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Abstract—Energy and reliability management are important
design constraints for real-time embedded systems. We consider
the problem of achieving a given reliability target for a set of
periodic real-time applications running on a multi-core system
with minimum energy consumption. Specifically, we observe that
the emerging multicore platforms provide ample opportunities to
use task replication to achieve reliability targets and mitigate the
negative impact of Dynamic Voltage Scaling (DVS) on the rate
of transient faults leading to soft errors. However, while it allows
using lower execution frequencies, replication may also increase
overall energy consumption due to additional task copies. Our
objective is to determine the level of replication and frequency
assignment for each task, as well as task-to-core allocations, in
such a way to achieve the target reliability levels with minimum
energy consumption. We first identify the subtle interplay be-
tween the processing frequency, replication level, reliability, and
energy consumption on DVS-enabled multicore systems. Then
we show that the problem is intractable in the general case and
propose our energy-efficient replication (EER) algorithm as an
approximate solution. We also show how the framework can be
extended to tolerate a given number of permanent faults affecting
processing cores. We evaluate the performance of our proposed
scheme through extensive simulations. The simulation results
indicate that through our algorithm, a very broad spectrum
of reliability targets can be achieved with minimum energy
consumption through the judicious use of replica and frequency
assignment.

I. INTRODUCTION

Energy management is an important design constraint for

any computer system. Apart from high energy costs, higher

energy consumption results also in adverse environmental

effects. Two very populer techniques are Dynamic Power Man-

agement (DPM) and Dynamic Voltage Scaling (DVS). With

DPM, system components are put to sleep/low-power states

when they are idle [1], [4]. The main idea of DVS is to reduce

the CPU voltage and frequency to achieve energy savings [20].

However, for real-time embedded systems, the applicability of

DVS is limited by the timing constraints associated with the

tasks. Recent studies also explored integrating DPM and DVS

in optimal ways [5], [24].

Computer systems are susceptible to faults, leading to

various run-time errors. Faults can be broadly categorized

into two types: transient and permanent faults [14], [17].

Transient faults are much more common in practice, as they

are caused by electromagnetic interference or cosmic radia-

tion [3], [11]. Transient faults may manifest in the form of

soft errors with incorrect computation results. Since transient

faults are non-persistent, re-execution of the affected task or

invocation of an alternate task are commonly used recovery

techniques [14], [17]. Permanent processor faults, on the

other hand, are caused by manufacturing defects or circuit

wear-out. Permanent faults therefore can only be dealt with

through hardware redundancy techniques (e.g., by deploying

extra processors) in the system. Real-time systems are often

deployed for safety-critical applications, where tolerance to

faults is extremely important. However, energy management

and fault tolerance are in general conflicting system objectives

as the latter requires deployment of extra resources [6], [10]

[16], [19], [22].

The consideration of reliability for systems employing DVS

for energy is equally important, as the current research sug-

gests the negative impact of DVS on the transient fault rate

[7], [26]: as we decrease the supply voltage and frequency to

save power, the transient fault rate (and the corresponding soft

errors) increase exponentially. Therefore, energy management

techniques must take into account the reliability degradation

and make provisions accordingly. A set of techniques, called

the Reliability-Aware Power Management (RAPM) [23], [27],

exploit time redundancy available in the system for both

energy and reliability management. These works consider the

problem of preserving the system’s original reliability, which

is the reliability of the system executing tasks without any

slowdown. The scheme in [27] resorts to backward recovery

approach and assigns a recovery task for every task that has

been slowed down, while the technique in [23] uses recovery

blocks shared by all the scaled tasks.

More recently, the reliability-oriented energy management

framework has been proposed for periodic real-time tasks

running on a single processor [25]. The main objective is to

achieve arbitrary reliability levels, in terms of tolerance to

transient faults, with minimum energy consumption. Unlike

RAPM studies, the target reliability level can be lower or

higher than the original reliability. This flexibility is important,



as some high-criticality tasks may require very high-levels

of reliability, while for some other tasks a modest reliability

degradation may be acceptable to save energy. The solution

still focuses on single-processor systems and hence resorts to

a limited number of shared recovery jobs that are invoked upon

the detection of soft errors.

The main proposal of this paper is a reliability-oriented

energy management framework for multicore systems. In the

last decade, due to the advances in the CMOS technology, we

witnessed the proliferation of systems with multiple processing

cores. Systems with 2-4 cores are commonplace, and new

systems such as Intel SCC (48 cores) [30] and Tile64 (64

cores) [31] are receiving increasing attention. We observe

that on these emerging many-core systems, task replication

is likely to become a quite viable option for reliability man-

agement. By scheduling multiple copies of the same task on

multiple cores, the likelihood of completing at least one of

them successfully (i.e., without encountering transient faults)

increases significantly. Replication has several advantages as

an effective reliability management tool. Firstly, very high re-

liability targets can only be achieved through task replication.

Secondly, replication has the potential of tolerating permanent

faults in addition to improving reliability in terms of tolerance

to transient faults. Thirdly and arguably most importantly, it

creates an additional and powerful dimension to reduce the

energy consumption by executing multiple copies at lower

frequencies, while achieving the same reliability figures.

In our framework, we consider the energy-efficient repli-

cation problem for preemptive, periodic applications running

on a many- or multi-core system. Our setting is reliability-

oriented in the sense that we consider minimizing energy

to meet arbitrary task-level or system-level reliability targets.

