
978-1-4799-6177-1/14/$31.00 c©2014 IEEE

Energy management of embedded wireless systems
through voltage and modulation scaling under

probabilistic workloads∗

Maryam Bandari, Robert Simon, and Hakan Aydin
Department of Computer Science

George Mason University, Fairfax, VA 22030
{mbandari, simon, aydin}@gmu.edu

Abstract—Many wireless embedded systems must deal with
increasingly complex and time-varying workloads. Moreover,
real-time constraints must be satisfied. Most of the existing
energy management studies for such systems have focused on
relatively simple models that assume deterministic workloads
and consider a limited range of energy management techniques,
including Dynamic Voltage Scaling (DVS). Our paper addresses
these deficiencies by proposing a general purpose probabilistic
workload model for computation and communication. To account
for the importance of radio energy consumption, we also anal-
yse Dynamic Modulation Scaling (DMS), an often overlooked
method for energy management. We define several energy control
algorithms, including an optimal combined DVS-DMS approach,
and evaluate these algorithms under a wide range of workload
values and hardware settings. Our results illustrate the benefits
of various power control algorithms.

I. INTRODUCTION

Energy management is critical for self-powered real-time
embedded wireless systems, such as those designed for in-
dustrial process control, highway monitoring, and building
surveillance. These systems have to maintain high levels of
computation and communication performance while mini-
mizing energy consumption [1]–[3]. Existing energy man-
agement techniques typically use “control knobs” that trade
performance for energy savings. One commonly used power
saving technique is Dynamic Voltage Scaling (DVS)[4]. DVS
controls power consumption by reducing the CPU frequency
and supply voltage (hence, the CPU speed). Another technique
for power saving is Dynamic Modulation Scaling (DMS),
which works by changing radio modulation levels and con-
stellation sizes (hence, the communication speed) [5]. DMS
is directly supported by embedded wireless standards such as
802.15.4 [6]. The impact of DMS usage on power consump-
tion in wireless embedded systems is relatively understudied.
Moreover, for wireless embedded nodes with both substantial
computational and communication workloads, both DVS and
DMS techniques are relevant. Though there are a few studies
that consider DVS and DMS simultaneously ([7,8]), those
works consider exclusively deterministic workloads.

This paper addresses that gap by studying the joint use of
DVS and DMS under a deadline constraint. We are specifically
∗This work has been supported by the US National Science Foundation

award CNS-1016974.

interested in quantifying the impact of these algorithms when
both computation and communication workloads are known
only probabilistically. We believe this is a direction that
warrants investigation, as in practical applications the most im-
portant objective is typically to minimize the expected energy
consumption while still providing performance guarantees.
To this aim, we use probabilistic workload models for both
computation and communication activities. The computational
model uses cycle groups ([9]–[11]), a concept that supports
the empirical estimation of an underlying workload probabil-
ity distribution. We adopt a similar approach to model the
communication workload.

Our work evaluates five different algorithms, including a
joint DVS-DMS approach. Using the probabilistic workload,
deadline and energy models, the joint approach formulates the
problem as one that can be solved through convex optimiza-
tion. We present an efficient off-line solution to this problem.
Our work is based on the observation that in probabilistic
workload settings, the optimal solution consists of starting with
low computation and communication speed levels, and then
gradually increasing the speeds as the task makes progress.
We show how to compute the optimal speed schedule in
which DVS and DMS parameters are adjusted to match the
current workload conditions. Next, we conduct a simulation
study to evaluate the benefits of our joint DVS-DMS approach
under probabilistic workloads and as a function of the ratio
of the radio power to the CPU power, by comparing to other
algorithms, including those that use DVS-only or DMS-only
approaches for energy management.

To our knowledge this is the first study that considers
both DVS and DMS in a wireless embedded system using
probabilistic computation and communication workload mod-
els. Our results precisely quantify the improvements offered
by these control techniques as a function of the underlying
hardware characteristics, and can be used by designers as a
guideline for algorithm selection. Of particular importance
of this work is the demonstration of the potential value of
DMS techniques [6]. For instance, our experimental results
show that a joint DVS-DMS strategy can provide non-trivial
gains on the expected energy consumption, especially when
the computation and communication workloads are relatively
balanced.

II. RELATED WORK

Dynamic Voltage Scaling (DVS) is a well-known energy
management technique that trades off the CPU dynamic power
consumption with task execution time by adjusting the pro-
cessor’s supply voltage and frequency. One of the earliest
works addressing real-time scheduling in processors with DVS
capability is [12]. DVS is now widely used in current micro-
processors, including the Intel XScale architecture [13] and the
AMD processors with the PowerNow! feature [14]. The two
major components of DVS-enabled processors, the adjustable
DC-DC output voltage converter and the programmable clock
generator, are studied in [15], [16] and [17]. DVS methods
are particularly effective for systems with time-varying work-
loads and real-time constraints, such as embedded control and
multimedia applications [4,18].

One focus of this paper is on probabilistic computational
workloads with variable execution times. In these scenarios
energy management schemes typically reclaim dynamic slack
created by tasks running for less than their worst-case execu-
tion times [4,9,19]. Off-line and on-line profiling along with
the intrinsic characteristics of the application may be utilized
to derive a probability distribution function for the workload
[20]. Research in this area includes intra-task DVS algorithms
that offer optimization techniques for CPU frequency adjust-
ment under probabilistic workloads [10,11,21].

We extend these earlier works to account for devices with
radios that are Dynamic Modulation Scaling (DMS) capable.
Within many embedded wireless systems the radio is a major
source of power consumption, and therefore DMS control
methods can lead to reduced overall energy expenditures [22].
DMS works by reducing the communication speeds with
varying modulation modes or constellation sizes [5]. Despite
its availability [6] relatively few works have addressed joint
DVS-DMS power management approaches. One example is
[23], which describes offline and online algorithms to allocate
slack times based on energy gains. A similar slack distribution
strategy is used in [24]. Using the concept of negotiated access
periods, [25] selects job and CPU voltage levels. In a simi-
lar fashion [26,27] apply both dynamic power management
(DPM) and DVS as power management approaches.

