266

Int. J. Embedded Systems, Vol. 6, Nos. 2/3, 2014

Fixed-priority global scheduling for mixed-criticality
real-time systems

Owen R. Kelly and Hakan Aydin*

Department of Computer Science,
George Mason University,

Fairfax, Virginia 22030, USA
E-mail: okelly@masonlive.gmu.edu
E-mail: aydin@cs.gmu.edu
*Corresponding author

Abstract: There has been a growing interest in recent years in mixed-criticality real-time systems
in which tasks are attributed different levels of criticality based on the degree to which
their deadlines must be assured. While most of the initial efforts on mixed-criticality systems
targeted single-processor systems, the research community has recently started to investigate
multiprocessor mixed-criticality real-time systems. In this paper we investigate how global,
fixed-priority algorithms can be applied in the context of multiprocessor mixed-criticality
systems. We identify the two key dimensions of the problem — priority assignment and
schedulability testing, and consider candidate algorithms for each dimension. We also propose a
new and simple priority assignment policy called CPRatio that considers both task criticality and
timing constraints to improve the schedulability of mixed-criticality task sets. We experimentally
evaluate the performance of priority assignment strategies and schedulability tests in the global
multiprocessor mixed-criticality scheduling context.

Keywords: mixed-criticality; real-time scheduling; global scheduling; fixed-priority scheduling;
multiprocessor scheduling; schedulability tests.

Reference to this paper should be made as follows: Kelly, O.R. and Aydin, H. (2014)
‘Fixed-priority global scheduling for mixed-criticality real-time systems’, Int. J. Embedded
Systems, Vol. 6, Nos. 2/3, pp.266-276.

Biographical notes: Owen R. Kelly received his Bachelor of Engineering degree in Electrical
Engineering from the State University of New York at Stony Brook in 1983, and his Master of
Science degree in Electrical Engineering from Polytechnic University in New York in 1989, and
his Master of Science degree in Computer Science from George Mason University in 2009. Over
the past 30 years, he has worked on the design and implementation of software systems in a
variety of application areas.

Hakan Aydin is an Associate Professor of Computer Science at George Mason University. He
received his PhD in Computer Science from the University of Pittsburgh. He has published more
than 60 peer-reviewed papers and served on the programme committees of several international
conferences. He received the NSF CAREER Award in 2006. He was the Technical Programme
Chair of IEEE RTAS in 2011. His current research focuses on low-power computing, real-time
systems and fault tolerance.

1

Introduction

tasks with deadlines equal to periods (i.e., implicit
deadlines) in the sense that any task set that is schedulable

Hard real-time systems — systems for which the completion
of tasks by specified deadlines is fundamental to correct
operation, have been a focus of intensive research for
several decades. Real-time applications are typically
periodic in nature, comprised of recurrent tasks that each
generate a sequence of instances or jobs. With fixed-priority
(FP) scheduling algorithms, all jobs of a task are assigned
the same priority relative to jobs of other tasks,
while in dynamic-priority approaches, the priority of a task
can vary over time. The dynamic-priority algorithm
earliest-deadline-first (EDF) is known to be optimal for the
uniprocessor scheduling of sets of periodic, independent

Copyright © 2014 Inderscience Enterprises Ltd.

by some algorithm is also schedulable by EDF (Liu and
Layland, 1973). Among FP algorithms, the rate-monotonic
(RM) algorithm is optimal for periodic task sets with
implicit deadlines (Liu and Layland, 1973). In RM
scheduling, tasks with smaller periods have higher
priorities.

Following the recent advent of multi-core systems, the
multiprocessor scheduling of real-time applications
has received increasing attention (Jersak et al., 2005).
Multiprocessor scheduling algorithms are generally
classified as partitioned or global scheduling algorithms. In
partitioned scheduling approaches, each task is allocated to

Fixed-priority global scheduling for mixed-criticality real-time systems 267

a single processor, and the scheduling problem becomes
one of task allocation followed by the uniprocessor
scheduling of the subset of tasks allocated to each processor
(Lopez et al., 2003, 2004). In fact, an important advantage
of partitioned approaches is the applicability of the rich
body of results for uniprocessor scheduling after the
partitioning phase. However, partitioning of real-time tasks
is, in general, an NP-Hard problem. Also, the inability to
move tasks to other processors may be problematic if some
tasks may arrive or depart dynamically. In contrast, in
global scheduling approaches, jobs are scheduled from a
single ready queue, and each job of a task may be
preempted and later resumed, potentially on a different
processor. Global approaches are more suitable for dynamic
workloads in which tasks are added and removed over time.
On the other hand, the run-time overhead of task migration
is a factor. Global and partitioned approaches are
incomparable in that there are task sets that are schedulable
by a global approach but not a partitioned approach, and
others for which the opposite is true (Leung and Whitehead,
1982). In addition, many results for uniprocessor scheduling
do not extend to multiprocessor systems. For example,
Dhall and Liu (1978) observed that there are task sets with
total utilisation slightly larger than one that cannot be
scheduled by global EDF or RM on a multiprocessor
regardless of the number of processors — a phenomenon that
has become known as the Dhall effect.

Response-time analysis (RTA) was developed as a
technique for FP uniprocessor schedulability analysis in
which the worst-case response time of each task is
calculated assuming a particular priority-assignment scheme
and compared with its deadline to determine its
schedulability ~ (Joseph and Pandya, 1986). For
multiprocessor scheduling, the worst-case response time
does not necessarily occur when all jobs arrive at the same
time (Lauzac et al., 1998). This fact adds another layer of
complexity to global FP scheduling algorithms.

Baker (2003) followed an approach for multiprocessor
schedulability testing in which the minimum interference
necessary for a task to miss its deadline is determined. An
upper bound on the interference experienced by a task is
calculated, and if this bound is less than the minimum
required for a deadline miss, the task is guaranteed to meet
its deadlines. Other researchers have followed and refined
the approach established by Baker (e.g., Bertogna and
Cirinei, 2007; Bertogna et al., 2009; Guan et al., 2009).