Specifically, for a given reliability target, our goal is to

find the degree of replication (number of copies) and the

frequency assignment for all tasks, such that the overall energy

consumption is minimized, while ensuring that all timing

constraints will be met. The main contributions of the paper

can be summarized as follows:

• We present an extensive analysis to show the viability of

replication as a tool for joint management of reliability

and energy,

• We formulate the Generalized Energy-Efficient Replica-

tion Problem (GEERP) and show its intractability,

• We propose an efficient and approximate solution to

GEERP and evaluate its performance through extensive

simulations,

• We also outline how our framework can be extended

to provision for permanent faults affecting at most Z

processing cores.

The rest of the paper is organized as follows. In Section II,

we present our workload, power, and reliability models. In

Section III, we illustrate the applicability of replication as

a tool for energy and reliability management on multicore

systems. Then we first address the energy-efficient replication

problem in the context of a single application in Section IV. In

Section V, we present our proposed solution for the general-

ized settings with multiple tasks. The experimental evaluation

is presented in Section VI. In Section VII, we show how our

framework can be extended to tolerate permanent faults of up

to Z processing cores. Finally, in Section VIII, we conclude.

II. SYSTEM MODEL

A. Workload and Processor Model

We consider a set of N periodic real-time tasks Ψ =
{τ1, ..., τN}. Each task τi has worst-case execution time ci

under the maximum available CPU frequency fmax. τi gener-

ates a sequence of task instances (or, jobs) with the period of

Pi. The relative deadline of each of these jobs is equal to the

period value Pi, in other words, each job must complete by

the arrival of the next job of the same task. The utilization of

task τi, ui, is defined as ci

Pi
. The total utilization Utot is the

sum of all the individual task utilizations.

The workload executes on a set of M identical cores. Each

core can operate at one of the K different frequency settings

ranging from a minimum frequency, fmin to fmax. We denote

by F the set of available frequency settings. Without loss of

generality, we normalize the frequency levels with respect to

fmax (i.e., fmax = 1.0). At frequency f , a core may require

up to ci

f
time units to complete a job of task τi.

Our framework assigns ki replicas (copies) to task τi, to

execute on ki ≤ M distinct processing cores, to achieve relia-

bility targets. The entire set of
∑

ki task copies are partitioned

upon the multicore system. The preemptive Earliest-Deadline-

First policy, which is known to be optimal on single processor

[15], is adopted to execute tasks on each core.

B. Power Model

We consider a power model adopted in previous reliability-

aware power management research [18], [25], [27]. The power

consumption of each core consists of static and dynamic power

components. The static power Ps is determined mainly by the

leakage current of the system. The dynamic power Pd includes

a frequency-dependent power component (determined by volt-

age and frequency levels), and a frequency-independent power

component Pind, driven by the modules such as memory and

I/O subsystem in the active state. In DVS technique, the supply

voltage is scaled in almost linear fashion with the processing

frequency. Consequently, the power consumption of a core can

be approximated by:

Pactive = Ps + Pind + Cef
3 (1)

Above, Ce is a system-dependent constant, reflecting the

effective switching capacitance. When a core is not executing

any task (idle state), its power consumption is primarily

determined by the static power. We assume that the static

power consumption can only be eliminated by the complete

power-down of the core.

Existing research indicates that arbitrarily slowing down

a task is not always energy-efficient [8], [12], [28], due to

the frequency-independent power components. In other words,

there is a processing frequency below which the total energy



consumption increases. This frequency is called the energy-

efficient frequency and denoted by fee. fee can be computed

analytically through the well-known techniques [12], [26].

C. Fault Model

Transient faults are typically modelled using an exponential

distribution with an average arrival rate λ [21]. The fault rate

λ increases significantly as frequency is scaled down when

using DVS [7], [26]. The average fault rate at the maximum

frequency is denoted by λ0. The fault rate at frequency f can

be expressed as [26]:

λ(f) = λ010
d(1−f)
1−fmin (2)

Above, the exponent d, called the sensitivity factor in the

paper, is a measure of how quickly the transient fault rate

increases when the system supply voltage and frequency are

scaled. Typical values range from 2 to 6 [18], [26], [27].
The reliability of a task is defined as the probability of

executing the task successfully, without the occurrence of

transient faults [27]. The reliability of a single instance of

task τi running at frequency fi can then be expressed as [26],

[27]:

Ri(fi) = e
−λ(fi)

ci
fi (3)

Conversely, the probability of failure (PoF) of a task in-

stance of τi is denoted by:

φi(fi) = 1−Ri(fi) (4)

At the end of execution of each task copy (replica), an

acceptance test (or, sanity check) [14] [17] is conducted to

check the occurrence of soft errors induced by the transient

faults. If the test indicates no error, then the output of the task

copy is committed to; otherwise, it is discarded. Therefore, in

replicated execution settings of a given task, it is sufficient

to have at least one task copy execution that passes the

acceptance test.

III. INTERPLAY OF ENERGY, RELIABILITY, FREQUENCY,

AND REPLICATION

Before presenting our detailed analysis, we start by illus-

trating how the level of replication and processing frequency

jointly determine the reliability and energy savings. Consider

a single instance of task τi running at frequency fi. Its

probability of failure is given by Equation (3) and is a function

of the processing frequency f , λ0 and the sensitivity factor

d. Now consider two replicas of τi running at frequency f .