Both centralized and distributed joint DVS-DMS for energy
harvesting wireless sensor networks are discussed in [7]. All
combinations of frequencies and modulation levels are probed
in [8] to find the settings that still meet the deadline of the
predicted workload with minimum energy consumption. The
authors compare the energy consumption of all members of
the set to find the setting that results in minimum energy.

Our work differs from the above DVS and DMS studies
by first focusing on a more realistic probabilistic workload
model and then formulating an optimization problem for the
minimization of the expected energy.

III. SYSTEM MODEL

This section describes the application model, presents the
system level energy components and shows how to derive the
expected energy.

Fig. 1: Application Model

A. Application Model

We consider an embedded wireless node with two major ac-
tivities: data processing (computation), performed by the CPU,
and communication with other wireless embedded devices,
performed by the radio. Specifically, as in [7], we assume that
computation and communication activities form two sub-tasks,
executed within a frame (Fig. 1). A frame is a time interval
of length D that repeats periodically during the lifetime of
the node with the rate 1

D . Input to the radio communication
sub-task depends on the output of the computation sub-task;
consequently, the latter is to be executed first in each frame.
Both sub-tasks must be completed within a relative deadline
of D, by the end of frame. The sub-tasks may have varying
resource demands from frame to frame, determined according
to specific probability distributions, as explained below.

Computation Workload: In real applications, the number of
CPU cycles in a given frame (the computation workload) can
be known only probabilistically in advance. We denote the
minimum and maximum computational workload demand in
a single frame by Cmin and Cmax cycles, respectively. In
general, the cumulative probability distribution function for
the computation workload is:

F (c) = p(X ≤ c)

where X is the random variable for the application’s computa-
tion demand in a frame, and p(X ≤ c) represents the probabil-
ity that the application will not require more than c cycles in a
single frame. This function can be approximated through the
histogram-based profiling approach [9,21,28]. Specifically, the
available range of CPU cycles [Cmin, Cmax] is divided into
W discrete cycle groups, each with ω = Cmax−Cmin

W cycles.
We denote the upper bound on the number of cycles in the
ith cycle group as σi, that is, σi = Cmin + (i− 1) · ω.

The workload probability distribution function may be ob-
tained by multiple means. One approach is profiling over a
fixed window size for workloads with self-similarity property
[29]. In general, to obtain the histogram-based profiles, the
application’s executions over a long time interval is monitored,
and the fraction of invocations in which the number of actual
cycles fall in the ith cycle group are recorded [9]–[11]. More
precisely, the fraction of invocations where the number of
executed cycles falls in the ith cycle group during the profiling
phase, is assumed to correspond to the probability that the
number of cycles will fall in this specific range over a long-
term periodic execution. In this way, the probability that
the actual number of cycles needed by the application will
fall in the range (σi−1, σi], denoted by f cpi , is derived for
i = 1, . . . ,W . Observe that

∑W
i=1 f

cp
i = 1.

Fig. 2: Histogram-based approximation of the cumulative dis-
tribution function of the application’s probabilistic workload

We can calculate the cumulative probability distribution
function (Fig. 2) of the application’s cycle demand as:

F cpj =
j∑

k=1

f cpk

F cpj denotes the probability that the application will require
no more than j cycle groups (i.e., at most Cmin + (j − 1) · ω
cycles) in one frame. Consequently, Γcpj = 1 − F cpj−1 is the
probability that the task will require more than (j − 1) cycle
groups, or equivalently, the probability that the jth cycle group
will be executed in one frame. Note that a similar probabilistic
workload formulation is used in (intra-task) DVS literature,
e.g., in ([9]–[11]).

Communication Workload: The communication workload
is also expected to have a probabilistic distribution. Each node
transmits and receives information via the exchange of packets.
The communication workload is constrained between 1 and M
packets within a frame respectively.
f cmi represents the probability distribution function of trans-

mitting or receiving exactly i packets in one frame. It is ob-
tained in a manner similar to histogram-based approximation
of computation workload: the cumulative distribution function

F cmi =
i∑

k=1

f cmk is the probability of transmitting or receiving

no more than i packets. The probability of the ith packet being
transmitted or received in one frame is then denoted by:

Γcmi = 1− F cmi−1

Sub-task Execution Times and Slack Time: Let tcp and tcm

denote the actual time taken by the computation and commu-
nication subtasks in a given frame, respectively. Clearly, these
quantities are a function of the actual number of cycles and
packets that are processed, as well as the processing frequency
and modulation levels used in that specific frame. The extra
time remaining in a frame which is not consumed by either
of the sub-tasks is referred to as slack time:

tslack = D − tcp − tcm

B. Power and Energy Models

CPU Power: We consider DVS-enabled CPUs capable of
dynamically adjusting their voltage and frequency. The total

CPU power consumption pcp is the summation of the static
and dynamic power components, denoted respectively by ps
and pd:

pcp = ps + pd

Static power (also called leakage power) is necessary to
keep the basic circuits on; it can be eliminated only by turning
the processor off. Due to the periodic nature of our application
and non-trivial overhead of turning the processor off and on
at run-time, we assume that the static power is continuously
consumed, and hence it is not manageable [10]. Dynamic
power, on the other hand, is dissipated when the CPU executes
tasks. On systems that are DVS-capable, CPU supply voltage
is linearly related to the variable CPU frequency and the
dynamic power is given by pd = Cl · sα, where s is the CPU
frequency (speed), Cl is the effective switching capacitance,
and α is a constant (typically 3 in CMOS technologies) [4]. By
exploiting the convex relationship between the CPU frequency
and the dynamic power, DVS enables the system to save
energy at the cost of increased execution times. Since the CPU
frequency s is in general a function of time (denoted by s(t)),
the total energy consumed by the CPU in the interval (t1, t2)
is given by:

