¢, =1 (i=1,...,4) (Fig. 10b)
remains suboptimal. O
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TABLE 4
Two-Task System

id | 'm; | o | P | Fi(t)
0 [8] 8 t?
0 6| 16| 2¢2

[N

achieving optimality with identical service times by using a
static priority assignment.

The final proposition in this section illustrates the fact
that the optimality of identical service times is also sensitive
to the concavity of reward functions.

Proposition 3. The optimality of identical service times no longer
holds if the concavity assumption about the reward functions
is relaxed.

Proof. Consider two harmonic tasks without mandatory
parts whose parameters are given in Table 4.

Note that ¢; should be assigned its maximum possible
value (i.e., the upper bound 6) since the marginal return
of F; is larger than F; everywhere. An optimal schedule
maximizing the average reward for these two tasks is
depicted in Fig. 11.

The sum of the average rewards in the optimal
schedule is 2.62 +¥ = 106. However, if we commit
ourselves to the equal service times per instances, we can
find no better schedule than the one shown in Fig. 12,
whose reward is only 52 + 2 - 6% = 97.

It is not difficult to construct a similar example for the
tasks with 0-1 constraints as well, which implies that
even the number of variables to deal with (the ¢;;5) may be

We remark that Proposition 2 also has implications for prohibitively large in these problems. 0
the Q-RAM model [25] since it points to the impossibility of
i L L T :
= = = = ;
M M My 07 | M, ;
— _ - =~ ;
0 23 6 8 9 12 14 18 20 21 24
| i |
Mo ! Mo E Mo
0 3 6 8 9 12 16 21 24
(@)
= / = i
M % M M M ‘
' ' ' & ! /?% ‘
0 2 3 6 8 9 12 415 18 20 21 2%
M 3 M M3 M; :
0 3 6 8 9 12 16 18 21 22 24

(b)

Fig. 9. Case 1: T3 has the higher priority: (a) the optimal schedule, (b) the best schedule with identical service times.
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Fig. 10. Case 2: T, has the higher priority: (a) the optimal schedule, (b)

the best schedule with identical service times.
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Fig. 11. An optimal schedule for the task system in Table 4.

INTRACTABILITY OF CONVEX REWARD-BASED
SCHEDULING PROBLEM

As we mentioned before, maximizing the total (or average)
reward with 0/1 constraints case had already been proven
to be NP-Complete in [21]. Similarly, in Section 5, we
showed that, if the reward functions are convex, the

6

optimality of identical service times is not preserved. In
this section, we show that, in fact, convex reward functions

result in an NP-Hard problem, even with identical periods.
We now show how to transform the SUBSET-SUM

problem, which is known to be NP-Complete, to REW-PER

with convex reward functions.
SUBSET-SUM: Given a set S = {s1, 5o, ..

integers and the integer M, is there a set 54 C S such that
Zs,:ES,q S; = Af7

., Sn} of positive

2. We underline that, as of this writing, most of the applications we
investigated have nonincreasing marginal returns, hence they can be
represented best by concave reward functions. However, we include the
convex reward functions’ case and show its intractability in order to
complete the theoretical investigation of the periodic reward-based
scheduling problem.

We construct the corresponding REW-PER instance as
follows: Let W =37, s;. Now, consider a set of n periodic
tasks with the same period M and mandatory parts
m; = 0 Vi. The reward function associated with 7; is given

by:

mw ={ 1)

where f;(t;) =t?+ (W —s;)t; is a strictly convex and
increasing function on nonnegative real numbers.

Notice that f;(¢;) can be rewritten as t;(t; — s;) + W t;.
Also, we underline that having the same periods for all
tasks implies that REW-PER can be formulated as:

Zf OStSOl':SZ'
Zf t> o0, =s;,

maximize Z ti(ti—si)+ W Z t; (18)
=1 i=1
n
subject to Zti <M (19)
=1
0<t; <si. (20)
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Fig. 12. Best schedule with identical service times for the task system in Table 4.

Let us denote by Max Rew the total reward of the optimal
schedule. Observe that, for 0<t <s;, the quantity
ti (ti — s;) < 0. Otherwise, at either of the boundary
values 0 or s;, t; (t; — s;) = 0. Hence, MaxRew < WM.

