Coordinated Power Management of Periodic Real-Time Tasks
on Chip Multiprocessors

Vinay Devadas

Hakan Aydin

Department of Computer Science
George Mason University
Fairfax, VA 22030
{vdevadas, aydin}@cs.gmu.edu

Abstract—In this paper, we undertake the problem of
minimizing system-level energy on chip-multicore processors
(CMPs) executing a periodic real-time workload. Our frame-
work has two components: i.) a static phase that selects a subset
of cores upon which the workload can be executed without
dissipating excessive sfatic power and performs task-to-core
allocation, ii.) a dynamic phase that involves managing the
selected cores at run-time through coordinated power manage-
ment framework that exploits Dynamic Voltage and Frequency
Scaling (DVFS) as well as multiple idle states offered by
modern CMP architectures, to reduce the dynamic power. We
explicitly consider the unique traits of the currently available
CMP architectures that distinguish them from multiprocessors,
including the unique voltage level shared by the cores and its
implications for DVFS. We identify the global energy-efficient
frequency which indicates the minimum frequency level at
which concurrent execution on multiple cores should take place
to preserve the efficiency of DVFS. Then we propose two
algorithms CVFS and CVFS* to minimize the dynamic energy
consumption through concerted use of DVFS and idle states.
Our experimental evaluation indicates that our framework can
provide significant gains in system energy.

Keywords-Real-time Scheduling, Chip Multiprocessors, En-
ergy Management

I. INTRODUCTION

The chip multiprocessors (CMPs) that offer multiple pro-
cessing cores on a single chip have quickly become prevalent
in the computing landscape. Major chip makers (Intel, AMD,
Sun) have now several CMP lines with 2, 4 or 8 cores [9],
[15], [17], [19], [24]. Further, extensive research activity is
underway to build chips with potentially hundreds of cores
(or, many-core systems [7], [20]). This development has
important implications for real-time embedded applications
that will execute on these high performance architectures.
Energy management has been a very active research area
in the recent past and one of the main motivating factors
leading to CMP architectures was the unsustainable ever-
increasing frequency and power density trends of traditional
single-core architectures [7]. As a result, the CMPs come
equipped with a variety of advanced power management fea-
tures (e.g. Dynamic Voltage and Frequency Scaling (DVFES)
and multiple idle states (e.g. Halt, Sleep, Off)) [28], and

978-1-4244-7614-5/10/$26.00 ©2010 IEEE

most comply with the ACPI standard [34] endorsed by the
industry.

As part of the recent energy management research, sev-
eral papers proposed DVFS-based solutions for real-time
embedded systems running on conventional multi-processor
platforms (where each processor is located on a separate
chip) [1], [4], [8], [30]. These studies identify two main
dimensions of the problem as task-to-CPU allocation and
run-time voltage scaling on individual CPUs [1], [30]. Yet,
the emerging CMP platforms have a number of unique traits
which make the problem different from the multi-processor
platforms. For example, while it is natural to have different
voltage levels per CPU (per-CPU DVEFS capability) in a
multi-processor system, the tight coupling of cores on a
single chip (CMP) implies that the per-core DVFS feature
would come with severe additional circuit complexity, sta-
bility, and power delivery problems [7], [11], [20]. In fact,
in the state-of-the-art commercial CMP lines the processing
cores share a common voltage level. A recent study [11],
based on detailed VLSI circuit simulations, suggests that the
potential energy gains of per-core DVFS are likely to remain
too modest for justifying the complicated design problems.
For the next-generation many-core systems, it is likely that
only a small number of clusters/blocks each with several
cores and independent voltage regulators will be feasible [7].
Independent and effective management of such clusters (or,
the so-called voltage islands) would be the ultimate objective
in these next-generation systems [7], [11], [29].

The focus of this paper is the effective system-level energy
management of a set of processing cores that share the same
supply voltage and frequency (voltage island). Many state-
of-art multi-core processor lines including Intel’s Itanium
2, 15, i7 and Core Duo, and IBM’s Power 6 and Power 7
series, have this feature [13], [14], [16], [22], [23]. While
with the Opteron architecture AMD has started to offer an
option where the frequency (but not the voltage) of the
individual cores can be scaled independently [9], the systems
with global voltage/frequency are likely to remain the very
common in foreseeable future.

The voltage island model poses a number of challenges
that only very recently started to attract attention [18],

[27], [31]. To start with, under the global voltage/frequency
constraint, the core with the maximum load at a specific
time becomes the main deciding factor in the overall CMP
energy consumption [27], [31]. This suggests the impor-
tance of load balancing [27], [31]. However, the frequency-
independent power characteristics (which limit the efficacy
of DVFS) may vary over time, complicating the problem. In
addition, while parallelism in general helps to save energy
[4], [8], [32], the increasing core-level static power trends
effectively limits the energy-efficient parallelism level: for
light workloads, it can be more energy-efficient to use only
a subset of cores (and put others to Off state), as opposed
to keeping all cores in Active state [7], [20], [28].

Contributions. This research effort investigates various
aspects of energy management in a voltage island, for a
periodic real-time workload that is partitioned to processing
cores, by taking into account both static and dynamic power.
Our solution has two main components. The first problem
in our settings is to statically select an optimal number
of processing cores for the execution of the workload, to
balance static and dynamic energy consumptions. Further,
tasks must be allocated to the selected cores. The un-selected
cores are put to Off states with negligible power dissipation,
avoiding excessive static power that could result from using
all cores at light workload conditions. While the problem is
NP-Hard, we propose and evaluate several effective schemes
with varying levels of relative complexity and performance.
Our experimental evaluation indicates that by limiting the
number of cores to execute the workload, substantial energy
gains are possible, especially when the load drops below
25% of the total computing capacity.

We also address various aspects of run-time manage-
ment of the selected cores to reduce their dynamic energy
consumption, under global voltage assumption. First, we
identify the time-dependent global energy-efficient frequency
concept, characterizing the boundaries of effective DVFS in
a voltage-island. We show how this global frequency can
be re-computed at scheduling points, by taking into account
the active cores and characteristics of tasks that will run in
parallel upon them during the next interval. We also show
how an idle core can be put to Sleep state to temporarily
eliminate the dynamic power, without violating the timing
constraints or incurring excessive state transition overhead.

We propose the Coordinated Voltage and Frequency Scal-
ing (CVFS) algorithm to determine the feasible frequency
while satisfying the energy-efficient execution across all
cores. We also present an enhanced version CVFS* that
adapts to the actual workload conditions at run-time. CVFS*
considers not only early completions, but also exploits
the implications of operating individual cores at a global
frequency level typically higher than what the feasibility of
the local workload requires. We experimentally investigate
the performance of CVFS under different load and maximum

utilization factors. We also evaluate the performance of
CVFS* and report that while the gains are marginal at low-
load conditions, its capability to adapt to dynamic workload
variability enables up to 40% additional savings with respect
to CVFS.