ECPU =
∫ t2

t1

pcp(s(t))dt

As the time needed to execute Q cycles at a constant fre-
quency s is Q

s , the dynamic energy consumed while executing
one cycle group that consists of ω cycles at frequency s is
given by [9,11]:

ecpω = Cl ·
ω

s
· sα = Cl · ω · sα−1 (1)

Radio Power: The radio power consists of two components:
the dynamic power pt dissipated when transmitting or receiv-
ing packets and the electronic circuitry power pe [5].
pt essentially corresponds to the power needed for the

amplifier during data communication. The number of bits per
symbol in a modulation scheme, b, is called the modulation
level. The symbol rate is denoted by Rs. In DMS, pt can be
controlled by varying the modulation level:

pt(b) = Cs · φ(b) ·Rs (2)

Here, φ(b) is a convex function of the modulation level and
its specific form depends upon the modulation scheme. Cs
is a function of the circuit implementation of the receiver’s
radio, current temperature, distance, and transmit media, and
is independent of the modulation level. Supposing a time
invariant channel, Cs can be approximated as a constant. DMS
changes radio power by decreasing modulation level, at the
cost of increasing transmission time.

Electronic circuitry power can be written as [5]:

pe = Ce ·Rs (3)

Ce is a constant that depends on the radio circuit technology.
The communication time will vary with the modulation level:

tcmbit (b) = 1
b·Rs

is the time needed to send one bit over the
communication channel. Hence, the energy needed to send
one bit is ecmbit = (pt + pe) · tcmbit .

The two communication parties need to agree on the ex-
act value of the modulation level at the beginning of the
transmission. One technique to do this is to use appropriate
physical layer headers [6]. Note that any initialization can only
occur before sending each packet, so that the modulation level
remains constant during the packet transmission. The energy
required to send or receive one packet of ρ bits is thus:

ecmρ = ρ · (pt + pe) · tcmbit =
ρ · (Csφ(b) + Ce)

b
(4)

Our work targets real-time embedded wireless systems and
assumes a QoS-enabled MAC layer capable of minimizing
energy wasted due to collisions or idle listening.

Overall expected energy: Given the probability distribution
functions for communication and computational workloads,
we can now derive the expected overall energy consumption,
as the sum of expected processor and radio energy. The
expected processor energy is the sum of energy dissipated to
execute each of the cycle groups (σj−1, σj), j = 1, . . . ,W ,
multiplied by the probability that the cycle group will be actu-
ally executed in a frame, namely, Γcpj . Similarly, the expected
communication energy is the sum of energy needed for the
jth packet (j = 1, . . . ,M), multiplied by the probability that
the packet will be actually transmitted/received in a frame,
namely, Γcmj .

eoverall =
W∑
j=1

Γcpj e
cp
ω +

M∑
i=1

Γcmi ecmρ

=
W∑
j=1

Γcpj · ω · Cl · s
α−1
j + (5)

M∑
i=1

ρ · Γcmi
bi

· [Cs · φ(bi) + Ce]

The modulation level of the ith packet and the execution
frequency of the jth cycle group are shown by bi and sj in
the formula above. Table I summarizes the list of the most
important notations used in this section.

IV. ENERGY OPTIMIZATION PROBLEM

With DVS the optimal computation speed to minimize
energy while meeting a timing constraint can be shown to
be constant under the assumption that the workload is known
deterministically [4,12]. This is due to the convex speed/power
relationship. The same applies to the DMS technique in the
deterministic communication workload case [5].

However, existing DVS research studies have identified that
in the case of probabilistic workload, the constant speed
is no longer optimal [10,21]. Rather, starting with a low
speed and gradually increasing it as the task makes progress
minimizes the expected total energy. We observe that the
same considerations equally hold for the DMS case since the
communication workload can vary from instance to instance

TABLE I: List of symbols
Symbol Description
ρ Packet size: Number of bits per packet

ω The size of CPU cycle group

Cs, Ce Values of transmit and electronic circuitry power components

Rs Symbol rate

Cl CPU switching capacitance

Γcm
i The probability of sending the ith packet

Γcp
i The probability of executing the ith cycle group

M Maximum number of packets

W Maximum number of cycle groups

bi The number of bits per symbol in the ith packet

si CPU frequency used to execute the ith cycle group

D Frame deadline (period)

φ(b) Modulation energy scaling function

and hence can be in practice known only probabilistically.
Combining both DVS and DMS under probabilistic workload
assumptions is a non-trivial problem.

Our solution derives a joint DVS-DMS speed schedule
for the application. The speed schedule indicates how to
adjust the computation speed (the CPU frequency) and the
communication speed (modulation level) to match the current
workload. More specifically, the speed schedule contains the
sequence of optimal settings for each cycle group and radio
packet, that we call scheduling units, separately. It makes
the speed assignments so that the first scheduling units have
low processing frequency or modulation levels while they are
increased for the next scheduling units based on the actual
workload, in order to meet the deadline of the frame even
under a worst-case scenario.

