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Abstract—Energy management and reliability are two impor-
tant design objectives for real-time embedded systems. Recently,
the standby-sparing scheme that uses a primary processor and
a spare processor has been exploited to provide fault tolerance
while keeping the energy consumption under control through

DVS and DPM techniques. In this paper, we consider the standby-
sparing technique for fixed-priority periodic real-time tasks. We
propose a dual-queue mechanism through which the execution
of backup tasks are maximally delayed, as well as online
algorithms to manage energy consumption. Our experimental
results show that the proposed scheme provides energy savings
over time-redundancy based techniques while offering reliability
improvements.

I. INTRODUCTION

Energy efficiency is a major design dimension for many

embedded systems. Several energy management techniques

have been widely studied in recent literature. Dynamic Voltage

Scaling (DVS) reduces the energy consumption by switching

CPU frequency and voltage to low levels [20]. Another well-

known technique is the Dynamic Power Management (DPM),

through which the system is put to sleep/low-power states

when it is idle. A key challenge in DPM is to guarantee that

the energy saved in the low-power state is not offset by the

time/energy overhead involved in power state transitions [2],

[7]. Moreover, the timing constraints of real-time embedded

applications impose strict constraints on the applicability of

these techniques [15], [20], [22]. A few recent studies inves-

tigated how to combine DVS and DPM to maximize energy

savings in the context of a single real-time application [8],

[29].

Another increasingly important design objective is reli-

ability. In fact, computer systems are vulnerable to faults

which often manifest as runtime errors. Faults are generally

classified as transient or permanent faults [21]. The tran-

sient faults which lead to temporary soft errors (or single

event upsets (SEUs)) are known to be more frequent than

the permanent faults [14], [30]. Transient faults are often

induced by electromagnetic interference and cosmic radiations

[14]. Most importantly, the increase in component density of

CMOS circuits and aggressive power management schemes

significantly increase the vulnerability of systems to transient

faults [11], [30]. A common way to deal with transient faults

is to rely on additional slack time (time redundancy) to

re-invoke the faulty tasks [21], [32]. Permanent faults, on

the other hand, are caused by hardware failures, including

manufacturing defects and circuit wear out. This may lead to

the unavailability of the system for extended time periods until

it is repaired or replaced. In real-time embedded systems that

need to be operational continuously, permanent faults can only

be dealt with extra processors (hardware redundancy) [21].

Given the importance of both design dimensions, the

research community has recently started to explore the

co-management of energy and reliability more aggressively.

For example, the popular DVS technique tends to increase

the rate of transient faults [11], [30] at low voltage/frequency

levels. Consequently, several studies focused on mitigating

the reliability degradation due to DVS by provisioning for

extra recovery tasks that are invoked at maximum frequency

if errors are detected in the scaled tasks [19], [27], [28], [32].

These time-redundancy based techniques are applicable to, and

explored mostly on, the single-processor settings.

The increasing availability of multicore/multiprocessor sys-

tems is also making the deployment of additional processor

units in the co-management of energy and reliability more

appealing. With extra processors (hardware redundancy), the

system can sustain permanent faults of some processors.

A particularly interesting framework, in that regard, is the

standby-sparing systems [9], [10], [26].

In a standby-sparing solution, a dual-processor system that

consists of a primary and a spare processor is deployed.

Associated with each task executed on the primary processor, a

separate backup task is scheduled on the spare processor. The

system inherently tolerates the permanent fault of any of the

processors. Moreover, the primary processor uses both DVS

and DPM: the aim is to minimize the energy consumption of

the real-time workload. The spare processor uses only DPM;

the objective is to keep the spare in idle/sleep states during

long intervals by invoking the backups as late as possible.

Consequently, several solutions are suggested in the literature

to minimize the overlap between the two copies of the same

task on both processors, in order to be able to cancel the

high-cost backup execution on the spare when the copy on the

primary completes successfully [9], [10], [26]. These solutions

are limited to aperiodic, non-preemptive workloads, while a

significant portion of the applications on real-time embedded



systems are preemptive and periodic in nature. Moreover, they

rely on the existence of the entire static feasible schedule

so that it can be manipulated to obtain the schedule of the

backup tasks. The work in [13] provides a solution for periodic

preemptive workloads scheduled with the Earliest Deadline

First (EDF) policy on the primary. However, the solution is

computationally expensive (it generates beforehand the entire

schedule for the hyperperiod using the Earliest Deadline Late

(EDL) algorithm [5]) and is not applicable to fixed-priority

systems that are more frequently deployed.

