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Abstract—Heterogeneous multicore systems have been recently
received much attention due to their power efficiency and
ability to handle different workloads. In this paper, we consider
real-time tasks with precedence constraints and fault tolerance
requirements, and investigate how they can be implemented on
heterogeneous dual-core systems in energy-aware fashion. Our
framework is able to tolerate one transient fault per task, and
one permanent processing core fault simultaneously. We develop
a number of task partitioning, ordering, and frequency assign-
ment techniques for energy efficiency. Our experimental results
indicate that the proposed techniques significantly reduce energy
consumption while satisfying the fault tolerance requirements.

I. INTRODUCTION

Real-time embedded systems are widely used in applica-
tions requiring predictability in terms of timing performance
such as those in autonomous vehicles, industrial control,
medical support systems, and avionics. Energy management
on such systems is an important objective that has been
widely explored. For instance, with Dynamic Voltage Scaling
(DVFS) technique, the tradeoffs between processor speed and
power dissipation are exploited. Similarly, Dynamic Power
Management (DPM) enables idle system components to tran-
sition to low-power sleep states to save power. As a recent
development, heterogeneous (asymmetric) multicore systems
have been increasingly investigated and deployed in settings
where power and performance are equally important. In those
systems, processing units with different power/performance
reside on the same chip. This enables the system to activate
the combination of cores that are most suitable for the current
workload. As a well-known example, ARM’s big.LITTLE
systems combine “big” out-of-order and high-performance
cores with “LITTLE” in-order and power-efficient cores. In
most cases, heterogeneous cores have the same instruction-set-
architecture (ISA), thus the same binary executable can run on
any core but with different execution time/power dissipation
characteristics. Numerous recent studies investigated power
management issues on heterogeneous multicore systems [1]–
[5].

Safety-critical real-time systems are designed to be fault-
tolerant. This is generally accomplished by incorporating extra
(redundant) hardware or software components [6], [7]. The
fault detection and recovery techniques are well-studied [8].
Those techniques typically depend on the type of the fault
affecting the computer system. Most of the run-time faults are
instantaneous and they result from temporary environmental
factors such as electromagnetic interference and cosmic rays.
These are transient faults – they cause an error in the output of
a single task. Typically re-execution of the task (or a recovery
task) gives the correct result [8], [9]. Moreover, state-of-the-
art power management techniques (e.g., near-threshold voltage
operation) tend to increase the susceptibility of CMOS circuits
to transient faults [10]. Another important fault category is
permanent faults – this is when a processor ceases to function,
more commonly because of manufacturing defects or wear-
out effects. When a permanent fault occurs, the system can
continue execution only with additional units (e.g., spare
cores) on which the application can resume execution [8].

The joint problem of minimizing energy consumption while
providing fault tolerance guarantees has recently received
attention [11]–[14]. However these studies consider either
uniprocessor systems or homogeneous multiprocessors. Two
recent studies considered heterogeneous dual-core systems and
proposed energy-aware fault tolerance solutions using standby
sparing [15] and primary/backup techniques [16]. However
those works consider independent real-time tasks and hence
they are not applicable in cases when tasks are dependent.

In this paper, we propose a fault-tolerant and energy-
efficient framework for periodic real-time tasks executing on
heterogeneous dual-core systems. In practice, there are often
dependency relationships among real-time tasks [17]–[19]; so
we model the dependencies using precedence constraints on
directed acyclic graphs (DAGs) [20], [21]. Our solution has
two components: 1.) A main schedule where tasks are executed
at low processing frequency (speed) levels using DVFS to save
energy as long as faults are not encountered, and, 2.) The
contingency schedule according to which recovery tasks are
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executed upon the detection of transient and/or permanent
faults. Task partitioning and speed assignment algorithms are
designed by respecting the precedence constraints and allow-
ing the necessary recovery times in the contingency schedule,
while minimizing energy consumption in most common (fault-
free) execution scenarios. Our framework has the distinct
feature of tolerating a separate transient fault for each real-
time task, as well as the permanent fault of any single core – in
fact, the system can recover from the permanent fault of a pro-
cessing core, even after multiple tasks have incurred transient
faults and have been re-executed thanks to the hardware and
time redundancy offered by the contingency schedule. All the
components of the framework guarantee the precedence and
timing constraints. The experimental evaluation suggests that
our proposed schemes can offer non-trivial energy gains over a
broad parameter spectrum. To the best of our knowledge, this
is the first study on the energy-aware fault-tolerant operation
of real-time tasks with precedence constraints, executing on
heterogeneous multicore systems.

