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Abstract—In this paper, we undertake the problem of
minimizing system-level energy on chip-multicore processors
(CMPs) executing a periodic real-time workload. Our frame-
work has two components: i.) a static phase that selects a subset
of cores upon which the workload can be executed without
dissipating excessive static power and performs task-to-core
allocation, ii.) a dynamic phase that involves managing the
selected cores at run-time through coordinated power manage-
ment framework that exploits Dynamic Voltage and Frequency
Scaling (DVFS) as well as multiple idle states offered by
modern CMP architectures, to reduce the dynamic power. We
explicitly consider the unique traits of the currently available
CMP architectures that distinguish them from multiprocessors,
including the unique voltage level shared by the cores and its
implications for DVFS. We identify the global energy-efficient
frequency which indicates the minimum frequency level at
which concurrent execution on multiple cores should take place
to preserve the efficiency of DVFS. Then we propose two
algorithms CVFS and CVFS* to minimize the dynamic energy
consumption through concerted use of DVFS and idle states.
Our experimental evaluation indicates that our framework can
provide significant gains in system energy.

Keywords-Real-time Scheduling, Chip Multiprocessors, En-
ergy Management

I. INTRODUCTION

The chip multiprocessors (CMPs) that offer multiple pro-

cessing cores on a single chip have quickly become prevalent

in the computing landscape. Major chip makers (Intel, AMD,

Sun) have now several CMP lines with 2, 4 or 8 cores [9],

[15], [17], [19], [24]. Further, extensive research activity is

underway to build chips with potentially hundreds of cores

(or, many-core systems [7], [20]). This development has

important implications for real-time embedded applications

that will execute on these high performance architectures.

Energy management has been a very active research area

in the recent past and one of the main motivating factors

leading to CMP architectures was the unsustainable ever-

increasing frequency and power density trends of traditional

single-core architectures [7]. As a result, the CMPs come

equipped with a variety of advanced power management fea-

tures (e.g. Dynamic Voltage and Frequency Scaling (DVFS)

and multiple idle states (e.g. Halt, Sleep, Off)) [28], and

most comply with the ACPI standard [34] endorsed by the

industry.

As part of the recent energy management research, sev-

eral papers proposed DVFS-based solutions for real-time

embedded systems running on conventional multi-processor

platforms (where each processor is located on a separate

chip) [1], [4], [8], [30]. These studies identify two main

dimensions of the problem as task-to-CPU allocation and

run-time voltage scaling on individual CPUs [1], [30]. Yet,

the emerging CMP platforms have a number of unique traits

which make the problem different from the multi-processor

platforms. For example, while it is natural to have different

voltage levels per CPU (per-CPU DVFS capability) in a

multi-processor system, the tight coupling of cores on a

single chip (CMP) implies that the per-core DVFS feature

would come with severe additional circuit complexity, sta-

bility, and power delivery problems [7], [11], [20]. In fact,

in the state-of-the-art commercial CMP lines the processing

cores share a common voltage level. A recent study [11],

based on detailed VLSI circuit simulations, suggests that the

potential energy gains of per-core DVFS are likely to remain

too modest for justifying the complicated design problems.

For the next-generation many-core systems, it is likely that

only a small number of clusters/blocks each with several

cores and independent voltage regulators will be feasible [7].

Independent and effective management of such clusters (or,

the so-called voltage islands) would be the ultimate objective

in these next-generation systems [7], [11], [29].

The focus of this paper is the effective system-level energy

management of a set of processing cores that share the same

supply voltage and frequency (voltage island). Many state-

of-art multi-core processor lines including Intel’s Itanium

2, i5, i7 and Core Duo, and IBM’s Power 6 and Power 7

series, have this feature [13], [14], [16], [22], [23]. While

with the Opteron architecture AMD has started to offer an

option where the frequency (but not the voltage) of the

individual cores can be scaled independently [9], the systems

with global voltage/frequency are likely to remain the very

common in foreseeable future.

The voltage island model poses a number of challenges

that only very recently started to attract attention [18],
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[27], [31]. To start with, under the global voltage/frequency

constraint, the core with the maximum load at a specific

time becomes the main deciding factor in the overall CMP

energy consumption [27], [31]. This suggests the impor-

tance of load balancing [27], [31]. However, the frequency-

independent power characteristics (which limit the efficacy

of DVFS) may vary over time, complicating the problem. In

addition, while parallelism in general helps to save energy

[4], [8], [32], the increasing core-level static power trends

effectively limits the energy-efficient parallelism level: for

light workloads, it can be more energy-efficient to use only

a subset of cores (and put others to Off state), as opposed

to keeping all cores in Active state [7], [20], [28].

Contributions. This research effort investigates various

aspects of energy management in a voltage island, for a

periodic real-time workload that is partitioned to processing

cores, by taking into account both static and dynamic power.

Our solution has two main components. The first problem

in our settings is to statically select an optimal number

of processing cores for the execution of the workload, to

balance static and dynamic energy consumptions. Further,

tasks must be allocated to the selected cores. The un-selected

cores are put to Off states with negligible power dissipation,

avoiding excessive static power that could result from using

all cores at light workload conditions. While the problem is

NP-Hard, we propose and evaluate several effective schemes

with varying levels of relative complexity and performance.

Our experimental evaluation indicates that by limiting the

number of cores to execute the workload, substantial energy

gains are possible, especially when the load drops below

25% of the total computing capacity.

