
266 Int. J. Embedded Systems, Vol. 6, Nos. 2/3, 2014 

Copyright © 2014 Inderscience Enterprises Ltd. 

Fixed-priority global scheduling for mixed-criticality 
real-time systems 

Owen R. Kelly and Hakan Aydin* 
Department of Computer Science, 
George Mason University, 
Fairfax, Virginia 22030, USA 
E-mail: okelly@masonlive.gmu.edu 
E-mail: aydin@cs.gmu.edu 
*Corresponding author 

Abstract: There has been a growing interest in recent years in mixed-criticality real-time systems 
in which tasks are attributed different levels of criticality based on the degree to which  
their deadlines must be assured. While most of the initial efforts on mixed-criticality systems 
targeted single-processor systems, the research community has recently started to investigate 
multiprocessor mixed-criticality real-time systems. In this paper we investigate how global, 
fixed-priority algorithms can be applied in the context of multiprocessor mixed-criticality 
systems. We identify the two key dimensions of the problem – priority assignment and 
schedulability testing, and consider candidate algorithms for each dimension. We also propose a 
new and simple priority assignment policy called CPRatio that considers both task criticality and 
timing constraints to improve the schedulability of mixed-criticality task sets. We experimentally 
evaluate the performance of priority assignment strategies and schedulability tests in the global 
multiprocessor mixed-criticality scheduling context. 
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1 Introduction 

Hard real-time systems – systems for which the completion 
of tasks by specified deadlines is fundamental to correct 
operation, have been a focus of intensive research for 
several decades. Real-time applications are typically 
periodic in nature, comprised of recurrent tasks that each 
generate a sequence of instances or jobs. With fixed-priority 
(FP) scheduling algorithms, all jobs of a task are assigned 
the same priority relative to jobs of other tasks,  
while in dynamic-priority approaches, the priority of a task 
can vary over time. The dynamic-priority algorithm 
earliest-deadline-first (EDF) is known to be optimal for the 
uniprocessor scheduling of sets of periodic, independent 

tasks with deadlines equal to periods (i.e., implicit 
deadlines) in the sense that any task set that is schedulable 
by some algorithm is also schedulable by EDF (Liu and 
Layland, 1973). Among FP algorithms, the rate-monotonic 
(RM) algorithm is optimal for periodic task sets with 
implicit deadlines (Liu and Layland, 1973). In RM 
scheduling, tasks with smaller periods have higher 
priorities. 

Following the recent advent of multi-core systems, the 
multiprocessor scheduling of real-time applications  
has received increasing attention (Jersak et al., 2005). 
Multiprocessor scheduling algorithms are generally 
classified as partitioned or global scheduling algorithms. In 
partitioned scheduling approaches, each task is allocated to 
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a single processor, and the scheduling problem becomes  
one of task allocation followed by the uniprocessor 
scheduling of the subset of tasks allocated to each processor 
(Lopez et al., 2003, 2004). In fact, an important advantage 
of partitioned approaches is the applicability of the rich 
body of results for uniprocessor scheduling after the 
partitioning phase. However, partitioning of real-time tasks 
is, in general, an NP-Hard problem. Also, the inability to 
move tasks to other processors may be problematic if some 
tasks may arrive or depart dynamically. In contrast, in 
global scheduling approaches, jobs are scheduled from a 
single ready queue, and each job of a task may be 
preempted and later resumed, potentially on a different 
processor. Global approaches are more suitable for dynamic 
workloads in which tasks are added and removed over time. 
On the other hand, the run-time overhead of task migration 
is a factor. Global and partitioned approaches are 
incomparable in that there are task sets that are schedulable 
by a global approach but not a partitioned approach, and 
others for which the opposite is true (Leung and Whitehead, 
1982). In addition, many results for uniprocessor scheduling 
do not extend to multiprocessor systems. For example, 
Dhall and Liu (1978) observed that there are task sets with 
total utilisation slightly larger than one that cannot be 
scheduled by global EDF or RM on a multiprocessor 
regardless of the number of processors – a phenomenon that 
has become known as the Dhall effect. 

Response-time analysis (RTA) was developed as a 
technique for FP uniprocessor schedulability analysis in 
which the worst-case response time of each task is 
calculated assuming a particular priority-assignment scheme 
and compared with its deadline to determine its 
schedulability (Joseph and Pandya, 1986). For 
multiprocessor scheduling, the worst-case response time 
does not necessarily occur when all jobs arrive at the same 
time (Lauzac et al., 1998). This fact adds another layer of 
complexity to global FP scheduling algorithms. 

Baker (2003) followed an approach for multiprocessor 
schedulability testing in which the minimum interference 
necessary for a task to miss its deadline is determined. An 
upper bound on the interference experienced by a task is 
calculated, and if this bound is less than the minimum 
required for a deadline miss, the task is guaranteed to meet 
its deadlines. Other researchers have followed and refined 
the approach established by Baker (e.g., Bertogna and 
Cirinei, 2007; Bertogna et al., 2009; Guan et al., 2009). 

