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Abstract—Energy management and reliability are two impor-
tant design objectives for real-time embedded systems. Recently,
the standby-sparing scheme that uses a primary processor and
a spare processor has been exploited to provide fault tolerance
while keeping the energy consumption under control through
DVS and DPM techniques. In this paper, we consider the standby-
sparing technique for fixed-priority periodic real-time tasks. We
propose a dual-queue mechanism through which the execution
of backup tasks are maximally delayed, as well as online
algorithms to manage energy consumption. Our experimental
results show that the proposed scheme provides energy savings
over time-redundancy based techniques while offering reliability
improvements.

I. INTRODUCTION

Energy efficiency is a major design dimension for many
embedded systems. Several energy management techniques
have been widely studied in recent literature. Dynamic Voltage
Scaling (DVS) reduces the energy consumption by switching
CPU frequency and voltage to low levels [20]. Another well-
known technique is the Dynamic Power Management (DPM),
through which the system is put to sleep/low-power states
when it is idle. A key challenge in DPM is to guarantee that
the energy saved in the low-power state is not offset by the
time/energy overhead involved in power state transitions [2],
[7]. Moreover, the timing constraints of real-time embedded
applications impose strict constraints on the applicability of
these techniques [15], [20], [22]. A few recent studies inves-
tigated how to combine DVS and DPM to maximize energy
savings in the context of a single real-time application [8],
[29].

Another increasingly important design objective is reli-
ability. In fact, computer systems are vulnerable to faults
which often manifest as runtime errors. Faults are generally
classified as tranmsient or permanent faults [21]. The tran-
sient faults which lead to temporary soft errors (or single
event upsets (SEUs)) are known to be more frequent than
the permanent faults [14], [30]. Transient faults are often
induced by electromagnetic interference and cosmic radiations
[14]. Most importantly, the increase in component density of
CMOS circuits and aggressive power management schemes
significantly increase the vulnerability of systems to transient
faults [11], [30]. A common way to deal with transient faults
is to rely on additional slack time (time redundancy) to
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re-invoke the faulty tasks [21], [32]. Permanent faults, on
the other hand, are caused by hardware failures, including
manufacturing defects and circuit wear out. This may lead to
the unavailability of the system for extended time periods until
it is repaired or replaced. In real-time embedded systems that
need to be operational continuously, permanent faults can only
be dealt with extra processors (hardware redundancy) [21].

Given the importance of both design dimensions, the
research community has recently started to explore the
co-management of energy and reliability more aggressively.
For example, the popular DVS technique tends to increase
the rate of transient faults [11], [30] at low voltage/frequency
levels. Consequently, several studies focused on mitigating
the reliability degradation due to DVS by provisioning for
extra recovery tasks that are invoked at maximum frequency
if errors are detected in the scaled tasks [19], [27], [28], [32].
These time-redundancy based techniques are applicable to, and
explored mostly on, the single-processor settings.

The increasing availability of multicore/multiprocessor sys-
tems is also making the deployment of additional processor
units in the co-management of energy and reliability more
appealing. With extra processors (hardware redundancy), the
system can sustain permanent faults of some processors.
A particularly interesting framework, in that regard, is the
standby-sparing systems [9], [10], [26].

In a standby-sparing solution, a dual-processor system that
consists of a primary and a spare processor is deployed.
Associated with each task executed on the primary processor, a
separate backup task is scheduled on the spare processor. The
system inherently tolerates the permanent fault of any of the
processors. Moreover, the primary processor uses both DVS
and DPM: the aim is to minimize the energy consumption of
the real-time workload. The spare processor uses only DPM;
the objective is to keep the spare in idle/sleep states during
long intervals by invoking the backups as late as possible.
Consequently, several solutions are suggested in the literature
to minimize the overlap between the two copies of the same
task on both processors, in order to be able to cancel the
high-cost backup execution on the spare when the copy on the
primary completes successfully [9], [10], [26]. These solutions
are limited to aperiodic, non-preemptive workloads, while a
significant portion of the applications on real-time embedded



systems are preemptive and periodic in nature. Moreover, they
rely on the existence of the entire static feasible schedule
so that it can be manipulated to obtain the schedule of the
backup tasks. The work in [13] provides a solution for periodic
preemptive workloads scheduled with the Earliest Deadline
First (EDF) policy on the primary. However, the solution is
computationally expensive (it generates beforehand the entire
schedule for the hyperperiod using the Earliest Deadline Late
(EDL) algorithm [5]) and is not applicable to fixed-priority
systems that are more frequently deployed.