We also address various aspects of run-time manage-

ment of the selected cores to reduce their dynamic energy

consumption, under global voltage assumption. First, we

identify the time-dependent global energy-efficient frequency

concept, characterizing the boundaries of effective DVFS in

a voltage-island. We show how this global frequency can

be re-computed at scheduling points, by taking into account

the active cores and characteristics of tasks that will run in

parallel upon them during the next interval. We also show

how an idle core can be put to Sleep state to temporarily

eliminate the dynamic power, without violating the timing

constraints or incurring excessive state transition overhead.

We propose the Coordinated Voltage and Frequency Scal-

ing (CVFS) algorithm to determine the feasible frequency

while satisfying the energy-efficient execution across all

cores. We also present an enhanced version CVFS* that

adapts to the actual workload conditions at run-time. CVFS*

considers not only early completions, but also exploits

the implications of operating individual cores at a global

frequency level typically higher than what the feasibility of

the local workload requires. We experimentally investigate

the performance of CVFS under different load and maximum

utilization factors. We also evaluate the performance of

CVFS* and report that while the gains are marginal at low-

load conditions, its capability to adapt to dynamic workload

variability enables up to 40% additional savings with respect

to CVFS.

II. SYSTEM MODEL

A. Task and Processor Model

We consider a set of n periodic real-time tasks

ψ = {τ1 . . . τn} that are partitioned upon m homogeneous

processing cores C1 . . . Cm. We use ψi to denote the subset

of tasks allocated to core Ci.

Each periodic task τi is characterized by a worst-case

workload of wcci cycles and a period of Pi, assumed to

be equal to the relative deadline of its jobs. We assume

the Global DVS feature as in [18], [27], [31]: the voltage

can be adjusted for all active cores uniformly, along with

the frequency (up to an upper bound fmax). The worst-

case execution time of task τi under frequency f , is given

by wcci

f
. We use the symbol Wi to denote the worst-case

execution time of task τi under maximum frequency; that

is, Wi = wcci

fmax
.

The base utilization of task τi (under maximum fre-

quency) is Ui = Wi

Pi
≤ 1.0. Hence, the total utilization of

the task set ψ is given by Utot =
n
∑

i=1

Ui ≤ m. Finally, the

load on core Ci is given by the total utilization of tasks

allocated to Ci, namely, σi =
∑

τj∈ψi

Uj ≤ 1. On each core,

the preemptive Earliest Deadline First (EDF) scheduling

policy is adopted.

B. Power Model

Advanced Configuration and Power Interface (ACPI) [34]

is a unified and open power management standard introduced

and endorsed by major hardware and software manufacturers

such as Intel, Microsoft, HP and Toshiba. ACPI defines an

active state in which the core executes instructions. The

exact power profile in active state (defined as state C0 in

ACPI) will consist of static and dynamic power figures.

In the active state, by using the power model from [2],

[29], [33], we model the power consumption of a core Ci

executing task τj as:

Pi(t) = Pstatic + ajV
2f + P

j
ind

where ajV
2f and P

j
ind represent the frequency-dependent

and frequency-independent components of active power,

respectively. V denotes the supply voltage and f denotes

the CPU clock frequency. aj is the effective switching

capacitance of τj . Note that the values of aj and P
j
ind depend

on the characteristics of the task τj executing on core Ci at

a given time [2]. Pstatic represents the static power.

In Global DVS settings, all active cores are inherently

constrained to operate at the same supply voltage and



frequency level [18], [27], [31]. Given the almost linear re-

lationship between supply voltage and frequency, the power

consumption of the active core Ci at time t is given as:

Pi(t) = Pstatic + ajf
3 + P

j
ind (1)

The aggregate power consumption of all the cores varies

with time and is a function of individual core states and the

global operating frequency of all active cores. Let H be the

hyperperiod of the task set ψ. The energy consumption of

the voltage island over the interval [0,H] is given as:

E =

∫ H

0

m
∑

i=1

Pi(t) dt

When a core is not executing any instructions, it may be

put in one of the various idle states [34]. Each idle state has a

different power consumption characteristic; as a general rule,

the lower power consumption in a given idle state, the higher

the time and energy overheads involved in returning to the

active state. While the exact number of idle states varies

from architecture, in this work, we assume the existence

of at least the following three fundamental states that are

supported by most modern multicore systems:

• Halt state: In this state, the execution of instructions

is halted and the core clocks are gated, resulting in

significant reduction in dynamic power. The core can

return to active state almost instantaneously (≈ 10ns)

[19], [34]. We model the power consumption on core

Ci in the halt state as Pi = Pstatic + P0, where P0 is

the reduced dynamic power.

• Sleep state: Here, further, the Phase Locked Loops

(PLLs) are gated and L1 cache contents are invali-

dated. In this state, the dynamic power is practically

eliminated thus making Pstatic the only component

of power consumption. However, this saving in power

consumption comes at the cost of addition overheads

compared to the halt state. Returning to active state

may require a few hundred microseconds and involves

non-trivial energy overheads [24], [34].

• Off state: Here, the core voltage is reduced to very

low levels, to make even the static power consumption

negligible. CPU context is not preserved and returning

to active state involves significant time and energy

overheads [34]. Intel’s new i7 architecture achieves this

very low energy consumption through power gating

feature [19].

III. GLOBAL ENERGY-EFFICIENT FREQUENCY

Existing DVS studies for uni-processor systems estab-

lished that the frequency-independent dynamic power (Pind)

implies the existence of a energy-efficient frequency (also

called critical frequency) threshold below which DVS is no

longer effective from the system-level energy point of view

[2], [12], [33]. This is because, with decreasing frequency,

the gains in frequency-dependent dynamic energy can be

offset by the excessive increase in frequency-independent

dynamic energy after some point. Further, as different tasks

may have different power characteristics, the energy-efficient

frequency is task-dependent [2]. In [33], the value of this

energy-efficient frequency for task τi with effective switching

capacitance ai and frequency-independent power P i
ind was

given as
3

√

P i
ind

2·ai
.