A large majority of the research in real-time systems has 
been based on an assumption that tasks have the same 
degree of importance or criticality. Moreover, a single 
worst-case execution time (WCET) is assigned to each task 
and deadline guarantees resulting from schedulability 
analysis are valid provided that no task exceeds its WCET. 
However, a more recent trend in design involves approaches 
in which multiple real-time functions at varying criticality 
levels are implemented on the same embedded system 
platform. This has led to the investigation of the so-called 
mixed-criticality systems that are based on models that 
explicitly take criticality into account. As an example,  

in the domain of unmanned aerial vehicles (UAVs), the 
main functions are divided into two categories: Level 1 
functions that are classified as mission-critical, and Level 2 
functions that are considered to be flight-critical (Baruah  
et al., 2012). In addition, there is often a need to apply 
rigorous techniques to certify these functions in their  
own criticality range, which is challenging, given that they 
are implemented on the same embedded hardware platform 
(and thus, may interact with each other) (Baruah et al., 
2012). As such, mixed-criticality systems facilitate the 
integration of functions with different criticality levels on 
the same platform (Baruah et al., 2010). 

In his seminal work, Vestal (2007) observed that the 
WCET estimate assigned to a task tends to increase with an 
increase in the degree to which the task’s deadlines must be 
assured. He proposed a model, further explored by Baruah 
and Vestal (2008), in which each task is assigned multiple 
WCETs, each associated with a different level of assurance 
or criticality. Each task is also assigned a criticality level 
and the schedulability of a task is evaluated using the 
WCETs associated with its criticality level. Deadline 
guarantees are made for low-criticality tasks under the 
assumption that higher-criticality tasks do not exceed their 
low-criticality WCETs. That is, low criticality tasks  
make use of processor capacity that is allocated to  
higher-criticality tasks but not used by those tasks. This 
results in an increase in processor utilisation. Several 
aspects of mixed-criticality uniprocessor systems have been 
explored by Baruah et al. (2010), Li and Baruah (2010),  
de Niz et al. (2009) and Lakshmanan et al. (2011). 

Research efforts for multiprocessor mixed-criticality 
systems are relatively new. In our previous work, we 
investigated the partitioned scheduling of mixed-criticality 
task sets on multiprocessors using FP algorithms  
(Kelly et al., 2011). We identified algorithms that result 
from choices made in the two key dimensions of the 
problem: task allocation and priority assignment. We 
established that two heuristics for ordering tasks prior to 
allocation – by decreasing utilisation or by decreasing 
criticality, are incommensurable in that there are task sets 
that are schedulable by one, but not the other. Our results 
also suggested that Audsley’s (1991) algorithm offers 
significantly improved performance over RM priority 
assignment in this setting. Other multiprocessor  
mixed-criticality research efforts include those by 
Lakshmanan et al. (2010), Mollison et al. (2010) and Pathan 
(2012). 

1.1 This work 

Our focus in this paper is the global FP scheduling of 
mixed-criticality task sets on homogeneous multiprocessors. 
We explore the two key dimensions of this problem, namely 
priority assignment to individual tasks and feasibility testing 
given a specific priority assignment. We identify algorithms 
that can be used in each dimension. We undertake a detailed 
experimental evaluation of the relative performance of 
algorithms developed for traditional task sets in each of 
these dimensions when applied to mixed-criticality task sets 
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using the model proposed by Vestal (2007). Another 
contribution of this paper is the proposal of a new priority 
assignment approach referred to as criticality-to-period 
ratio (CPRatio). CPRatio targets mixed-criticality 
scheduling by assigning priorities based on both a task’s 
period and criticality level. We show that the sophisticated 
priority assignment algorithm developed by Audsley (1991) 
for uniprocessor scheduling provides significantly  
better performance relative to other approaches for the  
global FP scheduling of mixed-criticality tasks when the 
schedulability test of Bertogna et al. (2009) is applied. On 
the other hand, CPRatio offers improved performance over 
other approaches while not incurring the additional 
implementation complexity of Audsley’s algorithm. 
Moreover, when combined with the test proposed by 
Bertogna and Cirinei (2007), we show that CPRatio 
outperforms all other priority-assignment schemes, 
including Audsley’s scheme. 

The rest of this paper is organised as follows.  
We summarise related work in Section 2. In Section 3,  
we describe our system model and notation. In Section 4, 
we provide an example to illustrate the key principles 
associated with the global FP scheduling of mixed-
criticality task sets. In Section 5, we describe the algorithms 
that have been developed for the assignment of fixed 
priorities for global scheduling and for schedulability tests. 
We present the results of our experimental evaluation in 
Section 6, and we summarise our conclusions in Section 7. 

2 Related work 

The partitioned scheduling of traditional task sets has been 
explored in several works, including those by Lopez et al. 
(2003, 2004). A majority of early efforts in the 
multiprocessor scheduling of traditional task sets were in 
fact focused on partitioned scheduling. A number of 
research efforts in global scheduling have been motivated 
by a desire to mitigate the Dhall effect, e.g., the works by 
Andersson and Jonsson (2000, 2003). Baker (2003) derived 
schedulability conditions for the EDF and deadline 
monotonic (DM) scheduling of task sets with deadlines less 
than or equal to periods by considering the conditions that 
must exist for a job to miss its deadline. This seminal work 
by Baker was the basis for the subsequent development of 
several schedulability tests for traditional task sets. 
Bertogna and Cirinei (2007) presented an approach in which 
an upper bound on the response-time of a task is derived 
and compared with the task’s relative deadline to determine 
its schedulability. Guan et al. (2009) proposed a technique 
that improves upon the approach specified by Bertogna and 
Cirinei (2007). Bertogna et al. (2009) proposed an approach 
in which an upper bound on the interference experienced by 
a task is determined and used to evaluate its schedulability. 