In this paper, we consider a dual-processor standby-sparing
system that executes a fixed-priority periodic real-time work-
load. As in existing standby-sparing solutions, the primary
processor uses both DVS and DPM, while the spare relies only
on DPM for energy management. To address the problem of
maximally delaying the backup tasks on the spare, we propose
an efficient dual-queue mechanism. Our solution is inspired
by the Dual-Priority Scheduling framework [6] which was
originally proposed to improve the responsiveness of soft real-
time tasks in a system with a hard real-time workload. We
show how this solution can be coupled with a DVS-enabled
low-energy schedule on the primary to achieve energy savings.
Moreover, we provide a delayed promotion rule that dynami-
cally postpones the execution of the pending backups when the
earlier backup tasks are cancelled at runtime. The experimental
results suggest that while offering definitive advantages on the
reliability side and an ability to withstand permanent faults, our
standby-sparing fixed-priority (SSFP) algorithm provides also
non-trivial energy gains over the traditional time-redundancy
solutions for medium-to-high load conditions. In addition, our
framework has low computational complexity and run-time
overhead, making it appealing for periodic and preemptive
execution settings.

The rest of the paper is organized as follows. In Sec-
tion II, we present our workload and power models, and our
assumptions. In Section III, we elaborate on the features of
the standby-sparing solutions in joint management of relia-
bility and energy. We review the principles of Dual-Priority
Scheduling in Section IV. Then the details of our solution are
presented in Section V. Section VI presents our experimental
evaluation and finally we conclude in Section VII with a
summary of our contributions.

II. MODELS AND ASSUMPTIONS
A. Workload Model

We consider a set of periodic real-time tasks ¥ =
{m,...,7»}. Each task 7; has the period P; and the worst-
case execution time ¢; under the maximum available CPU
frequency. The j'" job of task 7; (namely, J; ;) arrives at time
ri; = (j — 1) - P; and must complete by its deadline j - P;.
Hence, the relative deadline D; of job J; ; is equal to the
period P;. The utilization of task 7; is defined as 1% and the
total utilization U, is the sum of individual task utilizations.

For reliability and fault tolerance purposes, we associate
with each task 7; a backup task B; having the same timing
parameters as 7;. The j*" instance (job) of B; is denoted by

B; ;. To distinguish with the backup tasks, we occasionally
use the term main task to refer to a task in W. The aggregate
workload that consists of the main and backup tasks are
executed on a dual-processor standby-sparing system with one
primary and one spare processor [9], [21]. On each processor,
tasks are scheduled according to Rate Monotonic Scheduling
(RMS) policy, which is known to be optimal for fixed-priority
periodic workloads [18].

B. Power Model

Each processor has the capability of operating in three
different power modes. The tasks are executed in the active
state of the processor. When the processor is not executing
tasks, it can be in idle or sleep states. We now describe the
power characteristics of each of these states.

1) Active: We model the power consumption in the active
mode following recent works on energy and reliability
management [25], [28], [32]. The power consumption
of the system consists of static and dynamic power
components. The static power Ps is dominated by the
leakage current of the system. The dynamic power
P, includes a frequency-independent power component
P;pq driven by the modules such as memory and /O
subsystem in the active state, and a frequency-dependent
power component which depends on the supply voltage
and frequency of the system.

Pactive - Ps + Pind + CeVdef (1)

Above, C, denotes the effective switching capacitance.
The processor supply voltage Vg4 has a linear relation-
ship with frequency f. Therefore, Equation (1) can be
re-written as,

Pactive = Ps + Pind + Cef3

When the voltage/frequency scaling is applied through
the DVS technique, the processor frequency can be
adjusted within a range between a minimum CPU fre-
quency fmin and a maximum CPU frequency fiaz.
All frequency values in the paper are normalized with
respect t0 fraxr (€. finae = 1.0). Note that the
existence of Ps and P;,4 implies the existence of a
threshold frequency, called critical speed or energy-
efficient frequency, below which DVS ceases to be
effective [15], [30].