The rest of the paper is organized as follows: Section II
presents our system model and assumptions. Section III
describes our proposed framework, including fault recov-
ery mode, contingency schedule, task partitioning and speed
assignmen solutions. Section IV presents our experimental
evaluation and Section V concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

A. Platform and Application model
We consider a heterogenous dual-core system with a high-

performance (big) core and a low-power (little) core. Through-
out the paper, we denote the high-performance and low-power
cores by HP and LP, respectively. The target application con-
sists of n dependent real-time tasks {⌧1, ..., ⌧n}. We assume
the frame-based execution model [22], [23] in which all tasks
will be executed in a frame, which is invoked periodically with
a deadline, D. D is also the period of the frame and the com-
mon deadline for all the tasks in the frame. The precedence
constraints among tasks are represented by a directed acyclic
graph (DAG), where an edge ⌧j ! ⌧k indicates that ⌧k can
only start to execute when ⌧j completes successfully, usually
due to the input-output dependencies. Since our platform is
a shared memory multicore system, communication time to
transfer data between tasks is considered negligible.

Each of the processing core is equipped with the Dynamic
Voltage and Frequency Scaling (DVFS) feature that allows
changing the frequency (processing speed) at run-time. A task
⌧i that requires Ci number of cycles on a given core may take
up to Wi = Ci/f units of execution time on that core, if
executed at the frequency level f . Due to the architectural
differences, a task’s required number of cycles, and hence
execution time, can be different on the HP and LP cores.
Therefore, we use superscripts HP and LP to denote the
variables on the HP or the LP core (e.g., CLP

i , WLP
i , CHP

i ,
WHP

i ). The maximum frequency levels supported by the HP
and LP cores are denoted by fHP

max and fLP
max, respectively. We

assume fHP
max = 1.0, and normalize all other frequency values

with respect to that value. We define the nominal utilization
of a task ⌧i as (CHP

i /D).
Our framework, as discussed in Section III-A, includes

copies of each task ⌧i to be executed in a potential recovery
mode, upon the detection of run-time faults. Thus, to distin-
guish each task ⌧i from its recovery mode copies, we use the
term primary task throughout the paper.

B. Power Model
The power consumption characteristics of the HP and LP

cores differ by design. For any processing core, the dynamic
power consumption of an executing task ⌧i is modeled as,
Pi(f) = aif

3
+ ↵i, where ai denotes the switching capaci-

tance, ↵i denotes the frequency-independent power consump-
tion, and f is the processing frequency of the task adjustable
through the DVFS feature. Due to the asymmetry of the cores,
these parameters are different for each core and again we
use superscripts HP and LP to denote the core-specific power
parameters (e.g., PHP

i ,↵HP
i ).

Each core executes tasks in the active state, dissipating
power as determined by the characteristics of the current task
and processing frequency. The Dynamic Power Management
(DPM) feature allows a given core to switch to a low-power
(idle) mode when it is not actively executing tasks. The low-
power (idle) power consumption of the high-performance and
low-power cores are denoted by PHP

idle and PLP
idle, respectively.

We assume those figures include the static power consumption
of the corresponding core as well. The energy consumption
during a time interval is given by the aggregate power con-
sumption during the same interval.

