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Abstract—Energy and reliability management are important
design constraints for real-time embedded systems. We consider
the problem of achieving a given reliability target for a set of
periodic real-time applications running on a multi-core system
with minimum energy consumption. Specifically, we observe that
the emerging multicore platforms provide ample opportunities to
use task replication to achieve reliability targets and mitigate the
negative impact of Dynamic Voltage Scaling (DVS) on the rate
of transient faults leading to soft errors. However, while it allows
using lower execution frequencies, replication may also increase
overall energy consumption due to additional task copies. Our
objective is to determine the level of replication and frequency
assignment for each task, as well as task-to-core allocations, in
such a way to achieve the target reliability levels with minimum
energy consumption. We first identify the subtle interplay be-
tween the processing frequency, replication level, reliability, and
energy consumption on DVS-enabled multicore systems. Then
we show that the problem is intractable in the general case and
propose our energy-efficient replication (EER) algorithm as an
approximate solution. We also show how the framework can be
extended to tolerate a given number of permanent faults affecting
processing cores. We evaluate the performance of our proposed
scheme through extensive simulations. The simulation results
indicate that through our algorithm, a very broad spectrum
of reliability targets can be achieved with minimum energy
consumption through the judicious use of replica and frequency
assignment.

I. INTRODUCTION

Energy management is an important design constraint for
any computer system. Apart from high energy costs, higher
energy consumption results also in adverse environmental
effects. Two very populer techniques are Dynamic Power Man-
agement (DPM) and Dynamic Voltage Scaling (DVS). With
DPM, system components are put to sleep/low-power states
when they are idle [1], [4]. The main idea of DVS is to reduce
the CPU voltage and frequency to achieve energy savings [20].
However, for real-time embedded systems, the applicability of
DVS is limited by the timing constraints associated with the
tasks. Recent studies also explored integrating DPM and DVS
in optimal ways [5], [24].

Computer systems are susceptible to faults, leading to
various run-time errors. Faults can be broadly categorized
into two types: transient and permanent faults [14], [17].
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Transient faults are much more common in practice, as they
are caused by electromagnetic interference or cosmic radia-
tion [3], [11]. Transient faults may manifest in the form of
soft errors with incorrect computation results. Since transient
faults are non-persistent, re-execution of the affected task or
invocation of an alternate task are commonly used recovery
techniques [14], [17]. Permanent processor faults, on the
other hand, are caused by manufacturing defects or circuit
wear-out. Permanent faults therefore can only be dealt with
through hardware redundancy techniques (e.g., by deploying
extra processors) in the system. Real-time systems are often
deployed for safety-critical applications, where tolerance to
faults is extremely important. However, energy management
and fault tolerance are in general conflicting system objectives
as the latter requires deployment of extra resources [6], [10]
[16], [19], [22].

The consideration of reliability for systems employing DVS
for energy is equally important, as the current research sug-
gests the negative impact of DVS on the transient fault rate
[7], [26]: as we decrease the supply voltage and frequency to
save power, the transient fault rate (and the corresponding soft
errors) increase exponentially. Therefore, energy management
techniques must take into account the reliability degradation
and make provisions accordingly. A set of techniques, called
the Reliability-Aware Power Management (RAPM) [23], [27],
exploit time redundancy available in the system for both
energy and reliability management. These works consider the
problem of preserving the system’s original reliability, which
is the reliability of the system executing tasks without any
slowdown. The scheme in [27] resorts to backward recovery
approach and assigns a recovery task for every task that has
been slowed down, while the technique in [23] uses recovery
blocks shared by all the scaled tasks.

More recently, the reliability-oriented energy management
framework has been proposed for periodic real-time tasks
running on a single processor [25]. The main objective is to
achieve arbitrary reliability levels, in terms of tolerance to
transient faults, with minimum energy consumption. Unlike
RAPM studies, the target reliability level can be /lower or
higher than the original reliability. This flexibility is important,



as some high-criticality tasks may require very high-levels
of reliability, while for some other tasks a modest reliability
degradation may be acceptable to save energy. The solution
still focuses on single-processor systems and hence resorts to
a limited number of shared recovery jobs that are invoked upon
the detection of soft errors.

The main proposal of this paper is a reliability-oriented
energy management framework for multicore systems. In the
last decade, due to the advances in the CMOS technology, we
witnessed the proliferation of systems with multiple processing
cores. Systems with 2-4 cores are commonplace, and new
systems such as Intel SCC (48 cores) [30] and Tile64 (64
cores) [31] are receiving increasing attention. We observe
that on these emerging many-core systems, task replication
is likely to become a quite viable option for reliability man-
agement. By scheduling multiple copies of the same task on
multiple cores, the likelihood of completing at least one of
them successfully (i.e., without encountering transient faults)
increases significantly. Replication has several advantages as
an effective reliability management tool. Firstly, very high re-
liability targets can only be achieved through task replication.
Secondly, replication has the potential of tolerating permanent
faults in addition to improving reliability in terms of tolerance
to transient faults. Thirdly and arguably most importantly, it
creates an additional and powerful dimension to reduce the
energy consumption by executing multiple copies at lower
frequencies, while achieving the same reliability figures.

In our framework, we consider the energy-efficient repli-
cation problem for preemptive, periodic applications running
on a many- or multi-core system. Our setting is reliability-
oriented in the sense that we consider minimizing energy
to meet arbitrary task-level or system-level reliability targets.
Specifically, for a given reliability target, our goal is to
find the degree of replication (number of copies) and the
frequency assignment for all tasks, such that the overall energy
consumption is minimized, while ensuring that all timing
constraints will be met. The main contributions of the paper
can be summarized as follows:

« We present an extensive analysis to show the viability of
replication as a tool for joint management of reliability
and energy,

o We formulate the Generalized Energy-Efficient Replica-
tion Problem (GEERP) and show its intractability,

« We propose an efficient and approximate solution to
GEERP and evaluate its performance through extensive
simulations,

o« We also outline how our framework can be extended
to provision for permanent faults affecting at most Z
processing cores.

The rest of the paper is organized as follows. In Section II,
we present our workload, power, and reliability models. In
Section III, we illustrate the applicability of replication as
a tool for energy and reliability management on multicore
systems. Then we first address the energy-efficient replication
problem in the context of a single application in Section IV. In

Section V, we present our proposed solution for the general-
ized settings with multiple tasks. The experimental evaluation
is presented in Section VI. In Section VII, we show how our
framework can be extended to tolerate permanent faults of up
to Z processing cores. Finally, in Section VIII, we conclude.