Now, consider the question: “Is MaxRew equal to WM?”
Clearly, this question can be answered quickly if there is a
polynomial-time algorithm for REW-PER where reward
functions are allowed to be convex. Furthermore, the
answer can be positive only when 1", ¢, = M and each t;
is equal to either O or s;. Therefore, Max Rew is equal to WM
if and only if there is a set Sy C S such that )7 ¢ si = M,
which implies that REW-PER with convex reward functions
is NP-Hard.

7 SoLuTION oF PERIODIC CONCAVE REWARD-
BASED SCHEDULING PROBLEM

Corollaries 1 and 2 reveal that the two optimization
problems whose solutions provide optimal service times
for uniprocessor and multiprocessor systems share a
common form:

n
maximize Z fi(t:)
=1
n
subject to Z bit; <d
=1

t; < o;
0<t

i=1,2,...,n

i=1,2,...,n,

where d (the “slack” available for optional executions) and
bi,bs,...,b, are positive rational numbers. In this section,
we present polynomial-time solutions for this problem,
where each f; is a nondecreasing, concave, and differenti-
able® function.

First note that, if the available slack is large enough to
accommodate every optional part entirely (i.e., if
Z?:l b; 0; < d), then the choice t; = 0; V¢ clearly maximizes
the objective function due to the nondecreasing nature of
reward functions.

Otherwise, the slack d should be used in its entirety since
the total reward never decreases by doing so (again due to
the nondecreasing nature of the reward functions). In this
case, we obtain a concave optimization problem with lower
and upper bounds, denoted by OPT-LU. An instance of

3. In the auxiliary optimization problems which will be introduced
shortly, the differentiability assumption holds as well.

OPT-LU is specified by the set of nondecreasing concave
functions F={fi,...,f,}, the set of upper bounds
O ={o01,...,0,}, and the available slack d. The aim is to:

n
maximize Z fy(tz) (21)
i=1
n
subject to Z biti=d (22)
=1
t;<o, i=1,2...,n (23)
0<t; i=1,2,...,n, (24)

where 0 <d <" b; - 0;.

Special Case of Linear functions: We address separately
the case when F comprises solely linear functions since the
time complexity can be considerably reduced by using this
information. Note that, for a function f;(t;) = k; - t;, if we
increase t; by A, then total reward increases by k; A.
However, by doing so, we make use of b; A units of slack (d
is reduced by b; A due to (22)). Hence, the “marginal
return” of task 7; per slack unit is w; = ﬁ— Now, consider
another function f;(t;) = k; - t;. Clearly, w; = i—j/ If w; > w;,
then task T should be always favored with respect to T; since
the marginal return of f; is strictly greater than f; every-
where. Repeating the argument for every pair of tasks, we
can obtain the following optimal strategy.

We first order the functions according to their marginal
returns w; =3 t=1,2,...,n. Let f; be the function with
the largest marginal return, f> the second, and so on (ties
are broken arbitrarily). If b, 0, > d, then we set t; = d/b; and
we are done (we are using the entire slack for 7i). If
b1 01 < d, then we set t; = 0; and d is reduced accordingly
(d =d — by 01). Next, we repeat the same step for the next
“most valuable” function, f,. After at most n iterations, the
slack d is completely consumed. We note that this solution
for linear functions is analogous to the one presented in
[25]. The dominant factor in the time complexity comes
from the initial sorting procedure, hence, in the special case
of all-linear functions, OPT-LU can be solved in time
O(nlogn).

When F contains nonlinear functions, the procedure
becomes more involved. In the next two subsections, we
introduce two auxiliary optimization problems, namely
Problem OPT (which considers only the equality
constraint) and Problem OPT-L (which considers only

—k
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the equality and lower bound constraints), which will
be used to solve OPT-LU.

7.1 Problem OPT: Case of the Equality Constraint
An instance of the problem OPT is characterized by the set

F={f1,...,f.} of nondecreasing concave functions and
the slack d:
n
maximize Z fit)
i=1
n
subject to Z b t; =d.
i=1

