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Abstract—In this paper, we consider energy-efficient and fault-
tolerant scheduling of real-time tasks on heterogeneous multicore
systems. Each task consists of a main copy and a backup
copy which are scheduled on different cores, for fault tolerance
purposes. Our framework deliberately delays the backup tasks
in order to cancel them dynamically when the main task
copies complete successfully (without faults). We identify and
address two dimensions of the problem, i.e., partitioning tasks
and determining processor voltage/frequency levels to minimize
energy consumption. Our experimental results show that our
proposed algorithms’ performance levels are close to that of
an ideal solution with optimal (but computationally prohibitive)
partitioning and frequency assignment components.

I. INTRODUCTION

Energy management remains a crucial component for the
design and implementation of embedded systems, including
those deployed in safety-critical and time-critical applica-
tions such as those in industrial control, avionics, and high-
confidence medical systems. Recently, heterogeneous (asym-
metric) multicore systems have been embraced by the industry
due to their power-efficient design and the flexibility they offer
in dealing with different types of workloads. These systems
typically combine the high-performance “big” cores with
“little” cores that consume less power, at the cost of providing
more modest performance. ARM’s big.LITTLE systems that
include out-of-order and fast cores (such as ARM Cortex-A15)
and in-order, energy-efficient cores (such as ARM Cortex A-7)
are among the most well-known examples [1].

The main idea in deploying heterogeneous multicore sys-
tems is to execute the workload at hand by the core most suit-
able for the current performance objective (high performance
or energy savings). The research community has recently
addressed several aspects of heterogeneous multicore systems
with a multi-dimensional effort [2], [3].

Another increasingly important dimension, in particular for
safety-critical embedded systems, is reliability. Those systems
should be able to detect, and recover from, various types
of faults in a timely manner [4]. The majority of run-time
faults are categorized as transient, in that they are short-
lived – they are typically induced by the phenomena such as
electromagnetic interference and cosmic rays. However, they
result in erroneous task computation, and typically a recovery
task, in the form of an alternative task or a re-execution, is

invoked [4], [5], [6]. It has been reported that the transient
faults occurrence rate is increasing, in particular due to the
use of aggressive power management techniques such as near-
threshold voltage operation [7]. On the other hand, in case of
permanent faults, a processing core becomes unavailable –
this is typically due to the aging effects, harsh environmental
conditions, and manufacturing defects. Tolerating permanent
faults requires the deployment of additional hardware (such
as another core) that can take over the execution of the tasks
originally allocated to the affected unit [4].

In this paper, we propose implementing a fault-tolerant
framework on heterogeneous dual-core systems while keeping
the energy consumption at a minimum level. Specifically, we
consider a set of real-time tasks where each task consists of a
primary (main) copy and a backup copy, that are allocated
to different cores. This allows the system to tolerate the
permanent fault of any single core, since each processor
has exactly one copy of each task (primary or backup) [4].
Moreover, the transient faults detected in all primary tasks can
be recovered from by the execution of the respective backup
task. Our work differs from the existing so-called standby-
sparing frameworks [8], [9], in that: i.) we allow scheduling
a mix of primary and back-up tasks on each processor, and,
ii.) we consider heterogeneous multicore systems. Although
in [10] we investigated a similar problem in the context of
heterogeneous dual-core systems, the focus was again the
standby-sparing configuration, and the mixing of primary and
backup copies on a given core was not considered.

To keep the energy consumption under control, the backup
tasks are delayed as much as possible on their corresponding
processors, because a backup can be canceled as soon as the
corresponding primary completes successfully (i.e., without a
fault). This also gives a chance to apply Dynamic Voltage and
Frequency Scaling (DVFS) with maximum efficiency during
the execution of the primary tasks on each core. We develop
and propose schemes, i.) to partition all primary and backup
tasks, and, ii.) assign frequency (speed) to all the primary tasks
to minimize the energy consumption, while meeting timing
and fault tolerance constraints.