Existing research indicates that scaling down the frequency
below a certain threshold is no longer effective for sav-
ing energy, due to the impact of the frequency-independent
power component [23]. This threshold frequency, known as
the energy-efficient frequency (fee) can be derived through
analytical techniques [23], and we never reduce the processing
frequency below fee on a given core.

C. Fault Model
Our framework targets providing high assurance to safety-

critical real-time tasks in energy-aware manner. Hence, we aim
to tolerate transient faults (that affect individual tasks) as well
as permanent faults (that lead to the unavailability of a whole
processing core). Specifically, in our framework, we tolerate
within each execution frame:

• A transient fault per each (primary) task, and,
• A permanent fault of any of the processing cores
When a primary task ⌧i completes, the acceptance (or,

sanity) tests [8] are performed to check the existence of errors
induced by transient faults which may have affected ⌧i. If no
fault is detected, the result of the task is committed to, and
the system continues with the execution of subsequent tasks.
Otherwise, upon the detection of a transient or permanent fault,
the system switches to the recovery mode and executes all
the incomplete tasks at the maximum speed according to a
contingency schedule, whose details are provided in Section



III-A. In essence, the contingency schedule allows re-executing
faulty tasks and also tolerating additional transient faults that
may affect other tasks. Moreover, it offers the capability to
recover from a permanent processing core fault that may
occur after any number of transient faults. Note that, should
a permanent fault occur, the system loses the capability of
tolerating any more (transient or permanent) faults until the
faulty core is repaired or replaced.

III. PROPOSED FRAMEWORK

Our proposed framework has two complementary phases
for task mapping and scheduling. First, since the faults are
rare events, there is a need to determine the default schedule
according to which tasks are executed in each frame as long
as faults are not enocuntered. We call this default schedule the
main schedule. An important objective for the main schedule is
to minimize energy consumption in most common (i.e., fault-
free) frame execution scenarios. Consequently, computing the
main schedule involves:

• Allocating the primary tasks on the HP and LP cores and
determining their execution order (task partitioning and
ordering), and,

• Determining the voltage/frequency levels for individual
primary tasks (speed assignment),

to minimize energy consumption while meeting the precedence
and timing constraints. However, while generating the main
schedule, it is necessary to take provisions to tolerate transient
and permanent faults in a timely manner. In what follows, we
first discuss the recovery mode of execution and the derivation
of the contingency schedule according to which the tasks are
(re-)executed in a frame upon the detection of a fault. Then
we elaborate on the two components of the main schedule
computation (task partitioning and speed assignment).

A. Recovery Mode and Contingency Schedule
When a transient fault is detected at the end of task ⌧i, the

task must be re-executed, in addition to other tasks that are yet
to be executed before the end of the frame (deadline), while
satisfying the precedence constraints. In our framework, upon
the detection of a fault, the system switches to the recovery
mode and executes the (incomplete) tasks according to a pre-
computed contingency schedule.

As long as both cores are functional, the system must
preserve its capability to recover from the permanent fault of
any of the cores. Since this invariant must hold even during the
recovery mode which may have been triggered by a transient
fault, in the contingency schedule it is necessary to schedule
two distinct copies of tasks allocated on two different cores –
with only one copy of a task ⌧j allocated on a specific core,
it would not be possible to re-execute ⌧j , should that core
experience a permanent fault.

Consequently, in the contingency schedule, associated with
each task ⌧i there are two contingency tasks ⇢i and ⇢0i with the
exact same timing parameters as those of ⌧i. We make sure
that ⇢i and ⇢0i are allocated to different cores, as a precaution
against a permanent fault. If the primary task ⌧i completes
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Fig. 1: An Example Contingency Schedule

successfully, both contingency tasks ⇢i and ⇢0i are cancelled;
hence they do not incur any time or energy overhead in most
common fault-free execution scenarios. Thus, the contingency
schedule consists of a sequence of paired contingency tasks
executing at the maximum speed of their respective cores, if
the system enters the recovery mode for that frame. Moreover,
their executions are delayed as much as possible to minimize
overlaps with the tasks in the main schedule (see Fig. 1c as
an example).