II. SYSTEM MODEL
A. Task and Processor Model

We consider a set of n periodic real-time tasks
¥ ={m ...7,} that are partitioned upon m homogeneous
processing cores C ... C,,. We use 1); to denote the subset
of tasks allocated to core Cj.

Each periodic task 7; is characterized by a worst-case
workload of wece; cycles and a period of P;, assumed to
be equal to the relative deadline of its jobs. We assume
the Global DVS feature as in [18], [27], [31]: the voltage
can be adjusted for all active cores uniformly, along with
the frequency (up to an upper bound f,,,). The worst-
case execution time of task 7; under frequency f, is given
by “<%. We use the symbol W; to denote the worst-case
execution time of task 7; under maximum frequency; that
iS, Wi = }1::7:;

The base utilization of task 7; (under maximum fre-

quency) is U; = V}; < 1.0. Hence, the total utilization of

n
the task set v is given by Uyor = > U; < m. Finally, the

i=1
load on core C; is given by the total utilization of tasks

allocated to C;, namely, o; = > U; < 1. On each core,
T €Y
the preemptive Earliest Deadline First (EDF) scheduling

policy is adopted.

B. Power Model

Advanced Configuration and Power Interface (ACPI) [34]
is a unified and open power management standard introduced
and endorsed by major hardware and software manufacturers
such as Intel, Microsoft, HP and Toshiba. ACPI defines an
active state in which the core executes instructions. The
exact power profile in active state (defined as state C in
ACPI) will consist of static and dynamic power figures.
In the active state, by using the power model from [2],
[29], [33], we model the power consumption of a core C}
executing task 7; as:

Pz<t) = Pstatic + ajVQf + P]

ind

where a;V2f and an , represent the fiequency-dependent
and frequency-independent components of active power,
respectively. V' denotes the supply voltage and f denotes
the CPU clock frequency. a; is the effective switching
capacitance of 7;. Note that the values of a; and P}, , depend
on the characteristics of the task 7; executing on core C; at
a given time [2]. Pstqtic represents the static power.

In Global DVS settings, all active cores are inherently
constrained to operate at the same supply voltage and

frequency level [18], [27], [31]. Given the almost linear re-
lationship between supply voltage and frequency, the power
consumption of the active core C; at time ¢ is given as:

P;(t) = Pstatic + a; f> + P/, (1)

The aggregate power consumption of all the cores varies
with time and is a function of individual core states and the
global operating frequency of all active cores. Let H be the
hyperperiod of the task set 1. The energy consumption of
the voltage island over the interval [0, H] is given as:

When a core is not executing any instructions, it may be
put in one of the various idle states [34]. Each idle state has a
different power consumption characteristic; as a general rule,
the lower power consumption in a given idle state, the higher
the time and energy overheads involved in returning to the
active state. While the exact number of idle states varies
from architecture, in this work, we assume the existence
of at least the following three fundamental states that are
supported by most modern multicore systems:

e Halt state: In this state, the execution of instructions
is halted and the core clocks are gated, resulting in
significant reduction in dynamic power. The core can
return to active state almost instantaneously (= 10ns)
[19], [34]. We model the power consumption on core
C; in the halt state as P; = Pyioiic + Py, where Py is
the reduced dynamic power.

e Sleep state: Here, further, the Phase Locked Loops
(PLLs) are gated and L1 cache contents are invali-
dated. In this state, the dynamic power is practically
eliminated thus making Pi;qtic the only component
of power consumption. However, this saving in power
consumption comes at the cost of addition overheads
compared to the halt state. Returning to active state
may require a few hundred microseconds and involves
non-trivial energy overheads [24], [34].

o Off state: Here, the core voltage is reduced to very
low levels, to make even the static power consumption
negligible. CPU context is not preserved and returning
to active state involves significant time and energy
overheads [34]. Intel’s new i7 architecture achieves this
very low energy consumption through power gating
feature [19].

III. GLOBAL ENERGY-EFFICIENT FREQUENCY

Existing DVS studies for uni-processor systems estab-
lished that the frequency-independent dynamic power (P;;,q)
implies the existence of a energy-efficient frequency (also
called critical frequency) threshold below which DVS is no
longer effective from the system-level energy point of view

[2], [12], [33]. This is because, with decreasing frequency,
the gains in frequency-dependent dynamic energy can be
offset by the excessive increase in frequency-independent
dynamic energy after some point. Further, as different tasks
may have different power characteristics, the energy-efficient
frequency 1is task-dependent [2]. In [33], the value of this
energy-efficient frequency for task ; with effective switching
capacitance a; and frequency-independent power and was
given as 1/ %

However, in CMP platforms, with the unique voltage and
frequency constraint, this concept needs to be re-visited.
Consider £ < m active cores, where core C; executes task
7;. Let the set of tasks 7y, ..., 7% run in parallel from ¢; to
to as shown in Figure 1.

Core 1 T,
t) ; t,
Core k Tk
t, ty
Figure 1. 71,..., 7 running in parallel

During this concurrent execution, 7; completes ¢; cycles
of its workload. If f denotes the global operating frequency
in interval [t1,¢2], the total dynamic energy consumption in
this interval is given by:

k k i
B =Y (0l Pl G = 3 o+)
P r= /

(3

It can be easily verified that E’ is a strictly convex
function of f. Thus, by setting the first derivative of E’
to zero we obtain the global energy-efficient frequency
threshold for the k active cores at time ¢ as:

Pznd(t)
2 - a(t)

fee(t) =y (2)

ko k
where Pnq(t) = > P}, and a(t) = > a;.
i=1 i=1

Observe that fle(t) is independent of the workloads (c;
values) of tasks running in parallel. Moreover, the global
energy-efficient frequency level is potentially different from
the energy-efficient frequency levels of tasks executing in
parallel. In other words, global energy management may
mandate the use of frequency levels that are below individual
tasks’ energy-efficient frequency thresholds.

Remark 1: The global energy-efficient frequency thresh-
old depends on the frequency-dependent active power and
effective switching capacitance of the sef of currently execut-
ing tasks on all active cores. Since the set of tasks executing

in parallel changes with time, the global energy-efficient
frequency threshold is time-dependent.

Consequently, at the scheduling points that correspond to
job completion, dispatch and preemption events, the global
energy-efficient frequency should be re-computed. This op-
eration will take at most O(m) time at each scheduling point.

Remark 2: The timing constraints of the task set may
require using a frequency-level higher than f..(t) at time ¢.
The time-dependent global energy-efficient frequency level
indicates a lower bound that should not be violated even if
timing constraints allow.