Our experimental results suggest that the list-scheduling
based partitioning techniques, coupled with a speed assign-
ment approach that dynamically avoids the overlaps with the
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backups, exhibit superior performance which is close to the
theoretical lower bound in terms of energy consumption. Our
framework directly incorporates a salient feature of hetero-
geneous cores, namely the fact that the energy consumption
and execution time figures of different tasks scale by different
ratios when executed on different cores [11].

II. SYSTEM MODEL AND ASSUMPTIONS

A. Platform and Application model

We consider a heterogenous dual-core system with a high-
performance (big) core and a low-power (little) core. The high-
performance and low-power cores are denoted by HP and LP,
respectively, throughout the paper. The cores are assumed to
have the same instruction set architecture, implying that the
executable of a task can run on either core.

The workload consists of n independent real-time tasks
{τ1, ..., τn} that will be executed on this dual-core platform.
We assume the frame-based execution model [6], [12] in
which all tasks have the same period, which is equal to the
common deadline D. Each processing core is equipped with
the Dynamic Voltage and Frequency Scaling (DVFS) feature
that allows changing the frequency (processing speed) at run-
time. Moreover, the Dynamic Power Management (DPM)
feature allows a given core to switch to a low-power (idle)
mode when it is not actively executing tasks.

A task τi that requires Ci number of cycles on a given
core may take up to Wi = Ci/f units of execution time on
that core, if executed at the frequency level f . Due to the
architectural differences, a task’s required number of cycles,
and hence execution time, can be different on the HP and LP
cores. Therefore, we use superscripts HP and LP to denote the
variables on the HP or the LP core (CLPi , WLP

i , CHPi , WHP
i ).

We define the nominal utilization of a task τi as (CHPi /D).
The maximum frequency levels supported by the HP and LP
cores are denoted by fHPmax and fLPmax, respectively. We assume
fHPmax = 1.0, and normalize all other frequency values with
respect to that value.

Associated with each (primary) task τi, there is a backup
task Bi with exact same timing parameters as those of τi. τi
and Bi are allocated to different cores: should a permanent
fault affect any of the processing cores, the alternative core
can take over and finish the workload before deadline. When
a primary copy completes, the acceptance (or, sanity) tests
[4] are performed to check the existence of errors induced by
transient faults. If a fault is not detected, the corresponding
backup copy (or, its remaining part) on the other core is
canceled. Otherwise, the backup copy runs to completion.

B. Power Model

The power consumption characteristics of the HP and LP
cores differ by design. For any processing core, the dynamic
power consumption of an executing task τi is modeled as,
Pi(f) = aif

3 + αi, where ai denotes the switching capaci-
tance, αi denotes the frequency-independent power consump-
tion, and f is the processing frequency of the task. Due to
the asymmetry of the cores, these parameters are different for

each core and again we use superscripts HP and LP to denote
core-specific power parameters (e.g., PHPi , αHPi ).

Each core executes tasks in the active state, dissipating
power as determined by the characteristics of the current task
and processing frequency. When a core does not execute tasks,
it remains in the low-power (idle) state. The low-power (idle)
power consumption of the high-performance and low-power
cores are denoted by PHPidle and PLPidle, respectively. We assume
those figures include the static power consumption of the
corresponding core as well. The energy consumption during
a time interval is given by the aggregate power consumption
during the same interval.

Existing research indicates that scaling down the frequency
below a certain threshold is no longer effective for sav-
ing energy, due to the impact of the frequency-independent
power component [12]. This threshold frequency, known as
the energy-efficient frequency (fee) can be derived through
analytical techniques [12].

Problem Statement: Given a set of real-time tasks and
a heterogeneous dual-core system, minimize the energy con-
sumption by determining

1) The allocation of tasks such that the primary and backup
copy of each task are assigned to different cores, and,

2) The processing frequency (speed) assignment to individ-
ual tasks.

In the following section, we investigate these two intercon-
nected dimensions and propose several efficient schemes.