For example, consider a frame with a deadline of 95ms, a
worst-case processing time of 50ms (under maximum CPU
speed), and a worst-case communication time of 25ms (at
the maximum modulation level). Suppose the computation
workload is distributed among the set of 4 cycle groups: under
maximum CPU speed, each cycle group will need an execution
time of 12.5ms. The communication workload varies from
one to three packets, each requiring 8.33ms transmission time
under highest modulation level. The probability distribution
function of computation and communication workloads re-
spectively are given as: f cp = {.45, .05, .05, .45}, and f cm =
{.025, .85, .125}. Using the specification of Intel Celeron-M
processor and a radio whose power consumption is twice as
large as that of the CPU at the maximum modulation level,
the optimal speed schedule (shown in Fig. 3) is obtained–
the algorithm to obtain the optimal speed schedule will be
presented in due course. This optimal CPU speed schedule
suggests that in order to minimize the expected energy, one
should start at the frequency 262 MHz, and if the computation
sub-task is not completed within the first 15.82 ms, then the
frequency should be first increased to 267 MHz, and then
to 272 MHz after 31.4 and 46.7 ms, respectively. A similar
communication speed schedule is suggested in the second sub-
figure. Observe that as the sub-tasks experience increasing

Fig. 3: Speed scheduling example

workloads, the corresponding speeds gradually increase – but
under a worst-case workload, the application still meets its
deadline at 95 ms.

By exploiting the probabilistic workload information and
gradually increasing the computation and communication
speeds, it can be shown that with the joint use of DVS
and DMS and the exploitation of the probabilistic workload
information, the system consumes 59%, 36% and 33% less
expected energy, compared to no speed scaling, DVS-only,
and DMS-only cases, respectively. This example illustrates
the potential benefits of applying DVS and DMS jointly,
while also taking into account the probabilistic workload
information.

Having defined the energy consumption, frequency, and
timing constraints of the system, we now present the main
energy minimization problem. We are looking for joint
communication-computation speed settings that minimize the
overall expected energy consumption in the system, for which
an analytical formula was presented at the end of Section III.
The speed schedules should meet both the timing constraints of
the system and the frequency/modulation level limitations. Up-
per and lower CPU frequency bounds are shown by smax and
smin. In the modulation schemes we consider, the minimum
number of bits per symbol is 2. The maximum modulation
level is limited by the signal to noise ratio of the channel or
hardware constraints. We write these two bounds as bmin and
bmax. Denoting the frequency for the jth cycle group as sj
and the modulation level for the ith packet as bi, the energy
optimization problem is written as:

Minimize
W∑
j=1

Γcpj .Cl.ω.s
α−1
j +

M∑
i=1

ρ.Γcm
i

bi
[Cs.φ(bi) + Ce]

s.t.
W∑
j=1

ω
sj

+
M∑
i=1

ρ
biRs

≤ D

smin ≤ sj ≤ smax
bmin ≤ bi ≤ bmax

Now consider the following variable substitutions, which

yield a new form of the optimization problem:

tcpj = ω
sj
→ sj = ω

tcp
j

tcmi = ρ
biRs

→ bi = ρ
Rstcm

i

We denote φ(bi) = φ(ρ
Rstcm

i
) as χ(tcmi). χ() indicates how

transmission energy changes with the transmission time to
send one packet over the channel. These substitutions lead
to a reformulation of the optimization problem:

Minimize
W∑
j=1

Γcpj Clω
α(tcpj)1−α+

M∑
i=1

Γcmi Rst
cm
i [Csχ(tcmi) + Ce]

s.t.
W∑
j=1

tcpj +
M∑
i=1

tcmi ≤ D

tcpmin = ω
smax

≤ tcpj ≤ ω
smin

= tcpmax
tcmmin = ρ

bmax
≤ tcmi ≤ ρ

bmin
= tcmmax

While the energy consumption is a convex function of tcmi
and tcpj , a couple of observations are in order. The computation
component of the expected energy, given by the second
term of the objective function, monotonically decreases with
the increasing computation time (tcmi), (i.e., with decreasing
frequency (s)). However, the communication component of
the expected energy has two terms, one which increases with
the allocated communication time, and another one which
decreases. This is to be expected, because while reducing
the modulation level reduces the transmit energy, it tends
to increase the electronic circuitry energy due to the need
to keep the radio on for longer intervals. In other words,
there is an energy-efficient modulation level, be, below which
DMS is no longer effective, as observed in [30]. Its value can
be determined analytically by setting the first derivative of
the radio energy to zero. Consequently, after replacing bmin
by b′min = max{bmin, be} in the above problem, we get a
new optimization problem whose computation (communica-
tion) energy components are monotonically decreasing with
increasing computation (communication) time allocations.

This allows us to tackle some boundary cases. In particular,
if by using the maximum communication and computation
time allocations (lowest speeds) for all the packets and cy-
cle groups we can still meet the deadline, that solution is
obviously optimal. Otherwise, due to the monotonic nature
of the above problem, one should use the entire frame fully
to maximize the energy savings, yielding a new optimization
problem:

Minimize
W∑
j=1

Γcpj Clω
α(tcpj)1−α +

M∑
i=1

Γcmi Rst
cm
i [Csχ(tcmi) + Ce]

subject to
W∑
j=1

tcpj +
M∑
i=1

tcmi = D

tcpmin =
ω

smax
≤ tcpj ≤

ω

smin
= tcpmax

tcmmin =
ρ

bmax
≤ tcmi ≤ ρ

b′min
= tcmmax′

We developed an iterative method that solves the above op-
timization problem by using the Karush-Kuhn-Tucker (KKT)
optimality conditions for non-linear optimization. The details
of our optimal algorithm can be found in Appendix.

V. PERFORMANCE EVALUATION

We conducted an extensive set of simulations under a wide
range of computational and communication workloads and
device power models, in order to accurately evaluate the
performance of the joint DVS-DMS scheme, compared to
other design options.