II. SYSTEM MODEL
A. Workload and Processor Model

We consider a set of N periodic real-time tasks U =
{71,...,7n}. Each task 7; has worst-case execution time ¢;
under the maximum available CPU frequency fy,q.. 75 gener-
ates a sequence of task instances (or, jobs) with the period of
P;. The relative deadline of each of these jobs is equal to the
period value P;, in other words, each job must complete by
the arrival of the next job of the same task. The utilization of
task 7;, u;, is defined as 1% The total utilization Uy, is the
sum of all the individual task utilizations.

The workload executes on a set of M identical cores. Each
core can operate at one of the K different frequency settings
ranging from a minimum frequency, fyin 10 finaz. We denote
by F' the set of available frequency settings. Without loss of
generality, we normalize the frequency levels with respect to
fmaz (€., finae = 1.0). At frequency f, a core may require
up to <+ time units to complete a job of task ;.

Our framework assigns k; replicas (copies) to task 7;, to
execute on k; < M distinct processing cores, to achieve relia-
bility targets. The entire set of Y _ k; task copies are partitioned
upon the multicore system. The preemptive Earliest-Deadline-
First policy, which is known to be optimal on single processor
[15], is adopted to execute tasks on each core.

B. Power Model

We consider a power model adopted in previous reliability-
aware power management research [18], [25], [27]. The power
consumption of each core consists of static and dynamic power
components. The static power P; is determined mainly by the
leakage current of the system. The dynamic power P, includes
a frequency-dependent power component (determined by volt-
age and frequency levels), and a frequency-independent power
component P;, 4, driven by the modules such as memory and
/O subsystem in the active state. In DVS technique, the supply
voltage is scaled in almost linear fashion with the processing
frequency. Consequently, the power consumption of a core can
be approximated by:

Pactive = ]Ds + Pz'nd + Cef3 (1)

Above, C. is a system-dependent constant, reflecting the
effective switching capacitance. When a core is not executing
any task (idle state), its power consumption is primarily
determined by the static power. We assume that the static
power consumption can only be eliminated by the complete
power-down of the core.

Existing research indicates that arbitrarily slowing down
a task is not always energy-efficient [8], [12], [28], due to
the frequency-independent power components. In other words,
there is a processing frequency below which the total energy



consumption increases. This frequency is called the energy-
efficient frequency and denoted by f... fee can be computed
analytically through the well-known techniques [12], [26].

C. Fault Model

Transient faults are typically modelled using an exponential
distribution with an average arrival rate A [21]. The fault rate
A increases significantly as frequency is scaled down when
using DVS [7], [26]. The average fault rate at the maximum
frequency is denoted by \g. The fault rate at frequency f can
be expressed as [26]:

d(1-f)

A(f) = A107 T &)

Above, the exponent d, called the sensitivity factor in the

paper, is a measure of how quickly the transient fault rate

increases when the system supply voltage and frequency are
scaled. Typical values range from 2 to 6 [18], [26], [27].

The reliability of a task is defined as the probability of
executing the task successfully, without the occurrence of
transient faults [27]. The reliability of a single instance of
task 7; running at frequency f; can then be expressed as [26],
[27]:

Ri(fi) = e X7 3)

Conversely, the probability of failure (PoF) of a task in-
stance of 7; is denoted by:

¢i(fi) =1 = Ri(fi) 4)

At the end of execution of each task copy (replica), an
acceptance test (or, sanity check) [14] [17] is conducted to
check the occurrence of soft errors induced by the transient
faults. If the test indicates no error, then the output of the task
copy is committed to; otherwise, it is discarded. Therefore, in
replicated execution settings of a given task, it is sufficient
to have at least one task copy execution that passes the
acceptance test.

III. INTERPLAY OF ENERGY, RELIABILITY, FREQUENCY,
AND REPLICATION

Before presenting our detailed analysis, we start by illus-
trating how the level of replication and processing frequency
jointly determine the reliability and energy savings. Consider
a single instance of task 7; running at frequency f;. Its
probability of failure is given by Equation (3) and is a function
of the processing frequency f, Ao and the sensitivity factor
d. Now consider two replicas of 7; running at frequency f.
The execution with replication will be unsuccessful only if
both replicas encounter transient faults during their respective
executions. Consequently the new reliability with two replicas
is found as:

R =1-(1- Ri(f)
More compactly, its new probability of failure is given by:

o = (¢s(f))?

In general, with k replicas, the probability of failure decreases
exponentially with k:

ot = (¢s(f))* (5)

We observe that the use of replication may be a powerful
tool to mitigate the negative impact of the voltage/frequency
scaling on the probability of failure, and improve energy
savings through parallel execution. However, there are sev-
eral non-trivial design dimensions that must be considered,
including the energy cost of additional replica execution(s).
As a concrete example, consider a single task with worst-case
execution time ¢; = 100 ms. Following [25], in this and sub-
sequent examples used in the paper, we assume that transient
fault arrival rate at the maximum frequency is \g = 1075,
and the system sensitivity factor d is 4.

Figure 1 shows how the execution frequency determines
the achievable PoF, for different number (k) of replicas. The
PoF values are given in normalized form, with respect to the
probability of failure of a single copy running at maximum
frequency. Note that the y—axis in the plot is in logarithmic
scale. Hence, for a given number of replicas, the PoF increases
(the reliability decreases) rapidly with decreasing frequency.
However, for a given frequency, there is also an exponential
improvement on reliability (decrease in PoF), with increasing
number of replicas. This simple fact points to an interesting
design spectrum: the same target PoF value can be achieved
at different frequency and replication levels. For example, the
PoF value achieved by 2 replicas of the same task running
at fiae can be also yielded by 3 replicas running at the
low frequency f = 0.2. Therefore, along with the frequency,
adjusting the number of replicas is clearly an additional and
powerful mechanism to achieve the target PoF figures.