The execution with replication will be unsuccessful only if

both replicas encounter transient faults during their respective

executions. Consequently the new reliability with two replicas

is found as:

R′i = 1− (1 −Ri(f))
2

More compactly, its new probability of failure is given by:

φ
(2)
i = (φi(f))

2

In general, with k replicas, the probability of failure decreases

exponentially with k:

φ
(k)
i = (φi(f))

k (5)

We observe that the use of replication may be a powerful

tool to mitigate the negative impact of the voltage/frequency

scaling on the probability of failure, and improve energy

savings through parallel execution. However, there are sev-

eral non-trivial design dimensions that must be considered,

including the energy cost of additional replica execution(s).

As a concrete example, consider a single task with worst-case

execution time ci = 100 ms. Following [25], in this and sub-

sequent examples used in the paper, we assume that transient

fault arrival rate at the maximum frequency is λ0 = 10−6,
and the system sensitivity factor d is 4.

Figure 1 shows how the execution frequency determines

the achievable PoF, for different number (k) of replicas. The

PoF values are given in normalized form, with respect to the

probability of failure of a single copy running at maximum

frequency. Note that the y−axis in the plot is in logarithmic

scale. Hence, for a given number of replicas, the PoF increases

(the reliability decreases) rapidly with decreasing frequency.

However, for a given frequency, there is also an exponential

improvement on reliability (decrease in PoF), with increasing

number of replicas. This simple fact points to an interesting

design spectrum: the same target PoF value can be achieved

at different frequency and replication levels. For example, the

PoF value achieved by 2 replicas of the same task running

at fmax can be also yielded by 3 replicas running at the

low frequency f = 0.2. Therefore, along with the frequency,

adjusting the number of replicas is clearly an additional and

powerful mechanism to achieve the target PoF figures.

We note that there is a lower bound on the number of

replicas required to achieve a certain PoF target, φtarget. In

particular, high reliability levels necessitate the use of multiple

replicas. Using Equation (5), we can easily determine the

minimum number of replicas (k) needed to achieve the target

PoF at a given frequency level f :

φtarget ≤ (φi(f))
k

k ≥
⌈ log(φtarget)

log(φi(f))

⌉

(6)

On the other hand, the energy consumption of different

replication/frequency levels yielding the same reliability level

may vary significantly. Figure 2 shows the impact of repli-

cation on energy consumption for our example task, under

various target (normalized) PoF values. In these experiments,

for a given target PoF value φtarget and for each replication

level (k), we compute the minimum energy consumption when

we use the best common frequency f for all k replicas to

achieve φtarget. The energy consumption is normalized with

respect to a single replica running at the maximum frequency1.

1We assume Pind = 0.1 in the examples.
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Fig. 3: Impact of target PoF on energy

A few key observations are in order. First, some very high

reliability (very low PoF) targets can only be achieved with

large number of replicas. Second, for a fixed reliability target,

using a minimum number of replicas generally consumes high

energy. This is due to the fact that the minimum number of

replicas are typically executed at high frequency levels to meet

the reliability target φtarget, giving high energy figures. On

the other hand, as we start increasing the number of replicas,

we can afford reducing the frequency of individual replicas

and thus the total energy consumption starts to decrease.

But as we deploy further replicas, after a certain point, the

energy consumption due to additional replicas offsets the

energy savings due to execution at low frequencies. As a

result, the energy consumption starts increasing. This is also

coupled by the fact that reducing the frequency below the

energy-efficient frequency fee is not helpful, even if we can

use additional replicas. Consequently, the energy consumption

figures continue to increase beyond a certain threshold point.

Finally, it is clear that the optimal number of replicas to

minimize energy depends highly on the target reliability.

Figure 3 depicts the interplay of target probability of failure

and energy consumption. Notice that, as we increase the

target PoF, the total energy consumption decreases for a

fixed number of replicas, as we are more tolerant of relia-

bility degradation and we can afford running the replicas at

lower frequencies. Once the frequency required to achieve

the reliability target reaches the energy-efficient frequency,

the energy curve flattens out. At that point, increasing the

target probability of failure does not yield any energy savings.

Moreover, since the PoF figures achievable by k replicas is

a proper subset of those achievable by k′ > k replicas, one

must consider the minimum number of cores needed for the

φtarget under consideration – in our example, φtarget values

smaller than 10−7 were simply not achievable by deploying 1
or 2 replicas.

We can summarize our key observations in this section as

follows:

• In addition to the processing frequency, the replication

can be used to manage reliability on DVS-enabled mul-

ticore systems, giving a broad design spectrum involving

multiple dimensions, and in particular, energy consump-

tion.

• The same target reliability can be typically achieved

through multiple ways: using small number of replicas

running at high frequencies or large number of replicas

running at low frequencies. While the use of replication

allows the system to use lower frequencies to mitigate the

reliability loss, this may have a negative impact on the

energy consumption due to the energy cost of running ad-

ditional replicas. The configuration that minimizes energy

consumption varies depending on the system parameters

and target reliability.

IV. TASK-LEVEL ANALYSIS

We first address our problem of finding the energy-optimal

configuration (i.e., the number and frequency assignment of

replicas) in the context of a single task to achieve a target

reliability level. This single-task setting enables us to illustrate

some additional non-trivial aspects of the problem as well

as to present the terminology and definitions that will be

instrumental for the eventual system-level analysis that will

be carried out in Section V.

We start by observing that, for a given execution frequency,

the minimum number of replicas needed is provided by

Equation (6). Moreover, the number of available frequency

levels is very limited in existing processors; for example,

Intel Pentium M processor with 1.6 GHz maximum frequency

supports only six frequency steps in the active state [29].

Consequently, one can easily compute the number of replicas

needed, as well as the corresponding overall energy consump-

tion for every available frequency setting. An obvious question

is whether the energy numbers obtained as a function of

decreasing replica frequency exhibit a certain (e.g., convex

or concave) pattern. Unfortunately, the answer is negative, as

the following example illustrates.