III. PROPOSED SCHEMES

Before describing the specific algorithms that we propose,
we present a number of general principles that guide our
solution framework. To start with, in general, the concurrent
execution of a primary task and its backup, though possible, is
not desirable because it incurs the full energy cost of the back-
up execution (Figure 1a). However, in case when the backup’s
execution can be delayed, by the time the primary completes
successfully, its remaining part can be cancelled (Figure 1b)1.

Time

D

τ1

B1

(a) Execution with full primary-
backup overlap

Time

D

τ1

B1

(b) Execution with partial over-
lap

Fig. 1: Concurrent Execution of Primary and Backup Tasks

This further suggests that on a given core, all the primary
tasks must execute before the backup tasks allocated to that
core. Moreover, provisions are made to execute all backup
tasks at the maximum frequency on their respective cores,

1Throughout the paper, we show the cancelled part of the backup tasks by
dashed patterns in all the figures.



Time

D

τ1 τ2 τ3 B4 B5

Fig. 2: Canonical Execution Order

should there be a need – obviously this choice minimizes
their overlap with their respective primary tasks on the other
core, and in addition, since faults are rare events, the full
speed execution of the backups has only a minimal impact
on the average-case energy consumption. Clearly, this choice
also leaves maximum slow-down opportunities for the primary
tasks scheduled on that core through DVFS.

Thus, we define the canonical execution order, in which on
a given core all primary tasks are started as soon as possible,
whereas backup tasks are delayed as much as possible subject
to the deadline constraints, and executed at the maximum
frequency if needed. Figure 2 shows a canonical execution
on a single processing core to which three primary tasks (τ1,
τ2, τ3), and two backup tasks (B4 and B5) are assigned. In
the rest of the paper, we commit to this canonical execution
order to execute primary and backup copies of tasks on all
cores, once the partitioning is done.

A related framework is the so-called energy-aware standby-
sparing technique, in which, one of the cores is designated for
the primary tasks and the other one for the backup tasks exclu-
sively [8], [9], [10]. In our framework, however, for maximum
flexibility, we allow scheduling the primary and backup copies
on both cores, when possible – for that reason, we call our
framework mixed primary backup (MPB) assignment. The
schemes we propose consist of task partitioning and speed
(frequency) assignment phases which are described next.

A. Task partitioning

Task partitioning, in general, is an intractable problem; how-
ever, a well-known approach is based on the list-scheduling
technique. We first describe two variants based on list schedul-
ing for our task partitioning phase.

List-scheduling with Primaries (LSP). In this algorithm,
we consider the primary copies of the tasks and employ list-
scheduling algorithm to allocate them. First, the tasks are
ordered according to their decreasing nominal utilizations.
Then, each primary task is placed on a processing core that has
the maximum free capacity after the placement. Free capacity
on a core is defined by (fmax −

∑
τiεΓp

Ci

D ), where Γp is the
set of all primary tasks assigned to that core, augmented by the
task under consideration. fmax and {Ci} values are defined
in the context of the core under consideration. Observe that
the first few primary tasks will always go to the HP core,
until its free capacity matches that of the LP core. Once the
distribution of the primary tasks is complete, a backup copy
for each primary task is allocated to the alternate core. Also,
at each stage of the primary task allocation, the feasibility of
both cores, in terms of time constraints, are checked.

TABLE I: Example Task Set 1

WHP
i WLP

i EHP
i ELP

i
τ1 13.2 30.4 14.63 5.58
τ2 10.7 19.4 11.77 3.56
τ3 10.6 18.8 11.66 3.45
τ4 10.2 18.9 11.22 3.47

We illustrate the behavior of the algorithm on an example
task set given in Table I. The table gives task execution times
(in ms), and energy consumption (EHPi , ELPi ) on both cores
(in mJ), under respective maximum frequencies. The 4-task
set is scheduled on a dual core system with fHPmax = 1.0 and
fLPmax = 0.8. We also assume PHPidle = 0.05 and PLPidle = 0.02,
and for all tasks, aHPi = 1.0, aLPi = 0.3, αHPi = 0.1 and
αLPi = 0.03. For demonstration, we use a simple runtime
policy (called static policy) in which, each primary task is
slowed down as much as possible without violating the frame
deadline. The canonical execution order is adopted on each
core.