We note that there is a lower bound on the number of
replicas required to achieve a certain PoF target, ¢iarget. In
particular, high reliability levels necessitate the use of multiple
replicas. Using Equation (5), we can easily determine the
minimum number of replicas (k) needed to achieve the target
PoF at a given frequency level f:

¢target S (¢l(f))k

10g(¢target)
k> [T

On the other hand, the energy consumption of different
replication/frequency levels yielding the same reliability level
may vary significantly. Figure 2 shows the impact of repli-
cation on energy consumption for our example task, under
various target (normalized) PoF values. In these experiments,
for a given target PoF value ¢qrget and for each replication
level (k), we compute the minimum energy consumption when
we use the best common frequency f for all k& replicas to
achieve ¢iqrget. The energy consumption is normalized with
respect to a single replica running at the maximum frequency'.

(6)

"We assume P;,; = 0.1 in the examples.
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Fig. 1: Impact of the frequency on reliability

A few key observations are in order. First, some very high
reliability (very low PoF) targets can only be achieved with
large number of replicas. Second, for a fixed reliability target,
using a minimum number of replicas generally consumes high
energy. This is due to the fact that the minimum number of
replicas are typically executed at high frequency levels to meet
the reliability target ¢iqrges, giving high energy figures. On
the other hand, as we start increasing the number of replicas,
we can afford reducing the frequency of individual replicas
and thus the total energy consumption starts to decrease.
But as we deploy further replicas, after a certain point, the
energy consumption due to additional replicas offsets the
energy savings due to execution at low frequencies. As a
result, the energy consumption starts increasing. This is also
coupled by the fact that reducing the frequency below the
energy-efficient frequency fe. is not helpful, even if we can
use additional replicas. Consequently, the energy consumption
figures continue to increase beyond a certain threshold point.
Finally, it is clear that the optimal number of replicas to
minimize energy depends highly on the target reliability.

Figure 3 depicts the interplay of target probability of failure
and energy consumption. Notice that, as we increase the
target PoF, the total energy consumption decreases for a
fixed number of replicas, as we are more tolerant of relia-
bility degradation and we can afford running the replicas at
lower frequencies. Once the frequency required to achieve
the reliability target reaches the energy-efficient frequency,
the energy curve flattens out. At that point, increasing the
target probability of failure does not yield any energy savings.
Moreover, since the PoF figures achievable by k replicas is
a proper subset of those achievable by k' > k replicas, one
must consider the minimum number of cores needed for the
®target Under consideration — in our example, ¢iqrger vValues
smaller than 10~7 were simply not achievable by deploying 1
or 2 replicas.

We can summarize our key observations in this section as
follows:

o In addition to the processing frequency, the replication
can be used to manage reliability on DVS-enabled mul-
ticore systems, giving a broad design spectrum involving
multiple dimensions, and in particular, energy consump-
tion.

o The same target reliability can be typically achieved
through multiple ways: using small number of replicas

Number of Replicas
Fig. 2: Impact of replication level on energy
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running at high frequencies or large number of replicas
running at low frequencies. While the use of replication
allows the system to use lower frequencies to mitigate the
reliability loss, this may have a negative impact on the
energy consumption due to the energy cost of running ad-
ditional replicas. The configuration that minimizes energy
consumption varies depending on the system parameters
and target reliability.

IV. TASK-LEVEL ANALYSIS

We first address our problem of finding the energy-optimal
configuration (i.e., the number and frequency assignment of
replicas) in the context of a single task to achieve a target
reliability level. This single-task setting enables us to illustrate
some additional non-trivial aspects of the problem as well
as to present the terminology and definitions that will be
instrumental for the eventual system-level analysis that will
be carried out in Section V.

We start by observing that, for a given execution frequency,
the minimum number of replicas needed is provided by
Equation (6). Moreover, the number of available frequency
levels is very limited in existing processors; for example,
Intel Pentium M processor with 1.6 GHz maximum frequency
supports only six frequency steps in the active state [29].
Consequently, one can easily compute the number of replicas
needed, as well as the corresponding overall energy consump-
tion for every available frequency setting. An obvious question
is whether the energy numbers obtained as a function of
decreasing replica frequency exhibit a certain (e.g., convex
or concave) pattern. Unfortunately, the answer is negative, as
the following example illustrates.

Example 1. Consider a task with execution time
¢; = 1000 ms at the maximum frequency. The normalized
PoF target for the task is given as 10~°, requiring definitely
more than one task copy. We assume that the system has 4
(four) normalized frequency settings, given as 0.4, 0.6, 0.7,
and 1.0. For illustration purposes, we assume the frequency-
independent power (Pj,q) is set to 5% of the maximum
dynamic power and the static power is negligible.

For each of the available frequency levels, we can compute
the minimum number of replicas for the given reliability target
and the corresponding overall energy consumption, obtaining
the values shown in Table L.

10000

Fig. 3: Impact of target PoF on energy



TABLE I: Total Energy Consumption

Frequency  Replica  Energy
1.0 2 2.1
0.7 3 1.68429
0.6 4 1.77333
0.4 6 1.71

We notice that, as we decrease the CPU frequency the
overall energy consumption of all the required replicas first
decreases, then increases, before decreasing again. This sug-
gests that the overall reliability-oriented energy consumption
function, as a function of processing frequency, is neither
convex nor concave. Consequently, the use of simple tech-
niques like binary search or the techniques available from
the convex optimization theory would not be applicable. This
small example shows that, in the general case, one may need
to consider the energy consumption for all the frequency levels
to find the optimal configuration.

A. Energy-Frequency-Reliability (EFR) Tables

In general, as in Example 1, we can construct for every
task 7; a table with K rows on a system with K frequency
levels. For each frequency setting, we compute the minimum
number of replicas (through Equation (6)) to achieve its
target reliability ¢; sqrget and the corresponding overall energy
consumption. In preparation for our system-level analysis, we
also include a column that indicates the total CPU time needed
by all the replicas.

The entries given in each row corresponds to a separate
configuration of the system. We denote the i*" configuration
for a task by RfConfig(i), which contains information about
the frequency of each replica, number of replicas, total energy
consumption, and total CPU time needed by all replicas.
This Energy-Frequency-Reliability (EFR) table can be clearly
constructed in time O(K) for a given task.

Table II shows an example EFR table for a task whose
execution time is ¢ = 100 ms. The normalized Pof target
is 1075, For simplicity, assume Ps and P;,q are negligible.
Assuming the processor has 10 different frequency steps, we
have 10 different configurations (RfConfig(i) i = 1,...,10).