Example 1. Consider a task with execution time

ci = 1000 ms at the maximum frequency. The normalized

PoF target for the task is given as 10−6, requiring definitely

more than one task copy. We assume that the system has 4

(four) normalized frequency settings, given as 0.4, 0.6, 0.7,

and 1.0. For illustration purposes, we assume the frequency-

independent power (Pind) is set to 5% of the maximum

dynamic power and the static power is negligible.

For each of the available frequency levels, we can compute

the minimum number of replicas for the given reliability target

and the corresponding overall energy consumption, obtaining

the values shown in Table I.



TABLE I: Total Energy Consumption

Frequency Replica Energy

1.0 2 2.1
0.7 3 1.68429
0.6 4 1.77333
0.4 6 1.71

We notice that, as we decrease the CPU frequency the

overall energy consumption of all the required replicas first

decreases, then increases, before decreasing again. This sug-

gests that the overall reliability-oriented energy consumption

function, as a function of processing frequency, is neither

convex nor concave. Consequently, the use of simple tech-

niques like binary search or the techniques available from

the convex optimization theory would not be applicable. This

small example shows that, in the general case, one may need

to consider the energy consumption for all the frequency levels

to find the optimal configuration.

A. Energy-Frequency-Reliability (EFR) Tables

In general, as in Example 1, we can construct for every

task τj a table with K rows on a system with K frequency

levels. For each frequency setting, we compute the minimum

number of replicas (through Equation (6)) to achieve its

target reliability φj,target and the corresponding overall energy

consumption. In preparation for our system-level analysis, we

also include a column that indicates the total CPU time needed

by all the replicas.

The entries given in each row corresponds to a separate

configuration of the system. We denote the ith configuration

for a task by RfConfig(i), which contains information about

the frequency of each replica, number of replicas, total energy

consumption, and total CPU time needed by all replicas.

This Energy-Frequency-Reliability (EFR) table can be clearly

constructed in time O(K) for a given task.
Table II shows an example EFR table for a task whose

execution time is c = 100 ms. The normalized Pof target

is 10−6. For simplicity, assume Ps and Pind are negligible.

Assuming the processor has 10 different frequency steps, we

have 10 different configurations (RfConfig(i) i = 1, . . . , 10).

TABLE II: An Example EFR Table

Frequency, f Replica # r Energy CPU time

1 2 0.2 0.2
0.9 2 0.162 0.222222
0.8 3 0.192 0.375
0.7 3 0.147 0.428571
0.6 3 0.108 0.5
0.5 3 0.075 0.6
0.4 4 0.064 1
0.3 4 0.036 1.33333
0.2 5 0.02 2.5
0.1 6 0.006 6

Note that, in general, the number of valid frequency lev-

els may be smaller than the number of available frequency

levels. This is because frequencies below the energy-efficient

frequency fee should not be considered. In addition, since the

task τj would miss its deadline at the frequency levels below

its utilization value of uj =
cj

Pj
, we do not need to consider

frequencies < max{fee, uj}.
As we decrease the CPU frequency, the time required for

executing each replica increases. The number of required

replicas may remain the same or increase. As a result, the total

CPU time consumption keeps increasing. However, in terms

of energy consumption patterns, the trends are not always

obvious. For example, looking at Table II and comparing the

entries for f = 0.9 and f = 0.8, we observe an interesting

phenomenon. Specifically, the energy consumption at the

lower frequency configuration f = 0.8 is higher than that of

the higher frequency configuration f = 0.9. Obviously, there is
no benefit in using the frequency f = 0.8 as it consumes more
energy while also using more CPU time (potentially affecting

the feasibility of other tasks that may exist in the system),

compared to the adjacent higher frequency level f = 0.9.
Clearly such inefficient frequency levels can be also re-

moved from the table in a linear pass. Considering that the

frequency levels below max{fee, uj} are not valid either, the
trimming of the entire table can be achieved O(K) time.

After such a trimming, the energy consumption values in the

table will be in decreasing order and the minimum energy

configuration for the task will be at the last row of the table.

While choosing this minimum energy configuration is ideal for

the task, the feasibility and reliability requirements of other

tasks may not allow the use of this frequency. This issue will

be further analyzed in Section V.

B. Impact of Frequency Assignment to Replicas

The reader may have observed that, so far, we implicitly

assumed uniform frequency assignment to the replicas of

a given task in reliability-oriented energy management. In

fact, in general, assigning uniform frequencies is not always

optimal. This is due to the nature of the reliability function

given through Equations (2) and (3), which is neither convex

nor concave in the entire spectrum. As we decrease the fre-

quency, task reliability first decreases slowly, then it falls very

sharply, which is followed by a region where the reliability

decreases very slowly again. Thus, occasionally, it is possible

to achieve a certain reliability target with one replica running

at a relatively high frequency and another replica running at

a very low frequency. Moreover, using a uniform frequency

for that specific setting may violate the reliability constraint

or result in higher energy consumption. In those settings,

uniform speed assignment provides a sub-optimal solution. We

illustrate this point with a concrete example.

Example 2. Consider a task with 10 ms execution time

at maximum frequency on a 2-core system. We will execute

two replicas of the task on two cores. Static power and the

frequency-independent power are set to 5% of the maximum

dynamic power. The target PoF is set to the PoF achieved

by two replicas of that task running both at 0.75. Therefore,

we can trivially satisfy the reliability target by executing both
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Fig. 4: Energy savings obtained by exhaustive search compared to the uniform frequency assignment

replicas at speed 0.75. However, an exhaustive search suggest

that, if we assign frequency for the two replicas to 0.9 and

0.37 respectively, the energy consumption will be 4.55% lower

than the uniform setting while achieving the same reliability.