Figure 3b shows the task allocation under this scheme for
our example task set in Table I. The first task, τ1 is allocated to
the HP core, because it has the most free capacity among the
two cores. τ2 is allocated to the LP core whose free capacity
is higher at that time. Similarly, tasks τ3 and τ4 are allocated
to the HP core. It should be noted that, in contrast to the
standby-sparing configuration shown in Figure 3a (which uses
the partitioning method SlowerP, one of the best-performing
scheme in [10]), the extent of primary-backup overlapped
executions is much less in the LSP solution.

List-scheduling with Backups (LSB). This algorithm
works in the same way as LSP, but this time, the backup copies
of the tasks are considered while partitioning. Once the backup
copies are distributed, their corresponding primary copies are
allocated to the respective alternate processing cores. By its
very nature, this algorithm tends to allocate a few initial
primary tasks to the LP core, before their backups are allocated
to the HP core thanks to the LSB rule.

Figure 3c shows the task allocation under this scheme for
our example task set in Table I. This partitioning is a mirror
image of the LSP partitioning. It can be noted that, all primary-
backup overlapped executions are avoided.

Fixed-Threshold Algorithm (FTH). In this algorithm, the
primary tasks are at first ordered according to their decreasing
nominal utilizations and processed one by one. Tasks are
assigned to the LP core, as long as its load does not exceed
a pre-defined threshold value. Otherwise the primary task is
assigned to the HP core. After each primary task assignment,
its backup copy is allocated to the counterpart core. The
threshold value can assume any value between 0.0 and 1.0.

For our example Task Set 1, this heuristic produces the task-
allocation shown in Figure 3d when the threshold value is 0.6.
Tasks τ1 and τ2 are allocated to the LP core. When task τ3
is processed, the total used capacity on the LP core exceeds
60% if it is assigned to the LP core. Therefore, it is assigned
to the HP core. Similarly, τ4 is allocated to the HP core.
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Fig. 3: Task partitioning algorithms
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Fig. 4: Static Speed Assignment

B. Speed assignment

Once the task partitioning phase is complete, the next step
is to determine the speed (frequency) of the primary tasks on
each core, while committing to the canonical execution order.
Speed assignment to the primary tasks is critical not only be-
cause it determines directly the primary’s energy consumption,
but also indirectly, that of the corresponding backup whose
overlap extent may change as a result of that assignment.
Below we propose three speed assignment policies.

Static Speed Assignment (SSA). Figure 4 illustrates the
basic principles of the SSA policy. The scheme reserves
capacity for each allocated backup task (which runs at the
maximum frequency of the core), and assigns a latest-start-
time to each of them such that no deadlines are missed. In
Figure 4a, rHP and rLP denote the latest start time for the
first backup task on the HP and LP cores, respectively. Primary
tasks are slowed down as much as possible, subject to the
energy-efficient frequency bound (fee). Letting r denote the
start time of the first backup task on a specific core, and
ΓP denote the set of all primary tasks on that core, then,
the common frequency that finishes all these primary tasks
before time r is given by fU = (

∑
τiεΓP

Ci)/r. Then, each
primary task τi is assigned the frequency fi = Max(feei , fU ).
Figure 4b shows the extended execution times for primary
tasks, derived through this principle.

Dynamic Backup Cancellation (DBC). In this scheme, as
in SSA, the processing capacity is reserved for backup tasks
and primary copies are slowed down as much as possible,
subject to the energy-efficient frequency. However, the speed
assignment routine is re-invoked at runtime: each time a
primary task completes without fault, the reserved capacity
for its backup copy is deallocated and used to further slow
down the next primary tasks on that core. For example when
τ3 finishes without error, the reserved capacity for B3 on the
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(a) Dynamic Backup Cancellation
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(b) Dynamic Backup Cancellation
with Minimum Overlap

Fig. 5: Dynamic Policies

LP core is reclaimed to further slow-down τ2 (Figure 5a).
Note that, this introduces some overlapped execution for B2.
In general, when task τi is about to run at time t, its speed
is chosen as fU = (

∑
τiεΓ

Ci)/(r − t), where Γ is the set of
unfinished primary tasks on the same core, and r represents the
earliest start time among the unfinished backup tasks, again on
the same core. When a primary task completes without error,
the earliest backup activation time on the alternate processing
core is updated at runtime. The chosen speed value is subject
to the energy-efficient frequency, therefore, for each task τi,
the speed is set to fi = Max(feei , fU ).