TABLE II: An Example EFR Table

Frequency, f Replica #r  Energy = CPU time
1 2 0.2 0.2

0.9 2 0.162 0.222222
0.8 3 0.192 0.375
0.7 3 0.147 0.428571
0.6 3 0.108 0.5
0.5 3 0.075 0.6
0.4 4 0.064 1
0.3 4 0.036 1.33333
0.2 5 0.02 2.5
0.1 6 0.006 6

Note that, in general, the number of valid frequency lev-
els may be smaller than the number of available frequency
levels. This is because frequencies below the energy-efficient

frequency fe. should not be considered. In addition, since the
task 7; would miss its deadline at the frequency levels below
its utilization value of u; = %, we do not need to consider
frequencies < maz{ fee,u;}.

As we decrease the CPU frequency, the time required for
executing each replica increases. The number of required
replicas may remain the same or increase. As a result, the total
CPU time consumption keeps increasing. However, in terms
of energy consumption patterns, the trends are not always
obvious. For example, looking at Table II and comparing the
entries for f = 0.9 and f = 0.8, we observe an interesting
phenomenon. Specifically, the energy consumption at the
lower frequency configuration f = 0.8 is higher than that of
the higher frequency configuration f = 0.9. Obviously, there is
no benefit in using the frequency f = 0.8 as it consumes more
energy while also using more CPU time (potentially affecting
the feasibility of other tasks that may exist in the system),
compared to the adjacent higher frequency level f = 0.9.

Clearly such inefficient frequency levels can be also re-
moved from the table in a linear pass. Considering that the
frequency levels below max{ fee,u;} are not valid either, the
trimming of the entire table can be achieved O(K) time.
After such a trimming, the energy consumption values in the
table will be in decreasing order and the minimum energy
configuration for the task will be at the last row of the table.
While choosing this minimum energy configuration is ideal for
the task, the feasibility and reliability requirements of other
tasks may not allow the use of this frequency. This issue will
be further analyzed in Section V.

B. Impact of Frequency Assignment to Replicas

The reader may have observed that, so far, we implicitly
assumed wuniform frequency assignment to the replicas of
a given task in reliability-oriented energy management. In
fact, in general, assigning uniform frequencies is not always
optimal. This is due to the nature of the reliability function
given through Equations (2) and (3), which is neither convex
nor concave in the entire spectrum. As we decrease the fre-
quency, task reliability first decreases slowly, then it falls very
sharply, which is followed by a region where the reliability
decreases very slowly again. Thus, occasionally, it is possible
to achieve a certain reliability target with one replica running
at a relatively high frequency and another replica running at
a very low frequency. Moreover, using a uniform frequency
for that specific setting may violate the reliability constraint
or result in higher energy consumption. In those settings,
uniform speed assignment provides a sub-optimal solution. We
illustrate this point with a concrete example.

Example 2. Consider a task with 10 ms execution time
at maximum frequency on a 2-core system. We will execute
two replicas of the task on two cores. Static power and the
frequency-independent power are set to 5% of the maximum
dynamic power. The target PoF is set to the PoF achieved
by two replicas of that task running both at 0.75. Therefore,
we can trivially satisfy the reliability target by executing both
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Fig. 4: Energy savings obtained by exhaustive search compared to the uniform frequency assignment

replicas at speed 0.75. However, an exhaustive search suggest
that, if we assign frequency for the two replicas to 0.9 and
0.37 respectively, the energy consumption will be 4.55% lower
than the uniform setting while achieving the same reliability.
Moreover, using the uniform frequency which is the mean of
the indicated distinct frequencies (i.e., f = W = 0.635)
would not satisfy the reliability target.

However, using an uniform speed for all the replicas avoids
further complications on the problem which has already sev-
eral non-trivial aspects. In addition, we ran extensive simula-
tions under various system parameters. Our results suggest
that, for realistic system settings, using uniform frequency
asssignment almost always yields energy figures which are
quite comparable to those provided by a computationally very
expensive, but optimal, algorithm.

To give the details of our experiments, for a fixed reliability
target, we first find the most energy-efficient setting where all
replicas run at uniform frequency. Note that, for a single task,
the number of replicas cannot exceed the available number of
cores. The optimal search for frequency assignment technique,
on the other hand, performs an exhaustive search for every
degree of replication and varies the frequency separately for
each replica at increments of 0.01 from 0.1(f,) to 1.0
(fmaz). At the end of this exhaustive search, the optimal
scheme chooses the best solution.

Figures 4a, 4b and 4c present a subset of our simulation
results. In these experiments, we consider task execution times
of 10, 50 and 100 ms. We also vary the sensitivity factor
d of the system from 2 to 4. In Figure 4a we consider the
degree of replication to be 2 and for a wide spectrum of
reliability targets, we report the energy savings obtained by
the optimal (exhaustive) search technique over the uniform
frequency assignment technique. In Figures 4b and 4c we
repeat the experiments for 3 and 4 replicas respectively. The
experimental results suggest only up to 5% energy savings
obtained by the exhaustive search technique, compared to the
uniform assignment technique. In fact, for many combinations,
the difference is even smaller than 5%. As we observed the
same patterns in our additional experiments, in the rest of the
paper, we employ the uniform frequency assignment technique
due to its conceptual and practical simplicity.

V. SYSTEM-LEVEL ANALYSIS AND SOLUTION

In this section, we address the system-level problem that
involves the consideration of all the tasks in the system,
each with potentially different reliability targets. We first
give additional details necessary to formulate and manage
reliability of periodic tasks each with multiple task instances

(jobs).
A. Reliability Formulation for Periodic Tasks

We consider a reliability formulation similar to the one used
in [25]. The reliability of a periodic task is defined as the
probability of successfully executing all instances of that task
during the hyperperiod, which is defined as the least common
multiple of all the periods. Specifically, if the task 7; has
h; instances in the hyperperiod, the PoF of the task can be
expressed as:

¢i =1 -1, (1 - ¢i5) (7)
where ¢; ; denotes the reliability of the j instance of task

T. g

The system reliability is the probability of executing all
instances of all the tasks successfully. Therefore, it can be
casily computed as the product of individual task reliabilities.
The system PoF is then given by:

¢syst =1- ( ¢z)

In reliability-oriented energy management problem, the
task-level reliability targets may be given as part of the prob-
lem input. However, if only the system-level target reliability
is given, we first need to compute the task level reliability
target from the given system level reliability target ¢, ;.
In this case, we can use the technique called the Uniform
Reliability Scaling in [25]. This technique scales up or down
all original task reliabilities by the same factor to achieve the
new system-level target reliability. Specifically, assume that
when all instances of a periodic task during the hyperperiod
are executed at f,,,,, and there are no additional replicas, the
task level Pof'is gfgi. Then, the task-level target ¢; 1qrge: Values
are determined such that ¢/, ., = 1 —TI}", (1 — ¢4 arget ), and

vm = (8)
Above, w is called the (uniform) PoF scaling factor. Clearly,
small (large) w values correspond to higher (lower) reliability
objectives.