A large majority of the research in real-time systems has
been based on an assumption that tasks have the same
degree of importance or criticality. Moreover, a single
worst-case execution time (WCET) is assigned to each task
and deadline guarantees resulting from schedulability
analysis are valid provided that no task exceeds its WCET.
However, a more recent trend in design involves approaches
in which multiple real-time functions at varying criticality
levels are implemented on the same embedded system
platform. This has led to the investigation of the so-called
mixed-criticality systems that are based on models that
explicitly take criticality into account. As an example,

in the domain of unmanned aerial vehicles (UAVs), the
main functions are divided into two categories: Level 1
functions that are classified as mission-critical, and Level 2
functions that are considered to be flight-critical (Baruah
et al., 2012). In addition, there is often a need to apply
rigorous techniques to certify these functions in their
own criticality range, which is challenging, given that they
are implemented on the same embedded hardware platform
(and thus, may interact with each other) (Baruah et al.,
2012). As such, mixed-criticality systems facilitate the
integration of functions with different criticality levels on
the same platform (Baruah et al., 2010).

In his seminal work, Vestal (2007) observed that the
WCET estimate assigned to a task tends to increase with an
increase in the degree to which the task’s deadlines must be
assured. He proposed a model, further explored by Baruah
and Vestal (2008), in which each task is assigned multiple
WCETS, each associated with a different level of assurance
or criticality. Each task is also assigned a criticality level
and the schedulability of a task is evaluated using the
WCETs associated with its criticality level. Deadline
guarantees are made for low-criticality tasks under the
assumption that higher-criticality tasks do not exceed their
low-criticality WCETs. That is, low criticality tasks
make use of processor capacity that is allocated to
higher-criticality tasks but not used by those tasks. This
results in an increase in processor utilisation. Several
aspects of mixed-criticality uniprocessor systems have been
explored by Baruah et al. (2010), Li and Baruah (2010),
de Niz et al. (2009) and Lakshmanan et al. (2011).

Research efforts for multiprocessor mixed-criticality
systems are relatively new. In our previous work, we
investigated the partitioned scheduling of mixed-criticality
task sets on multiprocessors using FP algorithms
(Kelly et al., 2011). We identified algorithms that result
from choices made in the two key dimensions of the
problem: task allocation and priority assignment. We
established that two heuristics for ordering tasks prior to
allocation — by decreasing utilisation or by decreasing
criticality, are incommensurable in that there are task sets
that are schedulable by one, but not the other. Our results
also suggested that Audsley’s (1991) algorithm offers
significantly improved performance over RM priority
assignment in this setting. Other multiprocessor
mixed-criticality research efforts include those by
Lakshmanan et al. (2010), Mollison et al. (2010) and Pathan
(2012).

1.1 This work

Our focus in this paper is the global FP scheduling of
mixed-criticality task sets on homogeneous multiprocessors.
We explore the two key dimensions of this problem, namely
priority assignment 10 individual tasks and feasibility testing
given a specific priority assignment. We identify algorithms
that can be used in each dimension. We undertake a detailed
experimental evaluation of the relative performance of
algorithms developed for traditional task sets in each of
these dimensions when applied to mixed-criticality task sets

268 O.R. Kelly and H. Aydin

using the model proposed by Vestal (2007). Another
contribution of this paper is the proposal of a new priority
assignment approach referred to as criticality-to-period
ratio (CPRatio). CPRatio targets mixed-criticality
scheduling by assigning priorities based on both a task’s
period and criticality level. We show that the sophisticated
priority assignment algorithm developed by Audsley (1991)
for uniprocessor scheduling provides significantly
better performance relative to other approaches for the
global FP scheduling of mixed-criticality tasks when the
schedulability test of Bertogna et al. (2009) is applied. On
the other hand, CPRatio offers improved performance over
other approaches while not incurring the additional
implementation complexity of Audsley’s algorithm.
Moreover, when combined with the test proposed by
Bertogna and Cirinei (2007), we show that CPRatio
outperforms all other priority-assignment schemes,
including Audsley’s scheme.

The rest of this paper is organised as follows.
We summarise related work in Section 2. In Section 3,
we describe our system model and notation. In Section 4,
we provide an example to illustrate the key principles
associated with the global FP scheduling of mixed-
criticality task sets. In Section 5, we describe the algorithms
that have been developed for the assignment of fixed
priorities for global scheduling and for schedulability tests.
We present the results of our experimental evaluation in
Section 6, and we summarise our conclusions in Section 7.

2 Related work

The partitioned scheduling of traditional task sets has been
explored in several works, including those by Lopez et al.
(2003, 2004). A majority of early efforts in the
multiprocessor scheduling of traditional task sets were in
fact focused on partitioned scheduling. A number of
research efforts in global scheduling have been motivated
by a desire to mitigate the Dhall effect, e.g., the works by
Andersson and Jonsson (2000, 2003). Baker (2003) derived
schedulability conditions for the EDF and deadline
monotonic (DM) scheduling of task sets with deadlines less
than or equal to periods by considering the conditions that
must exist for a job to miss its deadline. This seminal work
by Baker was the basis for the subsequent development of
several schedulability tests for traditional task sets.
Bertogna and Cirinei (2007) presented an approach in which
an upper bound on the response-time of a task is derived
and compared with the task’s relative deadline to determine
its schedulability. Guan et al. (2009) proposed a technique
that improves upon the approach specified by Bertogna and
Cirinei (2007). Bertogna et al. (2009) proposed an approach
in which an upper bound on the interference experienced by
a task is determined and used to evaluate its schedulability.
Davis and Burns (2011) have shown that the
priority assignment algorithm developed by Audsley for
uniprocessor scheduling (Audsley, 1991) can be applied to
multiprocessor global scheduling if three conditions

(which they derive) are met by the schedulability test to be
applied. A test that meets these conditions is said to be
compatible with Audsley’s algorithm.

Mixed-criticality ~ research was pioneered by
Vestal (2007) and Baruah and Vestal (2008). A
load-based approach to the schedulability analysis of
uniprocessor mixed-criticality systems was derived by
Li and Baruah (2010). A different approach to uniprocessor
mixed-criticality scheduling, proposed by de Niz et al.
(2009) and further explored by Lakshmanan et al. (2011),
involves the off-line calculation of zero-slack instants and
an on-line component that effectively adjusts priorities such
that higher-criticality tasks receive high priority when
zero-slack situations arise.