Dynamic Backup Cancellation with Minimum Overlap
(DMO). This scheme works as the DBC scheme; but when
setting the speed of the primary tasks at run-time, it attempts to
minimize the overlapped-execution with back-ups. As shown
in Figure 5b, when DVFS is applied to τ2 at the beginning of
its execution, it is not maximally slowed down; instead, the
overlapped execution with B2 is avoided by running somewhat
faster than the DBC policy. Under this policy, the speed of τi is
chosen to be fi = Min(fmax, f∗i ) where f∗i = Ci

ri−t , where ri
is the latest time the backup copy of τi can be activated (on the
alternative core) without violating any deadlines, and t is the
current time. This speed is subject to the deadline constraint
and the energy-efficient speed, therefore, fi is updated as fi =
Max(fi, f

ee
i , fU ). In this scheme, fU is re-computed with a

dynamically updated r value as in the DBC scheme.

TABLE II: Example Task Set 2

WHP
i WLP

i EHP
i ELP

i
τ1 20.3 36.8 22.33 6.76
τ2 19.1 39.4 21.01 7.23
τ3 4.3 10 4.73 1.84
τ4 1.5 3.02 1.65 0.55

To contrast the impact of these schemes, we use the 4-
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Fig. 6: Execution under different schemes

task set in Table II with aHPi = 1.0, aLPi = 0.3, αHPi =
0.1 and αLPi = 0.03 for each task. The task set is executed
on a dual core system with fHPmax = 1.0 and fLPmax = 0.8.
We also assume PHPidle = 0.05 and PLPidle = 0.02. Figure 6a
shows the execution of the task set under LSB partitioning
and static speed assignment. The HP core (at the top) uses
the energy-efficient frequency for tasks τ3 and τ4, and the LP
core (at the bottom) is slowed down maximally (f = 0.7) so
that all backup copies (B3 and B4) can make their deadline.
The overall energy consumption is 24.7 mJ.

Figure 6b shows the execution of the same task set under
LSB partitioning and DBC policy. The scheme reclaims the
reserved capacity for the backup copies B3 and B4 whose
primaries complete without fault, and uses this capacity to
further slow down the primary task τ2 to speed f = 0.54.
However, this introduces overlapped execution for B2, and
in this case, hurts the energy savings. The overall energy
consumption of this system is 36.7 mJ. Finally, Figure 6c
shows the execution under LSB partitioning and DMO runtime
policy. Although this scheme could use all the reclaimed
capacity from B3 and B4, it runs τ2 at the maximum speed
of the LP core (f = 0.8) to minimize the overlap with B2.
This execution yields an overall energy consumption of 20.2
mJ, which is 18% lower than that of the static policy.

IV. EXPERIMENTAL EVALUATION

We evaluated the energy consumption performance of the
proposed algorithms in a discrete event simulator. We simu-
lated dual core systems with fHPmax = 1.0 and fLPmax varied
from 0.6 to 1.0. Due to space limitations, we will show the
results for fLPmax = 0.8, and analyze the impact of varying
fLPmax separately in Section IV-C.