B. Problem Definition

We now address the problem for a generalized setting,
where there are multiple periodic tasks in the system. With
multiple tasks, feasibility (deadline guarantees) becomes a
major concern. Therefore, many tasks cannot be scheduled
according to the most energy-efficient configuration from
the EFR table since the total CPU time of all the replicas
may exceed the time available on existing number of cores.
Consequently, some tasks may have to be executed in a
different ’configuration’. Given the EFR tables, determining
the configuration (i.e., the degree of replication and frequency
assignment) for each task such that the overall energy con-
sumption is minimized while meeting the reliability target is
a non-trivial problem.

Generalized Energy-Efficient Replication Problem
(GEERP): Given a set of periodic tasks and task-level
reliability targets, determine the number of replicas to execute
and the frequency assignment for each replica such that the
energy consumption is minimized, while ensuring a feasible
partitioning such that the deadline constraints are met and
two replicas of the same task are not assigned on the same
core.

To present the general optimization problem formulation,
we first introduce the necessary notation. Let k; be the number
of replicas assigned to task 7; and FE;(f;) be the energy
consumption for each replica of 7; running at frequency f;.
I, denotes the set of all tasks for which a replica is assigned
to core m. p(i,j) represents the core where the j** replica
of 7; is assigned. Then our problem is to find k; and f;
values along with the replica-to-core allocation (partitioning)
decisions {p(i,k;)},i=1,..., N, so as to:

minimize SN ki x Bi(f) 9)
subject to Vi fi €F (10)
Viki <M (11)

Vi Srer, 7 < 1 (12)

Vi (i (f)¥ < Pitarget (13)
ViVizk p(i,3) # p(i k) (14)

Above, the constraint (10) ensures a legitimate frequency
assignment for every task and the constraint (11) enforces
that the number of replicas does not exceed the available
number of cores. The constraint (12) ensures that a feasible
partitioning is obtained for all the cores, using the well-
known schedulability condition with preemptive EDF [15].
The constraint set (13) represents the task level reliability
targets. Finally, the constraint (14) ensures that no two replicas
of a same task are assigned to the same core.

In Section IV, we observed that the overall replica en-
ergy consumption function k; x E;(f;) is neither convex nor
concave. Therefore no standard optimization technique can
be applied to solve this problem. Moreover, the problem
can be easily shown to be NP-hard in the strong sense. If

we consider the special case of tasks with identical periods
(deadlines), target reliabilities equal to the original reliability
levels (requiring only one copy of each task), and a system
without any DVS capability (where all tasks are executed at
constant speed), GEERP reduces to the problem of packing
variable-size items on M bins — this is the classical bin-
packing problem, which is known to be NP-hard in the strong
sense [9].

We consider a two-step solution for GEERP. In the first
step, we construct the EFR tables for all tasks, separately. In
the second step, using the tables, we search for a solution
configuration that can be feasibly partitioned, while obtaining
as much energy savings as possible. Due to the intractability of
the problem, we resort to an efficient heuristic-based solution
that still satisfies all the constraints of the problem.

C. Algorithm Energy-Efficient Replication (EER)

In this section, we present our solution. First, using Equation
(7), the algorithm first determines the job level reliability
target for each periodic task, given the task-level reliability
targets. Then as described in section IV-A the EFR tables
are constructed. Assume that, the j”” configuration of 7; is
denoted by RfConfig(ij). In the rest of the paper, f(i,j), r(i,j),
E(i,j) and S(i,j) denote respectively the frequency, the number,
total energy consumption, and total CPU time of all replicas
in RfConfig(ij). The specific quantities for RfConfig(i,j) can
be obtained from the j* row of the corresponding EFR table.
From the tables, the algorithm first determines the minimum
energy configuration for a given task.

The algorithm then tries to partition the workload for
various configurations on M cores. We choose the First-Fit-
Decreasing (FFD) heuristic [13] for partitioning the replicas
among the available cores. However, we modified the classical
FFD heuristic such that a different core is chosen for each
replica of a task.

As the first attempt, the algorithm checks if it is possible to
obtain a feasible partitioning where every task has its preferred
(i.e., minimum-energy) replica-frequency configuration. If so,
this is clearly the optimal solution for the entire problem.
Otherwise, we check the other extreme, where every replica is
forced to run at f,,,, to minimize the number and total CPU
time of all the replicas. If there is no feasible solution for
this case, the algorithm exits with an error report. Otherwise,
the algorithm moves on to the next phase, which we call the
relaxation phase.

In the relaxation phase, the algorithm starts with a feasible
configuration where every replica runs at f,,,, and all tasks
are marked as eligible for relaxation. Then in each step,
based on the specific task selection heuristic (that will be
discussed shortly), one eligible task is chosen and its frequency
is reduced by one level according to its EFR table. If the
resulting configuration is also feasible, the new configuration
is committed to and the algorithm proceeds to the next step.
Otherwise, the algorithm backtracks to the previous configu-
ration and the chosen task is marked as ineligible for future
relaxations. If a task reaches its minimum energy configuration



level in the EFR table, it is also marked as ineligible for
additional slowdown. The algorithm stops when there is no
more eligible task further relaxation. Algorithm 1 shows the
pseudo-code of the algorithm.