In this paper, we consider a dual-processor standby-sparing

system that executes a fixed-priority periodic real-time work-

load. As in existing standby-sparing solutions, the primary

processor uses both DVS and DPM, while the spare relies only

on DPM for energy management. To address the problem of

maximally delaying the backup tasks on the spare, we propose

an efficient dual-queue mechanism. Our solution is inspired

by the Dual-Priority Scheduling framework [6] which was

originally proposed to improve the responsiveness of soft real-

time tasks in a system with a hard real-time workload. We

show how this solution can be coupled with a DVS-enabled

low-energy schedule on the primary to achieve energy savings.

Moreover, we provide a delayed promotion rule that dynami-

cally postpones the execution of the pending backups when the

earlier backup tasks are cancelled at runtime. The experimental

results suggest that while offering definitive advantages on the

reliability side and an ability to withstand permanent faults, our

standby-sparing fixed-priority (SSFP) algorithm provides also

non-trivial energy gains over the traditional time-redundancy

solutions for medium-to-high load conditions. In addition, our

framework has low computational complexity and run-time

overhead, making it appealing for periodic and preemptive

execution settings.

The rest of the paper is organized as follows. In Sec-

tion II, we present our workload and power models, and our

assumptions. In Section III, we elaborate on the features of

the standby-sparing solutions in joint management of relia-

bility and energy. We review the principles of Dual-Priority

Scheduling in Section IV. Then the details of our solution are

presented in Section V. Section VI presents our experimental

evaluation and finally we conclude in Section VII with a

summary of our contributions.

II. MODELS AND ASSUMPTIONS

A. Workload Model

We consider a set of periodic real-time tasks Ψ =
{τ1, ..., τn}. Each task τi has the period Pi and the worst-

case execution time ci under the maximum available CPU

frequency. The jth job of task τi (namely, Ji,j) arrives at time

ri,j = (j − 1) · Pi and must complete by its deadline j · Pi.

Hence, the relative deadline Di of job Ji,j is equal to the

period Pi. The utilization of task τi is defined as ci

Pi
and the

total utilization Utot is the sum of individual task utilizations.

For reliability and fault tolerance purposes, we associate

with each task τi a backup task Bi having the same timing

parameters as τi. The jth instance (job) of Bi is denoted by

Bi,j . To distinguish with the backup tasks, we occasionally

use the term main task to refer to a task in Ψ. The aggregate
workload that consists of the main and backup tasks are

executed on a dual-processor standby-sparing system with one

primary and one spare processor [9], [21]. On each processor,

tasks are scheduled according to Rate Monotonic Scheduling

(RMS) policy, which is known to be optimal for fixed-priority

periodic workloads [18].

B. Power Model

Each processor has the capability of operating in three

different power modes. The tasks are executed in the active

state of the processor. When the processor is not executing

tasks, it can be in idle or sleep states. We now describe the

power characteristics of each of these states.

1) Active: We model the power consumption in the active

mode following recent works on energy and reliability

management [25], [28], [32]. The power consumption

of the system consists of static and dynamic power

components. The static power Ps is dominated by the

leakage current of the system. The dynamic power

Pd includes a frequency-independent power component

Pind driven by the modules such as memory and I/O

subsystem in the active state, and a frequency-dependent

power component which depends on the supply voltage

and frequency of the system.

Pactive = Ps + Pind + CeV
2
ddf (1)

Above, Ce denotes the effective switching capacitance.

The processor supply voltage Vdd has a linear relation-

ship with frequency f . Therefore, Equation (1) can be

re-written as,

Pactive = Ps + Pind + Cef
3

When the voltage/frequency scaling is applied through

the DVS technique, the processor frequency can be

adjusted within a range between a minimum CPU fre-

quency fmin and a maximum CPU frequency fmax.

All frequency values in the paper are normalized with

respect to fmax (i.e. fmax = 1.0). Note that the

existence of Ps and Pind implies the existence of a

threshold frequency, called critical speed or energy-

efficient frequency, below which DVS ceases to be

effective [15], [30].

2) Idle: The processor can switch to idle power state when

it is not executing any task. In this state, the processor

consumes low dynamic power, P0. The overhead for

transitioning to idle state and back is not significant; for

example, the processor can return to active state within

10 ns in recent processor designs [16]. Hence, the power

consumption in idle state is given by:

Pidle = Ps + P0



3) Sleep: Sleep state is the lowest power state for the

processor. In this state, power components other than the

static power Ps become negligible. Ideally, we would

like to put the processor to sleep state whenever the

system is idle. However, putting a processor to sleep

state involves significant time and energy overhead [33].