It is known that the power parameters and required number
of cycles for different tasks scale differently on heterogeneous
systems [11]. Therefore, as in [10], we define tscalei =

CLP
i

CHP
i

,
which models how execution time changes on the LP core for
a given task, τi. Moreover, following [10], we define pscalei
to be the ratio of power consumption of τi on the LP core to
that on the HP core. Therefore, pscalei =

PLP
i

PHP
i

, which is also

assumed to be the same as aLP
i

aHP
i

=
αLP

i

αHP
i

.
For each experiment, the simulator generates a task set

containing n tasks, and a given total utilization, U . The uti-
lization value is calculated with respect to the LP core (which

is more constrained in terms of performance) and normalized
considering its maximum speed. Hence, U = (

∑ CLP
i

D )/fLPmax.
Based on the target U , we use the RandFixedSum algorithm
[13] to assign a random utilization (according to uniform
distribution) to each task such that the total utilization equals
U . We set the frame deadline D = 100ms. Next, for each
task a tscalei and a pscalei value are chosen randomly within
ranges suggested in [11]. Specifically, 1.4 ≤ tscalei ≤ 2.3 and
1.4 ≤ 1/(tscalei ∗ pscalei) ≤ 2.1 hold. We assume for all
tasks, aHPi = 1.0 and αHPi = 0.1. In addition, PHPidle = 0.05
and PLPidle = 0.02 for all experiments.

Each generated task set is partitioned upon the HP and LP
cores according to one of the proposed partitioning algorithm.
For every partition obtained in this way, we simulate the
execution according to the speed assignment policies that
we suggested, and record the energy consumption. Every
combination of a partitioning scheme and a speed assignment
algorithm gives us a valid overall algorithm, whose name is
indicated by the concatenation of the member schemes (e.g.,
LSP-SSA, FTH-DMO). We use task sets with n = 10 in all
the results shown, but we discuss the impact of varying the
number of tasks in Section IV-C. Every reported data point is
the average of 3000 runs.

We report the average energy consumption in fault-free
executions, since faults are very rare events. The obtained
energy consumption numbers are normalized with respect to
the maximum energy consumption (observed in the considered
parameter spectrum) of a standby-sparing system with static
speed assignment and in which all the primary copies are
allocated to the LP core [10].

Due to the multiple dimensions of the problem and large
number of scheme combinations, in our evaluation, we will
adopt a hierarchical approach. We will first discuss the per-
formance of the partitioning algorithms by fixing the speed
assignment policy. Next, we will compare the performance of
the proposed speed assignment policies, and also investigate
the impact of the chosen threshold value on the FTH algorithm.
Finally, we show the effect of the maximum speed of the LP
core and the effect of the number of tasks.

A. Evaluation of Partitioning Algorithms

We implemented the following partitioning schemes in our
simulator:
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Fig. 7: Performance of partitioning algorithms

• List-scheduling with Primaries (LSP)
• List-scheduling with Backups (LSB)
• Fixed-threshold Algorithm (FTH)
• Standby-sparing (STS)
• Optimal Partitioning (OPT)

The optimal partitioning we show in the plots is obtained
by exhaustively enumerating all possible task allocations, and
measuring their runtime energy consumption, then choosing
the best. This is implemented by the exhaustive search which
becomes impractical when the number of tasks grows beyond
15. The STS algorithm is adopted from the SlowerP scheme in
[10], because it is shown to be the best-performing one in its
respective context. The threshold value for the FTH algorithm
is fixed as 0.6. The energy consumption of the partitioning al-
gorithms is shown using the static speed assignment algorithm
(SSA); we obtained similar trends with the other (DBC and
DMO) algorithms.

Impact of Utilization. In Figure 7a, we show the impact of
utilization on normalized energy consumption. When the uti-
lization is low, the FTH algorithm’s performance approaches
the optimal one, suggesting that allocating all primary tasks
to the LP core, and all the (delayed) backups to the HP core
is the best strategy. This is because under low load, LP can
finish the primary workload quickly and in a power-efficient
way, allowing the backup tasks to get cancelled on the HP
core early. This is evident for the STS scheme too, because it
allocates all the primary workload to one core as well. As the
load increases, FTH drifts from the optimal scheme and LSB
becomes a comparable scheme. This is due to the fact that,
as the load grows, a more balanced partitioning is preferable
which can allow a suitable distribution of the reserved space
for backup copies such that their activation is seldom needed.
Both FTH and LSB give relatively balanced partitionings,
but LSB generally allocates more primary copies to the LP
core, with an energy advantage. LSP scheme, performing very
poorly on the low-load case, starts to outperform both LSB
and FTH when the utilization exceeds 80%, and comes within

5% of the optimal scheme. For heavy load, executing primary
copies on the HP core is preferable because in this case, the
backup copies cannot, in general, get cancelled and executing
them at the maximum speed of the LP core is preferable to
executing them at the maximum speed of the HP core. For the
same reasons, STS performs the worst for heavy load cases.