As can be seen, OPT does not take into account the lower
and upper bound constraints of Problem OPT-LU. The
algorithm which returns the solution of Problem OPT is

denoted by “Algorithm OPT.”
When F is composed solely of nonlinear reward functions,

the application of Lagrange multipliers technique [22] to the
Problem OPT yields:
1, .
b—ifz-(ti)— 1=1,2,...,n, (25)
where ) is the common Lagrange multiplier and f/(t;) is the
derivative of the reward function f;. The quantity bl fi(t:) in
(25) actually represents the marginal return contributed by T;
to the total reward, which we will denote as w;(¢;). Observe
that, since f;(¢;) is nondecreasing and concave by assump-
tion, both w;(t;) and f/(¢;) are nonincreasing and positive
valued. Equation (25) implies that the marginal returns
w;(t;) = 5 f{(ti) should be equal for all reward functions in
,t,}. Considering that the
equality >/, b;t; =d should also hold, one can obtain

the optimal solution {i,...

closed formulas in most of the cases which occur in practice.
The closed formulas presented below are obtained by this
method.

e For logarithmic reward functions of the form

ﬁ(t7) :ln(kj7 'L‘Z'+Czj),
+ lzb
= — =
b
J=1
and tj=biti+¢5 55 Vi l<j<n

e For exponential reward functions of the form

filt) = ¢;i(1 —e7hit),

bk
In (Zfbjkf)]

n
sk

and t; :l[kltl +ln(::’l;1k Vi l<j<n.

e For “kth root” reward functions of the form f;(¢;) =
(k> 1),

d
h=5——"
bjci =
P
and t; =t (b”)“ Vil<j<n.

When it is not possible to find a closed formula,
[15],
d, where

following exactly the approach presented in [14],
[18], we solve for A in the equation >, b; h;(\) =
hi(k) is the inverse function of bl fi(ti) = w;(t;) (we assume
the existence of the derivative’s inverse function whenever
fi is nonlinear, complying with [14], [15], [18]). Once A is
determined, t; = h;(\), ¢ = 1,...,n is the optimal solution.

We now examine the case where F is a mix of linear and
nonlinear functions. Consider two linear functions f;(t) =
ki-t and f;(t) =k;-t. The marginal return of f;(¢;) is
w;(t;) = % =w; and that of f; is w;(t;) = % = w;. Now, if
w; > w;, then the service time ¢; should be definitely zero
since marginal return of f; is strictly less than f; every-
where. After this elimination process, if there are p > 1
linear functions with the same (largest) marginal return
Winaqe, then we will consider them as a single linear function
in the procedure below and evenly divide the returned
service time t,,,, among t; values corresponding to these p
functions. Hence, without loss of generality, we assume that
fa(t) =k, -t is the only linear function in F. Its marginal
return is wy,(¢,) = 1;_ = Winaz- We first compute the optimal
distribution of slack d among tasks with nonlinear reward
functions fi,..., f,—1. By the Lagrange multipliers techni-
que, w;i(t;) —A=0 and, thus, wi(t]) =w(t}) =...=
wy—1(t5_,) = X at the optimal solution ¢},t5,...,¢"_,.

Now, we distinguish two cases:

® )\ >= Wy In this case, ¢],¢,...,¢,_, and ¢, =0 is
the optimal solution to OPT. To see this, first
remember that all the reward functions are concave
and nondecreasing, hence w;(t] —e€) > w;(t) >
wy(€) =Wpar 1 =1,...,n—1 for all e>=0. This
implies that transferring some service time from
another task T; to T}, would mean favoring the task
which has the smaller marginal reward rate and
would not be optimal.

® )\ < Wpyg,. In this case, reserving the slack d solely to

tasks with nonlinear reward functions means violat-
ing the best marginal rate principle and, hence, is not
optimal. Therefore, we should decrease service time

t; until w;(t;) reaches the level of wy,,, for

i=1,2,...,n— 1, but not beyond. Solving h;(We;) =
tifori=1,2,...,n —1and assigning any remaining
slack - E D DS tn (the service time of unique task

with hnear reward function) clearly satisfies the best
marginal rate principle and achieves optimality.

7.2 Problem OPT-L: Case of Lower Bounds

In this section, we present a solution for problem OPT-L
and we improve on this solution in Section 7.2.1. An
instance of Problem OPT-L is characterized by the set
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F ={f1, fo,..., fo} of nondecreasing concave reward func-
tions, and the available slack d:
maximize Z fi(ts) (26)
=1
n
subject to Z bit;=d (27)
=1
0<t; i=1,2,...,n (28)

To solve OPT-L, we first evaluate the solution set Sppr to
the corresponding problem OPT and check whether all
inequality constraints are automatically satisfied. If this is
the case, the solution set Sppr_, of Problem OPT-L is clearly
the solution Sppr. Otherwise, we will construct Sopr_r
iteratively as described below.