We developed a discrete event simulator in Matlab. The
simulator is designed to accept our general purpose processor
and radio energy models, as well as a range of computational
and communication workloads. We set each task invocation
to have a frame deadline and period of D = 100ms. In
each frame, both the total CPU processing time and total
communication time (under maximum frequency and highest
modulation level) vary from 10ms to 90ms, respectively. Also,
we use the notations ΦC and ΦR to denote the ratio of
maximum CPU processing time to the deadline, and the ratio
of maximum total communication time to the deadline, respec-
tively. We call these quantities the utilization of computation
and communication subtasks. In our experiments, ΦC + ΦR
goes up to 0.9 (i.e., up to 90% of the available frame execution
time). Within each frame the actual workloads are determined
using a uniform probability distribution. Specifically, the actual
utilization of the computation sub-task is determined randomly
in the range [ΦC

W ,ΦC]. Similarly, the actual utilization of the
computation sub-component is determined randomly in the
range [ΦR

M ,ΦR]. We set M = W = 10.
We define PR as the ratio of maximum CPU power (run-

ning at its maximum frequency) over maximum radio power
(at the maximum modulation level). Changing the value of PR
enables us to model a wide range of CPU and radio hardware.
We believe this is important; for example, the maximum
power consumption can vary significantly among embedded
processors – for MSP 430, Cortex M3, ATMEGA 1281, and
Freescale MC1322xx, it assumes the values of 7.2, 19.8, 70,
and 102.3 mW, respectively. On the the other hand, CC2420
and XE1205 radios consume 60 mW and 65 mW, respectively.
During our simulation experiments we changed the value
of PR by keeping the value of radio power consumption
constant and varying the CPU power consumption. We run the
algorithms for PR values ranging from 10−2 to 102. For DMS
modeling, we used Ce = 15 × 10−9, Cs = 12 × 10−9, Rs =
106, bmin = 2, bmax = 8, after [5,7]. We assumed QAM as
the modulation technique.

We implemented the following schemes:
1) Joint: The proposed joint DMS-DVS algorithm dis-

cussed in Section IV. The slack time is assigned for scaling
CPU frequency and modulation level based on the value of
power ratio and workload probabilities.

2) DVS-only: This scheme fixes modulation level to its
maximum value and uses the entire slack time for scaling the

Fig. 4: Impact of total maximum workload utilization

CPU frequency in the manner described in [10]. The extra
slack time, if any, will remain unused.

3) DMS-only: This technique uses DVS at the maximum
frequency while applying DMS. To do so, the time required to
perform the computational workload at the maximum speed is
subtracted from the deadline and the optimization problem is
solved by taking only the communication energy into account.
DVS will not be applied in this scheme even if a part of slack
time remains unused after performing modulation scaling.

4) Dynamic: This scheme is introduced to model the sys-
tems that can, during the execution of the frames, adaptively
re-compute optimal modulation levels based on the actual CPU
usage. Specifically, at run-time, when the computation sub-
task completes the optimization problem is re-solved online
to determine the optimal modulation level by considering the
actual slack time before the deadline and the probabilistic
workload profile of the communication sub-task. Note that due
to the resource limitations, this online calculation is beyond
the capabilities of many current embedded wireless devices;
however, we include this algorithm in our comparison to have
a more complete evaluation of the design possibilities.

5) Oracle: This approach pre-supposes a clairvoyant sched-
uler that knows the exact value of computation and communi-
cation workloads in advance and scales both CPU frequency
and modulation level to get the best use of the slack time
to minimize the overall energy. The Oracle approach is not
practical; however, it is included in the evaluation as the
yardstick algorithm whose performance establishes the upper
bound on the performance of any practical algorithm.

Our results are divided into sections exploring the impact of
varying total maximum workload utilization, varying PR (the
relative maximum CPU to radio power), varying CPU utiliza-
tion or radio utilization, as well as determining, for Joint, the
impact of both the power ratio, PR, and workload utilization.
Each data point represents the average energy consumption of
applying the respective energy management algorithm, and is
derived from averaging 1000 randomly generated tasks. For
readability purposes the energy consumption is normalized
with respect to the energy consumption of applying no power
management (NPM), so that the lower the reported normalized
energy, the more effective is the respective energy management
approach. NPM uses the maximum CPU frequency and highest

(a) ΦC = 0.7, ΦR = 0.1 (b) ΦC = 0.4, ΦR = 0.4 (c) ΦC = 0.1, ΦR = 0.7

Fig. 5: Impact of varying power ratio

modulation levels.
The first experiment, shown in Fig. 4, presents how the

normalized energy consumption changes as a function of
maximum total utilization (Φtot = ΦR + ΦC). In these
experiments, PR = 10−

1
2 and ΦC

ΦR
= 2. As expected, the

Oracle strategy yields the highest energy savings, since it
can clairvoyantly distribute slack between DVS and DMS.
Dynamic exhibits the next best performance. Joint provides
a substantial improvement over DMS-only and DVS-only, by
maximum values of 38% and 57% respectively. Joint’s rela-
tive improvement decreases as the total maximum utilization
increases, so the three off-line algorithms end up consuming
the same amount of energy when Φtot = 1, since they all have
to run at the maximum speed to guarantee the deadline meet.

The next experiment aims at finding the operating regions
in which Joint outperforms both DVS-only and DMS-only by
significant margins. The results show that both the power
ratio PR and the relative value of maximum CPU utilization
to maximum radio utilization impact energy savings. 95%
confidence intervals for each scheme are depicted in the
figures. As can be seen, the intervals of different schemes are
small enough not to overlap.

Figure 5 shows these results. As can be seen, Joint con-
verges towards either DMS-only or DVS-only at operating
regions with extreme imbalances in the power ratio PR.
However, Joint is quite close to Dynamic and substantially
improves energy consumption when PR is close to 1.