2) Idle: The processor can switch to idle power state when
it is not executing any task. In this state, the processor
consumes low dynamic power, Py. The overhead for
transitioning to idle state and back is not significant; for
example, the processor can return to active state within
10 ns in recent processor designs [16]. Hence, the power
consumption in idle state is given by:

Pigie = Ps + Py



3) Sleep: Sleep state is the lowest power state for the
processor. In this state, power components other than the
static power P, become negligible. Ideally, we would
like to put the processor to sleep state whenever the
system is idle. However, putting a processor to sleep
state involves significant time and energy overhead [33].
Due to this transition overhead, the concept of break-
even time (A.;;) is introduced in literature [2], [4]. If
the processor is put to sleep state for at least as long
as A.qi¢ time, the energy savings in the sleep state
can amortize the transition overhead. This is the key
idea behind the Dynamic Power Management (DPM)
scheme [2], [4], [7]. In DPM scheme, when the idle
interval is expected to exceed A, the processor is
transitioned to sleep state for energy savings. Therefore,
it is beneficial to have longer idle intervals to take
advantage of the DPM technique. If the idle interval
is expected to be relatively short, the processor switches
to idle state instead.

C. Fault Model

The system that we consider may be subject to both per-
manent and transient faults. Our system, by taking advantage
of the hardware redundancy provided by the primary and
spare processor, can tolerate at most one permanent fault. We
consider only the permanent fault of processing units. The
permanent faults of other components in the system (e.g. main
memory) are not considered in this work.

We consider a transient fault model similar to [30], [32]. The
faults occur according to Poisson distribution with a known
average rate A\ [27]. The average fault rate A is dependent on
the CPU frequency. In fact, A\ increases exponentially with the
decrease in CPU frequency [11], [30]. Suppose, the average
fault rate at the maximum CPU frequency is denoted by .
Then, the average fault rate for a frequency f can be expressed
as [30]:

d(1—f)

A(f) = Ao - 1077

The exponent d (typically a constant > 0) represents the
sensitivity of the system to voltage scaling. With higher values
of d, the reliability of the system degrades rapidly with system
voltage.

The reliability of a job is defined as the probability of
executing the task successfully in the presence of potential
transient faults. The reliability of a single job J; running at
frequency f; can be expressed as [30]:

R(f;) = e O
The probability of failure for the job J; is then given by:
PoF(f;) =1—Ri(f:)

At the completion of a job in any processor, the system
initiates an acceptance test [21], [32] considering the output of
the job. The result of this acceptance test is used to determine
the occurrence of errors induced by transient faults.

III. STANDBY-SPARING SYSTEMS

Standby-sparing system solutions have been recently ex-
plored to enhance the reliability of real-time embedded
systems, by exploiting increasingly available dual-processor
settings [9], [10], [13]. Here, the dual-processor system is
configured as a primary and a spare processor. The primary
processor has both DVS and DPM capability, and executes the
main tasks of the workload. The backup tasks, each associated
with a main task, are scheduled on the spare processor. The
spare processor does not employ voltage/frequency scaling;
hence it can delay the execution of the backup tasks as much as
possible, and execute them at the maximum processing speed
before their deadlines when needed.

At the completion of each job, the acceptance test is
performed to determine the existence of an error induced by
a transient fault. If no error is detected, the copy running
(or, scheduled to run) on the other processor is cancelled;
otherwise that copy is executed according to the schedule on
its own processor.

Standby-sparing systems have the following features:

o The primary processor can use both DVS and DPM as
needed and in tandem to reduce the energy consumption
by employing sophisticated system-level energy man-
agement solutions. On the other hand, by delaying the
backup tasks as much as possible and cancelling them
when the main copy completes successfully, the extra
energy overhead due to the second (spare) processor is
significantly reduced, thanks to the use of DPM.

o By scheduling the main and backup copies of all the
jobs on separate processors, the system can tolerate the
permanent fault of a single processor: the functional
processor can finish the workload even if the faulty
processor remains unavailable.

o In terms of robustness with respect to transient faults, by
scheduling a backup copy of each job at the maximum
frequency (if needed), the reliability loss due to the
application of DVS on the primary processor is fully
mitigated [32].

Despite these promises, the main technical challenge in
standby-sparing systems is how to delay the backup tasks on
the spare processor while still guaranteeing their deadlines
with low computational overhead. Notice that if both the main
and backup copies of a given job are scheduled concurrently
on two processors, the power consumption significantly in-
creases due to high-power profile of the spare processor. Con-
sequently, a key issue is to minimize the concurrent executions
of the main and backup tasks as much as possible. For periodic
workloads scheduled by preemptive scheduling policies (such
as RMS), reaching these objectives with low overhead is
particularly challenging. Our solution to this problem is based
on dual-priority scheduling framework, which is described
next.