Davis and Burns (2011) have shown that the  
priority assignment algorithm developed by Audsley for 
uniprocessor scheduling (Audsley, 1991) can be applied to 
multiprocessor global scheduling if three conditions  

(which they derive) are met by the schedulability test to be 
applied. A test that meets these conditions is said to be 
compatible with Audsley’s algorithm. 

Mixed-criticality research was pioneered by  
Vestal (2007) and Baruah and Vestal (2008). A  
load-based approach to the schedulability analysis of 
uniprocessor mixed-criticality systems was derived by  
Li and Baruah (2010). A different approach to uniprocessor 
mixed-criticality scheduling, proposed by de Niz et al. 
(2009) and further explored by Lakshmanan et al. (2011), 
involves the off-line calculation of zero-slack instants and 
an on-line component that effectively adjusts priorities such 
that higher-criticality tasks receive high priority when  
zero-slack situations arise. 

Lakshmanan et al. (2010) applied mixed-criticality 
concepts to the handling of workload spikes in distributed 
cyber-physical systems. They developed a metric for the 
evaluation of scheduling algorithms referred to as ductility 
and proposed an algorithm named compress-on-overload 
packing that maximises this metric. Mollison et al. (2010) 
proposed an approach targeted at scheduling on multicore 
platforms in which the slack resulting from the difference 
between predicted WCETs and actual execution times is 
reclaimed for lower-criticality tasks. They developed an 
architecture for multiprocessor mixed-criticality scheduling 
that provides temporal isolation between tasks of different 
criticality levels. Pathan (2012) derived a schedulability test 
for mixed-criticality, multiprocessor scheduling based on 
RTA that can be combined with Audsley’s (1991) algorithm 
for the assignment of fixed-priorities. This work differs 
from the approach we consider in this paper in that it 
assumes the existence of a run-time mechanism that 
terminates tasks of a particular criticality level if the 
criticality level attributed to the behaviour of the  
system exceeds that level. In Kelly et al. (2011), we 
explored the partitioned scheduling of mixed-criticality 
systems, considering the relative importance of the two key 
dimensions of this problem, namely task allocation and 
priority assignment. 

3 System model 

We consider real-time workloads that are comprised of a  
set τ of n mixed-criticality tasks τ1, ..., τn. Each task τi  
is comprised of a recurring series of instances or jobs.  
Tasks are sporadic, i.e., consecutive jobs in each task are 
separated by a minimum inter-arrival time referred to as the 
task’s period. Tasks are assumed to be independent, aside 
from their execution on shared processors. Each task τi has a 
relative deadline Di that is equal to its period (Ti); in other 
words, we consider tasks with implicit deadlines. 

We apply the mixed-criticality schedulability model 
proposed by Vestal (2007) and further explored by Baruah 
and Vestal (2008). In particular, a task set is comprised of 
tasks of varying levels of importance or criticality. Each 
task τi is assigned a criticality level Li that is based on the 
degree to which the meeting of its deadlines must be 
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assured. Criticality levels are represented as integers, with 
larger values denoting higher criticality and with the 
number of criticality levels denoted as k, with k ≤ n. Each 
task is assigned a WCET function Ci that specifies a WCET 
estimate Ci(X) for each criticality level X in the system, 
where Ci(X – 1) is assumed to be less than or equal to Ci(X) 
(Vestal, 2007; Baruah and Vestal, 2008). Each task is also 
associated with a utilisation function ui, with the utilisation 
value for criticality level X denoted as ui(X) and defined as 
Ci(X)/Ti. The sum of the task utilisations at the highest 

criticality level is referred to as 
1

( ).
ntot

max ii
U u k

=
=∑  

Tasks are scheduled on a set of m homogeneous 
processors designated Pi, ..., Pm using global scheduling.  
In global scheduling, all ready jobs are scheduled from a 
single priority-ordered queue. If there are more than m 
ready jobs, then the m highest-priority jobs are each 
allocated to a distinct processor. An arriving job is placed  
in the ready queue in priority order, and if it is among  
the m highest priority jobs, then the lowest-priority 
executing job is preempted and its processor is allocated to 
the new job. The preempted job may be later resumed on a 
potentially different processor. Intra-task parallelism is not 
permitted, i.e., a task may execute on at most one processor 
at any time. The response time Ri of a task τi is the 
maximum time from the release of a job of the task to its 
completion. Tasks are assigned fixed priorities, i.e., each job 
in a task has the same priority relative to jobs in other tasks. 
Following the approach of Bertogna and Cirinei (2007) and 
Bertogna et al. (2009), time is represented by non-negative 
integers. 

4 Motivational example 

To illustrate the use of the mixed-criticality model proposed 
by Vestal (2007) in global FP scheduling and the 
importance of priority assignment in this context, we 
consider the example four-task set with four criticality 
levels shown in Table 1. 