Lakshmanan et al. (2010) applied mixed-criticality
concepts to the handling of workload spikes in distributed
cyber-physical systems. They developed a metric for the
evaluation of scheduling algorithms referred to as ductility
and proposed an algorithm named compress-on-overload
packing that maximises this metric. Mollison et al. (2010)
proposed an approach targeted at scheduling on multicore
platforms in which the slack resulting from the difference
between predicted WCETs and actual execution times is
reclaimed for lower-criticality tasks. They developed an
architecture for multiprocessor mixed-criticality scheduling
that provides temporal isolation between tasks of different
criticality levels. Pathan (2012) derived a schedulability test
for mixed-criticality, multiprocessor scheduling based on
RTA that can be combined with Audsley’s (1991) algorithm
for the assignment of fixed-priorities. This work differs
from the approach we consider in this paper in that it
assumes the existence of a run-time mechanism that
terminates tasks of a particular criticality level if the
criticality level attributed to the behaviour of the
system exceeds that level. In Kelly et al. (2011), we
explored the partitioned scheduling of mixed-criticality
systems, considering the relative importance of the two key
dimensions of this problem, namely task allocation and
priority assignment.

3 System model

We consider real-time workloads that are comprised of a
set r of n mixed-criticality tasks =, ..., 7,. Each task 7
is comprised of a recurring series of instances or jobs.
Tasks are sporadic, i.e., consecutive jobs in each task are
separated by a minimum inter-arrival time referred to as the
task’s period. Tasks are assumed to be independent, aside
from their execution on shared processors. Each task z; has a
relative deadline D; that is equal to its period (77); in other
words, we consider tasks with implicit deadlines.

We apply the mixed-criticality schedulability model
proposed by Vestal (2007) and further explored by Baruah
and Vestal (2008). In particular, a task set is comprised of
tasks of varying levels of importance or criticality. Each
task z; is assigned a criticality level Z; that is based on the
degree to which the meeting of its deadlines must be

Fixed-priority global scheduling for mixed-criticality real-time systems 269

assured. Criticality levels are represented as integers, with
larger values denoting higher criticality and with the
number of criticality levels denoted as &, with k£ < n. Each
task is assigned a WCET function C; that specifies a WCET
estimate Cj(X) for each criticality level X in the system,
where Ci(X - 1) is assumed to be less than or equal to Ci(X)
(Vestal, 2007; Baruah and Vestal, 2008). Each task is also
associated with a utilisation function u;, with the utilisation
value for criticality level X denoted as u,(X) and defined as
C{(X)/T;. The sum of the task utilisations at the highest

criticality level is referred to as UL = Z}»ﬂfl”f (k).

max

Tasks are scheduled on a set of m homogeneous
processors designated P;, ..., P, using global scheduling.
In global scheduling, all ready jobs are scheduled from a
single priority-ordered queue. If there are more than m
ready jobs, then the m highest-priority jobs are each
allocated to a distinct processor. An arriving job is placed
in the ready queue in priority order, and if it is among
the m highest priority jobs, then the lowest-priority
executing job is preempted and its processor is allocated to
the new job. The preempted job may be later resumed on a
potentially different processor. Intra-task parallelism is not
permitted, i.e., a task may execute on at most one processor
at any time. The response time R, of a task 7 is the
maximum time from the release of a job of the task to its
completion. Tasks are assigned fixed priorities, i.e., each job
in a task has the same priority relative to jobs in other tasks.
Following the approach of Bertogna and Cirinei (2007) and
Bertogna et al. (2009), time is represented by non-negative
integers.

4 Motivational example

To illustrate the use of the mixed-criticality model proposed
by Vestal (2007) in global FP scheduling and the
importance of priority assignment in this context, we
consider the example four-task set with four criticality
levels shown in Table 1.

Table 1 Example mixed-criticality task set

Task L T, G Ci(2) Gi3) Ci(4)

o 2 8 3 3 5 5
% 1 24 3 12 12
7 4 30 8 8 12 12
7 3 40 6 6 15 15

We first determine whether the example task set is
schedulable with the RM-priority ordering i, o, 7, 7,
which is the order in which the tasks are listed in Table 1.
Because the mixed-criticality model requires the
schedulability of each task to be evaluated using WCETSs
corresponding to its criticality levels, the schedulability of
each task must be evaluated as a separate case. Figure 1

depicts the evaluation of the schedulability of a specific
task, 7, when RM priority assignment is used, assuming
synchronous arrival. Because 7; has criticality level 3,
criticality-level 3 WCETs are used for all tasks.
Specifically, the WCETs of n, », 73, and 74 are 5, 12, 12,
and 15, respectively. As shown in Figure 1, 7z misses its
deadline at time 40 under these circumstances and therefore
the task set is not schedulable by global RM.

Figure 1 Schedulability analysis with RM priority assignment

8 10 16 20 24 30 40 50 56 60

first job of T, misses its deadline —T

In the case above, the WCETSs used in the evaluation of 7
correspond to the criticality level 3 and are therefore
relatively large. If priorities were instead assigned such that
the lowest-priority task had a low criticality, the WCETSs
attributed to higher-priority tasks would tend to be smaller,
thereby increasing the likelihood that the lowest-priority
task will be deemed schedulable. This suggests that the
assignment of priorities based on criticality level might lead
to improved schedulability. We consider next whether the
example task set is schedulable with priorities assigned in
this manner, i.e., with higher-criticality tasks assigned
higher priority — a strategy referred to as criticality
monotonic by de Niz et al. (2009). The resulting task order
is 73, 7, 71, . The evaluation of the schedulability of z; is
depicted in Figure 2. Because 7, has criticality level 2, we
use criticality level 2 WCETs for all tasks, i.e., 73, 7, 7,
are assigned WCETSs 8, 6, 3, 3, respectively. Despite the use
of these smaller WCETS, as shown in Figure 2, the task set
is not schedulable with priorities assigned in accordance
with criticality, mainly because a task with a stricter timing
constraint (smaller relative deadline), 7, is subject to the
interference of higher-criticality tasks which happen to have
larger periods.