IV. COMPONENTS OF COORDINATED POWER
MANAGEMENT

Effective and coordinated power management of multiple
processing cores to execute a given workload involves two
main dimensions: statically making core activation and task-
to-core allocation decisions, and dynamically managing the
activated cores. Note that, since we assume a partitioned-
based approach, the allocation of the periodic tasks to cores
is done statically and run-time migration of tasks is not
considered.

A. Energy-efficient Core Activation and Task Allocation

In general, the number of available processing cores (m)
may be greater than the minimum number of cores upon
which the given real-time workload can be scheduled in
feasible manner. While the early studies that exclusively
focused on dynamic power [1], [4] suggested using all
processing elements in parallel whenever possible, ever-
increasing static power figures [7], [20] renders such an
approach infeasible.

The power consumption of a given core can be minimized
(in fact, effectively eliminated through techniques such as
power gating in Intel 17 architecture [19]) when it is put to
off state (Section II). In active, halt and sleep states, the static
power would be consumed continuously. This is because the
periodic nature of the real-time application and significant
time/energy overheads associated with transitions to/from off’
state make dynamically putting a core to off state at run-
time an unrealistic option. As a result, instead of activating
a core with light workload (with corresponding static energy
consumption), it would be preferable to move that workload
to other cores when possible. Obviously, a correlated and
major issue is to perform fask allocation on the selected
cores to preserve feasibility and prepare favorable initial
conditions for run-time management of dynamic energy.

Thus, the offline phase can be seen as an integrated
component that decides on task-to-core allocations while
keeping an eye on total (i.e. statictdynamic) potential energy
consumption. The &k < m cores selected by this phase will
be activated and then will be managed by the run-time
component. The remaining (m — k) cores are put to off state
with negligible power consumption.

B. Run-time Power Management of Active Cores

The run-time management of the selected k& < m cores
involves the use of Global Voltage Scaling as well as
selectively putting some cores to halt and sleep states
(Section II) to reduce dynamic energy. To start with, the
global frequency level that determines the dynamic power
consumption at time ¢ is decided by the highest performance
level required by any core in active state at time ¢ (Equation
(1)). This requires both closely monitoring the workload
conditions on all cores and exploiting the available idle states
whenever possible. As an example, if the core that requires
highest performance level (to guarantee the feasibility of
its worklad) is put to halt or sleep state temporarily, the
frequency can be reduced to the next highest performance
level required by any of the remaining active cores during
that interval. In addition, putting any core to halt and in
particular sleep states have the potential of reducing dynamic
energy consumption for all the cores through reducing the
global energy-efficient frequency (Section III).

Now, we proceed with a detailed discussion of these two
fundamental dimensions in Sections V and VI. Since our
solution to the problem of energy-efficient core activation
depends on some important dynamic energy consumption
approximation formulas that are driven by the results of
Section V, we first present that component.

V. RUN-TIME COORDINATED POWER MANAGEMENT

In this section, we assume that k < m cores are selected
for the execution of the periodic workload and that task-to-
core allocations are already performed by the static phase.

A. Exploiting Core Idle States at Run-time

In general, any of the k& cores can be occasionally put
to halt and sleep states when they have no ready task to
execute, with corresponding gains in dynamic energy on
the related core. While transitioning to sleep state provides
higher dynamic energy savings, more significant time and
energy overheads associated with that transition requires a
more careful evaluation (Section II). In fact, there exists a
minimum length of idle interval, denoted by Z;j,es, that
justifies transitioning a core to sleep state [18]. Thus, an idle
core can be put to sleep state in energy-efficient manner if’
and only if its predicted length of idle interval is no less
than Zpres-

To preserve the feasibility of the workload, we provide a
simple scheme to compute the predicted length of the idle
interval. Since our framework is based on preemptive EDF
which is a non-idling scheduling algorithm by definition,
the earliest time in future an idle core will have to execute
a task is constrained by the earliest next release time among
all jobs allocated to that core. Note that this value can be
easily computed given the periodicity of the real-time tasks.
This value provides a safe lower bound on the minimum

length of idle interval and hence can be used for making
safe core state transitioning decisions. Let nrt; denote the
earliest time in future a job of task 7; may be released. Then,
at time ¢, the minimum length of idle interval for an idle core
C; is given as:

d;(t) JITi € s

where 1; denotes the set of tasks allocated to C;. An idle
core C; will be transitioned to sleep state if and only if
0;(t) > Zipres- Following this, a timer is set to appropriately
start transitioning C; such that it will be active and ready
to execute jobs at time ¢ + d;(¢) which marks the end of its
idle interval. On the other hand, if 6;(¢) < Zipres then C; is
simply put to halt state, which involves negligible transition
overheads [34]. Finally, note that the run-time overhead of
making this decision is constrained by the complexity of
computing J;(¢). On each core, one can always update the
information about the next earliest job release time in the
future (min(nrt;)) at job release times in O(1) time. Thus,
core state transition decisions can be done in constant-time.

Remark 3: Core transitions to halt or sleep states not
only help reduce power at the core-level but may potentially
provide additional savings for the entire voltage island, since
the global energy-efficient frequency may be effectively
reduced.

= min(nrt;) —t,

B. Coordinated Voltage and Frequency Scaling (CVFES) Al-
gorithm

Recall from Section III that running all the active cores at
fee(t) at all times minimizes the dynamic energy. However,
obviously, this does not necessarily guarantee the feasibility
of the workload. Since fe.(¢) is time-dependent, computing
the optimal feasible frequency f(t) > fe.(t) to minimize
energy in the long-run poses great challenges. Hence, we
take a more direct but efficient approach.

The feasibility on each active core C; is guaranteed as
long as its operational frequency is no smaller than is total
load (utilization) [3], [25]. In other words, ensuring that
f(t) > o, at all times preserves the feasibility on core C;.
Let o(t) denote the largest load value among all active cores,
ie.,

a(t)

CVEFS consists in setting f(t) = max(o(t), fe(t)) to
preserve the feasibility of all active cores without violat-
ing the energy-efficient frequency constraint. Recall that
the scheduling points and core state transitions that can
potentially change the set of simultaneously executing tasks
may have an impact on the global energy-efficient frequency
threshold f,.(t). Thus, f(¢) needs to be re-computed at these
important events. Note that the new value of f(¢) can be
evaluated in time O(m) at each scheduling point.

=max(o;), |C; is active

C. CVFS*: Adapting to Dynamic Load Conditions

CVEFS is based on using the static load values of active
cores at run-time. The load o; = VI‘D/T corresponds to the
worst-case utilization of the task set 1; on the core C;.
While this is a safe approach, there are potential benefits
in computing the instantaneous load o, which may differ

from o; for two reasons:

o Some jobs may not take their worst-case cycles and
complete early. Due to this unused CPU time, in some
intervals, the instantaneous load may be less than o;.

o Due to the constraints imposed by f..(t) and global
voltage/frequency, a given core may be forced to exe-
cute at frequency levels higher than what is necessary
to preserve its own feasibility. Hence, its remaining
workload may be lower than o; in some intervals.