Moreover, using the uniform frequency which is the mean of

the indicated distinct frequencies (i.e., f = 0.9+0.37
2 = 0.635)

would not satisfy the reliability target.

However, using an uniform speed for all the replicas avoids

further complications on the problem which has already sev-

eral non-trivial aspects. In addition, we ran extensive simula-

tions under various system parameters. Our results suggest

that, for realistic system settings, using uniform frequency

asssignment almost always yields energy figures which are

quite comparable to those provided by a computationally very

expensive, but optimal, algorithm.

To give the details of our experiments, for a fixed reliability

target, we first find the most energy-efficient setting where all

replicas run at uniform frequency. Note that, for a single task,

the number of replicas cannot exceed the available number of

cores. The optimal search for frequency assignment technique,

on the other hand, performs an exhaustive search for every

degree of replication and varies the frequency separately for

each replica at increments of 0.01 from 0.1(fmin) to 1.0

(fmax). At the end of this exhaustive search, the optimal

scheme chooses the best solution.

Figures 4a, 4b and 4c present a subset of our simulation

results. In these experiments, we consider task execution times

of 10, 50 and 100 ms. We also vary the sensitivity factor

d of the system from 2 to 4. In Figure 4a we consider the

degree of replication to be 2 and for a wide spectrum of

reliability targets, we report the energy savings obtained by

the optimal (exhaustive) search technique over the uniform

frequency assignment technique. In Figures 4b and 4c we

repeat the experiments for 3 and 4 replicas respectively. The

experimental results suggest only up to 5% energy savings

obtained by the exhaustive search technique, compared to the

uniform assignment technique. In fact, for many combinations,

the difference is even smaller than 5%. As we observed the

same patterns in our additional experiments, in the rest of the

paper, we employ the uniform frequency assignment technique

due to its conceptual and practical simplicity.

V. SYSTEM-LEVEL ANALYSIS AND SOLUTION

In this section, we address the system-level problem that

involves the consideration of all the tasks in the system,

each with potentially different reliability targets. We first

give additional details necessary to formulate and manage

reliability of periodic tasks each with multiple task instances

(jobs).

A. Reliability Formulation for Periodic Tasks

We consider a reliability formulation similar to the one used

in [25]. The reliability of a periodic task is defined as the

probability of successfully executing all instances of that task

during the hyperperiod, which is defined as the least common

multiple of all the periods. Specifically, if the task τi has

hi instances in the hyperperiod, the PoF of the task can be

expressed as:

φi = 1−Πhi

j=1(1 − φi,j) (7)

where φi,j denotes the reliability of the jth instance of task

τj .

The system reliability is the probability of executing all

instances of all the tasks successfully. Therefore, it can be

easily computed as the product of individual task reliabilities.

The system PoF is then given by:

φsyst = 1−ΠN
i=1(1− φi)

In reliability-oriented energy management problem, the

task-level reliability targets may be given as part of the prob-

lem input. However, if only the system-level target reliability

is given, we first need to compute the task level reliability

target from the given system level reliability target φ′syst.

In this case, we can use the technique called the Uniform

Reliability Scaling in [25]. This technique scales up or down

all original task reliabilities by the same factor to achieve the

new system-level target reliability. Specifically, assume that

when all instances of a periodic task during the hyperperiod

are executed at fmax and there are no additional replicas, the

task level Pof is φ̂i. Then, the task-level target φi,target values

are determined such that φ′syst = 1−ΠN
i=1(1−φi,target), and

∀i

φi,target

φ̂i

= ω (8)

Above, ω is called the (uniform) PoF scaling factor. Clearly,

small (large) ω values correspond to higher (lower) reliability

objectives.



B. Problem Definition

We now address the problem for a generalized setting,

where there are multiple periodic tasks in the system. With

multiple tasks, feasibility (deadline guarantees) becomes a

major concern. Therefore, many tasks cannot be scheduled

according to the most energy-efficient configuration from

the EFR table since the total CPU time of all the replicas

may exceed the time available on existing number of cores.

Consequently, some tasks may have to be executed in a

different ’configuration’. Given the EFR tables, determining

the configuration (i.e., the degree of replication and frequency

assignment) for each task such that the overall energy con-

sumption is minimized while meeting the reliability target is

a non-trivial problem.

Generalized Energy-Efficient Replication Problem

(GEERP): Given a set of periodic tasks and task-level

reliability targets, determine the number of replicas to execute

and the frequency assignment for each replica such that the

energy consumption is minimized, while ensuring a feasible

partitioning such that the deadline constraints are met and

two replicas of the same task are not assigned on the same

core.

To present the general optimization problem formulation,

we first introduce the necessary notation. Let ki be the number

of replicas assigned to task τi and Ei(fi) be the energy

consumption for each replica of τi running at frequency fi.