Figure 5a shows the effect of the power ratio PR for sys-
tems with higher computation than communication demand.
The maximum improvement of Joint is 45% over DMS-only
and 83% compared to DVS-only. Dynamic obtains no more
than 3% improvement over Joint. Figure 5b shows when both
CPU and radio have the same share of maximum utilization.
For this operating case, Joint outperforms DMS-only and DVS-
only by margins up to 58% and 77% respectively. Oracle
provides an additional 9% improvement. Figure 5c displays the
same effect when the application has greater communication
workload. In that situation, the improvement of Joint over
DMS-only is maximum of 79% while the improvement over
DVS-only gets up to 65%. The extra improvement of Dynamic
increases to at most 6% due to higher radio utilization.

(a) Power Ratio = 10−
1
2 , ΦR = 0.2

(b) Power Ratio = 10−
1
2 , ΦR = 0.5

Fig. 6: Impact of varying maximum CPU utilization

Figure 6 shows the effect of the maximum CPU utilization.
These experiments fix the ratio of maximum radio utilization
to 0.2 and 0.5, and the power ratio to 10−

1
2 . Maximum CPU

utilization varies from 0.1 to 1 − ΦR. With maximum radio
utilization of 0.2, the system experiences low total utiliza-
tion at small values of CPU utilization, which subsequently
provides more slack time. As a result, Joint starts off with
the same performance as both Oracle and Dynamic as shown
in Figure 6a. It converges towards DVS-only with increasing
CPU utilization. Communication dominates the workload in
experiments shown in Figure 6b. The maximum improvement
of Joint falls within 2% and 76% of DMS-only and DVS-only
respectively. Dynamic generates a maximum improvement of

50%. This experiment verifies the importance of DMS scheme
that may perform close to Joint in applications with high
communication workload density.

(a) Power Ratio = 10−
1
2 , ΦC = 0.2

(b) Power Ratio = 10−
1
2 , ΦC = 0.5

Fig. 7: Impact of varying maximum radio utilization

The experiments shown in Figure 7 present the relative
performance when varying the maximum radio utilization
for power ratio of 10−

1
2 . In Figure 7a, while substantially

improving performance compared to DVS-only (maximum
of 70%), the Joint scheme approaches DMS-only as radio
utilization increases. It outperforms DMS-only at low radio
utilization values within a range of up to 35%. As can
be seen, these three schemes have the same behavior when
the total utilization is 1.0. They all set CPU frequency and
modulation level at the maximum value in order to prevent
potential deadline violations. Further, high-end systems that
are computationally capable of executing Dynamic can receive
an extra 34% improvement over the Joint approach.

The importance of relative computation and communication
workload in assigning the slack time is presented in Figure 7b.
Here, DVS-only starts off with better performance than DMS-
only but degrades as soon as the radio workload increases.

Figures 6 and 7 show that as total utilization increases
and the potential slack time decreases, Joint performs more
conservatively. The next experiments examine the effect of
changing power ratio and either maximum CPU utilization
or maximum radio utilization on energy saving. Figure 8
shows that Joint is affected more by the growth of maximum
utilization of a task component when it has a smaller share in
power ratio.

(a) ΦR = 0.2

(b) ΦC = 0.2

Fig. 8: Impact of power ratio and workload utilization on Joint

VI. CONCLUSIONS

This paper addressed the problem of minimizing energy
consumption in embedded wireless real-time systems. Our
approach was to investigate the use of both Dynamic Volt-
age Scaling and Dynamic Modulation Scaling techniques
under probabilistic workloads. We presented a joint DVS-
DMS control algorithm that minimizes overall expected energy
consumption. We simulated the performance of this approach
against several design options, as well as a yardstick Oracle
algorithm that knows the workload in advance. We found that
under most workload mixes and relative CPU vs. radio power
consumption figures our approach produces significant energy
savings. This work strongly suggests the desirability of using
combined DVS and DMS control algorithms in embedded
wireless systems.

REFERENCES

[1] L. Krishnamurthy et al., “Design and deployment of industrial sensor
networks: experiences from a semiconductor plant and the north sea,”
in Proceedings of the 3rd International Conference on Embedded
Networked Sensor Systems, 2005.

[2] D. Brunelli, C. Moser, L. Thiele, and L. Benini, “Design of a solar-
harvesting circuit for batteryless embedded systems,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 56, no. 11, pp. 2519–
2528, 2009.

[3] M. R. Jongerden, A. Mereacre, H. C. Bohnenkamp, B. R. Haverkort,
and J.-P. Katoen, “Computing optimal schedules of battery usage in
embedded systems,” IEEE Transactions on Industrial Informatics, vol. 6,
no. 3, pp. 276–286, 2010.

[4] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Power-aware
scheduling for periodic real-time tasks,” IEEE Trans. on Computers,
vol. 53, no. 5, pp. 584–600, 2004.

[5] C. Schurgers, V. Raghunathan, and M. B. Srivastava, “Power manage-
ment for energy-aware communication systems,” ACM Transactions on
Embedded Computing Systems, vol. 2, no. 3, pp. 431–447, 2003.

[6] “IEEE Standard for Local and metropolitan area networks.” http://
standards.ieee.org/findstds/standard/802.15.4g-2012.html.

[7] B. Zhang, R. Simon, and H. Aydin, “Harvesting-aware energy manage-
ment for time-critical wireless sensor networks with joint voltage and
modulation scaling,” IEEE Trans. on Industrial Informatics, vol. 9, no. 1,
pp. 514–526, 2013.

[8] T. Hamachiyo, Y. Yokota, and E. Okubo, “A cooperative power-saving
technique using dvs and dms based on load prediction in sensor
networks,” in Fourth International Conference on Sensor Technologies
and Applications, 2010.

[9] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time cpu schedul-
ing for mobile multimedia systems,” in Proceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003.

[10] R. Xu, D. Mossé, and R. Melhem, “Minimizing expected energy
consumption in real-time systems through dynamic voltage scaling,”
ACM Transactions on Computer Systems, vol. 25, no. 4, 2007.