Due to this transition overhead, the concept of break-

even time (∆crit) is introduced in literature [2], [4]. If

the processor is put to sleep state for at least as long

as ∆crit time, the energy savings in the sleep state

can amortize the transition overhead. This is the key

idea behind the Dynamic Power Management (DPM)

scheme [2], [4], [7]. In DPM scheme, when the idle

interval is expected to exceed ∆crit, the processor is

transitioned to sleep state for energy savings. Therefore,

it is beneficial to have longer idle intervals to take

advantage of the DPM technique. If the idle interval

is expected to be relatively short, the processor switches

to idle state instead.

C. Fault Model

The system that we consider may be subject to both per-

manent and transient faults. Our system, by taking advantage

of the hardware redundancy provided by the primary and

spare processor, can tolerate at most one permanent fault. We

consider only the permanent fault of processing units. The

permanent faults of other components in the system (e.g. main

memory) are not considered in this work.

We consider a transient fault model similar to [30], [32]. The

faults occur according to Poisson distribution with a known

average rate λ [27]. The average fault rate λ is dependent on

the CPU frequency. In fact, λ increases exponentially with the

decrease in CPU frequency [11], [30]. Suppose, the average

fault rate at the maximum CPU frequency is denoted by λ0.

Then, the average fault rate for a frequency f can be expressed

as [30]:

λ(f) = λ0 · 10
d(1−f)
1−fmin

The exponent d (typically a constant > 0) represents the

sensitivity of the system to voltage scaling. With higher values

of d, the reliability of the system degrades rapidly with system

voltage.

The reliability of a job is defined as the probability of

executing the task successfully in the presence of potential

transient faults. The reliability of a single job Ji running at

frequency fi can be expressed as [30]:

Ri(fi) = e
−λ(fi)

ci
fi

The probability of failure for the job Ji is then given by:

PoF (fi) = 1−Ri(fi)

At the completion of a job in any processor, the system

initiates an acceptance test [21], [32] considering the output of

the job. The result of this acceptance test is used to determine

the occurrence of errors induced by transient faults.

III. STANDBY-SPARING SYSTEMS

Standby-sparing system solutions have been recently ex-

plored to enhance the reliability of real-time embedded

systems, by exploiting increasingly available dual-processor

settings [9], [10], [13]. Here, the dual-processor system is

configured as a primary and a spare processor. The primary

processor has both DVS and DPM capability, and executes the

main tasks of the workload. The backup tasks, each associated

with a main task, are scheduled on the spare processor. The

spare processor does not employ voltage/frequency scaling;

hence it can delay the execution of the backup tasks as much as

possible, and execute them at the maximum processing speed

before their deadlines when needed.

At the completion of each job, the acceptance test is

performed to determine the existence of an error induced by

a transient fault. If no error is detected, the copy running

(or, scheduled to run) on the other processor is cancelled;

otherwise that copy is executed according to the schedule on

its own processor.

Standby-sparing systems have the following features:

• The primary processor can use both DVS and DPM as

needed and in tandem to reduce the energy consumption

by employing sophisticated system-level energy man-

agement solutions. On the other hand, by delaying the

backup tasks as much as possible and cancelling them

when the main copy completes successfully, the extra

energy overhead due to the second (spare) processor is

significantly reduced, thanks to the use of DPM.

• By scheduling the main and backup copies of all the

jobs on separate processors, the system can tolerate the

permanent fault of a single processor: the functional

processor can finish the workload even if the faulty

processor remains unavailable.

• In terms of robustness with respect to transient faults, by

scheduling a backup copy of each job at the maximum

frequency (if needed), the reliability loss due to the

application of DVS on the primary processor is fully

mitigated [32].

Despite these promises, the main technical challenge in

standby-sparing systems is how to delay the backup tasks on

the spare processor while still guaranteeing their deadlines

with low computational overhead. Notice that if both the main

and backup copies of a given job are scheduled concurrently

on two processors, the power consumption significantly in-

creases due to high-power profile of the spare processor. Con-

sequently, a key issue is to minimize the concurrent executions

of the main and backup tasks as much as possible. For periodic

workloads scheduled by preemptive scheduling policies (such

as RMS), reaching these objectives with low overhead is

particularly challenging. Our solution to this problem is based

on dual-priority scheduling framework, which is described

next.



IV. DUAL-PRIORITY SCHEDULING

Dual-priority scheduling [6] was originally proposed to

improve the response time of soft (or, non-real-time) tasks

(SRTs) in a system that also executes periodic hard real-time

(HRT) tasks according to the RMS policy. Specifically, the

scheme uses three ready queues, denoted as lower, middle, and

upper queues. The names of the queues reflect their execution

priorities: the scheduler first executes jobs in the upper queue.