Algorithm 1 Algorithm Energy-Efficient Replication (EER)

Construct the EFR tables for all tasks
fori=1to N do
/* assume j; is the most energy-efficent frequency-level for
7; in the EFR table */
CurConfigfi] < ji;
end for
Partition the workload in CurConfig with modified FFD
if ( feasible(CurConfig) ) then
return CurConfig and the partitioning p
exit
end if
fori=1to N do
CurConfigfi] — 1;
eligible[i] «+ true;
end for
Partition the workload in CurConfig with modified FFD
if ( !feasible(CurConfig) ) then
return error; /* No feasible solution exists */
exit
end if
while (3 eligible[j] ) do
Choose eligible task according to LEF, LPF or LUF
/* 7; is chosen for relaxation */
CurConfigfi] ++;
Partition the workload in CurConfig with modified FFD
if( !feasible(CurConfig) ) then
CurConfigf[i] ——;
eligible[i] — false;
end if
end while
return CurConfig and the partitioning p;

In Algorithm 1, we first construct the EFR tables for
all tasks (Section IV-A). Due to trimming of the inefficient
frequency levels, the minimum energy configuration for each
task can be found at the last row of the corresponding EFR
table. We use CurConfig/i] to denote the current configuration
of 7;. For example, if the current configuration for 7; is
RfConfig(i,j), we set CurConfig/[i] to j. For all tasks, we first
set the current configuration to be the most energy-efficient
configuration from the corresponding EFR table. We then
attempt to partition the tasks using the modified FFD. If the
partitioning succeeds, we have obtained an optimal solution.
Otherwise, we set the current configuration to the first entry
of the EFR table for every task, which corresponds to using
fmaz. If there exists no feasible partitioning for that setting, the
algorithm quits. Otherwise, the algorithm relaxes one eligible
task at a time and reduces its frequency by one level, until
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Fig. 5: Lower bound of number of cores

energy savings cannot be further improved while preserving
feasibility.

Several heuristics can be applied to choose the task for
relaxation in every iteration. For this, we considered three
heuristics as described below.

Largest-Energy-First (LEF): In this heuristic we choose
the task that will provide the largest energy savings when
relaxed to the next level in the EFR table. For task 7;, let
the current configuration be the row j in the EFR table. Then,
the task with the largest

AE = E(i,j) - B(i,j +1)

value is selected according to this heuristic.

Largest-Power-First (LPF): We choose the task that pro-
vides the largest energy savings per unit time for the additional
CPU time required for the next level in the corresponding EFR
table. Therefore, task 7; is selected to maximize:

AE _ E(i,j) - E@,j+1)
AS — S(i,j+1)—S(i,5)
Largest Utilization First (LUF): This is a simple heuristic
where the task with largest utilization value is chosen first.

We now analyse the complexity of the proposed solution.
In the first phase, we construct the EFR tables for each task.
As discussed in section IV-A, each table can be constructed in
O(K) time. Therefore, the running time of phase 1 is O(NK)
in the worst case. In the relaxation phase, we can have at
most N K relaxation steps and for obtaining the partitioning
the cost is O(NM) in the worst case. Therefore, the overall
running time of the algorithm is O(N2MK). Note that, for
most practical systems K and and M are small constants.
Also observe that, the algorithm is executed only once as a
pre-processing phase.

VI. PERFORMANCE EVALUATION

In this section, we present our simulation results to evaluate
the performance of our proposed scheme. We considered three
different heuristics - LEF, LPF and LUF - for choosing the
tasks for relaxation. As a baseline scheme, we considered the
case where all replicas run at f,,,, and with the minimum
number of replicas required to achieve the target reliability. We
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report the energy savings of our proposed scheme compared
to the baseline scheme.

We constructed a discrete event simulator to evaluate the
performance of our schemes. For each data point, we con-
sidered 1000 data sets with 20 tasks. The task utilizations
are generated randomly using the UUnifast scheme [2]. Task
periods are generated between 10 ms and 100 ms. The default
number of speed steps in the system is 10. The static power
and the frequency-dependent power are set to 5% of the
maximum dynamic power consumption.

Lower bound on the number of cores. In general, the number
of cores required to execute all the replicas may be significant
for a given reliability target. A lower bound on this number
may be obtained as follows. In general, one or more copies of
each task is needed to achieve the reliability objectives. Let
us denote the total utilization of the entire workload (all the
replicas) by effective utilization. The number of cores required
cannot be smaller than the minimum effective utilization, which
is the effective utilization when all tasks/cores run at f,q,.
Also, all replicas of a given task execute on different cores.
Let us denote by R(¢) the number of replicas needed by 7;
when executed at f,,q., which can be readily obtained from
the EFR table. Hence, the minimum number of cores required
is the maximum of greatest number of replicas needed by any
task and the minimum effective utilization:

Lower-bound = V; max{R(i), [Eé\’:lR(j) % ]CD_J]}

J

Figure 5 shows the lower bound for the number of cores
for different utilization values, as we vary the uniform Pof
scaling factor w from 10% to 107'® under different total
utilization (Ui.¢) values. We observe that, as we increase the
reliability target (smaller w), the number of cores required
increases very fast. When w goes below 1, each job requires
at least two replicas to achieve the reliability target. So, at
that point the minimum number of cores is doubled. As we
require additional reliability or increase the load (utilization),
the number of required cores further increases.

Impact of Target Reliability. We now consider the impact of
target uniform Pof scaling factor w on the system energy
consumption. Figure 6 shows the energy savings for task sets
with total utilization 1.2 and 3.2 running on 4- and 8-core
systems. The energy gain reaches the minimum value for target
w = 1. The reason is, when the target w = 1, the target

reliability becomes equal to the reliability obtained trivially
by the baseline scheme with exactly 1 replica for each task.
In this case, our schemes can only achieve energy savings by
running more than one replica at a considerably lower speed.
However, this may require large number of replicas running
at a very low speed, which adversely affects the feasibility.
Therefore, only for very low load on 8 cores (Fig. 6b) LEF,
LUF and LPF can achieve energy savings when w = 1.
Otherwise, the baseline scheme provides the optimal solution
and there is a significant drop in energy savings for w = 1.
We observe that for all settings, as we increase w beyond 1,
the energy savings increase as we can afford running the
replicas at lower frequencies. When the frequency reaches the
energy-efficient frequency, the savings reach a stable level. On
the other hand, when w < 1, the baseline scheme uses two
replicas running at f,,., and LEF, LPF and LUF can execute
replicas at lower frequencies. Even though LEF, LPF and LUF
may use more replicas compared to the baseline scheme, they
still save energy thanks to execution at lower frequencies. As
w decreases even further, the required processing frequency
increases and there is a slight drop in energy savings. Notice
that, typically LEF provides higher energy savings than LPF
and LUF.