Γm denotes the set of all tasks for which a replica is assigned

to core m. ρ(i, j) represents the core where the jth replica

of τi is assigned. Then our problem is to find ki and fi

values along with the replica-to-core allocation (partitioning)

decisions {ρ(i, ki)}, i = 1, . . . , N , so as to:

minimize ΣN
i=1ki × Ei(fi) (9)

subject to ∀i fi ∈ F (10)

∀i ki ≤ M (11)

∀m Στi∈Γm

ci

fi

≤ 1 (12)

∀i (φi(fi))
ki ≤ φi,target (13)

∀i ∀j 6=k ρ(i, j) 6= ρ(i, k) (14)

Above, the constraint (10) ensures a legitimate frequency

assignment for every task and the constraint (11) enforces

that the number of replicas does not exceed the available

number of cores. The constraint (12) ensures that a feasible

partitioning is obtained for all the cores, using the well-

known schedulability condition with preemptive EDF [15].

The constraint set (13) represents the task level reliability

targets. Finally, the constraint (14) ensures that no two replicas

of a same task are assigned to the same core.

In Section IV, we observed that the overall replica en-

ergy consumption function ki × Ei(fi) is neither convex nor
concave. Therefore no standard optimization technique can

be applied to solve this problem. Moreover, the problem

can be easily shown to be NP-hard in the strong sense. If

we consider the special case of tasks with identical periods

(deadlines), target reliabilities equal to the original reliability

levels (requiring only one copy of each task), and a system

without any DVS capability (where all tasks are executed at

constant speed), GEERP reduces to the problem of packing

variable-size items on M bins – this is the classical bin-

packing problem, which is known to be NP-hard in the strong

sense [9].

We consider a two-step solution for GEERP. In the first

step, we construct the EFR tables for all tasks, separately. In

the second step, using the tables, we search for a solution

configuration that can be feasibly partitioned, while obtaining

as much energy savings as possible. Due to the intractability of

the problem, we resort to an efficient heuristic-based solution

that still satisfies all the constraints of the problem.

C. Algorithm Energy-Efficient Replication (EER)

In this section, we present our solution. First, using Equation

(7), the algorithm first determines the job level reliability

target for each periodic task, given the task-level reliability

targets. Then as described in section IV-A the EFR tables

are constructed. Assume that, the jth configuration of τi is

denoted by RfConfig(i,j). In the rest of the paper, f(i,j), r(i,j),

E(i,j) and S(i,j) denote respectively the frequency, the number,

total energy consumption, and total CPU time of all replicas

in RfConfig(i,j). The specific quantities for RfConfig(i,j) can

be obtained from the jth row of the corresponding EFR table.

From the tables, the algorithm first determines the minimum

energy configuration for a given task.

The algorithm then tries to partition the workload for

various configurations on M cores. We choose the First-Fit-

Decreasing (FFD) heuristic [13] for partitioning the replicas

among the available cores. However, we modified the classical

FFD heuristic such that a different core is chosen for each

replica of a task.

As the first attempt, the algorithm checks if it is possible to

obtain a feasible partitioning where every task has its preferred

(i.e., minimum-energy) replica-frequency configuration. If so,

this is clearly the optimal solution for the entire problem.

Otherwise, we check the other extreme, where every replica is

forced to run at fmax to minimize the number and total CPU

time of all the replicas. If there is no feasible solution for

this case, the algorithm exits with an error report. Otherwise,

the algorithm moves on to the next phase, which we call the

relaxation phase.

In the relaxation phase, the algorithm starts with a feasible

configuration where every replica runs at fmax and all tasks

are marked as eligible for relaxation. Then in each step,

based on the specific task selection heuristic (that will be

discussed shortly), one eligible task is chosen and its frequency

is reduced by one level according to its EFR table. If the

resulting configuration is also feasible, the new configuration

is committed to and the algorithm proceeds to the next step.

Otherwise, the algorithm backtracks to the previous configu-

ration and the chosen task is marked as ineligible for future

relaxations. If a task reaches its minimum energy configuration



level in the EFR table, it is also marked as ineligible for

additional slowdown. The algorithm stops when there is no

more eligible task further relaxation. Algorithm 1 shows the

pseudo-code of the algorithm.

Algorithm 1 Algorithm Energy-Efficient Replication (EER)

Construct the EFR tables for all tasks

for i = 1 to N do

/* assume ji is the most energy-efficent frequency-level for

τi in the EFR table */

CurConfig[i] ← ji;

end for

Partition the workload in CurConfig with modified FFD

if ( feasible(CurConfig) ) then

return CurConfig and the partitioning ρ

exit

end if

for i = 1 to N do

CurConfig[i] ← 1;

eligible[i] ← true;

end for

Partition the workload in CurConfig with modified FFD

if ( !feasible(CurConfig) ) then

return error; /* No feasible solution exists */

exit

end if

while (∃j eligible[j] ) do

Choose eligible task according to LEF, LPF or LUF

/* τi is chosen for relaxation */

CurConfig[i] ++;

Partition the workload in CurConfig with modified FFD

if( !feasible(CurConfig) ) then

CurConfig[i] −−;

eligible[i] ← false;

end if

end while

return CurConfig and the partitioning ρ;

In Algorithm 1, we first construct the EFR tables for

all tasks (Section IV-A). Due to trimming of the inefficient

frequency levels, the minimum energy configuration for each

task can be found at the last row of the corresponding EFR

table. We use CurConfig[i] to denote the current configuration

of τi. For example, if the current configuration for τi is

RfConfig(i,j), we set CurConfig[i] to j. For all tasks, we first

set the current configuration to be the most energy-efficient

configuration from the corresponding EFR table. We then

attempt to partition the tasks using the modified FFD. If the

partitioning succeeds, we have obtained an optimal solution.

Otherwise, we set the current configuration to the first entry

of the EFR table for every task, which corresponds to using

fmax. If there exists no feasible partitioning for that setting, the

algorithm quits. Otherwise, the algorithm relaxes one eligible

task at a time and reduces its frequency by one level, until
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energy savings cannot be further improved while preserving

feasibility.