IV. DUAL-PRIORITY SCHEDULING

Dual-priority scheduling [6] was originally proposed to
improve the response time of soft (or, non-real-time) tasks
(SRTs) in a system that also executes periodic hard real-time
(HRT) tasks according to the RMS policy. Specifically, the
scheme uses three ready queues, denoted as lower, middle, and
upper queues. The names of the queues reflect their execution
priorities: the scheduler first executes jobs in the upper queue.
Jobs in the middle and lower queue are executed, and in that
order, only if the upper queue is empty.

SRTs always execute in the middle queue. An HRT instance,
on the other hand, is first put to the lower queue upon
its release. However, after a certain time interval, the HRT
instance is promoted to the upper queue and is eligible for
urgent service. The jobs in the upper queue are executed
according to rate-monotonic priorities.

The main objective of the scheme is to offer relatively
fast service to SRT instances as long as the timeliness of
the HRT instances is not compromised. The key problem in
dual-priority scheduling is to determine the promotion time
for HRTs, to make sure that they will eventually make their
deadlines in the upper queue, using RMS. The promotion time
is computed based on the worst-case response time of the task
under RMS. Specifically, if S; is the worst-case response time
of the task with relative deadline D; under RMS (which can be
computed through well-known analysis techniques [1]), then
the promotion time for 7;, after its release time is computed
as:

Y; = D -5 2

The above result follows from the fact that if all other
high priority HRTs were to be promoted simultaneously to the
upper queue at time Y; (which would maximize the response
time of 7, under RMS [18]), then 7; would be still able to
meet its deadline.

V. STANDBY-SPARING FOR FIXED-PRIORITY SCHEDULING

Our proposal in this work is based on the observation
that the dual-priority mechanism provides a powerful basis
to manage the execution of the backup copies on the spare
processor with low offline and online computational overhead.
To illustrate the main components of our solution, we first
present a running example. Consider three periodic tasks 7, 72
and 73. The worst-case execution time and periods of the tasks
are given as ¢ = 2,P, = 10,¢c0 = 2, P, = 15,¢3 = 3
and P3 = 30. Figure 1 shows the schedule for this task set
during the hyperperiod (the least common multiple of all the
task periods), when executed according to the rate-monotonic
priorities. In the figure, the arrows indicate the arrival times
of jobs of periodic tasks.

Now consider a dual queue mechanism to delay the exe-
cution of the tasks. Specifically, at arrival, jobs are put to the
lower queue and after the corresponding promotion time they
are promoted to the upper queue. The promotion times are
computed statically for each task before execution. There is

URY ST RER M M m
0 5 10 15 20 2s 30
Fig. 1. A typical fixed-priority schedule
' R '
TP T2 930 M Jis
0 5 10 s 20 25 30
Fig. 2. Fixed-priority schedule with delayed execution

no middle queue and jobs are executed only when they are in
the upper queue based on RM priorities. This will essentially
delay the execution of each backup job while still meeting its
deadline. For the computation of the promotion times, we note
that there are multiple techniques to compute the worst-case
response time of the tasks [1]. For example, the time-demand
analysis technique (TDA) [17] can be used to compute the
exact worst-case response time of each task. However, it is of
pseudo-polynomial time complexity and it may involve non-
trivial overhead as the ratio of the maximum period to the
minimum period gets larger. Instead, in this paper, we adopt
the conservative but fast (linear-time) technique used in [20]
to compute an upper bound on the response time of task 7;:

Si = ZT]E hp(TL)’—(PJ/Pi)—l X Cj + G (3)

where, hp(7;) is the set of tasks with priority higher than ;.

By substituting Equation (3) in (2), the promotion times
(Y; = D; — S;) for the example task set can be computed as:
Y1 =8,Y, =9, and Y3 = 17. Figure 2 shows the delayed
execution scenario according to these above mentioned princi-
ples. Despite the explicitly enforced delays, all jobs still meet
their deadlines. We underline that the formula (3) will be also
instrumental for our online delayed promotion rule that further
improves the performance.

Now, consider a dual-processor standby-sparing scheme
where the DVS-enabled primary executes the main tasks
according to RMS. The total utilization of the task set is
0.433. The Liu-Layland utilization bound [18] for task sets
with 3 tasks is 0.88. So, we can safely slow down the
primary processor by using the frequency f = 0.5. The spare
executes the backups {B; ;} through the described dual-queue
mechanism at the maximum frequency. Figure 3 shows the
corresponding schedules for the primary and spare processors.
It is notable that, thanks to the dual-queue mechanism, the
backups on the spare are significantly delayed and the overlaps
with the main tasks on the primary are minimized.