Figure 2 Schedulability analysis with priorities based on
criticality

P

]

T
to 16 20 24
first job of T, misses its deadline

270 O.R. Kelly and H. Aydin

Figure 3 Schedulability analysis with an alternative priority assignment scheme

1 1 1 1 1 1 1 1 1 1 1 1
LR R T T R I TR
e A A s s s sl
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
G, i i L i | LB i ! i |
e e
g ! ! | EEEEEEE | : :
M T ' T T 1 1 T
§10 16 20 24 30 32 40 4850 56 60 64 70 72 80 88 90 96 100 104 110 12¢
Schedulability of T,
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
LR ST S A N LT t1| T T LT
l | 1 [[(E R e =
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
G, Pl LG C T LB i
) : :
| T
10 16 20 24 30 40 50 56 60 64 70 110 12¢

Schedulability of T,

Finally, we consider an alternative priority ordering: 71, z,
7, T. The highest priority task, z;, meets its deadlines.
Figure 3 shows the evaluation with this priority ordering of
the schedulability of tasks =3, #, and 7 in separate
subfigures. In each case, the deadlines of all tasks are met.
We note that because the depicted synchronous arrival of
tasks is not necessarily the worst-case arrival pattern, the
fact that no task misses a deadline in the situation
considered in Figure 3 does not guarantee that the task set is
schedulable. However, we show in Section 5.2, through the
application of a sufficient schedulability test that this
example task set is indeed schedulable with this alternative
assignment of priorities even without the assumption of
synchronous arrival and without the strictly-periodic
behaviour depicted in the figure. We also note that this
specific priority assignment is not entirely arbitrary, but is
obtained by considering the ratio of a task’s criticality to its
period, a scheme that we propose for mixed-criticality task
sets and refer to as CPRatio.

5 Dimensions of global mixed-criticality FP
scheduling

Given that a global, FP approach is to be employed
for the multiprocessor scheduling of real-time,
mixed-criticality ~ task sets, there are two key

T
110

T
9 100 104

120

dimensions in which an algorithm must be chosen.
Specifically, a priority-assignment strategy and a feasibility
(schedulability) test must be selected. In this section, we
consider algorithms that have been proposed in each of
these dimensions. We describe the algorithms that we have
chosen to evaluate based on their suitability for the
scheduling of mixed-criticality task sets as well as our
objective of selecting a subset of algorithms that is
representative of the research that has been performed in
these two dimensions. We also propose a new priority
assignment scheme designed specifically for mixed-
criticality scheduling.

5.1 Priority assignment

A fundamental principle in evaluating the schedulability of
a task in the Vestal (2007) mixed-criticality model is that
the WCET estimates used in the evaluation must be those
corresponding to the criticality of the task under
consideration. That is, when determining the impact of a
task z; on the schedulability of a lower-priority task z;, the
WCET of 7; corresponding to the criticality level of 7 must
be used. Because the WCETSs attributed to a task are a
non-decreasing function of criticality level, the higher the
criticality level of 7, the larger will be the potential impact
of 7; on its schedulability. The WCET of z; corresponding to
the highest criticality level among lower-priority tasks

Fixed-priority global scheduling for mixed-criticality real-time systems 271

represents an upper bound on the interference that a job of 7
can present to lower-priority tasks. For this reason, priority
assignment for mixed-criticality scheduling has even greater
significance than it does for traditional task sets.

In the following, we describe a representative subset of
the priority assignment strategies that have been applied to
global, FP scheduling. Some were developed for
uniprocessor scheduling and adapted for multiprocessor
scheduling, while others were specifically targeted at
multiprocessor scheduling. Almost all were developed for
traditional task sets. The exceptions are the strategy in
which priorities are assigned solely based on criticality,
referred to as criticality monotonic (CM) priority
assignment, and a new priority assignment that we propose,
referred to as CPRatio.

5.1.1 Rate-monotonic

The RM priority assignment (Liu and Layland, 1973) is
widely used in many real-time embedded applications. It is
well-known that the optimality of RM on single-processor
systems does not extend to multiprocessors (Davis and
Burns, 2011). Also, Vestal (2007) showed that RM is not
optimal for the FP scheduling of mixed-criticality task sets
on a uniprocessor. Despite these limitations, we
nevertheless evaluate the application of RM to the global FP
scheduling of mixed-criticality task sets.

5.1.2 Criticality-monotonic

An alternative proposed by Vestal (2007) is to assign
priorities based on criticalities: the higher the criticality, the
higher the scheduling priority. However, as discussed by de
Niz et al. (2009), there are task sets that are not schedulable
with this priority assignment that are otherwise schedulable
by the simple RM algorithm.

5.1.3 Criticality-to-period ratio

The discussion above regarding the potential benefit of
assigning priorities in accordance with criticality levels
highlights the tension between period (a timing parameter)
and criticality level in priority assignment. In this paper, we
propose a priority-assignment metric that combines the two
attributes. \We observe that from a timing point of view,
assigning high priority to tasks with smaller periods is, in
general, advantageous. Similarly, the interference on high-
criticality tasks is in general reduced if they are assigned
high priorities. Because both small periods and high
criticality levels suggest the assignment of a higher priority,
we propose that priorities be assigned to mixed criticality
tasks based on the ratio of criticality level to period, with
larger values for this metric resulting in the assignment of
higher priorities — a strategy that we refer to as CPRatio.

In the example presented in Section 4, the task set was
not schedulable with RM or CM priority assignment. In this
example, the ratio of criticality to period, L,/T;, for tasks ,
73, 74, and 7, is 0.25, 0.13, 0.075, and 0.042, respectively,
and this is therefore the priority ordering that results from

CPRatio. When the schedulability tests described in Section
5.2 are applied to this task set with this priority ordering, it
is shown to be schedulable. We underline that CPRatio is
not optimal (there may be task sets that are schedulable by
another priority assignment but not with CPRatio). On the
other hand, as we show through experiments, CPRatio
offers a more robust performance compared to other
schemes, under different feasibility tests.

5.1.4 Audsley’s algorithm

Audsley (1991) developed an algorithm for the assignment
of fixed priorities in uniprocessor scheduling that is optimal
for traditional task sets when tasks do not arrive at the same
time. Audsley’s algorithm requires that O(n®) tests be
performed for »n tasks. For uniprocessor scheduling,
each of these feasibility tests may be performed using time
demand analysis, which may take pseudo-polynomial time
(Liu, 2000).