Impact of tscale. Figure 7b shows the impact of tscale on
the performance of the partitioning algorithms. tscale is varied
within the range of 1.4 to 2.3, which is obtained from [11].
In general, larger tscale values indicate that tasks take much
longer to complete on the LP core, despite its power-efficiency.
In these experiments the utilization is fixed at 70%, and
therefore, increasing tscale implies additional unused capacity
on the HP core. We see that LSB performs consistently within
3% of the optimal scheme throughout the entire range of
tscale. This is because executing the primary copies of the
workload on the power-efficient core results in less energy
consumption, and LSB tends to allocate primary workload
to the LP core. LSP, on the other hand, has a tendency to
assign primary workloads to the HP core, and in general, it
lags behind LSB. FTH comes very close to the performance
of LSB as tscale increases.

Impact of pscale. Figure 7c shows the impact of pscale on
the performance of the partitioning algorithms. When the LP
core is very power-efficient, i.e., pscale is low, FTH and LSB
come very close to optimal scheme. This is because at the fixed
70% system load, FTH assigns most of the primary workload
on the LP core, and that helps saving energy. As pscale grows,
FTH drifts away from the optimal scheme the most, because
it is no longer efficient to use the LP core for most of the
primary workload. However, LSB can still perform within 5%
of the optimal scheme, because it produces a more balanced
partitioning with a bias to allocate the primary tasks to the LP
core. LSP, which produces a balanced partitioning with a bias
to assign the primary tasks to the HP core, performs poorly for
low pscale, but starts to outperform LSB for pscale greater
than 0.4 and comes 2% of the optimal scheme.
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Fig. 8: Performance of the speed assignment algorithms

B. Evaluation of Speed Assignment Algorithms

We implemented the following speed assignment policies.
• Static Speed Assignment (SSA)
• Dynamic Backup Cancellation (DBC)
• Dynamic Backup Cancellation with Minimum Overlap

(DMO)
• Bound
The Bound algorithm is implemented as a yardstick speed

assignment algorithm. After partitioning the tasks the ex-
ecutions slots are still reserved for backup tasks – those
slots are dynamically released (as in DBC), but no extra
energy consumption is recorded for the overlapped execution
of the backup tasks at run-time. Since the backup execu-
tions essentially incur zero energy cost, no speed assignment
algorithm can outperform Bound. We matched Bound with
the exhaustive search based Optimal partitioning algorithm,
obtaining a combined scheme denoted by OPT-Bound, which
gives the lower bound on the performance of any realistic
MPB algorithm. Given the large number of partitioning/speed
assignment scheme combinations, for other schemes, we are
showing only the results we obtained with the best performing
partitioning algorithms, namely LSB and FTH. We are using
the Overlap-Aware speed assignment scheme for STS, as it is
shown to be the best performing scheme for standby-sparing
in [10].

Impact of Utilization. In Figure 8a, we see that both FTH-
DMO and LSB-DMO perform within 2% of Opt-Bound. This
is because dynamically reclaiming the capacity for backup
tasks and minimizing overlap while applying DVFS is a very
effective strategy, as done within DMO. This is also true for
STS at low-load, because it allows some carefully calculated
overlapped execution. As the load increases, STS drifts away
from Opt-Bound the most, because it has the restriction that it
cannot allocate primary and backup copies on the same proces-
sor. FTH-DBC and LSB-DBC perform poorly for moderately
loaded systems due to the large overlapped executions that it
creates. However, for heavy load, backup copies need to run

until deadline anyway, therefore the performance of the DBC
scheme improves. Both FTH-SSA and LSB-SSA offer decent
performance levels unless the load is very high.