Specifically, once the primary tasks are mapped to the
HP and LP cores, the contingency schedule is determined
according to the following rules:

1. A topological order of tasks satisfying the precedence
constraints implied by DAG is obtained. In addition, this
task sequence complies with the execution order of tasks
observed on each core in the main schedule.

2. Two contingency copies of each task (⇢i and ⇢0i) are
placed in parallel on the HP and LP cores, according to
the order derived in Step 1. ⇢i is placed on the same
core as its primary copy in the main schedule, whereas
⇢0i is placed on the alternative core.

The contingency tasks are shifted towards the deadline as
much as possible such that each primary copy can get a larger
execution-window and run at a slower speed by applying
DVFS in order to save energy (Fig. 1c). The activation times
of the contingency tasks are computed such that both copies
complete at the same time with their respective worst-case
execution time on the HP and LP cores. These activation times
represent the latest start time of a contingency copy such that
any faulty task and all of its subsequent tasks can be executed
before the frame deadline if needed.

As an example, consider a set of tasks given by the DAG
shown in Fig. 1a and deadline D = 100ms. For each task
⌧i, we have CHP

i = 8 and CLP
i = 12, expressed in millions

of cycles. Assuming fHP
max = 1.0 and fLP

max = 0.75 GHz,
therefore, each task takes 16 ms and 8 ms when executed



on the LP and HP cores at maximum speed, respectively.
Considering the allocation of the primary tasks shown in
Fig. 1b, we show an example contingency schedule in Fig. 1c.
First the topological order ⌧0, ⌧1, ⌧2, ⌧3, ⌧4 is obtained and
the corresponding contingency tasks are maximally pushed
towards the deadline.

In summary, the system operates according to the following
rules at run-time:
R1. As long as there are no faults, the system continues with

the main schedule. When a primary task ⌧i completes suc-
cessfully, the contingency schedule is updated to reflect
the cancellation of the contingency tasks ⇢i and ⇢0i.

R2. If a fault is detected at the end of ⌧i, the system
immediately transitions to the recovery mode, and it starts
executing the contingency copies of all incomplete tasks
at the maximum speed of both cores according to the
contingency schedule, including ⇢i and ⇢0i. Once the end
of the frame is reached, the system resumes the execution
according to the main schedule in the new frame, at low
processing speeds to save energy.

R3. If a permanent fault is detected on HP or LP, the system
cancels the execution of main schedule on the remaining
operational core, and immediately starts executing the
incomplete tasks in the contingency schedule at the
maximum speed. The system operates on a single core
executing the contingency schedule until the faulty core
is replaced or repaired.

It should be noted that even though the task start times
are computed according to the as late as possible principle
in the contingency schedule, when the system transitions
to the recovery mode upon the detection of a fault, the
required contingency tasks are dispatched immediately in the
specified order, without waiting until the latest possible start
times indicated in the contingency schedule. We conclude this
section by the following remarks that justify fault tolerance
capability of the proposed framework:

FT1. As long as both cores are functional, the system is able
to recover from transient faults affecting any number of
tasks, even when some of these faults may occur in the
recovery mode, affecting a single copy of each pair of
the contingency tasks ⇢i and ⇢0i.

FT2. The system can tolerate one permanent fault of any
of the cores, even when the fault may occur during
the execution of the contingency schedule thanks to the
paired arrangement of the contingency tasks.