For mixed-criticality task sets, while RM priority
assignment is not optimal, Audsley’s algorithm provides
quick iteration over possible priority assignments
without the loss of optimality on uniprocessor systems
(Vestal, 2007). In Kelly et al. (2011), we explored the
use of Audsley’s algorithm in the partitioned scheduling of
mixed-criticality task sets where it was applied following
the allocation step for the scheduling of the subset of tasks
allocated to each processor. We found that it offered a
significant performance gain over RM priority assignment
in this setting. Audsley’s algorithm is not always optimal
for global FP scheduling (Davis and Burns, 2011). Davis
and Burns (2011) described the issue of the compatibility of
global FP schedulability tests with Audsley’s algorithm,
which is summarised in Section 5.2 and is important for the
understanding of our experimental results.

5.1.5 TkC

The TkC algorithm was defined by Andersson and Jonsson
(2000) for global FP scheduling and was motivated by a
desire to overcome the Dhall effect. The value of 7; — £C; is
calculated for each task z;, where T; is the task’s period, C; is
its WCET, and £ is a real number calculated based on the
number of processors. The task with the smaller value
of T — kC is assigned higher priority. When applied to
mixed-criticality task sets, because each task is associated
with multiple WCETs, a choice of the WCET to be
attributed to each task for the purposes of priority
assignment must be made. For example, the WCET of each
task corresponding to the highest criticality level in the
system could be chosen, in which case we refer to the
priority-assignment approach as TkCMax.

5.1.6 D-C monotonic

In the D-C monotonic (DCM) algorithm described by Davis
and Burns (2011), priorities are assigned based on the value
of D, — C; for each task z;, with the task with a smaller value
for this quantity receiving higher priority. Like TkC, a

272 O.R. Kelly and H. Aydin

WCET must be selected for each task in order to calculate
this metric. For example, the WCET associated with the
highest criticality level in the system could be used, a
scheme that we refer to as DCMMax.

5.2 Schedulability tests

Several research efforts have resulted in the derivation of
utilisation bounds that can serve as schedulability tests for
the global FP scheduling of traditional task sets. However,
the concept of the total utilisation of a task set is less
meaningful for mixed-criticality task sets (Baruah and
Vestal, 2008). We therefore focus on tests that determine
schedulability based on the interference experienced by a
task rather than total utilisation. Such tests can be tailored
for application to mixed-criticality workloads by calculating
interference in accordance with the mixed-criticality model
proposed by Vestal (2007).

Baker (2003) developed schedulability tests for both the
RM and EDF global scheduling of traditional, sporadic task
sets with constrained deadlines by considering the
conditions that are necessary for a job to miss its deadline.
A lower bound on the load necessary in the interval from
the release of a job to its deadline (referred to as the
problem window) for a deadline miss to occur is calculated.

5.2.1 Bertogna-Cirinei 2007 (BC2007)

The seminal work by Baker (2003) was the basis for the
subsequent development of several schedulability tests for
global, FP scheduling. Bertogna and Cirinei (2007) derived
an approach that is applicable for any priority-assignment
scheme and used this approach to specify tests for both EDF
and FP strategies. Specifically, a form of RTA is used in
which an upper bound on the response time of a task z; is
calculated by determining an upper bound on the
interference presented by other tasks in the problem window
of 7. As specified in Theorem 7 by Bertogna and Cirinei

(2007), an upper bound R;‘b on the response time of a task
7, is determined by the iterative, fixed-point evaluation of
the following expression, beginning with

R =C,:
R «C, {%zf}; (RZb)J .
i<k

where f,i(R,Z”) is an upper bound on the interference
presented by task z; on task 7; in the interval from the
release of a job of 7; to its response time R,i”’ and is
calculated as

I (Ri") = min(w, (R), Ri" = G, +1). @)

Tasks are assumed to be indexed in priority order, so the
sum in equation (1) is over tasks with priority higher than

that of ;. In equation (2), VK(Rk“b) is an upper bound on the

workload of task 7 in an interval of length R, calculated

by assuming that the carried-in job of z; completes at its
worst-case response time. We refer to the test specified by
Bertogna and Cirinei (2007) as BC2007. Guan et al. (2009)
proposed an improvement to the RTA test described by
Bertogna and Cirinei (2007) in which the number of tasks
for which a carried-in job contributes to the interference is
limited to m — 1. It was shown by Davis and Burns (2011)
that the resulting test is not compatible with Audsley’s
algorithm.

5.2.2 Bertogna et al. 2009 (B2009)

Bertogna et al. (2009) developed another schedulability test
by assuming that a carried-in job of 7; completes at its
relative deadline D; (which we assume, in this paper, is
equal to its period T;) when calculating an upper bound on
the workload of 7; in a problem window. Because it assumes
that a carried-in job completes at its response-time upper
bound rather than at its deadline, the test developed by
Bertogna and Cirinei (2007) provides a tighter upper bound
for the workload of a task z; in a problem window.
However, unlike the test developed by Bertogna and Cirinei
(2007), the test proposed by Bertogna et al. (2009) does not
require an iterative, fixed-point calculation. Theorem 8 from
Bertogna et al. (2009) states that a task set is schedulable
with global, FP scheduling on a multiprocessor if each task
7 in the set satisfies the following schedulability condition:

D min (W, (1), 7, = C; +1) < m(T;, - C; +1) 3)

i<k

where tasks are assumed to be indexed in accordance with
priority such that the sum is over tasks with higher priority
than 7. W«(T}) is an upper bound on the workload of z; in
the problem window. By applying this equation to the
example task set presented in Section 4, it can be shown that
the task set is schedulable with priorities assigned by
CPRatio.