In fact, this feature enables us to cancel backup jobs when
the main copy of the job completes successfully (i.e. without
incurring transient faults) on the primary. Thus, we can avoid
the execution of the backups by coupling it with the primary
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schedule. For example, assume that J;; and J>; complete
successfully on the primary; then B;; and Bj; will be
completely cancelled. J3 1 will be preempted by J; 2, which
is assumed to be subject to a transient fault (Figure 4). This
implies that the backup job B; 2 will need to be executed ac-
cording to the pre-computed schedule on the spare. Note that,
B3 1 starts executing at its promotion time 17 as its main copy
(which was preempted) did not complete yet. However, when
the backup copy B3 completes at time 22, the remaining
fraction of the main job Js ; can be also cancelled. Assuming
that all the remaining main tasks complete successfully, we
obtain the schedules in Figure 4.

Further online optimizations are also possible. In fact, main
tasks on the primary processor typically complete success-
fully as faults are relatively rare. In addition, the worst-
case execution time is often a pessimistic estimate of the
actual execution time. This also increases the chance of early
completion or entire cancellation of the backups on the spare
processor. Whenever a backup is cancelled or completes early,
the runtime slack can be used to further delay the promotion
time of other pending backup jobs.

Suppose that a backup job B;; has been cancelled after

executing a; ; units of time from its allocated ¢; units of CPU
time. Note that a;; = 0 if B;; is cancelled entirely. All
pending backup jobs released before B; ; and with a priority
lower (hence, periods larger) than B; ; will benefit from the
reduced interference of B; ;.

We use the notation I'; ; to denote the set of backup jobs
that benefit from (i.e. that can be promoted later with) the
early completion of B; ;. Formally:

Fi,j:{Bk,l|Bk’,l is in lower queue /\(Pk > Pi)/\(TkJ < 7“7;73‘)}

The following theorem gives the amount by which the
promotion time of a job By; € I';; can be delayed without
missing its deadline.

Theorem 1. 1f a backup job B; ; completes or is cancelled
after executing for a; ; units of time, the promotion time for
any job By ; € I'; ; can be delayed by ¢; — a; ; units of time.

Proof: Let us consider any arbitrary job By; € I'; ;.
The release time of By is 71 and its absolute deadline is
Dy, ;. Assume that the earlier promotion time was t; which
is delayed to ¢;. Now according to the rule of determining
promotion time, (D, — %) is the maximum response time
for By ;. According to the definition of I'; ;, B; has priority
higher than By and B; ; is released after By, ;. Therefore B; ;
is supposed to interfere with the execution of Bj; and it is
considered in the response time of Bj ;. Suppose that the set
of tasks with priority higher than By, is denoted by hp(By)
and for each task B,, € hp(By), n., instances interfere with
By 1.

Dy —to = ck + B, chp(By)m X Cm

This can be rewritten as,
Dy1—to = ck +XB,, e{hp(By)—B;}m X Cm + (1 —1) X ¢i+¢;

where the last component (¢;) represents the worst-case inter-
ference due to B; ;. Recall that, by assumption, B; ; completes
after executing a; ; < ¢; time units. Consequently the response
time of Bj; decreases by an amount of ¢; — a;; and its
promotion time ¢y can be delayed to ¢; = to+c¢; —a;,; without
compromising its deadline. [ ]

Figure 5 shows an example of delayed promotion enabled by
the result in Theorem 1. As backup tasks By 1, B2 1 and Ba o
are cancelled, the promotion time for the backup task Bs;
can be delayed to 23 beyond the originally computed instant
of 17. As a result, the chances of cancelling B3 ; would be
higher in an actual execution, in particular if the main job J3 ;
completes earlier than the worst-case.