Table 1 Example mixed-criticality task set 

Task Li Ti Ci(1) Ci(2) Ci(3) Ci(4) 

τ1 2 8 3 3 5 5 

τ2 1 24 3 3 12 12 

τ3 4 30 8 8 12 12 

τ4 3 40 6 6 15 15 

We first determine whether the example task set is 
schedulable with the RM-priority ordering τ1, τ2, τ3, τ4, 
which is the order in which the tasks are listed in Table 1. 
Because the mixed-criticality model requires the 
schedulability of each task to be evaluated using WCETs 
corresponding to its criticality levels, the schedulability of 
each task must be evaluated as a separate case. Figure 1 

depicts the evaluation of the schedulability of a specific 
task, τ4, when RM priority assignment is used, assuming 
synchronous arrival. Because τ4 has criticality level 3, 
criticality-level 3 WCETs are used for all tasks. 
Specifically, the WCETs of τ1, τ2, τ3, and τ4 are 5, 12, 12, 
and 15, respectively. As shown in Figure 1, τ4 misses its 
deadline at time 40 under these circumstances and therefore 
the task set is not schedulable by global RM. 

Figure 1 Schedulability analysis with RM priority assignment 

 

In the case above, the WCETs used in the evaluation of τ4 
correspond to the criticality level 3 and are therefore 
relatively large. If priorities were instead assigned such that 
the lowest-priority task had a low criticality, the WCETs 
attributed to higher-priority tasks would tend to be smaller, 
thereby increasing the likelihood that the lowest-priority 
task will be deemed schedulable. This suggests that the 
assignment of priorities based on criticality level might lead 
to improved schedulability. We consider next whether the 
example task set is schedulable with priorities assigned in 
this manner, i.e., with higher-criticality tasks assigned 
higher priority – a strategy referred to as criticality 
monotonic by de Niz et al. (2009). The resulting task order 
is τ3, τ4, τ1, τ2. The evaluation of the schedulability of τi is 
depicted in Figure 2. Because τ1 has criticality level 2, we 
use criticality level 2 WCETs for all tasks, i.e., τ3, τ4, τ1, τ2 
are assigned WCETs 8, 6, 3, 3, respectively. Despite the use 
of these smaller WCETs, as shown in Figure 2, the task set 
is not schedulable with priorities assigned in accordance 
with criticality, mainly because a task with a stricter timing 
constraint (smaller relative deadline), τ1, is subject to the 
interference of higher-criticality tasks which happen to have 
larger periods. 

Figure 2 Schedulability analysis with priorities based on 
criticality 
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Figure 3 Schedulability analysis with an alternative priority assignment scheme 
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Finally, we consider an alternative priority ordering: τ1, τ3, 
τ4, τ2. The highest priority task, τ1, meets its deadlines. 
Figure 3 shows the evaluation with this priority ordering of 
the schedulability of tasks τ3, τ4, and τ2 in separate 
subfigures. In each case, the deadlines of all tasks are met. 
We note that because the depicted synchronous arrival of 
tasks is not necessarily the worst-case arrival pattern, the 
fact that no task misses a deadline in the situation 
considered in Figure 3 does not guarantee that the task set is 
schedulable. However, we show in Section 5.2, through the 
application of a sufficient schedulability test that this 
example task set is indeed schedulable with this alternative 
assignment of priorities even without the assumption of 
synchronous arrival and without the strictly-periodic 
behaviour depicted in the figure. We also note that this 
specific priority assignment is not entirely arbitrary, but is 
obtained by considering the ratio of a task’s criticality to its 
period, a scheme that we propose for mixed-criticality task 
sets and refer to as CPRatio. 

5 Dimensions of global mixed-criticality FP 
scheduling 

Given that a global, FP approach is to be employed  
for the multiprocessor scheduling of real-time,  
mixed-criticality task sets, there are two key  

dimensions in which an algorithm must be chosen. 
Specifically, a priority-assignment strategy and a feasibility 
(schedulability) test must be selected. In this section, we 
consider algorithms that have been proposed in each of 
these dimensions. We describe the algorithms that we have 
chosen to evaluate based on their suitability for the 
scheduling of mixed-criticality task sets as well as our 
objective of selecting a subset of algorithms that is 
representative of the research that has been performed in 
these two dimensions. We also propose a new priority 
assignment scheme designed specifically for mixed-
criticality scheduling. 

5.1 Priority assignment 

A fundamental principle in evaluating the schedulability of 
a task in the Vestal (2007) mixed-criticality model is that 
the WCET estimates used in the evaluation must be those 
corresponding to the criticality of the task under 
consideration. That is, when determining the impact of a 
task τi on the schedulability of a lower-priority task τk, the 
WCET of τi corresponding to the criticality level of τk must 
be used. Because the WCETs attributed to a task are a  
non-decreasing function of criticality level, the higher the 
criticality level of τk, the larger will be the potential impact 
of τi on its schedulability. The WCET of τi corresponding to 
the highest criticality level among lower-priority tasks 
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represents an upper bound on the interference that a job of τi 
can present to lower-priority tasks. For this reason, priority 
assignment for mixed-criticality scheduling has even greater 
significance than it does for traditional task sets. 