5.2.2.1 Compatibility with Audsley’s algorithm

One key assumption underlying Audsley’s algorithm is that
the schedulability of a task can be determined given the
subset of tasks that have higher priority, but without
knowing the relative priority ordering of those higher-
priority tasks. When applied to uniprocessor scheduling, this
assumption is valid, but for multiprocessor scheduling, its
optimality depends on the schedulability test in conjunction
with which it is used. Davis and Burns (2011) derived three
conditions that are necessary and sufficient for a
schedulability test to be used with Audsley’s algorithm. We
note that the tests that meet these conditions are referred to
as OPA compatible in Davis and Burns (2011). For a test to
be compatible, its evaluation of the schedulability of a task
must not depend on the relative priority ordering of
higher priority tasks or on the relative priority ordering of
lower-priority tasks. Davis and Burns (2011) have shown
that the schedulability test that we refer to as B2009 is

Fixed-priority global scheduling for mixed-criticality real-time systems 273

compatible with Audsley’s algorithm. B2009 has a time
complexity of O(n°), with a complexity of O(n) for each
task. Because the number of tests executed by Audsley’s
algorithm is O(r?), and each evaluates the schedulability of
a single task, when B2009 is combined with Audsley’s
algorithm, the resulting, overall complexity is O(x°)
(polynomial-time). It was shown by Davis and Burns (2011)
that the test that we refer to as BC2007 is not compatible
with Audsley’s algorithm. Given that the tighter workload
upper bound (relative to B2009) of BC2007 is not
applicable when Audsley’s algorithm is used for priority
assignment, it is important to consider the performance of
BC2007 combined with other priority-assignment schemes
relative to the performance of B2009 combined with
Audsley’s algorithm. Specifically, a key question is the
following: does the increased performance expected with
Audsley’s algorithm compensate for the more pessimistic
bound of B2009? Our experimental results, presented next,
address this question.

6 Experimental results

We performed an experimental evaluation of the
performance of the priority assignment algorithms and
schedulability tests described in Section 5 when applied to
the global multiprocessor scheduling of mixed-criticality
task sets. In this section, we describe our methodology and
present the results of our investigation.

We developed a simulator in the Java language that
generates synthetic, mixed-criticality task sets with several
parameters varied over a wide range in an effort to represent
a variety of hard real-time applications. Our simulation
implements the UUnifast-Discard algorithm described by
Davis and Burns (2009) for the generation of task
utilisations. The value generated by UUnifast-Discard for a
task z; is assigned as the value for u;(k) — the utilisation of z;
at the highest criticality level. For each task, a utilisation
function is generated for the criticality levels of the task set
with values uniformly distributed in [0.4u,(k), u;(k)]. Periods
are generated randomly between a minimum period of 10
and a maximum period of 1,000 milliseconds. The
criticality levels of the tasks in a set are uniformly
distributed in [1, £].

Task sets were generated with U values varied

between 0.8 m and 3.0 m, where m is the number of
processors. For each of a selected set of values in this range,
1,000 task sets were generated with varying values for the
number of tasks in a set and the number of criticality levels.
Task sets were generated with 2, 4, and 8 criticality levels
and with 40 and 60 tasks. We considered 2-processor and
4-processor systems.

We implemented the schedulability test proposed by
Bertogna et al. (2009), which we refer to as B2009, and the
test described by Bertogna and Cirinei (2007), which we
refer to as BC2007. B2009 and BC2007 were implemented
in accordance with equations (1) through (3), applied in the
context of the mixed-criticality model proposed by Vestal

(2007). In particular, when evaluating the schedulability of
a task z;, the WCET used for each higher-priority task z is
the WCET of z; corresponding to the criticality level of z.
We implemented the priority-assignment algorithms RM,
CM, TkC, DCM, and Audsley’s algorithm, along with our
proposal (CPRatio), all of which were described in
Section 5. With TkC and DCM, the priority assigned to a
task is dependent in part on its WCET. For both, we have
chosen to use the WCET associated with the highest
criticality level for all tasks. We refer to these algorithms,
when used with this WCET selection, as TkCMax and
DCMMax, respectively. With two schedulability tests
(B2009 and BC2007) and these six priority-assignment
strategies, we have a total of 12 combinations of
schedulability test and priority-assignment algorithm. We
assessed the schedulability of every generated task set under
these 12 combinations.

Results are shown in Figure 4 for sets of 40 tasks with 4
criticality levels, scheduled on 4 CPUs using B2009. The
fraction of task sets deemed schedulable by B2009 is plotted

as a function of normalised U . With these parameters,

Audsley’s algorithm offers significantly better performance
relative to the other priority assignment schemes. With
CPRatio, fewer task sets are deemed schedulable relative to
the results from Audsley’s algorithm. However, CPRatio
provides a significant increase in performance over the
other priority-assignment approaches, and this increase is
achieved without the significant complexity of Audsley’s
algorithm. As shown in Figure 4, RM, DCMMax, and
TkCMax provide the same level of performance in this
setting. In addition, very few task sets are schedulable with
CM priority assignment.

Figure 4 4 Criticality levels, 40 tasks, 4 CPUs, B2009 feasibility
test (see online version for colours)

1 L
3038
il
- —— Audsley
£ 4l - %~ CPRatio
3 08 «oé RM
S £+ DCMMax
€ 0.4¢ —— TkCMax
8
5
o 0.2

o

Normalized UM
tot

In Figure 5, results are shown for the same parameters used
to generate Figure 4, except that schedulability is
determined using BC2007. A striking observation in this
case is that almost no task sets are schedulable when
priorities are assigned by Audsley’s algorithm. This is due
to the fact, as shown by Davis and Burns (2011), that
Audsley’s algorithm is not compatible with BC2007. In
Figure 5, CPRatio provides significantly improved
performance relative to the other priority-assignment
schemes. While the relative performance of the algorithms

274 O.R. Kelly and H. Aydin

as depicted in Figure 5 (except for Audsley’s algorithm) is
the same as that shown in Figure 4, the absolute
performance of each algorithm is better in Figure 5. This is
expected given the tighter upper bound on workload used by
BC2007. We note that, while the performance of CPRatio is
improved with BC2007 relative to B2009, it offers lower
performance than the combination of Audsley’s algorithm
with B2009.