Algorithm SSFP. We are now ready to present the full details
of our algorithm SSFP. The primary processor schedules
tasks without any delay and uses both DVS and DPM. Its
supply voltage/frequency can be selected according to various
algorithms proposed in literature [20], [22], [23]. The spare
processor, on the other hand, uses the dual-queue mechanism
and applies only DPM for energy management. The promotion
time of each back-up job B;; is computed by adding its
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Algorithm 1 Standby-Sparing for Fixed-Priority (SSFP)
(Events on the primary processor)

Event - A job of 7y, J; ; is released:
Add J; ; to the ready queue on primary
Add B; ; to the lower queue on spare
Y,; <« Y;
Set timer for promotion event at t = time + Y ;
Dispatch the highest RM priority job on primary

Event - The job .J; ; completes on primary:
Run the acceptance test for J; ;
if no error is detected and B; ; is not completed yet then
Cancel B; ; on spare
end if
if ready queue of primary is empty then
time_to_next_arrival <« time to earliest
release time
A, «— time_to_next_arrival
if A, > A+ then
Put primary to sleep state for A, units of time
end if
/* jobs are available for execution */
Dispatch the highest RM priority job on primary
end if

else

release time to Y;, the pre-computed promotion time for task
B;.

The algorithm is invoked at every job release, completion,
and cancellation time. The detailed pseudo-code is presented in
Algorithms 1 and 2. Algorithm 1 shows the events on the pri-
mary processor and the corresponding actions. At job arrival,
the main job is added to the ready queue. A corresponding
backup job is also added to the lower queue on the spare. With
the pre-computed promotion time, a timer is set accordingly
to promote the backup job to the upper queue in the future.
The primary processor then dispatches jobs according to RMS
policy. When a job completes on the primary, we invoke the

Algorithm 2 Standby-Sparing for Fixed-Priority (SSFP)
(Events on the spare processor)

Event - A backup job B; ; is promoted:
Add B; ; to the upper queue on spare
Dispatch the highest RM priority job on spare

Event - A backup job B; ; completes:
Run the acceptance test for B; ;
if J; ; is not completed yet then
Cancel J; ; on primary
end if
D C A ¢ 7}
for every By ; in I'; ; do
Yii = Y1 + v
Set new promotion event
end for
if B; ; is the current active job then
/* Check if the spare can ‘sleep’ in the slack time of
B; ;*/
time_to_next_promotion <« time to earliest
promotion event
A; «— min{ v, time_to_next_promotion }
if A, > A, then
Set wake-up event at t = time + Ag
Put spare to sleep state

end if

end if

Event - the spare processor wakes up:
end for
if the upper queue is not empty then
/* There are backups not yet cancelled */
Dispatch the highest RM priority job on spare
else
Ag «— time_to_next_promotion
if A, > A then
Set wake-up event at ¢ = time + Ag
Put spare to sleep state
end if
end if

corresponding acceptance test [21] to check the sanity of the
computed result. If the acceptance test does not detect any
error, we cancel the corresponding backup task in the spare
processor. Then, the primary processor continues to execute
the next job in the ready queue. However, if there is no ready
task available for execution, the processor will remain idle.
The primary processor will start executing jobs again when
the next job arrives. Considering task period values, we can
compute the earliest arrival times among all future jobs in
linear time. The time to the earliest arrival time is denoted by
the time_to_next_arrival in the pseudo code. If the idle time
exceeds the break-even time A, the primary processor is
put to sleep until next arrival.
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Algorithm 2 gives the actions taken in response to the
events on the spare processor. Whenever a job is promoted
to the upper queue it is eligible for execution. The spare
processor then dispatches the job at the highest RMS priority
level, without any voltage scaling. When a backup job B; ; is
completed/cancelled, if the corresponding main task .J; ; has
not been completed yet, the execution of J; ; is also cancelled
on the primary processor. We then compute the runtime slack
v generated by B;; and delay the promotion times of the
eligible pending tasks v units of time according to Theorem 1.
If B; ; is the current active task on the spare processor and
no additional task is scheduled to be promoted within ~ units
of time, the spare processor can remain idle for ~ units of
time. However, if a job is promoted before that, the spare will
have to resume execution to avoid any deadline violation. The
earliest promotion time among all instances of the jobs can be
also computed in linear time. The time to earliest promotion
event is denoted by the variable time_to_next_promotion in
the pseudo-code. If the idle interval is greater than A+, the
spare is put to sleep and the corresponding wake-up event
is scheduled. As the wake-up timer expires, the wake-up
event handler in the spare is initiated. At wake-up, the spare
inspects the upper queue. If the upper queue is empty, an
attempt is made to switch to sleep state by considering the
next promotion time. Otherwise, the highest-priority job is
dispatched.