B. Task partitioning and ordering

Now we turn our attention to the problem of allocating the
primary tasks on two cores and ordering them to satisfy the
precedence constraints. In general, partitioning a set of real-
time tasks on a multiprocessor system is a well-known NP-
Hard problem. For this reason, our framework generates the
task partitions decisions offline, based on the list schedul-
ing approach which is widely used to schedule tasks with
precedence constraints [21], [24]. In list scheduling, tasks
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Fig. 2: Task Set for the Running Example
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Fig. 3: Task partitioning algorithms

are allocated to the available cores one at a time, starting
with tasks with no predecessors (root tasks). A task whose
all predecessors have been already allocated becomes also
eligible for allocation. The algorithm keeps track of the tasks
allocated to individual cores, as well as the current length
of the schedule (makespan) on every core. If multiple tasks
are eligible for allocation, ties may be broken using various
parameters, such as execution time or power consumption of
the tasks. Below we describe two heuristics based on this
list scheduling technique. It should be noted that once the
task partitioning is determined through our heuristics, it is not
changed at run-time; i.e., migration of the tasks is not allowed.

We use a running example to demonstrate the operation
of our heuristics. As shown in Fig. 2, we have a task set
with 7 tasks along with their dependencies indicated by the
task graph. For each task, aHP

i = 1.0 and ↵HP
i = 0.1. The

other parameters are shown in Table 1b, where Wi values are
computed assuming maximum speed on the respective core.
For the HP and LP cores, we assume fHP

max = 1.0, fLP
max = 0.8,

PHP
idle = 0.05, and, PLP

idle = 0.02.
Largest Task First (LTF). In this variant of list scheduling,

tasks again are allocated one by one, and in each iteration, the
next highest-priority eligible task is allocated to the earliest
available processor. The priority of a task is determined by
its size (the CHP

i value). In case both of LP and HP cores
are available at a given iteration, then we choose the LP core
(assuming the deadline is still met), to save energy.

This method produces a good mix of tasks on the HP and LP
core and generally produces a schedule with a short makespan.
The overall complexity of the algorithm is O(n2

+nE), where
n is the number of tasks and E is the number of dependencies
in the task graph. The operation of LTF for our running
example task is shown in Fig. 3a. All tasks can finish execution
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Fig. 4: Contingency Schedules and Speed Assignments under LTF scheme
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Fig. 5: Contingency Schedules and Speed Assignments under TBLS scheme

by t = 45 (when executed at the maximum speed of their
respective cores.) The corresponding contingency schedule for
this task-allocation is shown in Fig. 4a.

Threshold-based List Scheduling (TBLS). This method
attempts to exploit the low-power feature of the LP core.
Specifically, we define a threshold value for the utilization
on the LP core. If the total task utilization (on the LP core)
is less than this threshold value, then all tasks are placed on
LP. Otherwise, the algorithm allocates some tasks on the HP
core in order to keep the LP core’s total utilization under the
predefined threshold value.

Specifically, the tasks are again ordered according to their
CHP

i values and we use the list scheduling technique to allo-
cate eligible tasks (by considering the precedence constraints)
to the LP core as long as its utilization does not exceed
threshold. When this threshold is about to be exceeded on LP
considering the size of the next task, the algorithm attempts
to put it on HP core. This method prefers LP core to allocate
most of the tasks, but can take advantage of the HP core when
the task set’s utilization is high. The runtime complexity of the
algorithms is the same as LTF: O(n2

+nE). The operation of
this algorithm on our example task set with a threshold value
of 65% is shown in Fig. 3b. The corresponding contingency
schedule is shown in Fig. 5a.

C. Speed assignment
After an allocation of tasks and their execution order is

obtained on each core, we need to determine the execution
speed (frequency) of the tasks, such that the frame deadline
can be met by also considering the slots reserved for the
contingency schedule. Assuming maximum frequency on each
core, we first compute the activation and completion time of
each task with worst case number of cycles. We call this the
canonical schedule. When assigning speeds to tasks, we make
sure that each primary task can complete its execution before

the activation time of its contingency copy on the alternate
core. By doing so, in the fault-free case, contingency copies
are never activated, since we cancel the reservation in the
contingency schedule as soon as the primary copy completes,
thereby saving energy. For each primary task, its contingency
copy activation time can be seen as its pseudo-deadline which
is earlier than the frame deadline D. Using this method, we
developed the following two techniques.