[11] D. Zhu, H. Aydin, and J. J. Chen, “Optimistic reliability aware energy
management for real-time tasks with probabilistic execution times,” in
Proc. of the IEEE Real-Time Systems Symposium, 2008.

[12] P. Pillai and K. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” in Proceedings of the 18th ACM
Symposium on Operating Systems Principles, 2001.

[13] “3rd Generation Intel XScale Microarchitecture.” http://download.intel.
com/design/intelxscale/31505801.pdf.

[14] “AMD Powernow Technology.” http://www.amd-k6.com/wp-content/
uploads/2012/07/24404a.pdf.

[15] K. Craig, Y. Shakhsheer, and B. Calhoun, “Optimal power switch design
for dynamic voltage scaling from high performance to subthreshold oper-
ation,” in Proceedings of the 2012 ACM/IEEE International Symposium
on Low-Power Electronics and Design, ISLPED, 2012.

[16] Y. Lee et al., “Power-tracking embedded buck x2013; boost converter
with fast dynamic voltage scaling for the soc system,” IEEE Transactions
on Power Electronics, vol. 27, no. 3, pp. 1271–1282, 2012.

[17] J. Park, D. Shin, N. Chang, and M. Pedram, “Accurate modeling and
calculation of delay and energy overheads of dynamic voltage scaling in
modern high-performance microprocessors,” in ACM/IEEE International
Symposium on Low-Power Electronics and Design, 2010.

[18] Z. Cao, B. Foo, L. He, and M. Van Der Schaar, “Optimality and
improvement of dynamic voltage scaling algorithms for multimedia
applications,” IEEE Transactions on Circuits and Systems, vol. 57, no. 3,
pp. 681–690, 2010.

[19] D. Feitelson, Workload Modeling for Computer Systems Performance
Evaluation. 0.34 ed., 2011.

[20] M. Yang, Y. Wen, J. Cai, and C. H. Foh, “Energy minimization
via dynamic voltage scaling for real-time video encoding on mobile
devices,” in IEEE International Conference on Communications, 2012.

[21] J. Lorch and A. Smith, “Pace: A new approach to dynamic voltage
scaling,” IEEE Trans. on Computers, vol. 53, no. 7, pp. 856–869, 2004.

[22] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-
aware wireless microsensor networks,” Signal Processing Magazine,
IEEE, vol. 19, no. 2, pp. 40–50, 2002.

[23] G. Sudha Anil Kumar, G. Manimaran, and Z. Wang, “Energy-aware
scheduling of real-time tasks in wireless networked embedded systems,”
in Proceedings of the 28th IEEE International Real-Time Systems
Symposium, 2007.

[24] B. Fateh and G. Manimaran, “Energy-aware joint scheduling of tasks
and messages in wireless sensor networks,” in IPDPS Workshops, 2010.

[25] J. Yi, C. Poellabauer, X. S. Hu, J. Simmer, and L. Zhang, “Energy-
conscious co-scheduling of tasks and packets in wireless real-time envi-
ronments,” in Proc. of the IEEE Real-Time and Embedded Technology
and Applications Symposium, 2009.

[26] V. Devadas and H. Aydin, “On the interplay of voltage/frequency scaling
and device power management for frame-based real-time embedded
applications,” IEEE Transactions on Computers, vol. 61, no. 1, pp. 31–
44, 2012.

[27] L. Santinelli et al., “Energy-aware packet and task co-scheduling for
embedded systems,” in Proceedings of the 10th ACM International
Conference on Embedded Software, 2010.

[28] B. Zhao and H. Aydin, “Minimizing expected energy consumption
through optimal integration of dvs and dpm,” in Proceedings of the
ACM Conference on Computer-Aided Design, 2009.

[29] R. Marculescu and P. Bogdan, “Cyberphysical systems: Workload mod-
eling and design optimization,” Design Test of Computers, IEEE, vol. 28,
pp. 78–87, July 2011.

[30] Y. Yu, B. Krishnamachari, and V. Prasanna, “Energy-latency tradeoffs
for data gathering in wireless sensor networks,” in INFOCOM 2004. The
23rd Annual Joint Conference of the IEEE Computer and Communica-
tions Societies, 2004.

[31] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Optimal
reward-based scheduling for periodic real-time tasks,” IEEE Trans. on
Computers, vol. 50, no. 2, pp. 111–130, 2001.

APPENDIX

In this appendix, we provide the details of the solution to
the optimization problem presented in Section IV. At the high-
level, the algorithm proceeds as follows. We first apply the
Lagrange multipliers method to solve the optimization prob-
lem by considering only the deadline constraint, temporarily
ignoring the deadline constraint. This version of the problem
is called the problem DVMS-D. Then we consider the problem
where only the deadline and lower bound constraints on com-
putation and communication times are taken into account (the
problem DVMS-L). We solve DVMS-L by iteratively adjusting
the solution of DVMS-D, if necessary. Finally, the original
problem that considers also the upper bound constraints (called
the problem DVMS), is obtained by adjusting the solution
to the problem DVMS-L. In the following, we discuss the
algorithms to solve these three optimization problems.