In the following, we describe a representative subset of 
the priority assignment strategies that have been applied to 
global, FP scheduling. Some were developed for 
uniprocessor scheduling and adapted for multiprocessor 
scheduling, while others were specifically targeted at 
multiprocessor scheduling. Almost all were developed for 
traditional task sets. The exceptions are the strategy in 
which priorities are assigned solely based on criticality, 
referred to as criticality monotonic (CM) priority 
assignment, and a new priority assignment that we propose, 
referred to as CPRatio. 

5.1.1 Rate-monotonic 

The RM priority assignment (Liu and Layland, 1973) is 
widely used in many real-time embedded applications. It is 
well-known that the optimality of RM on single-processor 
systems does not extend to multiprocessors (Davis and 
Burns, 2011). Also, Vestal (2007) showed that RM is not 
optimal for the FP scheduling of mixed-criticality task sets 
on a uniprocessor. Despite these limitations, we 
nevertheless evaluate the application of RM to the global FP 
scheduling of mixed-criticality task sets. 

5.1.2 Criticality-monotonic 

An alternative proposed by Vestal (2007) is to assign 
priorities based on criticalities: the higher the criticality, the 
higher the scheduling priority. However, as discussed by de 
Niz et al. (2009), there are task sets that are not schedulable 
with this priority assignment that are otherwise schedulable 
by the simple RM algorithm. 

5.1.3 Criticality-to-period ratio 

The discussion above regarding the potential benefit of 
assigning priorities in accordance with criticality levels 
highlights the tension between period (a timing parameter) 
and criticality level in priority assignment. In this paper, we 
propose a priority-assignment metric that combines the two 
attributes. We observe that from a timing point of view, 
assigning high priority to tasks with smaller periods is, in 
general, advantageous. Similarly, the interference on high-
criticality tasks is in general reduced if they are assigned 
high priorities. Because both small periods and high 
criticality levels suggest the assignment of a higher priority, 
we propose that priorities be assigned to mixed criticality 
tasks based on the ratio of criticality level to period, with 
larger values for this metric resulting in the assignment of 
higher priorities – a strategy that we refer to as CPRatio. 

In the example presented in Section 4, the task set was 
not schedulable with RM or CM priority assignment. In this 
example, the ratio of criticality to period, Li/Ti, for tasks τ1, 
τ3, τ4, and τ2 is 0.25, 0.13, 0.075, and 0.042, respectively, 
and this is therefore the priority ordering that results from 

CPRatio. When the schedulability tests described in Section 
5.2 are applied to this task set with this priority ordering, it 
is shown to be schedulable. We underline that CPRatio is 
not optimal (there may be task sets that are schedulable by 
another priority assignment but not with CPRatio). On the 
other hand, as we show through experiments, CPRatio 
offers a more robust performance compared to other 
schemes, under different feasibility tests. 

5.1.4 Audsley’s algorithm 

Audsley (1991) developed an algorithm for the assignment 
of fixed priorities in uniprocessor scheduling that is optimal 
for traditional task sets when tasks do not arrive at the same 
time. Audsley’s algorithm requires that O(n2) tests be 
performed for n tasks. For uniprocessor scheduling,  
each of these feasibility tests may be performed using time 
demand analysis, which may take pseudo-polynomial time 
(Liu, 2000). 

For mixed-criticality task sets, while RM priority 
assignment is not optimal, Audsley’s algorithm provides 
quick iteration over possible priority assignments  
without the loss of optimality on uniprocessor systems 
(Vestal, 2007). In Kelly et al. (2011), we explored the  
use of Audsley’s algorithm in the partitioned scheduling of 
mixed-criticality task sets where it was applied following 
the allocation step for the scheduling of the subset of tasks 
allocated to each processor. We found that it offered a 
significant performance gain over RM priority assignment 
in this setting. Audsley’s algorithm is not always optimal 
for global FP scheduling (Davis and Burns, 2011). Davis 
and Burns (2011) described the issue of the compatibility of 
global FP schedulability tests with Audsley’s algorithm, 
which is summarised in Section 5.2 and is important for the 
understanding of our experimental results. 

5.1.5 TkC 

The TkC algorithm was defined by Andersson and Jonsson 
(2000) for global FP scheduling and was motivated by a 
desire to overcome the Dhall effect. The value of Ti – kCi is 
calculated for each task τi, where Ti is the task’s period, Ci is 
its WCET, and k is a real number calculated based on the 
number of processors. The task with the smaller value  
of T – kC is assigned higher priority. When applied to 
mixed-criticality task sets, because each task is associated 
with multiple WCETs, a choice of the WCET to be 
attributed to each task for the purposes of priority 
assignment must be made. For example, the WCET of each 
task corresponding to the highest criticality level in the 
system could be chosen, in which case we refer to the 
priority-assignment approach as TkCMax. 

5.1.6 D-C monotonic 

In the D-C monotonic (DCM) algorithm described by Davis 
and Burns (2011), priorities are assigned based on the value 
of Di – Ci for each task τi, with the task with a smaller value 
for this quantity receiving higher priority. Like TkC, a 
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WCET must be selected for each task in order to calculate 
this metric. For example, the WCET associated with the 
highest criticality level in the system could be used, a 
scheme that we refer to as DCMMax. 