Uniform Scaling (US). In this method, we start with the
canonical schedule and slow down all the tasks by a uniform
scaling factor S  1.0, ensuring that all tasks complete by their
contingency activation times. The scaling factor, multiplied by
the maximum speed of the respective core, gives the execution
frequency (speed) of that core. This method determines the
task with the tightest timing constraint (the task with the
minimum [contingency activation time - primary completion
time] difference), and scales the frequencies accordingly. The
algorithm (with O(n) complexity) ensures that no tasks would
execute beyond its contingency activation time. Therefore,
scaling all tasks by the same (minimum) amount cannot
possibly result in a deadline miss.

The schedules for our running example under LTF and
TBLS and Uniform Scaling, named as LTF-US and TBLS-
US, are shown in Fig. 4b and 5b, respectively. The uniform
scaling is determined by the pseudo-deadline of ⌧1 (which is
the tightest) and gives a speed of 0.81 on HP and 0.65 on LP,
for both LTF and TBLS schemes. The energy consumption of
LTF-US and TBLS-US schemes are 28.49 mJ and 23.34 mJ,
respectively. We can see that by limiting the use of HP core,
TBLS consumes 18% less energy than LTF under US.

Critical Path based Static Speed (CPSS). This method
is developed as an extension to the critical-path based DVFS
algorithm originally proposed in [25]. As opposed to imposing
the same scaling factor to all the tasks, this method computes



different scaling factors on the basis of each execution path,
starting from the most critical one in terms of timing con-
straints. However, an assumption of the technique is that all
processors are homogeneous and hence have the same power
dissipation characteristics.

In our adaptation of the algorithm from [25], we differ in
the following way: i) we consider all possible paths from any
source to any sink to be in our set of critical paths, and ii) when
scaling a path, we use the system-level DVFS algorithm [26]
to exploit the heterogeneity of the cores to minimize energy
consumption, as opposed to using a common scaling factor
for all tasks on a given path as done in [25].

The schedules produced by CPSS are shown in Fig. 4c
and 5c, for LTF and TBLS partitioning and our running
example, respectively. They show that CPSS assigns relatively
low execution-speed for tasks on the HP core, and also for ⌧5
and ⌧6 on the LP core. The energy consumption for LTF-CPSS
is 19.30 mJ, which is 32% less than the uniform scaling in
LTF-US scheme. By limiting the use of HP core, TBLS-CPSS
consumes even less energy, 17.33 mJ, which is 25% and 10%
better than TBLS-US and LTF-CPSS, respectively.

The time complexity of this algorithm depends on the
number of all distinct paths from all source to all sink nodes–
we denote it by k. The system-level DVFS technique takes
O(n2

log n) time for a path with n tasks. In each iteration
of our algorithm, finding the most critical path would take
O(kn2

log n) time, and then applying ENERGY-LU for a final
set of frequencies would take another O(n2

log n). The itera-
tions would run for at most n times, therefore, the algorithm’s
overall complexity is O(kn3

log n).

D. Dynamic Reclamation
Real-time systems must be designed to deal with the worst-

case workload scenarios. However, real-time tasks often finish
earlier than their worst-case estimates. Thus, to exploit the
early completions and save more energy at run-time by dy-
namic slow-down, we developed a dynamic slack reclamation
algorithm. In this algorithm first we compute offline speeds for
each task based on any of our speed assignment algorithms.
Then, using these speeds and the worst case number of cycles
for each task, we compute a reference activation time, which
corresponds to the time point when a task should start its
execution when all tasks run at their assigned speeds and
present their worst-case workload.