The algorithm CVFS* is based on maintaining a rea-

sonably accurate estimation of the core-level instantaneous
loads o and reducing the frequency below what is suggested
by CVFS when the conditions allow.

Exploiting task early completions. In this direction, we
extend the well-known cycle-conserving EDF (cc-EDF)
algorithm (which is originally proposed for uni-processor
systems [25]) to multicore environments with global energy-
efficient frequency awareness. Specifically, for each task 7;
on core C; we define u;(t) as its effective load at time ¢.
The rules to update u; on core C; are given as [25]:

e When a job of 7; is released, u; is reset to %

o When a job of task 7; released at time r completes
after executing acc; < wee; cycles, it has effectively
consumed acc; CPU cycles in the interval [r,r + P;].
Thus, the effective load of 7; over this interval is

15 - Hence, when a job of 7; completes, u; is set

Observe that u; is reset to V[E at every arrival of a job of
. Given this, the instantaneous effective load oy on Cj is
deﬁned as of = Y. wu;. Also, let o*(t) be the maximum
TiEY;
effective load at time ¢ among all active cores, i.e.
i|C; is active

o (t) = max(a}),

o; is updated on C; at events corresponding to job
completions and job arrivals. Now consider the frequency
assignment where at time ¢, all active cores are executed at

the frequency f(t) given by:

f(t) = max(o™(t), fee(t)) ©)
Proposition 1: At any time ¢, executing core C; at
f(t) = o*(t) preserves the feasibility of task set 1);.
Proof: The feasibility of task set ; is preserved as
long as the operating frequency f(t) on core C; at time

t, satisfies the constraint f(¢) > of. This follows from the
correctness of cc-EDF [25]. Since o*(t) > o}, executing
core C; at f(t) > o*(t) > of preserves feasibility of task
set ;. |

Corollary 1: At any time t, executing all active cores at
f(t) = max(c*(t), fee(t)) preserves the overall feasibility.

Refining the load estimation. Since all active cores are
constrained to the same global voltage/frequency, typically
many cores will operate at a processing frequency higher
than the level necessary to guarantee the timing constraints
of their remaining workload. This fact can be exploited to
further refine the estimate of ¢, providing additional energy
savings. The basic principle is given below:

On core Cj, the execution of a task T; at a frequency
ol > o; may be seen as equivalent to executing a workload
wec; < wee; at speed ;.

L2055
Core 1 T,
0 4 F=02 20
Core 2 T, T, |
0 4 14 20
Core 3 Ty T, |
0 4 14 20
(a) Reclaiming the dynamic slack
R e U
Core 1 T,
0 4 20
£f=0.14
Core 2 T, T, |
0 4 18.3 20
Core 3 Ty T, |
0 4 183 20
(b) Refining the effective load estimation
Figure 2. An example with 4 tasks and 3 cores

We give an example to illustrate this point. Fig-
ure 2 shows a CMP with three cores. C; has
one task 7 (W7 =10,P =20). Cy has two tasks
TQ(WQ = 2, P2 = 20) and T3(W3 = 2, P3 = 20). 03 has one
task 74(Wy = 4, P, = 40). Thus, the initial effective loads
on the cores are given as o] = 0.5, 05 = 0.2 and o5 = 0.1.
For simplicity, assume a = 1 and P;,q = 0 for all tasks.
We assume [y, = 1.0 GHz. We will concentrate on the
interval [0,20]. We assume that the actual workload of all
tasks is the same as their worst-case workload, with the
exception of 7, whose actual workload is 20% of the worst-
case.

At time t = 0, 71, 72 and 74 are dispatched on C, Cy
and C'5 respectively at f = 0.5 GHz. At time ¢ = 4, 77 and
T9 complete. Observe that at this point, the slack reclaiming
rules that are previously provided would make no change to
the effective load of C5 as 75 took its worst-case workload.
Thus, if one estimated the effective load on a core using the
previous rules, then at t = 4, 73 and 74 would be dispatched
at f = 0.2 GHz as shown in Figure 2(a).

However, observe that in the interval [0, 4], 7o executed
2x10° cycles at f = 0.5Ghz, which is higher than 0.2 GH »
which is sufficient to maintain the feasibility of the workload
on C5. Thus, one can potentially see the completion of 7
at t = 4, as an early completion at f = 0.2 GHz after
consuming 0.8 x 10? cycles. Hence, at t = 4, o can be set
to % + 2% = 0.14. Thus, at t = 4, both 73 and 74 would
be dispatched at f = 0.14 GHz as shown in Figure 2(b),
increasing the energy savings.

We now describe how to update o at run-time according
to these principles. Without loss of generality, assume a job
of 7; executes on core C; in p contiguous execution intervals,
denoted by {e;...e,}. During each contiguous execution
er let 7; consume at; units of CPU time at frequency
fi. For each ej one can compute the workload (acy) 7;
would have completed at frequency o; in aty time units, by
setting acy = aty - ;. The cumulative workload completed
by 7; corresponding to the contiguous execution sequence
{e1...e,} is given by:

P P
¢ = Z acy, = Z(atk - 0y)
k=1 k=1
The operating system can keep track of and update c; for
each task 7; appropriately at task preemption and completion
points. Thus, the rules to update u; can be re-defined
(refined) as:

. . w;
o When a job of 7; is released, set u; = 5*.
J
¢

 When a job of task 7; completes, set u; = 57—

Figure 3 shows the pseudo-code for CVFS*. The function
AdjustFrequency() recomputes the global energy-efficient
frequency threshold based on Equation (2) in Section III and
the maximum effective load o*(¢) among all active cores.
The new global frequency f(t) is then easily calculated by
taking the maximum.

An event corresponding to either job arrival or completion
may change u; which in turn may trigger changes in the ef-
fective load of C; and hence f(t). Also, as mentioned before,
events corresponding to job completions, job preemptions
and core state transitions have the potential to change f.. (%)
and hence f(t). Thus, at these events AdjustFrequency()
function is called.

Since core-level power state transitioning decisions can be
made in O(1) time (Section V-A), the complexity of CVFS*
is determined by the complexity of AdjustFrequency() func-
tion. Observe that the value of o on each core C; can be

At job arrival of 7; on core C;:
1 Setu; = %

2 AdjustFrequ]ency()

At transition of core C; to active state:
1 AdjustFrequency()

At job completion of 7; on core Cj:

1 Set u; = fmzizPJ
2 if ready queue is empty
3 Set §;(t) = min(nrtg) —t k|, € 1
4 if 51 (t) 2 Ithres
5 Transition C; to sleep state
6 Set timer to transition C; back
7 else
8 Transition C; to halt state
9 AdjustFrequency()
Figure 3. The pseudo-code of CVFS*

updated at job completion and job arrival events and kept
track of in constant time. Thus, when AdjustFrequency() is
called o* and fe.(t) can be re-computed in O(m) time.
Hence, the overall run-time complexity of CVFS* is O(m)
at each scheduling point.