5.2 Schedulability tests 

Several research efforts have resulted in the derivation of 
utilisation bounds that can serve as schedulability tests for 
the global FP scheduling of traditional task sets. However, 
the concept of the total utilisation of a task set is less 
meaningful for mixed-criticality task sets (Baruah and 
Vestal, 2008). We therefore focus on tests that determine 
schedulability based on the interference experienced by a 
task rather than total utilisation. Such tests can be tailored 
for application to mixed-criticality workloads by calculating 
interference in accordance with the mixed-criticality model 
proposed by Vestal (2007). 

Baker (2003) developed schedulability tests for both the 
RM and EDF global scheduling of traditional, sporadic task 
sets with constrained deadlines by considering the 
conditions that are necessary for a job to miss its deadline. 
A lower bound on the load necessary in the interval from 
the release of a job to its deadline (referred to as the 
problem window) for a deadline miss to occur is calculated. 

5.2.1 Bertogna-Cirinei 2007 (BC2007) 

The seminal work by Baker (2003) was the basis for the 
subsequent development of several schedulability tests for 
global, FP scheduling. Bertogna and Cirinei (2007) derived 
an approach that is applicable for any priority-assignment 
scheme and used this approach to specify tests for both EDF 
and FP strategies. Specifically, a form of RTA is used in 
which an upper bound on the response time of a task τk is 
calculated by determining an upper bound on the 
interference presented by other tasks in the problem window 
of τk. As specified in Theorem 7 by Bertogna and Cirinei 
(2007), an upper bound ub

kR  on the response time of a task 
τk is determined by the iterative, fixed-point evaluation of 
the following expression, beginning with 

( )

:

1 ˆ

ub
k k

ub i ub
k k k k

i k

R C

R C I R
m <

=

⎢ ⎥
← + ⎢ ⎥

⎢ ⎥⎣ ⎦
∑

 (1) 

where ˆ ( )i ub
k kI R  is an upper bound on the interference 

presented by task τi on task τk in the interval from the 
release of a job of τk to its response time ub

kR  and is 
calculated as 

( ) ( )( )ˆ min , 1 .i ub ub ub
k k i k k kI R W R R C= − +  (2) 

Tasks are assumed to be indexed in priority order, so the 
sum in equation (1) is over tasks with priority higher than 
that of τk. In equation (2), ( )ub

i kW R  is an upper bound on the 

workload of task τi in an interval of length ,ub
kR  calculated 

by assuming that the carried-in job of τi completes at its 
worst-case response time. We refer to the test specified by 
Bertogna and Cirinei (2007) as BC2007. Guan et al. (2009) 
proposed an improvement to the RTA test described by 
Bertogna and Cirinei (2007) in which the number of tasks 
for which a carried-in job contributes to the interference is 
limited to m – 1. It was shown by Davis and Burns (2011) 
that the resulting test is not compatible with Audsley’s 
algorithm. 

5.2.2 Bertogna et al. 2009 (B2009) 

Bertogna et al. (2009) developed another schedulability test 
by assuming that a carried-in job of τi completes at its 
relative deadline Di (which we assume, in this paper, is 
equal to its period Ti) when calculating an upper bound on 
the workload of τi in a problem window. Because it assumes 
that a carried-in job completes at its response-time upper 
bound rather than at its deadline, the test developed by 
Bertogna and Cirinei (2007) provides a tighter upper bound 
for the workload of a task τi in a problem window. 
However, unlike the test developed by Bertogna and Cirinei 
(2007), the test proposed by Bertogna et al. (2009) does not 
require an iterative, fixed-point calculation. Theorem 8 from 
Bertogna et al. (2009) states that a task set is schedulable 
with global, FP scheduling on a multiprocessor if each task 
τk in the set satisfies the following schedulability condition: 

( )( ) ( )min , 1 1i k k k k k
i k

W T T C m T C
<

− + < − +∑  (3) 

where tasks are assumed to be indexed in accordance with 
priority such that the sum is over tasks with higher priority 
than τk. Wi(Tk) is an upper bound on the workload of τi in 
the problem window. By applying this equation to the 
example task set presented in Section 4, it can be shown that 
the task set is schedulable with priorities assigned by 
CPRatio. 

5.2.2.1 Compatibility with Audsley’s algorithm 

One key assumption underlying Audsley’s algorithm is that 
the schedulability of a task can be determined given the 
subset of tasks that have higher priority, but without 
knowing the relative priority ordering of those higher-
priority tasks. When applied to uniprocessor scheduling, this 
assumption is valid, but for multiprocessor scheduling, its 
optimality depends on the schedulability test in conjunction 
with which it is used. Davis and Burns (2011) derived three 
conditions that are necessary and sufficient for a 
schedulability test to be used with Audsley’s algorithm. We 
note that the tests that meet these conditions are referred to 
as OPA compatible in Davis and Burns (2011). For a test to 
be compatible, its evaluation of the schedulability of a task 
must not depend on the relative priority ordering of  
higher priority tasks or on the relative priority ordering of 
lower-priority tasks. Davis and Burns (2011) have shown 
that the schedulability test that we refer to as B2009 is 
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compatible with Audsley’s algorithm. B2009 has a time 
complexity of O(n2), with a complexity of O(n) for each 
task. Because the number of tests executed by Audsley’s 
algorithm is O(n2), and each evaluates the schedulability of 
a single task, when B2009 is combined with Audsley’s 
algorithm, the resulting, overall complexity is O(n3) 
(polynomial-time). It was shown by Davis and Burns (2011) 
that the test that we refer to as BC2007 is not compatible 
with Audsley’s algorithm. Given that the tighter workload 
upper bound (relative to B2009) of BC2007 is not 
applicable when Audsley’s algorithm is used for priority 
assignment, it is important to consider the performance of 
BC2007 combined with other priority-assignment schemes 
relative to the performance of B2009 combined with 
Audsley’s algorithm. Specifically, a key question is the 
following: does the increased performance expected with 
Audsley’s algorithm compensate for the more pessimistic 
bound of B2009? Our experimental results, presented next, 
address this question. 