In Figure 6b, the system utilization is very low compared
to the available cores. As a result, the minimum energy
configurations are feasible. Therefore, the energy savings for
all schemes converge. In Figure 6¢c, on the other hand, the
system utilization is very high. Therefore, it is not possible to
find a feasible solution for target w < 1. For Figure 6a and 6d,
the utilization is moderate considering the number of cores.
Therefore, there is no feasible solution for the most energy-
efficient settings. However, some tasks can be feasibly relaxed
to run at a lower frequency. Due to the difference in the order
of task selection for relaxation, the heuristics differ in their
performances.

Impact of the number of cores. Next, we evaluate the impact
of the number of cores on the system performance. Figure
7a and 7b show the energy consumption for a task set with
total utilization 1.5 for target Pof scaling factor set to w 1073
and 10~°, respectively. Observe that increasing the number of
cores allows greater slowdown of replicas and hence typically
provides greater energy savings. We notice that initially small
increase in the number of cores does not translate to energy
gains, as it does not allow sufficient slow-down of jobs. Then,
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as we can relax more tasks with added cores, the energy
savings increase sharply. The energy savings for all schemes
converge at a stable point, when choosing the most energy-
efficient configurations become feasible for all tasks. Also
notice that, the energy savings are greater for larger target
w as it allows more slack for relaxation.

Impact of the System Load. Figure 8 represents the impact of
total utilization U, on the energy savings. For this experi-
ment, we set the number of cores in the system to 16 and
the target w is set to 1072 and 10~ respectively. We vary
the utilization from 0.5 to 8 and note the energy savings. We
observe that, at very low utilization the energy savings is the
highest, as we can find feasible partitioning for the minimum
energy configurations. Also, for very small utilizations the
energy savings first increase with added workload. Due to
very low utilization, the replicas can still run at the same low
frequency, while the baseline scheme keeps running at f,q..
Since the dynamic energy consumption increases in squared
fashion with respect to frequency, the energy consumption
for the baseline scheme increases at a higher rate than our
schemes. Therefore, the energy consumption increases slightly
at first. Then, as the frequency of the replicas increase, the
energy savings decreases slowly. When the minimum energy
configurations become infeasible, the schemes start to differ
and there is a sharp drop in energy savings, as the number of
jobs that can be relaxed drops. As we continue increasing the
system load, due to lower available slack, the energy savings
become modest. Again, LEF outperforms LPF and LUF. Also
notice that the energy savings is lower for smaller w target, as
it requires running more replicas and/or at a higher frequency.
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Fig. 9: Additional energy overhead of scheduling at least Z +1
replicas per task

VII. EXTENSION TO TOLERATE A FIXED NUMBER OF
CORE PERMANENT FAULTS

The presented framework in this paper essentially aims at

00 4 5 5 4 s & 7 gmanaging reliability in terms of tolerance to transient faults

induced by dynamic voltage and frequency scaling. While
less common, individual cores may also encounter perma-
nent faults during task execution due to circuit wear-out or
manufacturing defects [14]. Permanent faults may result in
the unavailability of some processing cores and can only be
dealt with redundant execution of tasks on different cores. The
reader may have observed that the allocation of the replicas
to different cores provides simultaneously an appropriate basis
to tolerate the permanent faults of processing cores.

While the design and implementation of a comprehensive
system to detect and recover from the permanent faults at run-
time is a fairly complicated task ( [14], [17]) that goes beyond
the scope of this paper, below we sketch how our algorithm
EER can be modified to allocate task replicas in such a way
to tolerate up to Z permanent core faults. In order to tolerate
Z permanent faults affecting any Z cores, we must schedule
at least (Z 4 1) replicas for every task. Hence, during the
construction of the EFR tables, for every frequency setting, we
can choose the minimum of (Z + 1) and the least number of
replicas required to achieve the reliability target at that setting.
Obviously, if Z + 1 is the larger quantity, then the energy
consumption and CPU time entries for that configuration in the
table will need to be updated accordingly. This modification
makes sure that at least Z + 1 replicas of every task are
scheduled on Z + 1 distinct cores, while still maintaining the
reliability targets in terms of tolerance to transient faults.

We conducted simulations to assess the impact of additional
requirement to schedule at least Z + 1 replicas for each
task. Due to space limitations, we present a single plot that
summarizes the main trends in Figure 9. Here, we vary the
uniform Pof scaling factor w from 10 to 10~5. We report the
additional energy overhead with respect to the case where we
have no guarantees for permanent fault tolerance, i.e. Z = 0,
as we increase Z from 1 to 4. We only present the results for
the LEF heuristic. Notice that, when w > 1, the additional
energy overhead is Z times the base energy consumption. This
is because, in that case, the transient fault reliability target
can be achieved with only one replica per task; but still we



need additional Z replicas for potential permanent faults. We
observe that, as we decrease w, the overhead decreases slightly.
As we decrease w, more and more replicas are required to
achieve the given transient fault reliability target, and, we
need to assign less additional replicas to handle permanent
faults. For the same reason, we also notice that, the increase
in overhead for increased permanent fault tolerance target is
smaller when target w < 1 compared to the region where
w > 1. The energy overhead is 0 for Z = 1 when the target
w < 1, because in that region, the default behavior of the EER
algorithm is to assign more than 1 replica to any task.

VIII. CONCLUSIONS

In this paper, we considered the reliability-oriented energy-
management problem for preemptive periodic real-time appli-
cations running on a multi-core system. We showed how repli-
cation can be used to achieve the given task-level reliability
targets that are expressed in terms of tolerance to transient
faults. While replication allows the use of lower frequencies
on different cores for a given reliability target to mitigate
the negative impact of DVS on transient faults, it has also
the potential of increasing energy consumption. We presented
techniques to determine the degree of replication and the
frequency assignment for each task while minimizing overall
energy. Although the problem is intractable in the general case,
our efficient heuristics are shown to satisfy the given reliability
targets with considerable energy savings through simulations.
We also a presented an extension that allows tolerating up to
Z permanent faults on processing cores with minimum energy
consumption.