Impact of tscale. As we change tscale value (when the
load is fixed at 70%), LSB-DMO performs the best and stays
within 3% of Opt-Bound (Figure 8b). The next best performing
scheme is FTH-DMO. This again suggests the superiority
of DMO thanks to its dynamic but moderately aggressive
approach in applying DVFS while avoiding overlaps. The plot
also shows that FTH-DBC performs the worst, and LSB-DBC
performs the worst among all the LSB algorithms. This is
because DBC aggressively slows down a task without regard
to the overlapped execution.

Impact of pscale. Varying pscale yields similar trends (Fig-
ure 8c). LSB-DMO and FTH-DMO perform the best, within
3% of Opt-Bound, by exploiting the overlap avoidance strategy
of DMO. LSB-DMO’s performance, however, decreases as the
LP core becomes less power-efficient (pscale increases). This
is because, with less power-efficient LP core, it is no longer
favorable to assign primary workload to the LP core up to a
threshold. Due to the aggressive frequency scaling of the DBC
scheme, FTH-DBC performs the worst throughout the entire
spectrum. LSB-DBC, performing poorly for low pscale, starts
to improve when pscale is greater than 0.4, and comes within
1% of Bound. This is because when the LP core is less power-
efficient, slowing it down as much as possible proves helpful
from the energy consumption perspective.

C. Additional Results

Impact of the threshold value in the FTH algorithm. The
Fixed-Threshold (FTH) algorithm works by allocating all
primary tasks to the LP core until a threshold utilization is
reached. Figure 9a shows the impact of the threshold value
on a system that is 70% loaded and with DMO policy.
The results indicate that the energy consumption of FTH
decreases as we increase the threshold value, and at about
0.45, it outperforms the otherwise best performing algorithm,
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Fig. 9: Impact of threshold value in FTH algorithm
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Fig. 10: Additional Evaluations

LSB. Its energy consumption is minimized at some threshold
value around 0.50. The energy consumption goes up as we
increase the threshold and becomes constant at some point –
because when the threshold value exceeds the utilization, all
of the workload is assigned to the LP core. The threshold-
independent algorithms, naturally yield a constant energy
consumption. Figure 9b shows a similar pattern for a system
with 90% load. The results suggest that choosing a threshold
value in the range [0.5, 0.6] is generally a very good choice
when using the FTH algorithm.

Impact of the maximum speed of the LP core. In this set
of experiments, we varied the maximum speed of the LP
core while fixing the load at 70% for each configuration
(Figure 10a). The performance of LSB-DMO remains within
5% of Opt-Bound for the entire region, suggesting that it is
applicable in a wide range of heterogeneous systems. FTH
algorithms, on the other hand, tend to drift away from Opt-
Bound as the maximum speed of the two processing cores
become close to each other. We also see that the energy
consumption of all schemes increases with increasing fLPmax.
This is because, when the utilization is kept fixed at 70%,
when we increase fLPmax, the effective amount of workload on
the system is increased, which is reflected in the results.

Impact of the number of tasks. Figure 10b shows the impact
of number of tasks for a system with utilization 70%. We
see that for small number of tasks, the performance of all
the schemes is affected. As the number of tasks grows, the
average task size decreases and the performances of various
schemes stabilize. We can see that LSB performs within 3%
of the optimal scheme, and FTH is about 3% worse than LSB,
for the entire region. LSP performs worse than the other two,
but it also shows stable performance when the number of
tasks grows. For the optimal scheme, we could only calculate
energy consumptions for up to 17 tasks due to its prohibitive
computational complexity.

V. CONCLUSION

In this paper, we proposed a fault-tolerant framework im-
plemented on heterogeneous dual-core systems, and proposed
techniques that can keep energy consumption at a mini-
mum level. We devised task partitioning algorithms along
with runtime frequency assignment policies while taking into
account the different execution-time and power-parameter
scaling factors for application tasks on heterogeneous cores.
Our simulation experiments show that our proposed schemes
perform very close to the theoretical lower bound.
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