VI. EVALUATIONS

To evaluate the performance of our scheme experimentally,
we constructed a discrete-event simulator in C. We compare
our scheme against the state-of-the-art time redundancy-based
energy and reliability management technique RAPM [31],
[32]. RAPM selects a subset of the main tasks for slowdown
through DVS and schedules a separate recovery task for each
of those tasks to mitigate the reliability loss due to voltage
scaling. One advantage of RAPM is that both the main and
recovery tasks can be executed on the same processor. Hence,
unlike standby-sparing systems, it requires only one processor
and avoids the potential energy overhead of the spare proces-
sor. However, this is also a shortcoming in terms of inability to
tolerate possible permanent fault of the processor. In addition,
due to the limited computational power, the workload may
need to be executed at high frequency to meet the deadlines.

We also implemented a clairvoyant version of our SSFP
scheme, called SSFP*. SSFP* has a priori information about
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Fig. 8. Effect of Workload Variability

the actual execution time of the tasks and hence can make
optimal DPM decisions in terms of putting the processor to
sleep state when it is idle. Unlike SSFP, SSFP* is not practical,
but it is included as a yardstick algorithm. We do not include
any comparison with [9], [10], [26], as they are limited to
aperiodic, non-preemptive workloads. Similarly, the scheme in
[13] is not included as it targets dynamic-priority EDF-based
periodic systems and requires constructing the full schedule
for the hyperperiod in advance.

In our simulations, for each data point, we conducted
1000 experiments and computed the average. The results are
normalized with respect to the scheme which executes the
main tasks at the maximum frequency without any power
or reliability management. We call this scheme NPM (No
Power Management). We evaluated the performance of SSFP
and RAPM across different system parameters including the
total utilization (Uy,:), the ratio of worst-case to best-case
execution time (WC'/B(C), the state transition overhead and
the number of tasks. The worst-case utilizations of the tasks
are generated randomly using the UUnifast scheme [3]. The
periods are generated randomly between 10 and 100 ms. Given
the worst-case utilization of a task, its worst-case execution
time (W) is computed as the product of its period and worst-
case utilization. Following [12], [24], the actual execution time
of a task instance is then obtained randomly according to the
normal distribution with mean (WC + BC)/2 and variance
(WC + BC)/6 to ensure that 99.7% of the actual execution
times lies within the [BC, W] range of the task. The default
value for the WC'/BC ratio is 5 and the number of tasks in
cach task set is 15 unless otherwise specified.

The energy parameters are computed based on the Freescale
MPC8536 processor [33]. The default value for static power
and frequency-independent power consumption are set to
5% and 15% of the maximum frequency-dependent power
consumption, respectively. The energy-efficient state transition
time A is set to 1500 ps [33]. On the primary, we use the
Cycle-Conserving DVS algorithm proposed for RMS in [20].

We first evaluate the reliability performance of the schemes
with respect to transient faults. Figure 6 shows the probability
of failure (PoF) trends, which is defined as 1 — reliability
[32]. Clearly, the lower PoF, the higher the reliability. Using
the analytical formulations of system reliability as a function
of the processing frequency and the number of backups (the
details of the reliability evaluation can be found in Appendix),
we computed the PoF value for each task set. The results are
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normalized with respect to that of NPM scheme, which also
represents the original reliability of the system in the absence
of power or reliability management. At very low utilization
levels RAPM can reserve a recovery for every task, and
achieve low PoF figures comparable to SSFP. As the system
load (utilization) increases, RAPM is unable to assign recovery
tasks to some main tasks and its PoF increases (reliability
degrades), approaching that of NPM. SSFP, on the other hand,
can maintain a high system reliability as it always allocates
a backup task for every main task. We observe that SSFP
can offer to up to 100 times lower PoF numbers compared
to RAPM. Also note that SSFP can effectively tolerate the
permanent fault of any single processor.

Next we evaluate the impact of the system load, as we
increase the total utilization from 0.1 to 0.69 (the asymptotic
schedulability bound for RMS [18]), in Figure 7. We observe
that at low utilization values, RAPM consumes less energy
than the proposed SSFP schemes due to the static power
consumed by the spare processor. However, as utilization
increases, SSFP outperforms RAPM and can achieve up to
25% additional energy savings when Uy, exceeds 0.4. The
main reason is that RAPM is forced to run at high frequency
at high utilization values, consuming excessive energy. On
the other hand, SSFP can still adopt relatively low execution
frequencies on the primary, by dynamically delaying and,
in many cases, cancelling the backup tasks on the spare.
SSFP* can offer marginally better energy performance in these
settings thanks to the exact prediction of the idle intervals.