Several heuristics can be applied to choose the task for

relaxation in every iteration. For this, we considered three

heuristics as described below.

Largest-Energy-First (LEF): In this heuristic we choose

the task that will provide the largest energy savings when

relaxed to the next level in the EFR table. For task τi, let

the current configuration be the row j in the EFR table. Then,

the task with the largest

∆E = E(i, j)− E(i, j + 1)

value is selected according to this heuristic.

Largest-Power-First (LPF): We choose the task that pro-

vides the largest energy savings per unit time for the additional

CPU time required for the next level in the corresponding EFR

table. Therefore, task τi is selected to maximize:

∆E

∆S
=

E(i, j)− E(i, j + 1)

S(i, j + 1)− S(i, j)

Largest Utilization First (LUF): This is a simple heuristic

where the task with largest utilization value is chosen first.

We now analyse the complexity of the proposed solution.

In the first phase, we construct the EFR tables for each task.

As discussed in section IV-A, each table can be constructed in

O(K) time. Therefore, the running time of phase 1 is O(NK)
in the worst case. In the relaxation phase, we can have at

most NK relaxation steps and for obtaining the partitioning

the cost is O(NM) in the worst case. Therefore, the overall

running time of the algorithm is O(N2MK). Note that, for

most practical systems K and and M are small constants.

Also observe that, the algorithm is executed only once as a

pre-processing phase.

VI. PERFORMANCE EVALUATION

In this section, we present our simulation results to evaluate

the performance of our proposed scheme. We considered three

different heuristics - LEF, LPF and LUF - for choosing the

tasks for relaxation. As a baseline scheme, we considered the

case where all replicas run at fmax and with the minimum

number of replicas required to achieve the target reliability. We
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Fig. 6: Impact of target Pof

report the energy savings of our proposed scheme compared

to the baseline scheme.

We constructed a discrete event simulator to evaluate the

performance of our schemes. For each data point, we con-

sidered 1000 data sets with 20 tasks. The task utilizations

are generated randomly using the UUnifast scheme [2]. Task

periods are generated between 10 ms and 100 ms. The default

number of speed steps in the system is 10. The static power

and the frequency-dependent power are set to 5% of the

maximum dynamic power consumption.

Lower bound on the number of cores. In general, the number

of cores required to execute all the replicas may be significant

for a given reliability target. A lower bound on this number

may be obtained as follows. In general, one or more copies of

each task is needed to achieve the reliability objectives. Let

us denote the total utilization of the entire workload (all the

replicas) by effective utilization. The number of cores required

cannot be smaller than the minimum effective utilization, which

is the effective utilization when all tasks/cores run at fmax.

Also, all replicas of a given task execute on different cores.

Let us denote by R(i) the number of replicas needed by τi

when executed at fmax, which can be readily obtained from

the EFR table. Hence, the minimum number of cores required

is the maximum of greatest number of replicas needed by any

task and the minimum effective utilization:

Lower-bound = ∀imax{R(i), ⌈Σ
N
j=1R(j) ×

cj

Pj

⌉}

Figure 5 shows the lower bound for the number of cores

for different utilization values, as we vary the uniform Pof

scaling factor ω from 103 to 10−15 under different total

utilization (Utot) values. We observe that, as we increase the

reliability target (smaller ω), the number of cores required

increases very fast. When ω goes below 1, each job requires

at least two replicas to achieve the reliability target. So, at

that point the minimum number of cores is doubled. As we

require additional reliability or increase the load (utilization),

the number of required cores further increases.

Impact of Target Reliability. We now consider the impact of

target uniform Pof scaling factor ω on the system energy

consumption. Figure 6 shows the energy savings for task sets

with total utilization 1.2 and 3.2 running on 4- and 8-core

systems. The energy gain reaches the minimum value for target

ω = 1. The reason is, when the target ω = 1, the target

reliability becomes equal to the reliability obtained trivially

by the baseline scheme with exactly 1 replica for each task.

In this case, our schemes can only achieve energy savings by

running more than one replica at a considerably lower speed.

However, this may require large number of replicas running

at a very low speed, which adversely affects the feasibility.

Therefore, only for very low load on 8 cores (Fig. 6b) LEF,

LUF and LPF can achieve energy savings when ω = 1.
Otherwise, the baseline scheme provides the optimal solution

and there is a significant drop in energy savings for ω = 1.
We observe that for all settings, as we increase ω beyond 1,

the energy savings increase as we can afford running the

replicas at lower frequencies. When the frequency reaches the

energy-efficient frequency, the savings reach a stable level. On

the other hand, when ω < 1, the baseline scheme uses two

replicas running at fmax and LEF, LPF and LUF can execute

replicas at lower frequencies. Even though LEF, LPF and LUF

may use more replicas compared to the baseline scheme, they

still save energy thanks to execution at lower frequencies. As

ω decreases even further, the required processing frequency

increases and there is a slight drop in energy savings. Notice

that, typically LEF provides higher energy savings than LPF

and LUF.

In Figure 6b, the system utilization is very low compared

to the available cores. As a result, the minimum energy

configurations are feasible. Therefore, the energy savings for

all schemes converge. In Figure 6c, on the other hand, the

system utilization is very high. Therefore, it is not possible to

find a feasible solution for target ω < 1. For Figure 6a and 6d,
the utilization is moderate considering the number of cores.