However, in CMP platforms, with the unique voltage and

frequency constraint, this concept needs to be re-visited.

Consider k ≤ m active cores, where core Ci executes task

τi. Let the set of tasks τ1, . . . , τk run in parallel from t1 to

t2 as shown in Figure 1.

2

kτ

t t
1

τ 1

t 1 t 2

Core 1

Core k

Figure 1. τ1, . . . , τk running in parallel

During this concurrent execution, τi completes ci cycles

of its workload. If f denotes the global operating frequency

in interval [t1, t2], the total dynamic energy consumption in

this interval is given by:

E′ =

k
∑

i=1

(aif
3 + P i

ind) ·
ci

f
=

k
∑

i=1

(aif
2 +

P i
ind

f
) · ci

It can be easily verified that E′ is a strictly convex

function of f . Thus, by setting the first derivative of E′

to zero we obtain the global energy-efficient frequency

threshold for the k active cores at time t as:

fee(t) = 3

√

Pind(t)

2 · a(t)
(2)

where Pind(t) =
k
∑

i=1

P i
ind and a(t) =

k
∑

i=1

ai.

Observe that fee(t) is independent of the workloads (ci

values) of tasks running in parallel. Moreover, the global

energy-efficient frequency level is potentially different from

the energy-efficient frequency levels of tasks executing in

parallel. In other words, global energy management may

mandate the use of frequency levels that are below individual

tasks’ energy-efficient frequency thresholds.

Remark 1: The global energy-efficient frequency thresh-

old depends on the frequency-dependent active power and

effective switching capacitance of the set of currently execut-

ing tasks on all active cores. Since the set of tasks executing



in parallel changes with time, the global energy-efficient

frequency threshold is time-dependent.

Consequently, at the scheduling points that correspond to

job completion, dispatch and preemption events, the global

energy-efficient frequency should be re-computed. This op-

eration will take at most O(m) time at each scheduling point.

Remark 2: The timing constraints of the task set may

require using a frequency-level higher than fee(t) at time t.

The time-dependent global energy-efficient frequency level

indicates a lower bound that should not be violated even if

timing constraints allow.

IV. COMPONENTS OF COORDINATED POWER

MANAGEMENT

Effective and coordinated power management of multiple

processing cores to execute a given workload involves two

main dimensions: statically making core activation and task-

to-core allocation decisions, and dynamically managing the

activated cores. Note that, since we assume a partitioned-

based approach, the allocation of the periodic tasks to cores

is done statically and run-time migration of tasks is not

considered.

A. Energy-efficient Core Activation and Task Allocation

In general, the number of available processing cores (m)

may be greater than the minimum number of cores upon

which the given real-time workload can be scheduled in

feasible manner. While the early studies that exclusively

focused on dynamic power [1], [4] suggested using all

processing elements in parallel whenever possible, ever-

increasing static power figures [7], [20] renders such an

approach infeasible.

The power consumption of a given core can be minimized

(in fact, effectively eliminated through techniques such as

power gating in Intel i7 architecture [19]) when it is put to

off state (Section II). In active, halt and sleep states, the static

power would be consumed continuously. This is because the

periodic nature of the real-time application and significant

time/energy overheads associated with transitions to/from off

state make dynamically putting a core to off state at run-

time an unrealistic option. As a result, instead of activating

a core with light workload (with corresponding static energy

consumption), it would be preferable to move that workload

to other cores when possible. Obviously, a correlated and

major issue is to perform task allocation on the selected

cores to preserve feasibility and prepare favorable initial

conditions for run-time management of dynamic energy.

Thus, the offline phase can be seen as an integrated

component that decides on task-to-core allocations while

keeping an eye on total (i.e. static+dynamic) potential energy

consumption. The k ≤ m cores selected by this phase will

be activated and then will be managed by the run-time

component. The remaining (m−k) cores are put to off state

with negligible power consumption.

B. Run-time Power Management of Active Cores

The run-time management of the selected k ≤ m cores

involves the use of Global Voltage Scaling as well as

selectively putting some cores to halt and sleep states

(Section II) to reduce dynamic energy. To start with, the

global frequency level that determines the dynamic power

consumption at time t is decided by the highest performance

level required by any core in active state at time t (Equation

(1)). This requires both closely monitoring the workload

conditions on all cores and exploiting the available idle states

whenever possible. As an example, if the core that requires

highest performance level (to guarantee the feasibility of

its worklad) is put to halt or sleep state temporarily, the

frequency can be reduced to the next highest performance

level required by any of the remaining active cores during

that interval. In addition, putting any core to halt and in

particular sleep states have the potential of reducing dynamic

energy consumption for all the cores through reducing the

global energy-efficient frequency (Section III).

Now, we proceed with a detailed discussion of these two

fundamental dimensions in Sections V and VI. Since our

solution to the problem of energy-efficient core activation

depends on some important dynamic energy consumption

approximation formulas that are driven by the results of

Section V, we first present that component.

V. RUN-TIME COORDINATED POWER MANAGEMENT

In this section, we assume that k ≤ m cores are selected

for the execution of the periodic workload and that task-to-

core allocations are already performed by the static phase.

A. Exploiting Core Idle States at Run-time

In general, any of the k cores can be occasionally put

to halt and sleep states when they have no ready task to

execute, with corresponding gains in dynamic energy on

the related core. While transitioning to sleep state provides

higher dynamic energy savings, more significant time and

energy overheads associated with that transition requires a

more careful evaluation (Section II). In fact, there exists a

minimum length of idle interval, denoted by Ithres, that

justifies transitioning a core to sleep state [18]. Thus, an idle

core can be put to sleep state in energy-efficient manner if

and only if its predicted length of idle interval is no less

than Ithres.