6 Experimental results 

We performed an experimental evaluation of the 
performance of the priority assignment algorithms and 
schedulability tests described in Section 5 when applied to 
the global multiprocessor scheduling of mixed-criticality 
task sets. In this section, we describe our methodology and 
present the results of our investigation. 

We developed a simulator in the Java language that 
generates synthetic, mixed-criticality task sets with several 
parameters varied over a wide range in an effort to represent 
a variety of hard real-time applications. Our simulation 
implements the UUnifast-Discard algorithm described by 
Davis and Burns (2009) for the generation of task 
utilisations. The value generated by UUnifast-Discard for a 
task τi is assigned as the value for ui(k) – the utilisation of τi 
at the highest criticality level. For each task, a utilisation 
function is generated for the criticality levels of the task set 
with values uniformly distributed in [0.4ui(k), ui(k)]. Periods 
are generated randomly between a minimum period of 10 
and a maximum period of 1,000 milliseconds. The 
criticality levels of the tasks in a set are uniformly 
distributed in [1, k]. 

Task sets were generated with tot
maxU  values varied 

between 0.8 m and 3.0 m, where m is the number of 
processors. For each of a selected set of values in this range, 
1,000 task sets were generated with varying values for the 
number of tasks in a set and the number of criticality levels. 
Task sets were generated with 2, 4, and 8 criticality levels 
and with 40 and 60 tasks. We considered 2-processor and  
4-processor systems. 

We implemented the schedulability test proposed by 
Bertogna et al. (2009), which we refer to as B2009, and the 
test described by Bertogna and Cirinei (2007), which we 
refer to as BC2007. B2009 and BC2007 were implemented 
in accordance with equations (1) through (3), applied in the 
context of the mixed-criticality model proposed by Vestal 

(2007). In particular, when evaluating the schedulability of 
a task τk, the WCET used for each higher-priority task τi is 
the WCET of τi corresponding to the criticality level of τk. 
We implemented the priority-assignment algorithms RM, 
CM, TkC, DCM, and Audsley’s algorithm, along with our 
proposal (CPRatio), all of which were described in  
Section 5. With TkC and DCM, the priority assigned to a 
task is dependent in part on its WCET. For both, we have 
chosen to use the WCET associated with the highest 
criticality level for all tasks. We refer to these algorithms, 
when used with this WCET selection, as TkCMax and 
DCMMax, respectively. With two schedulability tests 
(B2009 and BC2007) and these six priority-assignment 
strategies, we have a total of 12 combinations of 
schedulability test and priority-assignment algorithm. We 
assessed the schedulability of every generated task set under 
these 12 combinations. 

Results are shown in Figure 4 for sets of 40 tasks with 4 
criticality levels, scheduled on 4 CPUs using B2009. The 
fraction of task sets deemed schedulable by B2009 is plotted 
as a function of normalised .tot

maxU  With these parameters, 
Audsley’s algorithm offers significantly better performance 
relative to the other priority assignment schemes. With 
CPRatio, fewer task sets are deemed schedulable relative to 
the results from Audsley’s algorithm. However, CPRatio 
provides a significant increase in performance over the 
other priority-assignment approaches, and this increase is 
achieved without the significant complexity of Audsley’s 
algorithm. As shown in Figure 4, RM, DCMMax, and 
TkCMax provide the same level of performance in this 
setting. In addition, very few task sets are schedulable with 
CM priority assignment. 

Figure 4 4 Criticality levels, 40 tasks, 4 CPUs, B2009 feasibility 
test (see online version for colours) 

 

In Figure 5, results are shown for the same parameters used 
to generate Figure 4, except that schedulability is 
determined using BC2007. A striking observation in this 
case is that almost no task sets are schedulable when 
priorities are assigned by Audsley’s algorithm. This is due 
to the fact, as shown by Davis and Burns (2011), that 
Audsley’s algorithm is not compatible with BC2007. In 
Figure 5, CPRatio provides significantly improved 
performance relative to the other priority-assignment 
schemes. While the relative performance of the algorithms 
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as depicted in Figure 5 (except for Audsley’s algorithm) is 
the same as that shown in Figure 4, the absolute 
performance of each algorithm is better in Figure 5. This is 
expected given the tighter upper bound on workload used by 
BC2007. We note that, while the performance of CPRatio is 
improved with BC2007 relative to B2009, it offers lower 
performance than the combination of Audsley’s algorithm 
with B2009. 