Jobs in the middle and lower queue are executed, and in that

order, only if the upper queue is empty.

SRTs always execute in the middle queue. An HRT instance,

on the other hand, is first put to the lower queue upon

its release. However, after a certain time interval, the HRT

instance is promoted to the upper queue and is eligible for

urgent service. The jobs in the upper queue are executed

according to rate-monotonic priorities.

The main objective of the scheme is to offer relatively

fast service to SRT instances as long as the timeliness of

the HRT instances is not compromised. The key problem in

dual-priority scheduling is to determine the promotion time

for HRTs, to make sure that they will eventually make their

deadlines in the upper queue, using RMS. The promotion time

is computed based on the worst-case response time of the task

under RMS. Specifically, if Si is the worst-case response time

of the task with relative deadline Di under RMS (which can be

computed through well-known analysis techniques [1]), then

the promotion time for τi, after its release time is computed

as:

Yi = Di − Si (2)

The above result follows from the fact that if all other

high priority HRTs were to be promoted simultaneously to the

upper queue at time Yi (which would maximize the response

time of τi under RMS [18]), then τi would be still able to

meet its deadline.

V. STANDBY-SPARING FOR FIXED-PRIORITY SCHEDULING

Our proposal in this work is based on the observation

that the dual-priority mechanism provides a powerful basis

to manage the execution of the backup copies on the spare

processor with low offline and online computational overhead.

To illustrate the main components of our solution, we first

present a running example. Consider three periodic tasks τ1, τ2

and τ3. The worst-case execution time and periods of the tasks

are given as c1 = 2, P1 = 10, c2 = 2, P2 = 15, c3 = 3
and P3 = 30. Figure 1 shows the schedule for this task set

during the hyperperiod (the least common multiple of all the

task periods), when executed according to the rate-monotonic

priorities. In the figure, the arrows indicate the arrival times

of jobs of periodic tasks.

Now consider a dual queue mechanism to delay the exe-

cution of the tasks. Specifically, at arrival, jobs are put to the

lower queue and after the corresponding promotion time they

are promoted to the upper queue. The promotion times are

computed statically for each task before execution. There is

0 5 15

J1,1 J1,2 J2,2J2,1 J3,1 J1,3

10 20 25 30

Fig. 1. A typical fixed-priority schedule

0 5 15
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10 20 25 30

Fig. 2. Fixed-priority schedule with delayed execution

no middle queue and jobs are executed only when they are in

the upper queue based on RM priorities. This will essentially

delay the execution of each backup job while still meeting its

deadline. For the computation of the promotion times, we note

that there are multiple techniques to compute the worst-case

response time of the tasks [1]. For example, the time-demand

analysis technique (TDA) [17] can be used to compute the

exact worst-case response time of each task. However, it is of

pseudo-polynomial time complexity and it may involve non-

trivial overhead as the ratio of the maximum period to the

minimum period gets larger. Instead, in this paper, we adopt

the conservative but fast (linear-time) technique used in [20]

to compute an upper bound on the response time of task τi:

Si = Στj∈ hp(τi)⌈(Pj/Pi)⌉ × cj + ci (3)

where, hp(τi) is the set of tasks with priority higher than τi.

By substituting Equation (3) in (2), the promotion times

(Yi = Di − Si) for the example task set can be computed as:

Y1 = 8, Y2 = 9, and Y3 = 17. Figure 2 shows the delayed

execution scenario according to these above mentioned princi-

ples. Despite the explicitly enforced delays, all jobs still meet

their deadlines. We underline that the formula (3) will be also

instrumental for our online delayed promotion rule that further

improves the performance.

Now, consider a dual-processor standby-sparing scheme

where the DVS-enabled primary executes the main tasks

according to RMS. The total utilization of the task set is

0.433. The Liu-Layland utilization bound [18] for task sets

with 3 tasks is 0.88. So, we can safely slow down the

primary processor by using the frequency f = 0.5. The spare
executes the backups {Bi,j} through the described dual-queue
mechanism at the maximum frequency. Figure 3 shows the

corresponding schedules for the primary and spare processors.

It is notable that, thanks to the dual-queue mechanism, the

backups on the spare are significantly delayed and the overlaps

with the main tasks on the primary are minimized.