To preserve the feasibility of the workload, we provide a

simple scheme to compute the predicted length of the idle

interval. Since our framework is based on preemptive EDF

which is a non-idling scheduling algorithm by definition,

the earliest time in future an idle core will have to execute

a task is constrained by the earliest next release time among

all jobs allocated to that core. Note that this value can be

easily computed given the periodicity of the real-time tasks.

This value provides a safe lower bound on the minimum



length of idle interval and hence can be used for making

safe core state transitioning decisions. Let nrtj denote the

earliest time in future a job of task τj may be released. Then,

at time t, the minimum length of idle interval for an idle core

Ci is given as:

δi(t) = min(nrtj) − t, j|τj ∈ ψi

where ψi denotes the set of tasks allocated to Ci. An idle

core Ci will be transitioned to sleep state if and only if

δi(t) ≥ Ithres. Following this, a timer is set to appropriately

start transitioning Ci such that it will be active and ready

to execute jobs at time t + δi(t) which marks the end of its

idle interval. On the other hand, if δi(t) < Ithres then Ci is

simply put to halt state, which involves negligible transition

overheads [34]. Finally, note that the run-time overhead of

making this decision is constrained by the complexity of

computing δi(t). On each core, one can always update the

information about the next earliest job release time in the

future (min(nrtj)) at job release times in O(1) time. Thus,

core state transition decisions can be done in constant-time.

Remark 3: Core transitions to halt or sleep states not

only help reduce power at the core-level but may potentially

provide additional savings for the entire voltage island, since

the global energy-efficient frequency may be effectively

reduced.

B. Coordinated Voltage and Frequency Scaling (CVFS) Al-

gorithm

Recall from Section III that running all the active cores at

fee(t) at all times minimizes the dynamic energy. However,

obviously, this does not necessarily guarantee the feasibility

of the workload. Since fee(t) is time-dependent, computing

the optimal feasible frequency f(t) ≥ fee(t) to minimize

energy in the long-run poses great challenges. Hence, we

take a more direct but efficient approach.

The feasibility on each active core Ci is guaranteed as

long as its operational frequency is no smaller than is total

load (utilization) [3], [25]. In other words, ensuring that

f(t) ≥ σi at all times preserves the feasibility on core Ci.

Let σ(t) denote the largest load value among all active cores,

i.e.,

σ(t) = max(σi), i|Ci is active

CVFS consists in setting f(t) = max(σ(t), fee(t)) to

preserve the feasibility of all active cores without violat-

ing the energy-efficient frequency constraint. Recall that

the scheduling points and core state transitions that can

potentially change the set of simultaneously executing tasks

may have an impact on the global energy-efficient frequency

threshold fee(t). Thus, f(t) needs to be re-computed at these

important events. Note that the new value of f(t) can be

evaluated in time O(m) at each scheduling point.

C. CVFS*: Adapting to Dynamic Load Conditions

CVFS is based on using the static load values of active

cores at run-time. The load σi = Wi

Pi
corresponds to the

worst-case utilization of the task set ψi on the core Ci.

While this is a safe approach, there are potential benefits

in computing the instantaneous load σ∗

i , which may differ

from σi for two reasons:

• Some jobs may not take their worst-case cycles and

complete early. Due to this unused CPU time, in some

intervals, the instantaneous load may be less than σi.

• Due to the constraints imposed by fee(t) and global

voltage/frequency, a given core may be forced to exe-

cute at frequency levels higher than what is necessary

to preserve its own feasibility. Hence, its remaining

workload may be lower than σi in some intervals.

The algorithm CVFS* is based on maintaining a rea-

sonably accurate estimation of the core-level instantaneous

loads σ∗

i and reducing the frequency below what is suggested

by CVFS when the conditions allow.

Exploiting task early completions. In this direction, we

extend the well-known cycle-conserving EDF (cc-EDF)

algorithm (which is originally proposed for uni-processor

systems [25]) to multicore environments with global energy-

efficient frequency awareness. Specifically, for each task τj

on core Ci we define uj(t) as its effective load at time t.

The rules to update uj on core Ci are given as [25]:

• When a job of τj is released, uj is reset to
Wj

Pj
.

• When a job of task τj released at time r completes

after executing accj ≤ wccj cycles, it has effectively

consumed accj CPU cycles in the interval [r, r + Pj ].
Thus, the effective load of τj over this interval is

accj

fmax·Pj
. Hence, when a job of τj completes, uj is set

to
accj

fmax·Pj
.

Observe that uj is reset to
Wj

Pj
at every arrival of a job of

τj . Given this, the instantaneous effective load σ∗

i on Ci is

defined as σ∗

i =
∑

τj∈ψi

uj . Also, let σ∗(t) be the maximum

effective load at time t among all active cores, i.e.

σ∗(t) = max(σ∗

i ), i|Ci is active

σ∗

i is updated on Ci at events corresponding to job

completions and job arrivals. Now consider the frequency

assignment where at time t, all active cores are executed at

the frequency f(t) given by:

f(t) = max(σ∗(t), fee(t)) (3)

Proposition 1: At any time t, executing core Ci at

f(t) = σ∗(t) preserves the feasibility of task set ψi.

Proof: The feasibility of task set ψi is preserved as

long as the operating frequency f(t) on core Ci at time



t, satisfies the constraint f(t) ≥ σ∗

i . This follows from the

correctness of cc-EDF [25]. Since σ∗(t) ≥ σ∗

i , executing

core Ci at f(t) ≥ σ∗(t) ≥ σ∗

i preserves feasibility of task

set ψi.