ACKNOWLEDGEMENT

This work was supported by US National Science Foun-
dation awards CNS-1016855, CNS-1016974, and CAREER
Award CNS-0953005.

REFERENCES

[1] L. Benini, A. Bogliolo, and, Giovanni De Micheli. A Survey of Design
Techniques for System-level Dynamic Power Management. /EEE Trans.
on VLSI Systems, vol. 8, no. 3, pp. 299 - 316, 2000.

[2] E. Bini and G. C. Buttazo. Measuring the Performance of Schedulability
Tests. Journal of Real-Time Systems, vol. 30, no. 1-2, pp. 129 - 154, 2005.

[3] X. Castillo, S. R. McConnel, and D. P. Siewiorek. Derivation and
Calibration of a Transient Error Reliability Model. [EEE Trans. on
Computers, vol. 31, pp. 658 - 671, 1982.

[4] V. Devadas and H. Aydin. Real-Time Dynamic Power Management
through Device Forbidden Regions. In Proc. of the 14th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS 08),
2008.

[5] V. Devadas and H. Aydin. On the Interplay of Voltage/Frequency Scaling
and Device Power Management for Frame-based Real-Time Embedded
Applications. IEEE Transactions on Computers, vol. 61, no. 1, pp. 31 -
44, 2012.

[6] A. Ejlali, B. M. Al-Hashimi, and P. Eles. Low-Energy Standby-Sparing
for Hard Real-Time Systems. /[EEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 31, no. 3, pp. 329 - 342, 2012.

[7] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and
K. Flautner. Razor: Circuit-Level Correction of Timing Errors for Low
Power Operation. [EEE Micro, vol. 6, pp. 10 - 20, November - December,
2004.

[8] X. Fan, C. Ellis, and A. Lebeck. The Synergy Between Power-
Aware Memory Systems and Processor Voltage Scaling. Lecture Notes
in Computer Science Power - Aware Computer Systems. Springer
Berlin/Heidelberg, vol. 3164, pp 151 - 166, 2005.

[91 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, San Francisco, 1979.

[10] M. A. Haque, H. Aydin and D. Zhu. Energy-Aware Standby-Sparing
Technique for Periodic Real-Time Applications. In Proc. of IEEE Inter-
national Conference on Computer Design (ICCD’11), 2011.

[11] R. K. Iyer, D. J. Rossetti, and M. C. Hsueh. Measurement and Modeling
of Computer Reliability as Affected by System Activity. ACM Trans. on
Computer System, vol. 4, pp. 214 - 237, 1986.

[12] R. Jejurikar , C. Pereira and R. Gupta. Leakage Aware Dynamic Voltage
Scaling for Real-Time Embedded Systems. In Proc. of IEEE/ACM Design
Automation Conference (DAC’04), 2004.

[13] D.S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham.
Worst-Case Performance Bounds for Simple One-Dimensional Packing
Algorithms. SIAM Journal on Computing, vol. 3, no. 4, pp. 299 - 325,
1974.

[14] I Koren and C. M. Krishna. Fault-Tolerant Systems. Morgan Kaufman,
2007.

[15] C. L. Liu and James W. Layland. Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment. Journal of ACM, vol. 20,
no. 1, pp. 46 - 61, 1973.

[16] R. Melhem, D. Mossé, and E. Elnozahy. The Interplay of Power
Management and Fault Recovery in Real-Time Systems. /EEE Trans.
on Computers, vol. 53, pp. 217 - 231, 2004.

[17] D. Pradhan. Fault Tolerant Computer System Design, Prentice Hall,
1996.

[18] R. Sridharan and R. Mahapatra. Reliability Aware Power Management
for Dual-Processor Real-Time Embedded Systems. In Proc. of the 47th
IEEE/ACM Design Automation Conference (DAC’10), 2010.

[19] O. S. Unsal, I. Koren, and C. M. Krishna. Towards Energy-Aware
Software-Based Fault Tolerance in Real-time Systems. In Proc. of the
IEEE International Symposium on Low Power Electronics and Design
(ISLPED 2002), 2002.

[20] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for
Reduced CPU Energy. Mobile Computing of the International Series in
Engineering and Computer Science. Springer US, vol. 353, pp. 449 - 471,
1996.

[21] Y. Zhang and K. Chakrabarty. Energy-Aware Adaptive Check Pointing
in Embedded Real-Time Systems. In Proc. of IEEE/ACM Design, Au-
tomation and Test in Europe (DATE), 2003.

[22] Y. Zhang and K. Chakrabarty. Dynamic Adaptation for Fault Tolerance
and Power Management in Embedded Real-Time Systems. ACM Trans.
on Embedded Computer System, vol. 3, pp. 336 - 360, May 2004.

[23] B. Zhao, H. Aydin, and D. Zhu. Enhanced Reliability-Aware Power
Management Through Shared Recovery Technique, In Proc. of IEEE
International Conference on Computer Aided Design (ICCAD), 2009.

[24] B. Zhao and H. Aydin. Minimizing Expected Energy Consumption
through Optimal Integration of DVS and DPM. In Proc. of IEEE
International Conference on Computer Aided Design (ICCAD), 2009.

[25] B. Zhao, H. Aydin, and D. Zhu. Energy Management under General
Task-Level Reliability Constraints. In Proc. of 18th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2012.

[26] D. Zhu, R. Melhem, and D. Mossé. The Effects of Energy Management
on Reliability in Real-Time Embedded Systems. In Proc. of IEEE
International Conference on Computer Aided Design (ICCAD), 2004.

[27] D. Zhu and H. Aydin. Reliability-Aware Energy Management for Peri-
odic Real-Time Tasks. IEEE Trans. on Computers, vol. 58, no. 10, pp.
1382 1397, 20009.

[28] J. Zhuo and C. Chakrabarti. System-Level Energy-Efficient Dynamic
Task Scheduling. In Proc. of the 42nd IEEE/ACM Design Automation
Conference (DAC), 2005.

[29] Intel Corporation. Intel Pentium M  Processor Datasheet.
http://download.intel.com/support/processors/mobile/pm/sb/25261203.pdf,
2004.

[30] Intel Corporation.  Single-Chip  Cloud Computer:  Project.
http://www.intel.com/content/www/us/en/research/intel-labs-single-
chip-cloud-computer.html

[31] Tilera. Tile64 Processor.http://www.tilera.com/products/processors/TILE64