Figure 5 4 Criticality levels, 40 tasks, 4 CPUs, BC2007
feasibility test (see online version for colours)

1 L
AY

§ 0.8} \
| 2 x ——=— Audsley
5 0.6 \ -3 - CPRatio
@ Y ¢ RM
‘é} y -+ DCMMax
£ 0.4f \ —— TkCMax
3 * -~-CM
[
o 0.2}

(=)

0. .
Normalized UM™2*
tot

Results are shown in Figure 6 for the same parameters used
to generate Figure 5, except that tasks are scheduled on two
CPUs rather than 4. The main trends remain the same with
this reduction in the number of CPUs. However, there is a
small increase in the absolute performance of each

algorithm. Since the results are plotted for normalised U™

max

values, the tasks represented in Figure 6 for a given value of
U™ tend to have smaller utilisation values relative to those

of Figure 5. With smaller utilisation values, the negative
impact of criticality inversions (de Niz et al., 2009),
where a high-criticality task is given lower priority relative
to a low-criticality task, is typically reduced, resulting in an
increase in schedulability.

Figure 6 4 Criticality levels, 40 tasks, 2 CPUs, BC2007
feasibility test (see online version for colours)

1 [
AY
ko] \
2 0.8f \ ;
3 ' —=— Audsley
£ 06l N - %~ CPRatio
- * ot RM
S * £+ DCMMax
£ 0.4f N —— TkCMax
8 * -A-CcM
(]
o

1.2
Normalized

max
Ut t

In Figures 7 through 9, results are shown for the same
parameters used to generate Figures 4 through 6,
respectively, except that task sets are comprised of 60 tasks
rather than 40. As is evident in the plots, the main trends
remain the same.

Figure 7 4 Criticality levels, 60 tasks, 4 CPUs, B2009 feasibility
test (see online version for colours)

1,
208
s
- —— Audsley
£ 4l -%-CPRatio
3 08 co RM
§1 -+ DCMMax
£ 04} —— TkCMax
8 =4=CM
(4]
a 0.2f

Normalized UM2*
tot

Figure 8 4 Criticality levels, 60 tasks, 4 CPUs, BC2007
feasibility test (see online version for colours)

1 L
AY

2 0.8 \sg
§ ' \ —=— Audsley
< ! -3 = CPRatio
S 0.6 ' o RM
) \ '+ DCMMax
€ 0.4r L —— TkCMax
8 E -4-cM
a-, \
a 0.2f

0. ¥
Normalized U:"ax
ot

Figure 9 4 Criticality levels, 60 tasks, 2 CPUs, BC2007
feasibility test (see online version for colours)

—=— Audsley
- = CPRatio
o RM

=+ DCMMax
—— TkCMax
-£-CM

Percentage Scheduled

Normalized UM%
tot

Results are presented in Figures 10 through 12 as a function
of the number of criticality levels. Figure 10 depicts results
for 40 tasks scheduled on 4 CPUs with schedulability

evaluated by B2009. Results are plotted for a U value of

1.0. The performance of both Audsley’s algorithm and
CPRatio increases with an increase in the number of
criticality levels. With more criticality levels, WCETSs are
assigned with a finer degree of granularity.
As a result, in cases in which a high-criticality task is
assigned a lower priority relative to a low-criticality task
(i.e., a criticality inversion) the increase in the WCET
attributed to the lower-criticality task relative to its nominal

Fixed-priority global scheduling for mixed-criticality real-time systems 275

WCET (i.e., that corresponding to its own criticality) is
typically smaller, resulting in a smaller negative impact to
the schedulability of the task set. With these parameters, the
number of task sets schedulable with priorities assigned by
Audsley’s algorithm is significantly higher than that for the
other priority-assignment strategies. CPRatio offers
performance that is significantly lower than that of
Audsley’s algorithm, but significantly higher than the other
algorithms. In fact, very few task sets are schedulable by
RM, DCMax, TkCMax, or CM.

Figure 10 40 Tasks, 4 CPUs, B2009 feasibility test (see online
version for colours)

—=— Audsley
- = CPRatio
i RM
-+ DCMMax
—5— TkCMax
-~-CM

Percent Scheduled

e

Figure 11 40 Tasks, 4 CPUs, BC2007 feasibility test (see online
version for colours)

Number of Criticality Levels

0.6- —=— Audsley
- %= CPRatio *
wode RM e
0.5H -

-+ DCMMax e

|| —>— TkCMax L7

041 _em -

Percent Scheduled
Bk

0.2 ¢

6
Number of Criticality Levels

Figure 12 40 Tasks, 2 CPUs, BC2007 feasibility test (see online
version for colours)

0.8}
——— Audsley /’*
0.7[| - - CPRatio -7
i RM Pl
8 06/ = DCcMMax P
§ 05! —=— TkCMax ;}’
2 -~-CM p
® 04) /
e P
8 03r R
&J ’
0.2} /
l.‘ x
0.1}
0 L Pin Y
0 6 k1

Number of Criticality Levels

In Figure 11, results are shown for the same parameters
used to generate the results shown in Figure 10, except that
schedulability is determined by BC2007. As before, the
performance of Audsley’s algorithm is very poor with
BC2007. The relative ordering of the other schemes remains
the same. Absolute results improve slightly with the change
from B2009 to BC2007. This is due to the tighter workload
bound provided by BC2007. Also, as was the case in
Figure 10, performance increases with an increase in the
number of criticality levels.

In Figure 12, results are shown for the same parameters
used to generate the results in Figure 11, except that tasks
are scheduled on 2 CPUs rather than 4. The relative
performance of the algorithms remains the same with this
change. However, a small increase in the absolute
performance of the algorithms is noticeable with this
decrease in the number of CPUs. This is consistent with the
improvement shown with a reduction in the number of
CPUs in Figure 6 relative to Figure 5 and may be explained
by a reduction in the impact of criticality inversions
associated with lower-utilisation tasks.

7 Conclusions

In this paper, we have investigated the use of global FP
algorithms for the scheduling of mixed-criticality task sets
on multiprocessors. We have explored the two key
dimensions of this problem — priority assignment and
schedulability testing. We have examined state-of-the art
algorithms developed in each of these dimensions for
traditional task sets and have performed an experimental
evaluation of their performance in the mixed-criticality
context using the model proposed by Vestal (2007). We
have also proposed and evaluated a new priority-assignment
algorithm called CPRatio that takes both period and
criticality into account.