Corollary 1: At any time t, executing all active cores at

f(t) = max(σ∗(t), fee(t)) preserves the overall feasibility.

Refining the load estimation. Since all active cores are

constrained to the same global voltage/frequency, typically

many cores will operate at a processing frequency higher

than the level necessary to guarantee the timing constraints

of their remaining workload. This fact can be exploited to

further refine the estimate of σ∗

i , providing additional energy

savings. The basic principle is given below:

On core Ci, the execution of a task τj at a frequency

σ′

i > σi may be seen as equivalent to executing a workload

wcc′j < wccj at speed σi.
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(b) Refining the effective load estimation
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Figure 2. An example with 4 tasks and 3 cores

We give an example to illustrate this point. Fig-

ure 2 shows a CMP with three cores. C1 has

one task τ1(W1 = 10, P1 = 20). C2 has two tasks

τ2(W2 = 2, P2 = 20) and τ3(W3 = 2, P3 = 20). C3 has one

task τ4(W4 = 4, P4 = 40). Thus, the initial effective loads

on the cores are given as σ∗

1
= 0.5, σ∗

2
= 0.2 and σ∗

3
= 0.1.

For simplicity, assume a = 1 and Pind = 0 for all tasks.

We assume fmax = 1.0 GHz. We will concentrate on the

interval [0, 20]. We assume that the actual workload of all

tasks is the same as their worst-case workload, with the

exception of τ1 whose actual workload is 20% of the worst-

case.

At time t = 0, τ1, τ2 and τ4 are dispatched on C1, C2

and C3 respectively at f = 0.5 GHz. At time t = 4, τ1 and

τ2 complete. Observe that at this point, the slack reclaiming

rules that are previously provided would make no change to

the effective load of C2 as τ2 took its worst-case workload.

Thus, if one estimated the effective load on a core using the

previous rules, then at t = 4, τ3 and τ4 would be dispatched

at f = 0.2 GHz as shown in Figure 2(a).

However, observe that in the interval [0, 4], τ2 executed

2×109 cycles at f = 0.5Ghz, which is higher than 0.2 GHz

which is sufficient to maintain the feasibility of the workload

on C2. Thus, one can potentially see the completion of τ2

at t = 4, as an early completion at f = 0.2 GHz after

consuming 0.8× 109 cycles. Hence, at t = 4, σ∗

2
can be set

to 0.8
20

+ 2

20
= 0.14. Thus, at t = 4, both τ3 and τ4 would

be dispatched at f = 0.14 GHz as shown in Figure 2(b),

increasing the energy savings.

We now describe how to update σ∗

i at run-time according

to these principles. Without loss of generality, assume a job

of τj executes on core Ci in p contiguous execution intervals,

denoted by {e1 . . . ep}. During each contiguous execution

ek let τj consume atk units of CPU time at frequency

fk. For each ek one can compute the workload (ack) τj

would have completed at frequency σi in atk time units, by

setting ack = atk · σi. The cumulative workload completed

by τj corresponding to the contiguous execution sequence

{e1 . . . ep} is given by:

cj =

p
∑

k=1

ack =

p
∑

k=1

(atk · σi)

The operating system can keep track of and update cj for

each task τj appropriately at task preemption and completion

points. Thus, the rules to update uj can be re-defined

(refined) as:

• When a job of τj is released, set uj =
Wj

Pj
.

• When a job of task τj completes, set uj =
cj

fmax·Pj
.

Figure 3 shows the pseudo-code for CVFS*. The function

AdjustFrequency() recomputes the global energy-efficient

frequency threshold based on Equation (2) in Section III and

the maximum effective load σ∗(t) among all active cores.

The new global frequency f(t) is then easily calculated by

taking the maximum.

An event corresponding to either job arrival or completion

may change uj which in turn may trigger changes in the ef-

fective load of Ci and hence f(t). Also, as mentioned before,

events corresponding to job completions, job preemptions

and core state transitions have the potential to change fee(t)
and hence f(t). Thus, at these events AdjustFrequency()

function is called.

Since core-level power state transitioning decisions can be

made in O(1) time (Section V-A), the complexity of CVFS*

is determined by the complexity of AdjustFrequency() func-

tion. Observe that the value of σ∗

i on each core Ci can be



At job arrival of τj on core Ci:

1 Set uj =
Wj

Pj

2 AdjustFrequency()

At transition of core Ci to active state:

1 AdjustFrequency()

At job completion of τj on core Ci:

1 Set uj =
cj

fmax·Pj

2 if ready queue is empty

3 Set δi(t) = min(nrtk) − t k|τk ∈ ψi

4 if δi(t) ≥ Ithres

5 Transition Ci to sleep state

6 Set timer to transition Ci back

7 else

8 Transition Ci to halt state

9 AdjustFrequency()

Figure 3. The pseudo-code of CVFS*

updated at job completion and job arrival events and kept

track of in constant time. Thus, when AdjustFrequency() is

called σ∗ and fee(t) can be re-computed in O(m) time.

Hence, the overall run-time complexity of CVFS* is O(m)
at each scheduling point.

D. Experimental Evaluation

In this section, we evaluate the performance of our algo-

rithms through the help of a discrete-event simulator. For 2-

and 8-core systems, we generated synthetic task sets each

with 20 and 50 tasks, respectively. The effective switching

capacitance ai of tasks was set to 1. P i
ind values were

randomly chosen in the range [0, 0.2]. Task periods were

generated randomly in the interval [63ms, 1300ms] which

are comparable to those seen in practice [21]. For a target

total utilization value Utot, we generated individual task

utilizations randomly in such a way that each task utilization

is no greater than a pre-defined threshold α ≤ 1.0.