D. Experimental Evaluation

In this section, we evaluate the performance of our algo-
rithms through the help of a discrete-event simulator. For 2-
and 8-core systems, we generated synthetic task sets each
with 20 and 50 tasks, respectively. The effective switching
capacitance a; of tasks was set to 1. P} , values were
randomly chosen in the range [0,0.2]. Task periods were
generated randomly in the interval [63ms, 1300ms] which
are comparable to those seen in practice [21]. For a target
total utilization value U, we generated individual task
utilizations randomly in such a way that each task utilization
is no greater than a pre-defined threshold o < 1.0.

Previous studies dealing with energy minimization on
multi-processor systems [1], [27] showed that the maximum
task utilization (denoted as «) is an important parameter for
performance. As a result, we also investigated the impact of
this task utilization factor «. In the experiments, we refer
to normalized utilization as the quantity %, where m is
the number of cores on which the workload is executed. For
each normalized utilization and « pair, we generated 1000
task sets; the data points in the plots reflect the average
of these runs. The reported energy consumption values are
normalized with respect to the base scheme that executes all
tasks at f,q, at all times (no power management).

First, we analyze the behavior of CVFS over the nor-
malized utilization spectrum. In these experiments, all tasks
complete their worst-case workload. Task allocation to m

0.8

0.6

04

1 CVFS (= 03) ——
02 CVFS (0 =05) -

Normalized Energy Consumption

Normalized Energy Consumption

CVFS (00=0.7) %
oL . CUFs=1D o
01 02 03 04 05 06 07 08 09
Normalized Utilzation Normalized Utilization
(a) 2 cores (b) 8 cores
Figure 4. Impact of Utilization

cores is done using Worst-Fit-Decreasing (WFD) heuristic
which is known to generate better-balanced partitions [1],
[4].

Figure 4 shows the impact of normalized system utiliza-
tion on CMP with m = 2 cores and m = 8 cores for
various « values. In these experiments, the actual workload
of each job is equal to its worst-case. It can be seen that
the CVFES scheme provides significant overall system energy
savings. With increasing normalized utilization values, the
gains of CVFS decrease as high frequency is often needed
to meet the feasibility constraints. With increasing « values,
the partitions created by WFD have a higher o (maximum
load among all cores) value. Since o is one of the factors
constraining f(¢) (Section V-B), with increasing « values
the relative gains of CVFS tend to decrease.

Figure 5 shows the impact of workload variability on the
schemes. We define 7 as the ratio of average-case execution
cycles to worst-case execution cycles and use it to model
the notion of dynamic workload variability. The lower the n
ratio, the more the actual workload deviates from the worst
case workload. For a specific value of 7, the actual execution
cycles are generated randomly using normal distribution.

Figures 5(a) and (c) show the impact of varying n for
2-core and 8-core systems respectively, with normalized
utilization fixed to a high value (0.8). With decreasing 7, the
gains of CVFS* over CVFS is prominent, in particular for
the case where o = 0.3. This is due to the run-time effective
load adjustments of CVFS* which provides additional DVFS
opportunities and hence better energy savings compared to
CVFS. For the same utilization value, higher « values tend to
create more unbalanced partitions relative to lower « values.
In CMP systems where all cores are constrained to operate
at the same frequency, this limits the opportunities to exploit
dynamic workload variability. As such, the gains of CVFS*
over CVFS decreases with increasing « values.

Figures 5(b) and (d) show the impact of varying 7 for
2-core and 8-core systems respectively, with normalized
utilization fixed to a low value (0.4). In this case, irrespective
of « values, the gains provided by CVFS* over CVFS are
rather small. Recall that f(¢) is constrained by ¢ and the

0.8 0.8

0.6 0.6

04 L ek :

02 CVFS 02 CVFS*

Normalized Energy Consumption
Normalized Energy Consumption

‘mx>§<<~>
‘mx>§<<~>

LCVFS* (0= 10, LCVFS* (0= 10,

Normalized Energy Consumption

08 08 T S—

0.6 0.6

04t :

02 CVFS*

Normalized Energy Consumption

02 CVFS* ((
1 ‘ cws:%

‘mx>§<<~>

LCVFS* (0= 10,

0 . . 0 . .
03 04 05 06 07 08 09 1 03 04 05 06 07 08 09 1
n n

a. 2 cores (norm. util. 0.8) b. 2 cores (norm. util. 0.4)

Figure 5.

global energy-efficient frequency threshold fe.(t) (Section
V-B). At low normalized utilization values, f(¢) is predom-
inantly constrained by f..(t), hence the run-time adaptations
of CVFS* do not provide significant benefits compared to
CVFS.

VI. ENERGY-EFFICIENT CORE ACTIVATION AND TASK
ALLOCATION

In this section, we elaborate on the important problem
introduced in Section IV-A, namely selecting £ < m number
of cores for the execution of the workload to minimize
expected energy while preserving the feasibility through
a proper task allocation on these k cores. Clearly, since
determining feasibility of a workload on a fixed number of
processors is NP-Hard in the strong sense, one cannot hope
for an efficient and optimal solution to this problem.

Recall from Section V-B that at any given time
the unique frequency for all active cores is given as
f(t) = maz(o, fee(t)). Hence, starting with initial task
allocations (partitions) that are reasonably balanced and
adjusting these to maintain a balance between static and
dynamic power consumptions is a promising approach. In
fact, minimizing the maximum load among cores is also
in line with existing multiprocessor and multicore energy
management results [1], [4], [27]. Among task allocation
heuristics, the Worst-Fit Decreasing (WFD) algorithm is
known to typically yield well-balanced partitions where the
maximum load on any core is small [1], [4]. Assuming
that the tasks are already sorted in non-increasing order
according to their utilization values, WFD allocates tasks
one by one to the core with the least load at a time. For
this specific problem, WFD is equivalent to the well-known
List Scheduling Algorithm (LST) where independent tasks
each with a given size in the range [0, 1] are partitioned to
m CPUs each with unit capacity. The result in [10] implies
that the maximum load among all cores generated by LST
(and equivalently WFD in our setting) is no more than %
times that of the optimal. As a result, the first step of our
framework will consist in generating an initial partition on
all m cores through WFD, before transforming this initial

0 . . 0 . .
03 04 05 06 07 08 09 1 03 04 05 06 07 08 09 1
n n

c. 8 cores (norm. util. 0.8) d. 8 cores (norm. util. 0.4)

Impact of workload variability

schedule into a final and a more energy-efficient partition
with possibly a smaller number of active cores.