Figure 8 shows the impact of workload variability. For these
experiments, we set the total utilization to 0.5 and vary the
WC/BC ratio from 1 to 10. As this ratio increases, the actual
workload increasingly deviates from the worst-case, and the
energy consumption decreases for all schemes. We observe
that SSFP outperforms RAPM in the entire input spectrum.
When WC/BC = 1, the algorithms differ in their handling of
static slack. SSFP* outperforms SSFP by taking advantage of
the backup cancellation information to initiate some additional
sleep intervals. As the WC'/BC' ratio increases, we have
increasing dynamic slack. The early completions allow SSFP
to further delay and cancel backup tasks.

We also explore the effect of state transition overhead when
applying DPM to switch the processor to sleep states at run-
time. As the state transition overhead increases, the system
needs to stay in the sleep state longer to compensate the
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Fig. 10. Impact of Number of Tasks

high overhead. Figure 9 shows the impact of varying A;.;;.
As A..;+ increases, all schemes consume more energy due
to longer enforced waits in idle state and less transitions to
low-power sleep state. When A.,.;; approaches the minimum
task period in the system, the energy consumption for SSFP
increases sharply. The reason is that, at this point, SSFP can
very rarely put the spare processor to sleep due to the timing
constraints, consuming high energy. This is in contrast to
SSFP* that can predict the actual length of the sleep interval
and thus can take advantage of the backup cancellation to
put the spare to sleep state. Figure 10 shows the impact of
changing the number of tasks in the system. The performance
of SSFP is not significantly affected by the number of tasks.
However, with large number of small tasks, RAPM can
make better use of the dynamic slack generated at run-time.
Therefore its energy consumption drops with increased number
of tasks.

VII. CONCLUSIONS

In this paper, we considered the problem of joint energy
and reliability management for fixed-priority periodic real-
time tasks. By using a dual-processor standby-sparing system
and a dual-queue mechanism, we proposed the algorithm
SSFP that delays the backup tasks on the spare as much as
possible. When compared to the time-redundancy techniques
experimentally, our solution is seen to save more energy at
medium to high load values despite deploying the additional
spare processor, while offering clear advantages in terms of
reliability. To the best of our knowledge, this is the first work
for energy-efficient scheduling of fixed-priority periodic tasks
on a standby-sparing system.
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APPENDIX
Details of Reliability Evaluation

In this section, we provide the details of the reliability eval-
uation methodology we followed in Section VI. As discussed
in Section II-C, the fault rate at frequency f is expressed as:

d(1—f)

A(f) = Ao - 10T Tomen

For the set of experiments in Figure 6, \g is set to 10~% and
d is set to 2 [32]. The reliability of a job is defined as the
probability of executing the task successfully in the presence
of potential transient faults. The reliability of a single job J; ;
running at frequency f; ; can then be expressed as [30]:

—A(fij)
R;;=ce (ii) 733

The system reliability is the probability of executing all jobs
correctly even in the presence of transient faults. The system



reliability can be computed by evaluating the product of
reliability figures over all the jobs [28].

R=1ly, R 4)

We now discuss how we obtained overall reliability figures
for SSFP, RAPM, and NPM. The SSFP scheme allocates a
backup job for every main job in the system. The main job
executes at a lower frequency according to DVS policy, while
the backup job is executed at f,,q.. Therefore, a job will fail
only if both the main job and the corresponding backup job
fails. So, the reliability of a job in the SSFP system is:

Ci

Rij=1-[(1- e*’\(f“)ﬁ)(l — o Mmaz) o )

RAPM on the other hand selects a subset of task for slowdown.
A recovery task is allocated for those tasks only. Moreover,
the recovery task is executed only if the main task fails. The
tasks that are not selected execute at f,q.. So, if a task 7; is
chosen for slow down and hence is assigned a recovery task,
the reliability for a job of 7; can be computed as [31],

i
fmax

R;; = e M7 +(1— e—/\(fi,J)ﬁ’j)ef)\(f,,mw)

On the other hand, if 7; is not assigned a replica, the reliability
of one its jobs will be

Ryj = MUme)ris (5)

With the NPM scheme, the reliability level of of the system is
equal to the original reliability level in the absence of voltage
scaling and backup scheduling. NPM executes only the main
tasks at the maximum frequency. Hence, the reliability of a job
in NPM follows Equation (5). After computing the individual
job reliability values for all the schemes, we obtain the overall
system reliability according to Equation (4). The probability
of failure (PoF) is obtained by subtracting the total reliability
from 1. The probability of failure values are presented in
normalized form with respect to the NPM scheme.