Previous studies dealing with energy minimization on

multi-processor systems [1], [27] showed that the maximum

task utilization (denoted as α) is an important parameter for

performance. As a result, we also investigated the impact of

this task utilization factor α. In the experiments, we refer

to normalized utilization as the quantity Utot

m
, where m is

the number of cores on which the workload is executed. For

each normalized utilization and α pair, we generated 1000
task sets; the data points in the plots reflect the average

of these runs. The reported energy consumption values are

normalized with respect to the base scheme that executes all

tasks at fmax at all times (no power management).

First, we analyze the behavior of CVFS over the nor-

malized utilization spectrum. In these experiments, all tasks

complete their worst-case workload. Task allocation to m
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Figure 4. Impact of Utilization

cores is done using Worst-Fit-Decreasing (WFD) heuristic

which is known to generate better-balanced partitions [1],

[4].

Figure 4 shows the impact of normalized system utiliza-

tion on CMP with m = 2 cores and m = 8 cores for

various α values. In these experiments, the actual workload

of each job is equal to its worst-case. It can be seen that

the CVFS scheme provides significant overall system energy

savings. With increasing normalized utilization values, the

gains of CVFS decrease as high frequency is often needed

to meet the feasibility constraints. With increasing α values,

the partitions created by WFD have a higher σ (maximum

load among all cores) value. Since σ is one of the factors

constraining f(t) (Section V-B), with increasing α values

the relative gains of CVFS tend to decrease.

Figure 5 shows the impact of workload variability on the

schemes. We define η as the ratio of average-case execution

cycles to worst-case execution cycles and use it to model

the notion of dynamic workload variability. The lower the η

ratio, the more the actual workload deviates from the worst

case workload. For a specific value of η, the actual execution

cycles are generated randomly using normal distribution.

Figures 5(a) and (c) show the impact of varying η for

2-core and 8-core systems respectively, with normalized

utilization fixed to a high value (0.8). With decreasing η, the

gains of CVFS* over CVFS is prominent, in particular for

the case where α = 0.3. This is due to the run-time effective

load adjustments of CVFS* which provides additional DVFS

opportunities and hence better energy savings compared to

CVFS. For the same utilization value, higher α values tend to

create more unbalanced partitions relative to lower α values.

In CMP systems where all cores are constrained to operate

at the same frequency, this limits the opportunities to exploit

dynamic workload variability. As such, the gains of CVFS*

over CVFS decreases with increasing α values.

Figures 5(b) and (d) show the impact of varying η for

2-core and 8-core systems respectively, with normalized

utilization fixed to a low value (0.4). In this case, irrespective

of α values, the gains provided by CVFS* over CVFS are

rather small. Recall that f(t) is constrained by σ and the
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Figure 5. Impact of workload variability

global energy-efficient frequency threshold fee(t) (Section

V-B). At low normalized utilization values, f(t) is predom-

inantly constrained by fee(t), hence the run-time adaptations

of CVFS* do not provide significant benefits compared to

CVFS.

VI. ENERGY-EFFICIENT CORE ACTIVATION AND TASK

ALLOCATION

In this section, we elaborate on the important problem

introduced in Section IV-A, namely selecting k ≤ m number

of cores for the execution of the workload to minimize

expected energy while preserving the feasibility through

a proper task allocation on these k cores. Clearly, since

determining feasibility of a workload on a fixed number of

processors is NP-Hard in the strong sense, one cannot hope

for an efficient and optimal solution to this problem.

Recall from Section V-B that at any given time

the unique frequency for all active cores is given as

f(t) = max(σ, fee(t)). Hence, starting with initial task

allocations (partitions) that are reasonably balanced and

adjusting these to maintain a balance between static and

dynamic power consumptions is a promising approach. In

fact, minimizing the maximum load among cores is also

in line with existing multiprocessor and multicore energy

management results [1], [4], [27]. Among task allocation

heuristics, the Worst-Fit Decreasing (WFD) algorithm is

known to typically yield well-balanced partitions where the

maximum load on any core is small [1], [4]. Assuming

that the tasks are already sorted in non-increasing order

according to their utilization values, WFD allocates tasks

one by one to the core with the least load at a time. For

this specific problem, WFD is equivalent to the well-known

List Scheduling Algorithm (LST) where independent tasks

each with a given size in the range [0, 1] are partitioned to

m CPUs each with unit capacity. The result in [10] implies

that the maximum load among all cores generated by LST

(and equivalently WFD in our setting) is no more than 4

3

times that of the optimal. As a result, the first step of our

framework will consist in generating an initial partition on

all m cores through WFD, before transforming this initial

schedule into a final and a more energy-efficient partition

with possibly a smaller number of active cores.

Having an efficient mechanism to evaluate the expected

energy consumption of a given partition in static phase is an

important component of our approach. Let Pk be a feasible

partitioning of task set ψ to k ≤ m cores. Since only k cores

have tasks allocated to them, the remaining (m − k) cores

can be put to off state. Thus, the static energy consumption

resulting from partition Pk during the hyperperiod H is

given as:

Es(Pk) = k · Pstatic · H

Since the global unique frequency at time t, f(t), is time-

dependent and further depends on the set of tasks executing

in parallel at any given time, it is very difficult, if not im-

possible, to have an accurate figure for the dynamic energy

consumption of the task set ψ, in advance. We estimate

the dynamic energy consumption of Pk by calculating the

weighted average value of f(t) in the interval [0,H]. Let

Fee denote the weighted average of all fee(t) values in the

interval [0,H]. We approximate Fee as:

Fee =
3

√

P ∗

ind

2 · a∗

where, P ∗

ind =
n
∑

i=1

(Ui · P
i
ind) and a∗ =

n
∑

i=1

(Ui · ai). Recall

from Equation (2) that the global energy-efficient frequency

at any given time is determined by the ratio of P i
ind and

ai values of tasks. Hence, it is natural to expect that tasks

with large utilization values will have a higher contribution

to Fee on the average. Given this, the weighted average of

all f(t) values in the interval [0,H] can be approximated

as:

F = max(σ, Fee)

The expected dynamic energy consumption of task set ψ

over partition Pk is then calculated as:

Ed(Pk) =

n
∑

i=1

(aiF
3 + P i

ind) ·
Ui

F
· H



Notice that different partitions may produce different F

values and thus have different expected dynamic energy

consumptions. The total expected energy consumption of Pk

is:

Eexp(Pk) = Es(Pk) + Ed(Pk) (4)

At this point, we are ready to present three schemes

developed for determining the number of active cores.

Sequential-Search (SS) Algorithm. The minimum number

of cores necessary to execute a workload with total uti-

lization Utot in feasible manner is ⌈Utot⌉. SS exhaustively

considers every possible k in the range [⌈Utot⌉,m] and for

each such k it generates a partition Pk using WFD. If Pk is

a feasible partition then the algorithm computes the expected

energy consumption of Pk using Equation (4). The k value

corresponding to the partition with the least Eexp is returned.

Figure 6 gives the pseudo-code.

1 for each k in the range [⌈Utot⌉,m] do

2 Determine partition Pk using WFD

3 if Pk is feasible

4 Compute Eexp(Pk)
5 Select the partition Pk yielding the minimum Eexp

Figure 6. Algorithm SS

Complexity: SS has at most m iterations. In each iteration

the algorithm has to execute worst-fit decreasing (which

takes O(n log m) time) and calculate Eexp from Equation

(4) (which takes O(n) time). Thus, the overall complexity

of SS is O(nm log m).

Greedy Load Balancing (GLB) Algorithm. GLB invokes

WFD only once on all m cores. Working on the resulting

partitioning, GLB tries to free the least loaded core, by

simply moving all tasks on the least loaded core to the

second least loaded core, if and only if doing so preserves

the feasibility of the workload and does not increase the

expected energy consumption, computed through Equation

(4). The algorithm is re-invoked iteratively for the remaining

cores until such a block move of tasks is no longer possible.

In the pseudo-code given in Figure 7, Pk(ψi) represents

the set of tasks allocated to core Ci in partition Pk, whereas

Pk(σi) denotes the load on Ci in Pk.

Complexity: GLB invokes WFD once on all m cores

(which takes O(n log m) time). Following this, GLB has

at most m iterations (Lines 3-11) where calculating

Eexp takes O(n) time and re-arranging the position of

the second least loaded core, after moving the work-

load from the least loaded core to it, can be done in

O(log m) time. Thus, the overall complexity of GLB is

O(n log m + m log m + mn) = O(mn).

1 Pm = Partition obtained through WFD on m cores

2 k = min(m,n)
3 while (k > 1)

4 src = index of the core with minimum load

5 des = index of the core with second minimum load

6 if (σsrc + σdes > 1) return Pk

7 Pk−1 = Pk − (Pk(ψsrc),Pk(σsrc))
8 Set Pk−1(ψdes) = Pk−1(ψdes) ∪ Pk(ψsrc)
9 Set Pk−1(σdes) = Pk−1(σdes) + Pk(σsrc)
10 if (Eexp(Pk−1) ≥ Eexp(Pk)) return Pk

11 Set k = k − 1
12 return Pk

Figure 7. Algorithm GLB

Threshold-based Load Balancing (TLB) Algorithm. TLB

is similar to GLB but does not use the expected energy

formula given in Equation (4), to improve efficiency. Instead,

TLB uses the concept of load threshold, wherein a partition

is accepted by TLB as long as the minimum load on any

core is no smaller than a pre-defined threshold value. This

threshold value should be carefully chosen by the system

designer to reflect an appropriate balance between static

and active power consumptions. Similar to GLB, TLB first

invokes WFD once on all m cores and then iteratively tries

to free the least loaded core, by simply moving all tasks

on it to the second least loaded core, if and only if the

minimum load is smaller than the pre-defined threshold and

doing so preserves the feasibility of the workload. After such

a move, the algorithm is iteratively re-invoked on the new

set of active cores. Figure 8 gives the pseudo-code.

1 Pm = Partition obtained through WFD on m cores

2 k = min(m,n)
3 while (k > 1)

4 src = index of the core with minimum load

5 des = index of the core with second minimum load

6 if (σsrc > threshold or σsrc + σdes > 1)

7 return Pk

8 Pk−1 = Pk − (Pk(ψsrc),Pk(σsrc))
9 Set Pk−1(ψdes) = Pk−1(ψdes) ∪ Pk(ψsrc)
10 Set Pk−1(σdes) = Pk−1(σdes) + Pk(σsrc)
11 Set k = k − 1
12 return Pk

Figure 8. Algorithm TLB

Complexity: Assuming n ≥ m, WFD takes O(n log m)
time. Following this there are at most m iterations (Lines 3-

11) and in each of these iterations re-arranging the position

of the second least loaded core takes O(log m) time making
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Figure 9. Comparing SS, GLB and TLB

the total complexity O(n log m). On the other hand, if

n < m, WFD takes O(n) time, there are only n iterations

(Lines 3-11) each taking O(log n) time which gives a

complexity of O(n log n). Thus, the overall complexity can

be expressed as O(n log(min(m,n))).