Having an efficient mechanism to evaluate the expected
energy consumption of a given partition in static phase is an
important component of our approach. Let Py be a feasible
partitioning of task set ¢ to k < m cores. Since only k cores
have tasks allocated to them, the remaining (m — k) cores
can be put to off state. Thus, the static energy consumption
resulting from partition Pj, during the hyperperiod H is
given as:

Es(lpk) =k Pstatic - H

Since the global unique frequency at time ¢, f(t), is time-
dependent and further depends on the set of tasks executing
in parallel at any given time, it is very difficult, if not im-
possible, to have an accurate figure for the dynamic energy
consumption of the task set ¢, in advance. We estimate
the dynamic energy consumption of P}, by calculating the
weighted average value of f(¢) in the interval [0, H]. Let
F,. denote the weighted average of all f..(t) values in the
interval [0, H]. We approximate F. as:

P

ind

2-a*

n n

where, P, = > (U;- P! ;) and a* = Y (U; - a;). Recall

- ind .

F€€

from Equation (1?j)1 that the global energyza‘lﬁcient frequency
at any given time is determined by the ratio of P} , and
a; values of tasks. Hence, it is natural to expect that tasks
with large utilization values will have a higher contribution
to F.. on the average. Given this, the weighted average of
all f(t) values in the interval [0, H] can be approximated
as:

F =max(o, Fee)

The expected dynamic energy consumption of task set 1
over partition Py, is then calculated as:

n

Ba(Pr) =Y (a:iF® + Pl,) -

i=1

-H

=S

Notice that different partitions may produce different F'
values and thus have different expected dynamic energy
consumptions. The total expected energy consumption of Py
is:

Eezp(Pk) - Es (Pk) + Ed(Pk) (4)

At this point, we are ready to present three schemes
developed for determining the number of active cores.

Sequential-Search (SS) Algorithm. The minimum number
of cores necessary to execute a workload with total uti-
lization Uy, in feasible manner is [Ugy|. SS exhaustively
considers every possible k in the range [[Uyot |, m] and for
each such k it generates a partition Py using WED. If Py, is
a feasible partition then the algorithm computes the expected
energy consumption of Py using Equation (4). The k value
corresponding to the partition with the least E,,), is returned.
Figure 6 gives the pseudo-code.

1 foreach k in the range [[Uio |, m] do

2 Determine partition P using WFD

3 if Py, is feasible

4 Compute E..p(Pr)

5 Select the partition P}, yielding the minimum FE,,,

Figure 6. Algorithm SS

Complexity: SS has at most m iterations. In each iteration
the algorithm has to execute worst-fit decreasing (which
takes O(nlogm) time) and calculate E.,, from Equation
(4) (which takes O(n) time). Thus, the overall complexity
of 8§ is O(nmlogm).

Greedy Load Balancing (GLB) Algorithm. GLB invokes
WEFD only once on all m cores. Working on the resulting
partitioning, GLB tries to free the least loaded core, by
simply moving al/ tasks on the least loaded core to the
second least loaded core, if and only if doing so preserves
the feasibility of the workload and does not increase the
expected energy consumption, computed through Equation
(4). The algorithm is re-invoked iteratively for the remaining
cores until such a block move of tasks is no longer possible.

In the pseudo-code given in Figure 7, Py (v);) represents
the set of tasks allocated to core C; in partition Py, whereas
Pi(0;) denotes the load on C; in Py.

Complexity: GLB invokes WFD once on all m cores
(which takes O(nlogm) time). Following this, GLB has
at most m iterations (Lines 3-11) where calculating
E..p takes O(n) time and re-arranging the position of
the second least loaded core, after moving the work-
load from the least loaded core to it, can be done in
O(logm) time. Thus, the overall complexity of GLB is
O(nlogm + mlogm + mn) = O(mn).

‘P, = Partition obtained through WFD on m cores
k = min(m,n)
while (k > 1)
src = index of the core with minimum load
des = index of the core with second minimum load
if (Csrec + Tges > 1) return Py,
7Dkfl = Pk - (Pk:<’(/}src)7 pk<asrc))
Set ,Pk—l(wdes) = ,Pk—l(wdes) U Pk (wsrc)
Set Pk—l(ades) = ,Pk—l(o'des) + Py (Usrc)
10 if (Eexp(Pr—1) > Eexp(Pr)) return Py,
11 Setk=k-—1
12 return Py

01NN B W~

O

Figure 7. Algorithm GLB

Threshold-based Load Balancing (TLB) Algorithm. 7LB
is similar to GLB but does not use the expected energy
formula given in Equation (4), to improve efficiency. Instead,
TLB uses the concept of load threshold, wherein a partition
is accepted by 7LB as long as the minimum load on any
core is no smaller than a pre-defined threshold value. This
threshold value should be carefully chosen by the system
designer to reflect an appropriate balance between static
and active power consumptions. Similar to GLB, TLB first
invokes WFD once on all m cores and then iteratively tries
to free the least loaded core, by simply moving all tasks
on it to the second least loaded core, if and only if the
minimum load is smaller than the pre-defined threshold and
doing so preserves the feasibility of the workload. After such
a move, the algorithm is iteratively re-invoked on the new
set of active cores. Figure 8 gives the pseudo-code.

1 P, = Partition obtained through WFD on m cores
2 k=min(m,n)

3 while (k > 1)

4 src = index of the core with minimum load

5 des = index of the core with second minimum load
6 if (05rc > threshold OF 4pe + Tges > 1)

7 return Py,

8 Pk—l = Pk - (,Pk('(/)src)a Pk(Usrc))

9 Set Pk—l(wdes) = ,Pk—l(wdes) U Pk (wsrc)

10 Set Pk—l(o—des) = Pk—l(gdes) + Pk (Usrc)

11 Setk=k-—1

12 return Py

Figure 8. Algorithm 7LB

Complexity: Assuming n > m, WFD takes O(nlogm)
time. Following this there are at most m iterations (Lines 3-
11) and in each of these iterations re-arranging the position
of the second least loaded core takes O(logm) time making

1 1 = 1 1 ;
5 5 P e 5 R
B oo B oo ey B oo B oo g

2 2 L 2 2

O 06 O 06 O 06 O 06 ;

o o / o / o X

o / @ / o / o

o 04y o 04y o 04y 4 04t/

K]] 3

X SS —+— X SS —+— X SS —+— X S§ ——
g 02 GLB & g 02 GLB & g 02 GLB & g 02 GLB &
= . *: = . *: = . *: = . *
£ TLB(02 £ TLB(02 £ TLB(02 £ TLB(02

2 | TLB(0.1) --a-- 2 | TLB(0.1) - 2 | TLB(0.1) - 2 _ TLB(0.1) --#--

. 0 .
0.2 0.3 0.05 0.1

Normalized Utilization

a. 4 cores (o = 0.3)

0 .
0.05 0.1 0.4 0.5 0.2 0.3

Normalized Utilization

b. 4 cores (o = 1.0)

0.4 0.5

Figure 9.

the total complexity O(nlogm). On the other hand, if
n < m, WFD takes O(n) time, there are only n iterations
(Lines 3-11) each taking O(logn) time which gives a
complexity of O(nlogn). Thus, the overall complexity can
be expressed as O(nlog(min(m,n))).