At runtime, when a task is about to be dispatched, we
check the difference between its reference activation time and
the current time. This difference is denoted as its slack. We
recompute the assigned speed of the ready task by giving all
the slack time to it, i.e., slow it down further such that it
completes at its original (offline) reference completion time.
Let fi be the offline assigned speed for ⌧i with Ci worst-case
number of cycles, and si be the dynamically generated slack
available at its dispatch time. Then, its dynamically adjusted
speed, f⇤

i is computed as f⇤
i =

Cifi
Ci+sifi

. The algorithm is
invoked at dispatch time for every task and it has constant
time complexity (O(1)).

IV. EXPERIMENTAL EVALUATION

We evaluated the energy consumption performance of the
proposed algorithms in a discrete event simulator. In our
simulator, we implemented the task partitioning schemes LTF
and TBLS, as well as the speed assignment schemes US
and CPSS, giving four combinations named as LTF-US, LTF-
CPSS, TBLS-US, and TBLS-CPSS.

We also implemented a scheme named Bound: This scheme
is based on brute-force search for all possible task partitioning
and choosing the one with lowest energy consumption. Bound
does not implement any fault tolerance, and removes all
contingency tasks, setting the deadline of all tasks to D. The
tasks are allocated on two cores using the topological order
and the CPSS technique is used for speed assignment. We use
this scheme as a lower bound for energy consumption and
compare our proposed schemes that offer fault tolerance. The
obtained energy consumption numbers are normalized with
respect to the maximum energy consumption (observed in the
considered parameter spectrum) of LTF-US scheme.

For each experiment, the simulator generates a task set
containing n tasks, and a given total utilization, U . The
utilization is calculated with respect to the LP core (which
is more constrained in terms of performance) and normalized
considering its maximum speed. Hence, U = (

P CLP
i

D )/fLP
max.

Based on the target U , we use the RandFixedSum algorithm
[27] to assign a random utilization (according to uniform
distribution) to each task such that the total utilization equals
U . We set the frame deadline D = 100ms. In order to
experiment with arbitrary task-graphs, we use TGFF tool [28]
to randomly generate a DAG with n nodes.

It is known that the power parameters and required number
of cycles for different tasks scale differently on heterogeneous
systems [29]. Therefore, as in [15], we define tscalei =

CLP
i

CHP
i

,
which models how execution time changes on the LP core for
a given task, ⌧i. Moreover, following [15], we define pscalei
to be the ratio of power consumption of ⌧i on the LP core
to that on the HP core. Therefore, pscalei =

PLP
i

PHP
i

, which is

also assumed to be the same as aLP
i

aHP
i

=

↵LP
i

↵HP
i

. Next, for each
task a tscalei and a pscalei value are chosen randomly within
ranges suggested in [29]. Specifically, 1.4  tscalei  2.3 and
1.4  1/(tscalei ⇤ pscalei)  2.1 hold. We assume for all
tasks, aHP

i = 1.0 and ↵HP
i = 0.1. In addition, PHP

idle = 0.05
and PLP

idle = 0.02 for all experiments.
We use task sets with n = 10 tasks, fLP

max = 0.8 and fHP
max =

1.0, unless otherwise stated. The value of threshold is set to
0.6 for TBLS. Every reported data point is the average of 1000
runs. We report the average energy consumption in fault-free
executions, since faults are very rare events.

Impact of Utilization. Figure 6a shows the impact of
utilization on normalized energy consumption. When the
utilization is low, the energy consumption is largely depen-
dent on the partitioning method, and not very much on the
speed assignment schemes. This is because at low load, most
tasks would typically be able to run at their energy-efficient
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Fig. 6: Impacts of Utilization, tscale, and pscale.

frequency fee in both speed assignment techniques. TBLS
puts all the tasks in to the LP core resulting in a better
performance, whereas LTF utilizes the HP core for some tasks
and spends somewhat more energy. As the load increases,
all the schemes show an increase in the energy consumption,
however, the CPSS schemes can keep the energy consumption
low compared to the US schemes. This is because CPSS can
set a suitable speed to each of the task, whereas US has to
commit to a common speed for all tasks. With increase in
the load, the advantage of CPSS becomes very significant
(up to 35%). For a given speed assignment technique, TBLS
partitioning performs slightly better than the LTF technique.
Among all schemes, TBLS-CPSS performs the best and stays
within 10% of Bound for up to 75% of system load.