A. Experimental Evaluation

In this section, we compare the performance of algorithms

SS, GLB and TLB. The simulation methodology is parallel

to the one described in Section V-D. We show results for

4 and 8 cores in Figure 9, the trends of which are similar.

We include results for α = 0.3 and α = 1.0. For the TLB

scheme, we include results with threshold values 0.1 and

0.2 that performed best in our experiments. For each core,

Pstatic was set to 10% of CPU dynamic energy consumption

at fmax [18]. In these experiments, we consider the worst-

case workload for each task and once a partitioning of tasks

to k ≤ m cores is decided by the algorithms, we execute

the task set with CVFS scheme and record the energy

consumption over the hyperperiod. All energy consumption

values are normalized with respect to the scheme which uses

all m available cores to execute the workload.

In decreasing order of performance with respect to energy

savings, the algorithms can be arranged as: SS, GLB, TLB

(with threshold 0.2) and TLB (with threshold 0.1). However,

the better the system energy savings of a scheme, the

more its computational complexity. For the TLB scheme, the

energy benefits are sensitive to the threshold value. In our

simulation settings we notice that a threshold of 0.2 provides

energy benefits that are comparable to that provided by SS,

which has high execution overhead.

At low utilization values the gains provided by the

schemes are significant (easily exceeding 50%). With in-

creasing utilization values, the dynamic energy consump-

tion of the workload dominates static energy and hence

the number of cores activated to execute the workload in

energy-efficient and feasible manner approaches m. Thus,

as utilization increases the benefits of schemes decrease. In

fact, when the normalized utilization Utot

m
exceeds 0.5, all

the schemes are forced to activate all m cores to enforce

feasibility or avoid excessive dynamic power that can result

from using less number of cores at high frequencies.

It can also be seen that the benefits of the schemes

decrease much quickly at lower α values compared to higher

α values (Figure 9(b) and (d)). This is because, with large

α values, WFD tends to generate more unbalanced initial

partitions [4]. This results in more chances for finding cores

with light workloads in the WFD partition; the workloads

on these cores can then be transferred to the ones with high

load, enabling them to switch to off state.

Finally, one can also see that at low normalized utilization

values, the benefits of schemes are more pronounced in the

case with 8 cores. This is due to the fact that with more

number of cores the potential opportunities to minimize

static energy by turning off cores also increase, in particular

for low utilization values.

VII. RELATED WORK

Research studies on energy management for multipro-

cessor real-time systems are typically based on indepen-

dent DVFS capabilities of individual processors. In [4],

the authors considered the problem of minimizing CPU

dynamic energy with partitioned multiprocessor scheduling

and EDF policy. They showed that the problem of energy-

optimal partitioning is NP-Hard in the strong sense even

when the total workload can fit on a single CPU. The same

paper also indicated that more balanced partitions typically

yield better energy savings and suggested the use of WFD

partitioning scheme to balance the the load. [1] re-considered

the problem for fixed-priority systems and RMS policy.

Exploiting potential and actual early task completions

have been another focus point for multiprocessor systems.

In [32], the authors investigate slack reclaiming strategies

for global scheduling of frame-based tasks on homoge-

neous multiprocessors. [8] provides a 1.13-approximation

algorithm for the problem of partitioning tasks to mini-

mize the expected energy consumption. In [30], the authors

considered the problem of energy-efficient partitioning in

heterogeneous multiprocessor platforms.

Energy management of real-time tasks on CMP platforms



under the global DVS constraint has started to attract the

attention of the research community more recently. In [31],

assuming a frame-based system where all tasks have the

same deadline, the authors showed the problem is NP-

Hard and provided a 2.371-approximation scheme for this

simple task model. In [5], the authors proposed a power-

aware scheduler for multicore systems executing a soft

real-time workload. In [18] the authors consider a CMP

system running a single real-time application modelled as

a directed acyclic communication task graph (CTG). The

authors effectively deploy two techniques to save energy:

DVFS to reduce the dynamic energy and power shutdown

of the entire voltage island to reduce static energy.

[27] considered the problem of energy-efficient scheduling

for periodic hard real-time tasks on CMP systems. The

authors proposed a scheme to re-partition tasks at run-

time by resorting to task migrations, so as to create more

balanced schedules that adapt to dynamic workload vari-

ability. Further, they also proposed a dynamic core scaling

algorithm adjusting at run-time the number of active cores

to reduce static power under the assumption that transitions

between off and active states can be done instantaneously

and with no additional overheads. However, in practice

such transitions are rarely attractive or possible for periodic

real-time applications. Moreover, the frequency-independent

component of dynamic power (hence, the energy-efficient

frequency) is ignored in that work. Finally, the overhead of

frequent task migrations may be a concern in practice.

VIII. CONCLUSION

In this paper we considered the problem of system en-

ergy minimization of periodic real time tasks executing on

CMP platforms with partitioning and global DVS capability.

Considering a generalized power model, we derived the

global energy-efficient frequency that depends on the set of

tasks executing in parallel. We provided two schemes CVFS

and CVFS* that successfully exploit global DVS and core-

level idle states to increase energy savings. CVFS* has the

additional capability of adapting to workload variations at

run-time. We also considered the problem of determining

the optimal subset of cores to execute the workload with

low static power while preserving feasibility through an

appropriate task allocation; and suggested three techniques

(SS, GLB, TLB) for this purpose. Our experimental evalu-

ation verified the effectiveness of our solutions to reduce

the system energy on CMP platforms. To the best of our

knowledge, this research effort is the first to consider energy-

aware periodic real-time scheduling on CMP platforms, by

assuming a generalized power model with takes into account

frequency-dependent and -independent dynamic powers, as

well as static power, while deploying safe and effective

schemes based on global DVS and multiple idle state fea-

tures.
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