A. Experimental Evaluation

In this section, we compare the performance of algorithms
SS, GLB and TLB. The simulation methodology is parallel
to the one described in Section V-D. We show results for
4 and 8 cores in Figure 9, the trends of which are similar.
We include results for « = 0.3 and @ = 1.0. For the 7LB
scheme, we include results with threshold values 0.1 and
0.2 that performed best in our experiments. For each core,
Pgiqtic was set to 10% of CPU dynamic energy consumption
at fiae [18]. In these experiments, we consider the worst-
case workload for each task and once a partitioning of tasks
to £ < m cores is decided by the algorithms, we execute
the task set with CVFS scheme and record the energy
consumption over the hyperperiod. All energy consumption
values are normalized with respect to the scheme which uses
all m available cores to execute the workload.

In decreasing order of performance with respect to energy
savings, the algorithms can be arranged as: SS, GLB, TLB
(with threshold 0.2) and TLB (with threshold 0.1). However,
the better the system energy savings of a scheme, the
more its computational complexity. For the 7LB scheme, the
energy benefits are sensitive to the threshold value. In our
simulation settings we notice that a threshold of 0.2 provides
energy benefits that are comparable to that provided by SS,
which has high execution overhead.

At low utilization values the gains provided by the
schemes are significant (easily exceeding 50%). With in-
creasing utilization values, the dynamic energy consump-
tion of the workload dominates static energy and hence
the number of cores activated to execute the workload in
energy-efficient and feasible manner approaches m. Thus,
as utilization increases the benefits of schemes decrease. In
fact, when the normalized utilization % exceeds 0.5, all
the schemes are forced to activate all m cores to enforce

Comparing

0L— ol
00501 02 03 0.05 04

Normalized Utilization

c. 8 cores (o = 0.3)

0.4 0.5 0.2 0.3

Normalized Utilization

d. 8 cores (a = 1.0)

0.4 0.5

SS, GLB and TLB

feasibility or avoid excessive dynamic power that can result
from using less number of cores at high frequencies.

It can also be seen that the benefits of the schemes
decrease much quickly at lower « values compared to higher
« values (Figure 9(b) and (d)). This is because, with large
«a values, WFD tends to generate more unbalanced initial
partitions [4]. This results in more chances for finding cores
with light workloads in the WFD partition; the workloads
on these cores can then be transferred to the ones with high
load, enabling them to switch to off state.

Finally, one can also see that at low normalized utilization
values, the benefits of schemes are more pronounced in the
case with 8 cores. This is due to the fact that with more
number of cores the potential opportunities to minimize
static energy by turning off cores also increase, in particular
for low utilization values.

VII. RELATED WORK

Research studies on energy management for multipro-
cessor real-time systems are typically based on indepen-
dent DVFS capabilities of individual processors. In [4],
the authors considered the problem of minimizing CPU
dynamic energy with partitioned multiprocessor scheduling
and EDF policy. They showed that the problem of energy-
optimal partitioning is NP-Hard in the strong sense even
when the total workload can fit on a single CPU. The same
paper also indicated that more balanced partitions typically
yield better energy savings and suggested the use of WFD
partitioning scheme to balance the the load. [1] re-considered
the problem for fixed-priority systems and RMS policy.

Exploiting potential and actual early task completions
have been another focus point for multiprocessor systems.
In [32], the authors investigate slack reclaiming strategies
for global scheduling of frame-based tasks on homoge-
neous multiprocessors. [8] provides a 1.13-approximation
algorithm for the problem of partitioning tasks to mini-
mize the expected energy consumption. In [30], the authors
considered the problem of energy-efficient partitioning in
heterogeneous multiprocessor platforms.

Energy management of real-time tasks on CMP platforms

under the global DVS constraint has started to attract the
attention of the research community more recently. In [31],
assuming a frame-based system where all tasks have the
same deadline, the authors showed the problem is NP-
Hard and provided a 2.371-approximation scheme for this
simple task model. In [5], the authors proposed a power-
aware scheduler for multicore systems executing a soft
real-time workload. In [18] the authors consider a CMP
system running a single real-time application modelled as
a directed acyclic communication task graph (CTG). The
authors effectively deploy two techniques to save energy:
DVFS to reduce the dynamic energy and power shutdown
of the entire voltage island to reduce static energy.

[27] considered the problem of energy-efficient scheduling
for periodic hard real-time tasks on CMP systems. The
authors proposed a scheme to re-partition tasks at run-
time by resorting to task migrations, so as to create more
balanced schedules that adapt to dynamic workload vari-
ability. Further, they also proposed a dynamic core scaling
algorithm adjusting at run-time the number of active cores
to reduce static power under the assumption that transitions
between off and active states can be done instantaneously
and with no additional overheads. However, in practice
such transitions are rarely attractive or possible for periodic
real-time applications. Moreover, the frequency-independent
component of dynamic power (hence, the energy-efficient
frequency) is ignored in that work. Finally, the overhead of
frequent task migrations may be a concern in practice.

VIII. CONCLUSION

In this paper we considered the problem of system en-
ergy minimization of periodic real time tasks executing on
CMP platforms with partitioning and global DVS capability.
Considering a generalized power model, we derived the
global energy-efficient frequency that depends on the set of
tasks executing in parallel. We provided two schemes CVFS
and CVFS* that successfully exploit global DVS and core-
level idle states to increase energy savings. CVFS* has the
additional capability of adapting to workload variations at
run-time. We also considered the problem of determining
the optimal subset of cores to execute the workload with
low static power while preserving feasibility through an
appropriate task allocation; and suggested three techniques
(SS, GLB, TLB) for this purpose. Our experimental evalu-
ation verified the effectiveness of our solutions to reduce
the system energy on CMP platforms. To the best of our
knowledge, this research effort is the first to consider energy-
aware periodic real-time scheduling on CMP platforms, by
assuming a generalized power model with takes into account
frequency-dependent and -independent dynamic powers, as
well as static power, while deploying safe and effective
schemes based on global DVS and multiple idle state fea-
tures.

ACKNOWLEDGMENT

This work was supported by US National Science Foun-
dation Grants CNS-072047 and CNS-546244 (CAREER
award).

REFERENCES

[1] T.A. AlEnawy and H. Aydin. Energy-Aware Task Allocation
for Rate Monotonic Scheduling. In Proceedings of IEEE
Real Time and Embedded Technology and Applications
Symposium (RTAS), 2005.