Figure 5 4 Criticality levels, 40 tasks, 4 CPUs, BC2007 
feasibility test (see online version for colours) 

 

Results are shown in Figure 6 for the same parameters used 
to generate Figure 5, except that tasks are scheduled on two 
CPUs rather than 4. The main trends remain the same with 
this reduction in the number of CPUs. However, there is a 
small increase in the absolute performance of each 
algorithm. Since the results are plotted for normalised tot

maxU  
values, the tasks represented in Figure 6 for a given value of 

tot
maxU  tend to have smaller utilisation values relative to those 

of Figure 5. With smaller utilisation values, the negative 
impact of criticality inversions (de Niz et al., 2009),  
where a high-criticality task is given lower priority relative 
to a low-criticality task, is typically reduced, resulting in an 
increase in schedulability. 

Figure 6 4 Criticality levels, 40 tasks, 2 CPUs, BC2007 
feasibility test (see online version for colours) 

 

In Figures 7 through 9, results are shown for the same 
parameters used to generate Figures 4 through 6, 
respectively, except that task sets are comprised of 60 tasks 
rather than 40. As is evident in the plots, the main trends 
remain the same. 

Figure 7 4 Criticality levels, 60 tasks, 4 CPUs, B2009 feasibility 
test (see online version for colours) 

 

Figure 8 4 Criticality levels, 60 tasks, 4 CPUs, BC2007 
feasibility test (see online version for colours) 

 

Figure 9 4 Criticality levels, 60 tasks, 2 CPUs, BC2007 
feasibility test (see online version for colours) 

 

Results are presented in Figures 10 through 12 as a function 
of the number of criticality levels. Figure 10 depicts results 
for 40 tasks scheduled on 4 CPUs with schedulability 
evaluated by B2009. Results are plotted for a tot

maxU  value of 
1.0. The performance of both Audsley’s algorithm and 
CPRatio increases with an increase in the number of 
criticality levels. With more criticality levels, WCETs are 
assigned with a finer degree of granularity.  
As a result, in cases in which a high-criticality task is 
assigned a lower priority relative to a low-criticality task 
(i.e., a criticality inversion) the increase in the WCET 
attributed to the lower-criticality task relative to its nominal 
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WCET (i.e., that corresponding to its own criticality) is 
typically smaller, resulting in a smaller negative impact to 
the schedulability of the task set. With these parameters, the 
number of task sets schedulable with priorities assigned by 
Audsley’s algorithm is significantly higher than that for the 
other priority-assignment strategies. CPRatio offers 
performance that is significantly lower than that of 
Audsley’s algorithm, but significantly higher than the other 
algorithms. In fact, very few task sets are schedulable by 
RM, DCMax, TkCMax, or CM. 

Figure 10 40 Tasks, 4 CPUs, B2009 feasibility test (see online 
version for colours) 

 

Figure 11 40 Tasks, 4 CPUs, BC2007 feasibility test (see online 
version for colours) 

 

Figure 12 40 Tasks, 2 CPUs, BC2007 feasibility test (see online 
version for colours) 

 

In Figure 11, results are shown for the same parameters 
used to generate the results shown in Figure 10, except that 
schedulability is determined by BC2007. As before, the 
performance of Audsley’s algorithm is very poor with 
BC2007. The relative ordering of the other schemes remains 
the same. Absolute results improve slightly with the change 
from B2009 to BC2007. This is due to the tighter workload 
bound provided by BC2007. Also, as was the case in  
Figure 10, performance increases with an increase in the 
number of criticality levels. 

In Figure 12, results are shown for the same parameters 
used to generate the results in Figure 11, except that tasks 
are scheduled on 2 CPUs rather than 4. The relative 
performance of the algorithms remains the same with this 
change. However, a small increase in the absolute 
performance of the algorithms is noticeable with this 
decrease in the number of CPUs. This is consistent with the 
improvement shown with a reduction in the number of 
CPUs in Figure 6 relative to Figure 5 and may be explained 
by a reduction in the impact of criticality inversions 
associated with lower-utilisation tasks. 

7 Conclusions 

In this paper, we have investigated the use of global FP 
algorithms for the scheduling of mixed-criticality task sets 
on multiprocessors. We have explored the two key 
dimensions of this problem – priority assignment and 
schedulability testing. We have examined state-of-the art 
algorithms developed in each of these dimensions for 
traditional task sets and have performed an experimental 
evaluation of their performance in the mixed-criticality 
context using the model proposed by Vestal (2007). We 
have also proposed and evaluated a new priority-assignment 
algorithm called CPRatio that takes both period and 
criticality into account. 

Our experimental results show that Audsley’s priority 
assignment algorithm when combined with the 
schedulability test proposed by Bertogna et al. (2009) 
(referred to as B2009) outperforms other approaches. We 
have also shown that CPRatio performs significantly better 
than all other priority-assignment schemes (i.e., except for 
Audsley’s algorithm). This is an important observation for 
cases in which the simplicity of CPRatio is preferred over 
the increased complexity of Audsley’s algorithm. We have 
also shown that CPRatio, when combined with BC2007, 
offers significantly better performance relative to other 
priority assignment schemes, including Audsley’s 
algorithm. This suggests that our algorithm, CPRatio, is the 
only algorithm that offers robust performance under both 
global schedulability tests. 
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