Problem DVMS-D: Case of the Deadline Constraint

The problem DVMS-D is defined as follows:

Minimize
M∑
i=1

Γcmi Rst
cm
i [Cs.χ(tcmi) + Ce] +

W∑
j=1

Γcpj Cl(t
cp
j)1−α

Subject to
M∑
i=1

tcmi +
W∑
j=1

tcpj = D

We apply Lagrangian multipliers technique to the above,
which yields the following Lagrangian:

L(tcmi , tcpj , λ) =
M∑
i=1

Γcmi Rst
cm
i [Cs.χ(tcmi) + Ce] +

W∑
j=1

Γcpj Cl(t
cp
j)1−α +

λ(
M∑
i=1

tcmi +
W∑
j=1

tcpj −D)

Above λ is the dual variable. The dual function maximizes the
Lagrangian function over its primal variables is given by:

δL(tcmi , tcpj , λ)
δtcmi

=

Γcmi Rs [Cs.χ(tcmi) + Ce + Csχ
′(tcmi)tcmi] + λ

δL(tcmi , tcpj , λ)
δtcpj

= Γcpj Cl(1− α)(tcpj)−α + λ

We define the marginal energy return function of radio
packet time allocation as wcmi (tcmi). Similarly, the marginal
energy return function of each cycle group is defined wcpj (tcpj).
Analytically, these functions are obtained by obtaining the
value of λ that sets Lagrangians to zero:

wcmi (tcmi) = −Γcmi Rs [Cs.χ(tcmi) + Ce + Csχ
′(tcmi)tcmi](6)

wcpj (tcpj) = −Γcpj Cl(1− α)(tcpj)−α (7)

For succint representation, we define ψ(tcmi) as χ(tcmi) +
χ′(tcmi)tcmi . The optimum solution to DVMS-D is obtained by
equating all marginal returns:

(tcpj)∗ = (
λ∗

(α− 1)Γcpj Cl
)−1/α

(tcmi)∗ = (tcmi)+(λ∗) = ψ−1(
−λ∗

Γcm
i
Rs
− Ce

Cs
)

λ∗, the common dual variable, is obtained by solving:
M∑
i=1

(tcmi)+(λ) +
W∑
j=1

(
λ

(α− 1)Γcpj Cl
)−1/α = D

For example, the optimum communication time equations for
QAM modulation scheme is:

(tcmi)∗ =
ρ log 2

Rs +RsWf

[
CeRsy−CsRsΓcm

i
+λ∗

CseRsΓcm
i

]
Similarly, 2b-PAM modulation approach yields the optimum

communication times as:

(tcmi)∗ =
ρ log 4

Rs +RsWf

[
3CeRsΓcm

i
−CsRsΓcm

i
+3λ∗

CseRsΓcm
i

]
Wf in the above equations is the Lambert W-function, also
called the omega function, the inverse function of W · eW . It
appears in the optimum solution of QAM and 2b-PAM because
of the term eb

b in their corresponding energy functions.
Time Complexity: There are M + W unknown variables

whose values need to be determined. When the closed formula
for ψ−1 is available for the corresponding modulation, such
as in above cases, the optimum values of (tcmi)∗ and (tcpj)∗

can be calculated each in time O(1). There are M +W such
calculations, resulting in time complexity of O(M +W).

Problem DVMS-L: Case of Deadline and Lower Bound
Constraints

Next, we consider adding the lower bound constraints to the
problem DVMS-D, obtaining the problem DVMS-L:

Minimize
M∑
i=1

Γcmi Rst
cm
i [Csχ(tcmi) + Ce] +

W∑
j=1

Γcpj Cl(t
cp
j)1−α

Subject to
M∑
i=1

tcmi +
W∑
j=1

tcpj ≤ D

tcpj ≥ t
cp
min

tcmi ≥ tcmmin

Obviously, if the solution to the problem DVMS-D satisfies
the lower bound constraints, then it is also a solution to the
problem DVMS-L. Otherwise, the problem becomes in essence
identical to the nonlinear optimization problem discussed in
[31]. As shown in [31] by manipulating the Karush-Kuhn-
Tucker conditions, in that case, the optimal value of the
variable which gives the minimum marginal return (according
to equations (6) and (7)) at the corresponding lower bound is
equal to that lower bound.

This property suggests an iterative solution [31] that invokes
the algorithm to solve DVMS-L: Call the algorithm to solve
DVMS-D, and as long as some lower bounds are violated,
in each iteration, fix the value of one variable (with smallest
marginal return) to its lower bound, update the deadline D, be-
fore re-solving for the remaining variables. A straightforward
implementation would be of time complexity O(M + W)2,
because there there are at most M+W iterations, and in each
iteration, solving DVMS-D can take at most O(M +W) time.
Further, as shown in [31], a binary search like technique can
be adopted to figure out more quickly what variables should
be set to the lower bounds, yielding an overall complexity of
O((M +W) log(M +W)).

Problem DVMS: Combining all the constraints
Finally, we add the upper bound constraints to obtain our

original problem derived at the end of Section IV, that we
denote as the Problem DVMS.

Minimize
M∑
i=1

Γcmi Rst
cm
i [Csχ(tcmi) + Ce] +

W∑
j=1

Γcpj Cl(t
cp
j)1−α

Subject to
M∑
i=1

tcmi +
W∑
j=1

tcpj ≤ D

tcpmin ≤ t
cp
j ≤ t

cp
max

tcmmin ≤ tcmi ≤ tcmmax′
Assuming we have the solution to the problem DVMS-L

as discussed previously, an iterative solution to the problem
DVMS can be designed, again following the approach in [31].
Specifically, if the solution to DVMS-L satisfies the upper
bound constraints of DVMS, then it is also a solution to
DVMS. Otherwise, by using the same derivations as in [31],
one can demonstrate that the variable that has the maximum
marginal return value (equations (6) and (7)) at the upper
bound boundary should be set to that upper bound. Once
again, this implies the existence of an iterative algorithm that
repeatedly invokes the algorithm for DVMS-L as long as the
upper bounds are violated, setting the value of at least one
unknown to the lower bound as necessary, and updating the
deadline value before invoking the algorithm for the remaining
unknown variables. Since the complexity of solving DVMS-L
is O((M +W) log(M +W)), and it may be invoked at most
M +W times, the time complexity of solving DVMS is found
as O((M +W)2 log(M +W)).