A well-known result of nonlinear optimization theory
states that the solution Sppr_; of Problem OPT-L should
satisfy so-called Kuhn-Tucker conditions [22], [24]. Further-
more, Kuhn-Tucker conditions are also sufficient in the case
of concave reward functions [22], [24]. For Problem OPT-L,
Kuhn-Tucker conditions comprise (27), (28), and:

1 .
_Eﬂm+A—%:Oi:L2mn (29)
) )
f,uy;ti:O 7,:1,2‘.71 (30)
W>0 i=1,2...n, (31)

where A, p1, pa, - . ., iy, are Lagrange multipliers. The neces-
sary and sufficient character of Kuhn-Tucker conditions
indicates that any 2n + 1 tuple (¢1,t2, ..., tn, th1, 2, - -+, fin, A)
which satisfies conditions (27) through (31) provides
optimal ¢; values for OPT-L.

One method of solving the optimization problem OPT-L
is to find a solution to the 2n + lequations (27), (29), and
(30) which satisfies constraint sets (28) and (31). Iteratively
solving the 2n + 1 nonlinear equations is a complex process
which is not guaranteed to converge. In this paper, we
follow a different approach. Namely, we use the Kuhn-
Tucker conditions (29), (30), and (31) to prove some useful
properties of the optimal solution. Our method is based on
carefully using the properties that we derive in order to
refine the solution of the optimization problem OPT.

Claim 2. If Sopr violates some inequality constraints given by
(28), then Fi u; > 0.

Proof. Assume to the contrary that Vi p; = 0. In this case,
Kuhn-Tucker conditions reduce to the equality constraint
(27), the set of inequality constraints (28), plus the
Lagrangian condition given in (25). On the other hand,
Sopr, which is the solution of OPT, should satisfy (27)
and the Lagrangian condition (25). In other words,
solving OPT is always equivalent to solving a set of
nonlinear equations which are identical to Kuhn-Tucker
conditions of OPT-L except inequality constraints, by setting
Vi u; = 0. Hence, if there were a solution to OPT-L where
Vi u; = 0, then that solution would be returned by the
algorithm solving OPT and would not violate inequality
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constraints. However, given that the solution Sppr failed
to satisfy all the inequality constraints, we reach a
contradiction. Therefore, there exists at least one La-
grange multiplier p; which is strictly greater than 0. O

Claim 3. Jj p1; = 0.

Proof. For the sake of contradiction, assume that Vj p; > 0.
In this case, (30) enforces that Vi ¢; = 0. If this were true,
>or 1 bi t; would be equal to 0, leaving the slack d totally
unutilized. In this case, this clearly would not be the
optimal solution due to the nondecreasing nature of
reward functions. O

In the rest of the paper, we use the expression “the set of
functions” instead of “the set of indices of functions” unless
confusion arises. Let:

1, 1, .
= {al,- £1(0) < - £/0) ¥i}. (32)
Remember that ;- f}(¢,) is the marginal return associated
with f,(t,) and is denoted by w,(t,). Informally, II contains
the functions f, € F with the smallest marginal returns at
the lower bound 0, w,(0).

Lemma 1. If Sopr violates some inequality constraints, then, in
Sopr—r, tm = 0Vm € IL

Proof. Assume that Im € II such that ¢,, > 0. In this case,
(30) implies that the corresponding (i, = 0. By Claim 2,
we know that Jj such that ;; > 0. By (30), t; = 0. Using
(29), we can write

1 .
b_frln(tm) - _f;(o) = & > 0.

Since t,,, > 0, the concavity property of f,, suggests that
blmf,/n(tm) < blf,’n(O) But, in this case, we obtain
5 [ (0) —% 7(0) > ‘b‘—jf > 0, contradicting the assumption
that m € II. Hence, p,, > 0 and, by (31), ¢,, = 0. O

In view of Lemma 1, in Fig. 13 we present the algorithm
to solve Problem OPT-L.

Complexity: The time complexity Copr(n) of Algorithm
OPT is O(n): If the mentioned closed formulas apply, then
the complexity is clearly linear; otherwise, the unique
unknown A can be solved in linear time under concavity
assumptions, as indicated in [14], [15], [18]. Lemma 1
immediately implies the existence of an algorithm which
sets t,, = 0 Vm € II, and then reinvokes Algorithm OPT for
the remaining tasks and slack (in case some inequality
constraints are violated by Sppr). Since the number of
invocations is bounded by n, the complexity of the
algorithm which solves OPT-LU is O(n?).