In fact, this feature enables us to cancel backup jobs when

the main copy of the job completes successfully (i.e. without

incurring transient faults) on the primary. Thus, we can avoid

the execution of the backups by coupling it with the primary
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Fig. 3. Coupled schedules on the primary and spare processors
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Fig. 4. Taking advantage of successful job completions

schedule. For example, assume that J1,1 and J2,1 complete

successfully on the primary; then B1,1 and B2,1 will be

completely cancelled. J3,1 will be preempted by J1,2, which

is assumed to be subject to a transient fault (Figure 4). This

implies that the backup job B1,2 will need to be executed ac-

cording to the pre-computed schedule on the spare. Note that,

B3,1 starts executing at its promotion time 17 as its main copy
(which was preempted) did not complete yet. However, when

the backup copy B3,1 completes at time 22, the remaining

fraction of the main job J3,1 can be also cancelled. Assuming

that all the remaining main tasks complete successfully, we

obtain the schedules in Figure 4.

Further online optimizations are also possible. In fact, main

tasks on the primary processor typically complete success-

fully as faults are relatively rare. In addition, the worst-

case execution time is often a pessimistic estimate of the

actual execution time. This also increases the chance of early

completion or entire cancellation of the backups on the spare

processor. Whenever a backup is cancelled or completes early,

the runtime slack can be used to further delay the promotion

time of other pending backup jobs.

Suppose that a backup job Bi,j has been cancelled after

executing ai,j units of time from its allocated ci units of CPU

time. Note that ai,j = 0 if Bi,j is cancelled entirely. All

pending backup jobs released before Bi,j and with a priority

lower (hence, periods larger) than Bi,j will benefit from the

reduced interference of Bi,j .

We use the notation Γi,j to denote the set of backup jobs

that benefit from (i.e. that can be promoted later with) the

early completion of Bi,j . Formally:

Γi,j={Bk,l|Bk,l is in lower queue ∧(Pk > Pi)∧(rk,l ≤ ri,j)}

The following theorem gives the amount by which the

promotion time of a job Bk,l ∈ Γi,j can be delayed without

missing its deadline.

Theorem 1: If a backup job Bi,j completes or is cancelled

after executing for ai,j units of time, the promotion time for

any job Bk,l ∈ Γi,j can be delayed by ci − ai,j units of time.

Proof: Let us consider any arbitrary job Bk,l ∈ Γi,j .

The release time of Bk,l is rk,l and its absolute deadline is

Dk,l. Assume that the earlier promotion time was t0 which

is delayed to t1. Now according to the rule of determining

promotion time, (Dk,l − t0) is the maximum response time

for Bk,l. According to the definition of Γi,j , Bi has priority

higher than Bk and Bi,j is released after Bk,l. Therefore Bi,j

is supposed to interfere with the execution of Bk,l and it is

considered in the response time of Bk,l. Suppose that the set

of tasks with priority higher than Bk is denoted by hp(Bk)
and for each task Bm ∈ hp(Bk), nm instances interfere with

Bk,l.

Dk,l − t0 = ck + ΣBm∈hp(Bk)nm × cm

This can be rewritten as,

Dk,l−t0 = ck+ΣBm∈{hp(Bk)−Bi}nm×cm+(ni−1)×ci+ci

where the last component (ci) represents the worst-case inter-
ference due to Bi,j . Recall that, by assumption, Bi,j completes

after executing ai,j ≤ ci time units. Consequently the response

time of Bk,l decreases by an amount of ci − ai,j and its

promotion time t0 can be delayed to t1 = t0+ci−ai,j without

compromising its deadline.

Figure 5 shows an example of delayed promotion enabled by

the result in Theorem 1. As backup tasks B1,1, B2,1 and B2,2

are cancelled, the promotion time for the backup task B3,1

can be delayed to 23 beyond the originally computed instant

of 17. As a result, the chances of cancelling B3,1 would be

higher in an actual execution, in particular if the main job J3,1

completes earlier than the worst-case.

Algorithm SSFP. We are now ready to present the full details

of our algorithm SSFP. The primary processor schedules

tasks without any delay and uses both DVS and DPM. Its

supply voltage/frequency can be selected according to various

algorithms proposed in literature [20], [22], [23]. The spare

processor, on the other hand, uses the dual-queue mechanism

and applies only DPM for energy management. The promotion

time of each back-up job Bi,j is computed by adding its



0 5 15

0 5 15

0 5 15

0 5 15

J3,1J2,1 J2,2 J3,1J3,1J3,1J2,1 J2,2J1,2

B1,2

J1,1 J1,3 J3,1

B3,1

10 20 25 30

10 20 25 30

Primary

Spare

10 20 25 30

10 20 25 30

Primary

Spare

Fault
Detected

Fig. 5. Delaying promotions at run-time

Algorithm 1 Standby-Sparing for Fixed-Priority (SSFP)