[2] H. Aydin, V. Devadas, and D. Zhu. System-level Energy
Management for Periodic Real-Time Tasks. In Proc. of the
IEEE Real-Time Systems Symposium (RTSS), 2006.

[3] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez.
Power-aware Scheduling for Periodic Real-time Tasks. In
IEEE Transactions on Computers, vol. 53, no. 10, pp. 584-
600, May 2004.

[4] H. Aydin and Q. Yang. Energy-Aware Partitioning for Mul-
tiprocessor Real-Time Systems. In Proceedings of Inter-
national Parallel and Distributed Processing Symposium
(IPDPS), 2003.

[5] D. Bautista, J. Sahuquillo, H. Hassan, S. Petit, J. Duato.
A Simple Power-Aware Scheduling for Multicore Systems
when running Real-time Applications. In Proceedings of In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), 2008.

[6] E. Bini, G. Buttazzo and G. Lipari. Speed Modulation
in Energy-Aware Real-Time Systems. In Proceedings of
the Euromicro Conference on Real-Time Systems (ECRTS),
2005.

[7]1 S. Borkar. Thousand core chips: A Technology Perspective.
In Proceedings of the Design Automation Conference (DAC),
2007.

[8] J-J. Chen, C-Y. Yang, H-I. Lu, and T-W. Kuo. Approx-
imation Algorithms for Multiprocessor Energy-Efficient
Scheduling of Periodic Real-Time Tasks with Uncertain Task
Execution Time. In Proceedings of IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS),
2008.

[9] J. Dorsey et. al. An integrated Quad-Core Opteron Processor.
In Proc. of IEEE Intl. Solid State Circuits Conference, 2007.

[10] R.L. Graham. Bounds on Multiprocessing Timing Anoma-
lies. SIAM Journal on Applied Mathematics, vol. 17, no. 2.
pp. 416-429, 1969.

[11] S. Herbert and D. Marculescu. Analysis of Dynamic Volt-
age/Frequency Scaling in Chip-Multiprocessors. In Proc.
of the Intl. Symp. on Low Power Electronics and Design
(ISLPED), 2007.

[12] R. Jejurikar and R. Gupta. Dynamic Voltage Scaling for
System-Wide Energy Minimization in Real-Time embedded
systems. In Proc. of Intl. Symp. on Low Power Electronics
and Design (ISLPED), 2004.

[13] IBM Power 7 Overview.
http://www.redbooks.ibm.com/redpapers/pdfs/redp4638.pdf

[14] Introduction to Intel Core Duo Processor Architecture. In
Intel Technology Journal, vol 10, no. 2, 2006.

[15] Intel i7 Processor Specifications.

http://www.intel.com/products/processor/corei7/specifications.htm

[16] Intel i7-800 and 15-700 Processor series. Datasheet -
Volume 1.
http://download.intel.com/design/processor/datashts/322164.pdf

[17] Intel Xeon Specifications.

http://www.intel.com/design/intarch/xeon/specifications_xeon.htm

[18]

(23]

[24]

[25]

(28]

[31]

[32]

[33]

[34]

H. Kim, H. Hong, H-S. Kim, J-H Ahn and S. Kang. Total
Energy Minimization of Real-Time Tasks in an On-Chip
Multiprocessor Using Dynamic Voltage Scaling Efficiency
Metric. In IEEE Transactions of Computer-Aided Design of
Integrated Circuits and Systems, vol 27, no. 11, pp. 2088-
2092, 2008.

R. Kumar and G. Hinton. A Family of 45nm IA Processors.
In Proc. of the Intl. Solid-State Circuits Conference, 2009.

L. Mosley. Power Delivery Challenges for Multicore Pro-
cessors. In Proc. of CARTS US4, 2008.

D.C. Locke, D. Vogel, T. Mesler. Building a Predictable
Avionics Platform in Ada: a Case Study. In Proc. of the
Real-Time Systems Symposium (RTSS), 1991.

H.-Y. McCreary, M. A. Broyles, M. S. Floyd, A. J. Geissler,
S. P. Hartman, F. L. Rawson, T. J. Rosedahl, J. C. Rubio, M.
S. Ware. EnergyScale for IBM POWER6 microprocessor-
based systems. In IBM Journal of Research and Develop-
ment, vol 21, no. 6, 2007.

R. McGowen, C.A. Poirier, C. Bostak, J. Ignowski, M. Mil-
lican, W.H. Parks, and S. Naffziger. Power and Temperature
Control on a 90-nm Itanium family processor, In Journal of
Solid-State Circuits, 2006.

A. Naveh et al.. Power and Thermal Management in the
Intel Core Duo Processor. Intel technology Journal, Vol. 10,
Issue 02, May 2006.

P. Pillai and K. G. Shin. Real-time Dynamic Voltage Scaling
for Low-power Embedded Operating Systems. In Proc.
of the ACM Symposium on Operating Systems Principles
(SOSP), 2001.

S. Saewong and R. Rajkumar. Practical Voltage-Scaling for
Fixed-Priority Real-time Systems. In Proc. of the IEEE Real-
Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2003.

E. Seo, J. Jeong, S. Park, and J. Lee. Energy Efficient
Scheduling of Real-Time Tasks on Multicore Processors. In
IEEE Trans. on Parallel and Distributed Systems, vol. 19,
no. 11 pp. 1540-1552, 2008.

A. Sinkar and N. Kim. Analyzing Potential Power Re-
duction with Adaptive Voltage Positioning Optimized for
Multicore Processors. In Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and
Design (ISLPED), 2009.

X. Qi and D. Zhu. Power Management for Real-Time Em-
bedded Systems on Block-Partitioned Multicore Platforms.
In Proceedings of the Intl. Conf. on Embedded Software and
Systems (ICESS), 2008.

C-Y. Yang, J-J. Chen, T-W. Kuo, and L. Thiele. An Approx-
imation Scheme for Energy-Efficient Scheduling of Real-
Time Tasks in Heterogeneous Multiprocessor Systems. In
Proceedings of ACM/IEEE Conference of Design, Automa-
tion, and Test in Europe (DATE), 2009.

C. Yang, J. Chen, and T-W. Kuo. An Approximation Algo-
rithm for Energy-Efficient Scheduling on A Chip Multipro-
cessor. In Proc. of the Conf. on Design, Automation and Test
in Europe (DATE), 2005.

D. Zhu, R. Melhem and B. Childers. Scheduling with Dy-
namic Voltage/Speed Adjustment Using Slack Reclamation
in Multi-Processor Real-Time Systems. In IEEE Transac-
tions on Parallel and Distributed Systems, vol. 14, no. 7,
pp. 686 - 700, 2003.

D. Zhu, R. Melhem and D. Mosse. The Effects of Energy
Management on Reliability in Real-Time Embedded Sys-
tems. In Proc. of IEEE/ACM Intl. Conf. on Computer Aided
Design (ICCAD), 2004.

http://www.acpi.info.