7.2.1 Faster Solution for Problem OPT-L

In this section, we present a faster algorithm of time
complexity O(n - logn) to solve OPT-L. We will make use of
the new (faster) algorithm in the final solution of OPT-LU.

Consider Algorithm OPT-L depicted in Fig. 13. Let Fj
be the set of functions passed to OPT during the kth
iteration of Algorithm OPT-L, and II; be the set of
functions with minimum marginal returns at the lower
bounds (minimum w;(0) values) during the kth iteration
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Algorithm OPT-L(F,d)

Compute II from equation 32
Set t,, =0Vm €1l
Set F=F-1I

D 0w N

goto Step 1

1 Evaluate the solution Sppr of the optimization problem
(without inequality constraints)

If all the inequality constraints are satisfied then Sppr_r=Sopr; exit

Fig. 13. Algorithm to solve Problem OPT-L.

(formally, I = {z|;- f,(0) < ;- £,(0) Vyly € Fi.}). Also let
n* <n be the number of distinct w;(0) values among
functions in F and m* < n* be the iteration number where
Algorithm OPT returns a solution set which satisfies the
constraint set given by (28) for the remaining ¢; values. Note
that the elements of II; i =1,...,n* can be produced in
O(n -logn) time during a preprocessing phase. Clearly,
Algorithm OPT-L sequentially sets t; =0 Vi €II; U
IIy...UIl,+—; until Algorithm OPT returns a solution
which does not violate the constraint set for the remaining
unknowns at the (m*)th iteration.

A tempting idea is to use binary search in the range
[1,n*] to locate the critical index m* in a faster way.
However, to justify the correctness of such a procedure,
one needs to prove that if one had further set
ti=0 Vi €ll; Ull,...UIl,, where y>m*, and subse-
quently invoked the algorithm OPT, then Sppr obtained
in this way would have still satisfied the constraint set
given by (28). Notice that if this property does not hold,
then it is not possible to determine the “direction” of the
search by simply testing Sppr at a given index ¢ since we
must be assured that there exists a unigque index m* such
that:

e Setting ¢, =0Viell; UIl,...UIl, and invoking
OPT does not provide a solution Sppr which satisfies
the inequality constraints whenever 1 <y <m* — 1.

e Setting ¢, =0Vi eIl UIl,...UIl, and invoking
OPT does provide a solution Sppr which satisfies the
inequality constraints whenever m* —1 <y < n.

The first of these properties follows directly from the
correctness of Algorithm OPT-L. It turns out that the second
property also holds for concave objective functions, as
proven below. Hence, the time complexity Copr_r(n) may
be reduced to O(n-logn) by using a binary search-like
technique. Algorithm FAST-L, which solves Problem OPT-L
in time O(n - logn), is shown in Fig. 14.

7.2.2 Correctness Proof of the Fast Algorithm

We begin by introducing the following additional notation
regarding the kth iteration of Algorithm OPT-L.

e t;;: service time assigned to the optional part of task
T; by OPT during the kth iteration of Algorithm
OPT-L,

o  Sopri={tik .- tns}: solution produced by OPT
during the kth iteration of Algorithm OPT-L,

o V. ={z|tsr <0}: the set of indices for which the
solution Sopr ; violates inequality constraints.

Clearly, Algorithm OPT-L successively sets t; =0 Vi €
II, UIly ... UIL,-—; until Algorithm OPT returns a solution
which does not violate any constraints for functions in F,,-
at the (m*)th iteration. Algorithm FAST-L uses binary
search to determine the critical index m* efficiently. The
correctness of Algorithm OPT-L assures that Vy < m* —1,
setting ¢, =0 Vi €Il UIl,...Ull, and invoking OPT
would yield a nonempty violating set V; for the remaining
tasks. Finally, Proposition 4 establishes that V y > m* — 1, V,
will always remain empty after setting t; =0 Vi €1, U
... 1I-—1 ... UII, and invoking OPT since this would leave
even more slack for the remaining tasks. In the algorithm
FAST-L, a specific index m is tested at each iteration to
check whether it satisfies the property V;, = 0 and V,,_; # 0.
If this is the case, then m = m* — 1 since there is only one
index m* satisfying this property. However, in the case that
Vi, # 0, then we can infer that m < m* — 1 and the next
probe is determined in the range (m,n*). Finally, if both
Vi =0 and V,,_; = 0, then we restrict the search in the
range (0,m —1).