(Events on the primary processor)

Event - A job of τi, Ji,j is released:

Add Ji,j to the ready queue on primary

Add Bi,j to the lower queue on spare

Yi,j ← Yi

Set timer for promotion event at t = time+ Yi,j

Dispatch the highest RM priority job on primary

Event - The job Ji,j completes on primary:

Run the acceptance test for Ji,j

if no error is detected and Bi,j is not completed yet then

Cancel Bi,j on spare

end if

if ready queue of primary is empty then

time to next arrival ← time to earliest

release time

∆p ← time to next arrival
if ∆p ≥ ∆crit then

Put primary to sleep state for ∆p units of time

end if

else /* jobs are available for execution */

Dispatch the highest RM priority job on primary

end if

release time to Yi, the pre-computed promotion time for task

Bi.

The algorithm is invoked at every job release, completion,

and cancellation time. The detailed pseudo-code is presented in

Algorithms 1 and 2. Algorithm 1 shows the events on the pri-

mary processor and the corresponding actions. At job arrival,

the main job is added to the ready queue. A corresponding

backup job is also added to the lower queue on the spare. With

the pre-computed promotion time, a timer is set accordingly

to promote the backup job to the upper queue in the future.

The primary processor then dispatches jobs according to RMS

policy. When a job completes on the primary, we invoke the

Algorithm 2 Standby-Sparing for Fixed-Priority (SSFP)

(Events on the spare processor)

Event - A backup job Bi,j is promoted:

Add Bi,j to the upper queue on spare

Dispatch the highest RM priority job on spare

Event - A backup job Bi,j completes:

Run the acceptance test for Bi,j

if Ji,j is not completed yet then

Cancel Ji,j on primary

end if

γ ← ci − ai

for every Bk,l in Γi,j do

Yk,l = Yk,l + γ
Set new promotion event

end for

if Bi,j is the current active job then

/* Check if the spare can ‘sleep’ in the slack time of

Bi,j*/

time to next promotion ← time to earliest

promotion event

∆s ← min{ γ, time to next promotion }
if ∆s ≥ ∆crit then

Set wake-up event at t = time+∆s

Put spare to sleep state

end if

end if

Event - the spare processor wakes up:

end for

if the upper queue is not empty then

/* There are backups not yet cancelled */

Dispatch the highest RM priority job on spare

else

∆s ← time to next promotion
if ∆s ≥ ∆crit then

Set wake-up event at t = time+∆s

Put spare to sleep state

end if

end if

corresponding acceptance test [21] to check the sanity of the

computed result. If the acceptance test does not detect any

error, we cancel the corresponding backup task in the spare

processor. Then, the primary processor continues to execute

the next job in the ready queue. However, if there is no ready

task available for execution, the processor will remain idle.

The primary processor will start executing jobs again when

the next job arrives. Considering task period values, we can

compute the earliest arrival times among all future jobs in

linear time. The time to the earliest arrival time is denoted by

the time to next arrival in the pseudo code. If the idle time

exceeds the break-even time ∆crit, the primary processor is

put to sleep until next arrival.
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Fig. 8. Effect of Workload Variability

Algorithm 2 gives the actions taken in response to the

events on the spare processor. Whenever a job is promoted

to the upper queue it is eligible for execution. The spare

processor then dispatches the job at the highest RMS priority

level, without any voltage scaling. When a backup job Bi,j is

completed/cancelled, if the corresponding main task Ji,j has

not been completed yet, the execution of Ji,j is also cancelled

on the primary processor. We then compute the runtime slack

γ generated by Bi,j and delay the promotion times of the

eligible pending tasks γ units of time according to Theorem 1.

If Bi,j is the current active task on the spare processor and

no additional task is scheduled to be promoted within γ units

of time, the spare processor can remain idle for γ units of

time. However, if a job is promoted before that, the spare will

have to resume execution to avoid any deadline violation. The

earliest promotion time among all instances of the jobs can be

also computed in linear time. The time to earliest promotion

event is denoted by the variable time to next promotion in

the pseudo-code. If the idle interval is greater than ∆crit, the

spare is put to sleep and the corresponding wake-up event

is scheduled. As the wake-up timer expires, the wake-up

event handler in the spare is initiated. At wake-up, the spare

inspects the upper queue. If the upper queue is empty, an

attempt is made to switch to sleep state by considering the

next promotion time. Otherwise, the highest-priority job is

dispatched.