Impact of tscale. Figure 6b shows the impact of varying
tscale value for all tasks when the system load is fixed at
75%. As tscale increases, the normalized energy consumption
of the system decreases. This is because a low value for tscale
indicates a very efficient LP core. The plot shows that for
the entire range of tscale values, TBLS-CPSS is performing
the best, very closely followed by the LTF-CPSS scheme.
Compared to Bound, both of the CPSS schemes perform very
close (around 6-12%) for the entire spectrum.

Impact of pscale. Varying pscale also has similar effect
as shown in Fig. 6c. As pscale increases, the overall energy
consumption of the system also increases. Increasing the value
of pscale implies making the LP core more power-hungry,
resulting in higher overall energy consumption. We can see
that TBLS-CPSS performs best throughout the entire pscale
spectrum, closely followed by LTF-CPSS.

Impact of maximum speed of LP core. In this set of
experiments, we varied the maximum speed of the LP core
while fixing the load at 75%, as shown in Fig. 7a. We see
that the energy consumption of all schemes increase with
increasing fmax

LP . This is because, when the utilization is
kept fixed at 75% (which is computed relative to fmax

LP ) the
effective amount of workload on the system increases with
increasing LP core speed, which is reflected in the results.

We observe again that TBLS-CPSS performs the best, closely
followed by LTF-CPSS. In fact, Bound scheme performs only
5% better than TBLS-CPSS when LP core’s maximum speed
is low. However, their difference increases with the LP core’s
maximum speed.

Impact of number of tasks. Fig 7b shows the impact of
number of tasks for a system with 75% load. We see that for
small number of tasks, the performance of all the schemes is
affected. As the number of tasks grows, the average task size
decreases and the performances of various schemes stabilize.
For TBLS partitioning, the advantage of using CPSS scheme
over US can be up to 18% when number of tasks is low, but
it stabilizes at 10% with the increase in number of tasks. The
plot also shows that LTF-US starts to outperform TBLS-US
as soon as number of tasks exceeds 25. This is because when
the average task size decreases, this favors the LTF scheme
greatly due to the reduced cost of using the HP core with US.
Bound is not shown in these experiments due to its prohibitive
running time with increased number of tasks.

Impact of Workload Variability. To evaluate the gains
due to our dynamic reclamation scheme in the presence of
the workload variability, we first define the ratio WC/BC
as the ratio of the worst-case execution time to the best-case
execution time. During the experiments, the actual execution
time of every task is randomly generated between its worst-
case and best-case execution time, using a uniform probability
distribution. A higher value of WC/BC indicates larger
amount of runtime slack being generated, providing oppor-
tunities for further energy savings. In these experiments, we
evaluated 1000 execution frames for each task set. Figure 7c
shows that our techniques with dynamic reclamation enabled
(indicated by ’*’) are able to save additional energy at runtime.
The dynamic schemes are about 6-8% more efficient than their
static counterparts.

V. CONCLUSIONS

In this paper, we proposed a fault-tolerant framework for
dependent real time tasks executing on a heterogeneous dual
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Fig. 7: Impact of the LP core’s maximum speed, number of tasks, and workload variability

core system. We presented task partitioning heuristics for allo-
cation and ordering of tasks to the available processing cores,
and developed speed assignment techniques which can ensure
low-energy consumption while providing reliability against
transient and permanent faults. Simulation results demonstrate
that our proposed techniques are capable of energy efficient
operation and perform close to a theoretical lower bound.
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