Proposition 4. Suppose that, during the execution of Algo-
rithm OPT-L, Sopry does mnot violate some inequality
constraints (i.e.,, Vi, =0), yet we set t; =0 for Vj €1I,.
Then, the (k+ 1)th invocation of Algorithm OPT for the
remaining tasks yields Sopr j+1 such that t; .1 >t for all
i € Fyp = Fy, — I (which implies that Vi, is still empty).

Proof. Note that ¢;; > 0V i € Fj, by assumption. Based on
the optimality property of subproblems, if the kth
invocation of Algorithm OPT yields an optimal solution,
it will also generate the optimal distribution of d—
> jem bitjx = di < d time units among functions in
Fy — ;. However, the (k+ 1)th invocation provides
optimal distribution of d —0=d among functions in
Fy. — 11 as well (by setting t; = 0 for Vj € 1I;). Thus, two
successive invocations of Algorithm OPT can be written
as:

maximize Z fi(t)
subject to Z bit; =dy 1€ F, — 11

and
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Fig. 14. Fast Algorithm for Problem OPT-L.

maximize Z fi(t)
subject to Zbi ti=di+e 1€ Fyq=F, -1,

where e > 0. Hence, the proof will be complete if we

show that Vi € Fj, — Iy, tipy1 > tig.
Any solution Sopr should satisfy first-order neces-
sary conditions for Lagrangian [22]:

D bitip=d (33)

1

b—f:(tlk) —A=0  Visuch that f; € F}. (34)
The necessary conditions (34) give

1 ! 1 /

b_fp,(tc,k) = b_dfd(tdﬁk) Ve,de F, —1I; (35)
1 ! 1 !
felterrr) =5 faltap) Ve de Fp—TL.  (36)

b(t bd

For the sake of contradiction, assume that
Jw € Fj, — II;; such that ¢, 511 <ty Since e >0, there
must be some y € Fj, —II; suchthat t, ;.1 >t,;,. We
distinguish two cases:

1. fu that
strictly decreasing. Since f, is also concave,
we can write %f{b(tleJFl) > bif{b(twk) and
oo fy(tyren) <5 f';(ty,k), which are clearly incon-
sistent with (35) and (36). This can be easily seen

is nonlinear, is, its derivative is

Algorithm FAST-L(F,d)
1 Evaluate Sopr of the corresponding Problem OPT
2 If all the constraints are satisfied then Sppr_r=Sopr; exit
3 Enumerate the functions in F according to the non-decreasing order
of w;(0) values and construct the sets II; i=1...n"
4 m=r=|n"/2]
5 Do forever
6 Evaluate Sopr by invoking OPT(II,4q UIlag ... UTLy, d)
7 if a constraint is violated
8 m=m-+|r/2]; r =|r/2]
9 else {
10 S1 = Sopr
11 Evaluate Sopy by invoking OPT(II,, UIl, 41 ... UL+, d)
12 if a constraint is violated
13 Sopr-r={ti=0 Vi e[ UIly...UIl,+1}USy; exit
14 else {
15 m=m—|r/2]; r=|r/2]
16 i
17 }

by substituting w for ¢ and y for d in (35) and (36),

respectively.
fuw is linear, which implies that

In this case, to satisfy (35) and (36), f, should be
also linear of the form f,(t) =h-t such that
h:% Hence, two functions have the same
=L=4
bering our assumption from Section 7.1 that
Algorithm OPT treats all linear functions of the
same marginal return “fairly” (that is, assigns
them the same amount of service time), we reach
a contradiction since t,; was supposed to be
greater than t,. O

marginal return w, = w, bi But, remem-
( y

Complexity: At most O(logn) probes are made
during binary search and at each probe Algorithm
OPT is called twice. Recall that Algorithm OPT has
the time complexity O(n). The initial cost of sorting
the derivative values is O(nlogn). Hence, the total
complexity is Copr_r(n) = O(Copr(n) -logn + n -logn),
which is O(n -logn).