VI. EVALUATIONS

To evaluate the performance of our scheme experimentally,

we constructed a discrete-event simulator in C. We compare

our scheme against the state-of-the-art time redundancy-based

energy and reliability management technique RAPM [31],

[32]. RAPM selects a subset of the main tasks for slowdown

through DVS and schedules a separate recovery task for each

of those tasks to mitigate the reliability loss due to voltage

scaling. One advantage of RAPM is that both the main and

recovery tasks can be executed on the same processor. Hence,

unlike standby-sparing systems, it requires only one processor

and avoids the potential energy overhead of the spare proces-

sor. However, this is also a shortcoming in terms of inability to

tolerate possible permanent fault of the processor. In addition,

due to the limited computational power, the workload may

need to be executed at high frequency to meet the deadlines.

We also implemented a clairvoyant version of our SSFP

scheme, called SSFP*. SSFP* has a priori information about

the actual execution time of the tasks and hence can make

optimal DPM decisions in terms of putting the processor to

sleep state when it is idle. Unlike SSFP, SSFP* is not practical;

but it is included as a yardstick algorithm. We do not include

any comparison with [9], [10], [26], as they are limited to

aperiodic, non-preemptive workloads. Similarly, the scheme in

[13] is not included as it targets dynamic-priority EDF-based

periodic systems and requires constructing the full schedule

for the hyperperiod in advance.

In our simulations, for each data point, we conducted

1000 experiments and computed the average. The results are

normalized with respect to the scheme which executes the

main tasks at the maximum frequency without any power

or reliability management. We call this scheme NPM (No

Power Management). We evaluated the performance of SSFP

and RAPM across different system parameters including the

total utilization (Utot), the ratio of worst-case to best-case

execution time (WC/BC), the state transition overhead and

the number of tasks. The worst-case utilizations of the tasks

are generated randomly using the UUnifast scheme [3]. The

periods are generated randomly between 10 and 100 ms. Given

the worst-case utilization of a task, its worst-case execution

time (WC) is computed as the product of its period and worst-

case utilization. Following [12], [24], the actual execution time

of a task instance is then obtained randomly according to the

normal distribution with mean (WC + BC)/2 and variance

(WC + BC)/6 to ensure that 99.7% of the actual execution

times lies within the [BC, WC] range of the task. The default
value for the WC/BC ratio is 5 and the number of tasks in

each task set is 15 unless otherwise specified.

The energy parameters are computed based on the Freescale

MPC8536 processor [33]. The default value for static power

and frequency-independent power consumption are set to

5% and 15% of the maximum frequency-dependent power

consumption, respectively. The energy-efficient state transition

time ∆crit is set to 1500 µs [33]. On the primary, we use the

Cycle-Conserving DVS algorithm proposed for RMS in [20].

We first evaluate the reliability performance of the schemes

with respect to transient faults. Figure 6 shows the probability

of failure (PoF) trends, which is defined as 1 − reliability

[32]. Clearly, the lower PoF, the higher the reliability. Using

the analytical formulations of system reliability as a function

of the processing frequency and the number of backups (the

details of the reliability evaluation can be found in Appendix),

we computed the PoF value for each task set. The results are
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Fig. 9. Impact of Break-even Time

normalized with respect to that of NPM scheme, which also

represents the original reliability of the system in the absence

of power or reliability management. At very low utilization

levels RAPM can reserve a recovery for every task, and

achieve low PoF figures comparable to SSFP. As the system

load (utilization) increases, RAPM is unable to assign recovery

tasks to some main tasks and its PoF increases (reliability

degrades), approaching that of NPM. SSFP, on the other hand,

can maintain a high system reliability as it always allocates

a backup task for every main task. We observe that SSFP

can offer to up to 100 times lower PoF numbers compared

to RAPM. Also note that SSFP can effectively tolerate the

permanent fault of any single processor.

Next we evaluate the impact of the system load, as we

increase the total utilization from 0.1 to 0.69 (the asymptotic
schedulability bound for RMS [18]), in Figure 7. We observe

that at low utilization values, RAPM consumes less energy

than the proposed SSFP schemes due to the static power

consumed by the spare processor. However, as utilization

increases, SSFP outperforms RAPM and can achieve up to

25% additional energy savings when Utot exceeds 0.4. The
main reason is that RAPM is forced to run at high frequency

at high utilization values, consuming excessive energy. On

the other hand, SSFP can still adopt relatively low execution

frequencies on the primary, by dynamically delaying and,

in many cases, cancelling the backup tasks on the spare.

SSFP* can offer marginally better energy performance in these

settings thanks to the exact prediction of the idle intervals.