Therefore, there is no feasible solution for the most energy-

efficient settings. However, some tasks can be feasibly relaxed

to run at a lower frequency. Due to the difference in the order

of task selection for relaxation, the heuristics differ in their

performances.

Impact of the number of cores. Next, we evaluate the impact

of the number of cores on the system performance. Figure

7a and 7b show the energy consumption for a task set with

total utilization 1.5 for target Pof scaling factor set to ω 10−3

and 10−6, respectively. Observe that increasing the number of
cores allows greater slowdown of replicas and hence typically

provides greater energy savings. We notice that initially small

increase in the number of cores does not translate to energy

gains, as it does not allow sufficient slow-down of jobs. Then,
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as we can relax more tasks with added cores, the energy

savings increase sharply. The energy savings for all schemes

converge at a stable point, when choosing the most energy-

efficient configurations become feasible for all tasks. Also

notice that, the energy savings are greater for larger target

ω as it allows more slack for relaxation.

Impact of the System Load. Figure 8 represents the impact of

total utilization Utot on the energy savings. For this experi-

ment, we set the number of cores in the system to 16 and

the target ω is set to 10−3 and 10−6 respectively. We vary

the utilization from 0.5 to 8 and note the energy savings. We

observe that, at very low utilization the energy savings is the

highest, as we can find feasible partitioning for the minimum

energy configurations. Also, for very small utilizations the

energy savings first increase with added workload. Due to

very low utilization, the replicas can still run at the same low

frequency, while the baseline scheme keeps running at fmax.

Since the dynamic energy consumption increases in squared

fashion with respect to frequency, the energy consumption

for the baseline scheme increases at a higher rate than our

schemes. Therefore, the energy consumption increases slightly

at first. Then, as the frequency of the replicas increase, the

energy savings decreases slowly. When the minimum energy

configurations become infeasible, the schemes start to differ

and there is a sharp drop in energy savings, as the number of

jobs that can be relaxed drops. As we continue increasing the

system load, due to lower available slack, the energy savings

become modest. Again, LEF outperforms LPF and LUF. Also

notice that the energy savings is lower for smaller ω target, as

it requires running more replicas and/or at a higher frequency.
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VII. EXTENSION TO TOLERATE A FIXED NUMBER OF

CORE PERMANENT FAULTS

The presented framework in this paper essentially aims at

managing reliability in terms of tolerance to transient faults

induced by dynamic voltage and frequency scaling. While

less common, individual cores may also encounter perma-

nent faults during task execution due to circuit wear-out or

manufacturing defects [14]. Permanent faults may result in

the unavailability of some processing cores and can only be

dealt with redundant execution of tasks on different cores. The

reader may have observed that the allocation of the replicas

to different cores provides simultaneously an appropriate basis

to tolerate the permanent faults of processing cores.

While the design and implementation of a comprehensive

system to detect and recover from the permanent faults at run-

time is a fairly complicated task ( [14], [17]) that goes beyond

the scope of this paper, below we sketch how our algorithm

EER can be modified to allocate task replicas in such a way

to tolerate up to Z permanent core faults. In order to tolerate

Z permanent faults affecting any Z cores, we must schedule

at least (Z + 1) replicas for every task. Hence, during the

construction of the EFR tables, for every frequency setting, we

can choose the minimum of (Z + 1) and the least number of
replicas required to achieve the reliability target at that setting.

Obviously, if Z + 1 is the larger quantity, then the energy

consumption and CPU time entries for that configuration in the

table will need to be updated accordingly. This modification

makes sure that at least Z + 1 replicas of every task are

scheduled on Z + 1 distinct cores, while still maintaining the
reliability targets in terms of tolerance to transient faults.

We conducted simulations to assess the impact of additional

requirement to schedule at least Z + 1 replicas for each

task. Due to space limitations, we present a single plot that

summarizes the main trends in Figure 9. Here, we vary the

uniform Pof scaling factor ω from 103 to 10−6. We report the

additional energy overhead with respect to the case where we

have no guarantees for permanent fault tolerance, i.e. Z = 0,
as we increase Z from 1 to 4. We only present the results for

the LEF heuristic. Notice that, when ω > 1, the additional

energy overhead is Z times the base energy consumption. This

is because, in that case, the transient fault reliability target

can be achieved with only one replica per task; but still we



need additional Z replicas for potential permanent faults. We

observe that, as we decrease ω, the overhead decreases slightly.

As we decrease ω, more and more replicas are required to

achieve the given transient fault reliability target, and, we

need to assign less additional replicas to handle permanent

faults. For the same reason, we also notice that, the increase

in overhead for increased permanent fault tolerance target is

smaller when target ω < 1 compared to the region where

ω > 1. The energy overhead is 0 for Z = 1 when the target

ω < 1, because in that region, the default behavior of the EER
algorithm is to assign more than 1 replica to any task.

VIII. CONCLUSIONS

In this paper, we considered the reliability-oriented energy-

management problem for preemptive periodic real-time appli-

cations running on a multi-core system. We showed how repli-

cation can be used to achieve the given task-level reliability

targets that are expressed in terms of tolerance to transient

faults. While replication allows the use of lower frequencies

on different cores for a given reliability target to mitigate

the negative impact of DVS on transient faults, it has also

the potential of increasing energy consumption. We presented

techniques to determine the degree of replication and the

frequency assignment for each task while minimizing overall

energy. Although the problem is intractable in the general case,

our efficient heuristics are shown to satisfy the given reliability

targets with considerable energy savings through simulations.

We also a presented an extension that allows tolerating up to

Z permanent faults on processing cores with minimum energy

consumption.
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