7.3 Combining All Constraints: Solution of Problem
OPT-LU

An instance of Problem OPT-LU is characterized by the set

F={fi,fs,..., fa} of nondecreasing, differentiable, and

concave reward functions, the set O = {0;,09,...,0,} of

upper bounds on the length of optional execution parts, and

available slack d:
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Set Sopr—ry =10
if F=0 then exit

oW N e

compute I

set d=d -3 crbe 0n
set F=F-T
set O=0—{ox|x € T}
10 Goto Step 2

©O© 0w N O o,

Algorithm OPT-LU(F,0,d)

Evaluate Sopr—_1 by invoking Algorithm FAST-L

if all upper bound constraints are satisfied then

Sopr-rv = (SopT-rv U SopT-1); exit

set t,=0,Vg €I in Sopr_iv

Fig. 15. Algorithm to solve Problem OPT-LU.

maximize Z fi(t) (37)
=1

subject to Z biti=d (38)
=1

t; <o 1=1,2,....n (39)

0<t; i=1,2,....n (40)

We recall that 0 <d< 3}/ 0, and 0<¢;Vi in the
specification of OPT-LU.

We first observe the close relationship between the
problems OPT-LU and OPT-L. Indeed, OPT-LU has only
an additional set of upper bound constraints. It is not
difficult to see that if Sppr_; satisfies the constraints
given by (39), then the solution Sopr_ry of problem OPT-
LU is the same as Sopr-r. However, if an upper bound
constraint is violated, then we will construct the solution
iteratively in a way analogous to that described in the
solution of Problem OPT-L.

Let I' = {z[; f,(0x) > fi(0;) Vi}. Informally, T' contains
the functions f, € F with the largest marginal returns at the
upper bounds, w, (o).

The algorithm ALG-OPT-LU (see Fig. 15) which solves
the problem OPT-LU is based on the successive invocations
of FAST-L. First, we find the solution Sopr_; of the
corresponding problem OPT-L. We know that this solution
is optimal for the simpler problem which does not take into
account upper bounds. If the upper bound constraints are
automatically satisfied, then we are done. However, if this
is not the case, we set t, = o, Vq € I'. Finally, we update the
sets F, O and the slack d before going through the next
iteration.

Correctness: Most of the algorithm is self-explanatory in
view of the results obtained in previous sections. However,
lines 5 and 6 of ALG-OPT-LU require further elaboration. In
addition to constraints (38), (39), and (40), the necessary and
sufficient Kuhn-Tucker conditions for Problem OPT-LU can
be expressed as:

—biif;(ti)+>\+€t—:—2t—;:0 i=1,2,....n (41)
aiti—o)=0 i=1,2,...,n (42)
—piti=0 i=1,2,...,n (43)

>0 i=1,2,...,n (44)

>0 i=1,2,...n, (45)

where A, i1, fig, ..., fin, 1, 42, - - ., b, are Lagrange multi-

pliers.

Claim 4. If Sopr—r, violates upper bound constraints given by
(39), then i j1; > 0.

Proof. Assume that Vi ji; = 0. In this case, Kuhn-Tucker
conditions (42) and (44) vanish. Also, conditions (38),
(40), (41), (43), and (45) become exactly identical to the
Kuhn-Tucker conditions of Problem OPT-L. Thus,
Sopr—1, returned by Algorithm FAST-L is also equal to
Sopr—rv if and only if it satisfies the extra constraint set
given by (39). O

Claim 5. Vi f; > 0 implies p; = 0.

Proof. Assume that 3i such that g; > 0 and p; > 0. In this
case, (42) and (43) force us to choose t; = 0; and t; =0,
which implies that o; = 0. But, this is contrary to our

assumption that 0 < o; Vi in the specification of the
problem. O

Now, we are ready to justify line 5 of the algorithm.

Lemma 2. If Sopr_;, violates upper bound constraints given by
(39), then, in Sopr—ru, ty =04 Vgel.