Figure 8 shows the impact of workload variability. For these

experiments, we set the total utilization to 0.5 and vary the

WC/BC ratio from 1 to 10. As this ratio increases, the actual

workload increasingly deviates from the worst-case, and the

energy consumption decreases for all schemes. We observe

that SSFP outperforms RAPM in the entire input spectrum.

When WC/BC = 1, the algorithms differ in their handling of
static slack. SSFP* outperforms SSFP by taking advantage of

the backup cancellation information to initiate some additional

sleep intervals. As the WC/BC ratio increases, we have

increasing dynamic slack. The early completions allow SSFP

to further delay and cancel backup tasks.

We also explore the effect of state transition overhead when

applying DPM to switch the processor to sleep states at run-

time. As the state transition overhead increases, the system

needs to stay in the sleep state longer to compensate the
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high overhead. Figure 9 shows the impact of varying ∆crit.

As ∆crit increases, all schemes consume more energy due

to longer enforced waits in idle state and less transitions to

low-power sleep state. When ∆crit approaches the minimum

task period in the system, the energy consumption for SSFP

increases sharply. The reason is that, at this point, SSFP can

very rarely put the spare processor to sleep due to the timing

constraints, consuming high energy. This is in contrast to

SSFP* that can predict the actual length of the sleep interval

and thus can take advantage of the backup cancellation to

put the spare to sleep state. Figure 10 shows the impact of

changing the number of tasks in the system. The performance

of SSFP is not significantly affected by the number of tasks.

However, with large number of small tasks, RAPM can

make better use of the dynamic slack generated at run-time.

Therefore its energy consumption drops with increased number

of tasks.

VII. CONCLUSIONS

In this paper, we considered the problem of joint energy

and reliability management for fixed-priority periodic real-

time tasks. By using a dual-processor standby-sparing system

and a dual-queue mechanism, we proposed the algorithm

SSFP that delays the backup tasks on the spare as much as

possible. When compared to the time-redundancy techniques

experimentally, our solution is seen to save more energy at

medium to high load values despite deploying the additional

spare processor, while offering clear advantages in terms of

reliability. To the best of our knowledge, this is the first work

for energy-efficient scheduling of fixed-priority periodic tasks

on a standby-sparing system.
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APPENDIX

Details of Reliability Evaluation

In this section, we provide the details of the reliability eval-

uation methodology we followed in Section VI. As discussed

in Section II-C, the fault rate at frequency f is expressed as:

λ(f) = λ0 · 10
d(1−f)
1−fmin

For the set of experiments in Figure 6, λ0 is set to 10−6 and

d is set to 2 [32]. The reliability of a job is defined as the

probability of executing the task successfully in the presence

of potential transient faults. The reliability of a single job Ji,j

running at frequency fi,j can then be expressed as [30]:

Ri,j = e
−λ(fi,j)

ci
fi,j

The system reliability is the probability of executing all jobs

correctly even in the presence of transient faults. The system



reliability can be computed by evaluating the product of

reliability figures over all the jobs [28].

R = Π∀i,j
Ri,j (4)

We now discuss how we obtained overall reliability figures

for SSFP, RAPM, and NPM. The SSFP scheme allocates a

backup job for every main job in the system. The main job

executes at a lower frequency according to DVS policy, while

the backup job is executed at fmax. Therefore, a job will fail

only if both the main job and the corresponding backup job

fails. So, the reliability of a job in the SSFP system is:

Ri,j = 1− [(1− e
−λ(fi,j)

ci
fi,j )(1 − e−λ(fmax)

ci
fmax )]

RAPM on the other hand selects a subset of task for slowdown.

A recovery task is allocated for those tasks only. Moreover,

the recovery task is executed only if the main task fails. The

tasks that are not selected execute at fmax. So, if a task τi is

chosen for slow down and hence is assigned a recovery task,

the reliability for a job of τi can be computed as [31],

Ri,j = e
−λ(fi,j)

ci
fi,j + (1− e

−λ(fi,j)
ci

fi,j )e−λ(fmax)
ci

fmax

On the other hand, if τi is not assigned a replica, the reliability

of one its jobs will be

Ri,j = e−λ(fmax)
ci

fmax (5)

With the NPM scheme, the reliability level of of the system is

equal to the original reliability level in the absence of voltage

scaling and backup scheduling. NPM executes only the main

tasks at the maximum frequency. Hence, the reliability of a job

in NPM follows Equation (5). After computing the individual

job reliability values for all the schemes, we obtain the overall

system reliability according to Equation (4). The probability

of failure (PoF) is obtained by subtracting the total reliability

from 1. The probability of failure values are presented in

normalized form with respect to the NPM scheme.