Proof. We will prove that the Lagrange multipliers fi;, i €
I', are all nonzero, which will imply (by (42)) that
ty =04, Vq € T'. Suppose Im € I' such that [, =0. We
know that 35 such that ji; > 0 (Proposition 4). Further-
more, p; =0 by Claim 5. Using (41), we can write
— 5 [ (tm —%:—}}j jf(tj)+’;—j, which gives (since

tj = Oj)I
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1 1 i Em
b_fr,n(tm) = _f;(oj) -

;> 0, >0).
N b, b, b (:U’] Hm )

Since t,, is necessarily less than or equal to o,,, we can
deduce - f],(0,) < 3= f,(tn) < b%f]/-(oj), which contra-

dicts our assumption that m € T". O

Complexity: Notice that the worst case time complexity
of each iteration is equal to that of Algorithm FAST-L,
which is O(n-logn). Observe that the cardinality of F
decreases by at least 1 after each iteration. Hence, the
number of iterations is bounded by n. It follows that the
total time complexity Copr—ru(n) is O(n?* - logn).

8 CONCLUSION

In this paper, we have addressed the periodic reward-based
scheduling problem. We proved that, when the reward
functions are convex, the problem is NP-Hard. Thus, our
focus was on linear and concave reward functions, which
adequately represent realistic applications such as image
and speech processing, time-dependent planning, and
multimedia presentations. We have shown that, for this
class of reward functions, there always exists a schedule
where the optional execution times of a given task do not
change from instance to instance. This result, in turn,
implied the optimality of any periodic real-time policy
which can schedule a task set of utilization k£ on k
processors. The existence of such policies is well-known
in real-time systems community: RMS (with harmonic
periods), EDF and LLF for uniprocessor systems, and, in
general, any® scheduling policy that can fully utilize a
multiprocessor system. We have also presented polyno-
mial-time algorithms for computing the optimal service
times. We believe that these efficient algorithms can also be
used in other concave resource allocation/QoS problems
such as the one addressed in [25].

We underline that, besides clear and observable reward
improvement over previously proposed suboptimal poli-
cies, our approach has the advantage of not requiring any
runtime overhead for maximizing the reward of the system
and for constantly monitoring the timeliness of mandatory
parts. Once optimal optional service times are determined
statically by our algorithm, an existing (e.g., EDF) scheduler
does not need to be modified or to be aware of mandatory/
optional semantic distinction at all. In our opinion, this is
another major benefit of having precomputed and optimal
equal service times for a given task’s invocations in reward-
based scheduling.

In addition, Theorem 1 implies that, as long as we are
concerned with linear and concave reward functions, the
resource allocation can be also made in terms of utilization
of tasks without sacrificing optimality. In our opinion, this
fact points to an interesting convergence of instance-based
[7], [21] and utilization-based [25] models for the most
common reward functions.

About the tractability issues regarding the nature of
reward functions, the case of step functions was already
proven to be NP-Complete [21]. By efficiently solving the

4. Policies which model the time as slotted are an exception, as explained
in Section 3.1.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.2, FEBRUARY 2001

case of concave and linear reward functions and proving
that the case of convex reward functions is NP-Hard,
efficient solvability boundaries in (periodic or aperiodic)
reward-based scheduling have been reached by our work
(assuming P # NP).

Finally, we have provided examples to show that the
theorem about the optimality of identical service times per
instance no longer holds if we relax some fundamental
assumptions such as the deadline/period equality and the
availability of the dynamic priority scheduling policies.
Considering dynamic aperiodic task arrivals and investi-
gating good approximation algorithms for intractable cases,
such as step functions and error cumulative jobs, can be
major avenues for reward-based scheduling.

APPENDIX

In Section 3, we mention that the total reward does not
decrease by the transformation. Here, we will show that:

qi
> filty) < @i fi#),

=1

(46)

tiHit . . .
where ¢} = =2 "% and the function f; is concave. If f; is

a linear function of the form f;(t) = k; - ¢, then BN ACHES
ki(tihn +tio+...+ty) =ki¢t, and (46) is immediately
established.

If f; is general concave, we recall that:

afi(x)+ (1 —a)fiy) < filazr +[1 - aly)

Vz,y and for every a such that 0 < a < 1. In this case, we
prove the validity of (46) by induction. If ¢; = 1, (46) holds
trivially. So, assume that it holds for ¢; =1,2,...,m — 1.
Induction assumption implies that:

(47)

m—1 . X
> Atts) < (m - (M) Gy
=1

m—1
Choosing o = m-1 5 = Hetettionn ) — 4 in (47), we
can write:
m—1 tl++t 1 1
fz( i i(m )) +— £i(tm)

m m—1 m

(49)
m

Combining (48) and (49), we get:

1 . til+-~-+tim
m Z filti;) < fi (—) Ym,
=

m

establishing the validity of (46).
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