Our experimental results show that Audsley’s priority
assignment algorithm when combined with the
schedulability test proposed by Bertogna et al. (2009)
(referred to as B2009) outperforms other approaches. We
have also shown that CPRatio performs significantly better
than all other priority-assignment schemes (i.e., except for
Audsley’s algorithm). This is an important observation for
cases in which the simplicity of CPRatio is preferred over
the increased complexity of Audsley’s algorithm. We have
also shown that CPRatio, when combined with BC2007,
offers significantly better performance relative to other
priority assignment schemes, including Audsley’s
algorithm. This suggests that our algorithm, CPRatio, is the
only algorithm that offers robust performance under both
global schedulability tests.

Acknowledgements

This work was, in part, supported by US National Science
Foundation award CNS-1016855.

276 O.R. Kelly and H. Aydin

References

Andersson, B. and Jonsson, J. (2000) ‘Some insights on
fixed-priority preemptive non-partitioned multiprocessor
scheduling’, in Proceedings of the 21st IEEE Real-Time
Systems Symposium, Work-in-Progress Session.

Andersson, B. and Jonsson, J. (2003) “The utilization bounds of
partitioned and pfair static-priority scheduling on
multiprocessors are 50%’, in Proceedings of the 15th
Euromicro Conference on Real-Time Systems.

Audsley, N.C. (1991) Optimal Priority Assignment and Feasibility
of Static Priority Tasks with Arbitrary Start Times, Technical
report, University of York, England, November.

Baker, T.P. (2003) ‘Multiprocessor EDF and deadline monotonic
schedulability analysis’, n Proceedings of the 24th IEEE
Real-Time Systems Symposium.

Baruah, S. and Vestal, S. (2008) ‘Schedulability analysis of
sporadic tasks with multiple criticality specifications’,
in Proceedings of the 20th Euromicro Conference on
Real-Time Systems.

Baruah, S., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-
Spaccamela, A., Megow, N. and Stougie, L. (2012)
‘Scheduling real-time mixed-criticality jobs’, in IEEE
Transactions on Computers, August, Vol. 61, No. 8,
pp.1140-1152.

Baruah, S., Li, H. and Stougie, L. (2010) ‘Towards the design of
certifiable mixed-criticality systems’, in Proceedings of the
16th IEEE Real-Time and Embedded Technology and
Applications Symposium.

Bertogna, M. and Cirinei, M. (2007) ‘Response-time analysis for
globally scheduled symmetric multiprocessor platforms’,
in Proceedings of the 28th IEEE Real-Time Systems
Symposium.

Bertogna, M., Cirinei, M. and Lipari, G. (2009) ‘Schedulability
analysis of global scheduling algorithms on multiprocessor
platforms’, IEEE Transactions on Parallel and Distributed
Systems, April, Vol. 20, No. 4, pp.553-566.

Davis, R.l. and Burns, A. (2009) ‘Priority assignment for global
fixed priority pre-emptive scheduling in multiprocessor
real-time systems’, in Proceedings of the 30th IEEE
Real-Time Systems Symposium.

Davis, R.I. and Burns, A. (2011) ‘Improved priority assignment for
global fixed priority pre-emptive scheduling in multiprocessor
real-time systems’, Real-Time Systems, January, Vol. 47,
No. 1, pp.1-40.

de Niz, D., Lakshmanan, K. and Rajkumar, R. (2009) ‘On the
scheduling of mixed-criticality real-time task sets’,
in Proceedings of the 30th IEEE Real-Time Systems
Symposium.

Dhall, S.K. and Liu, C.L. (1978) ‘On a real-time scheduling
problem’, Operations Research, February, Vol. 26, No. 1,
pp.127-140.

Guan, N., Stigge, M., Yi, W. and Yu, G. (2009) ‘New response
time bounds for fixed priority multiprocessor scheduling’,
in Proceedings of the 30th IEEE Real-Time Systems
Symposium.

Jersak, M., Richter, K. and Ernst, R. (2005) ‘Performance analysis
for complex embedded applications’, International Journal of
Embedded Systems, Vol. 1, No. 1, pp.33-49.

Joseph, M. and Pandya, P. (1986) ‘Finding response times in a
real-time system’, The Computer Journal, October, Vol. 29,
No. 5, pp.390-395.

Kelly, O.R., Aydin, H. and Zhao, B. (2011) ‘On partitioned
scheduling of fixed-priority mixed-criticality task sets’,
in Proceedings of the IEEE International Conference on
Embedded Sofiware and Systems.

Lakshmanan, K., de Niz, D. and Rajkumar, R. (2011)
‘Mixed-criticality task synchronization in zero-slack
scheduling’, in Proceedings of the 17th IEEE Real-Time and
Embedded Technology and Applications Symposium.

Lakshmanan, K., de Niz, D., Rajkumar, R. and Moreno, G. (2010)
‘Resource allocation in distributed mixed-criticality
cyber-physical systems’, in Proceedings of the 30th IEEE
International Conference on Distributed Computing Systems.

Lauzac, S., Melhem, R. and Mosse, D. (1998) ‘Comparison of
global and partitioned schemes for scheduling rate monotonic
tasks on a multiprocessor’, in Proceedings of the Euromicro
Workshop on Real-Time Systems.

Leung, J.Y-T. and Whitehead, J. (1982) ‘On the complexity
of fixed-priority scheduling of periodic, real-time
tasks’, Performance Evaluation, December, Vol. 2, No. 4,
pp.237-250.

Li, H. and Baruah, S. (2010) ‘Load-based schedulability analysis
of certifiable mixed-criticality systems’, in Proceedings of the
10th ACM International Conference on Embedded Software.

Liu, C.L. and Layland, JW. (1973) ‘Scheduling algorithms for
multiprogramming in a hard-real-time environment’, Journal
of the ACM, January, Vol. 20, No. 1, pp.46-61.

Liu, JW.S. (2000) Real-Time Systems, Prentice Hall, Upper
Saddle River, NJ.

Lopez, J.M., Diaz, JL. and Garcia, D.F. (2004) ‘Utilization
bounds for EDF scheduling on real-time multiprocessor
systems’, Real-Time Systems, October, Vol. 28, No. 1,
pp.39-68.

Lopez, J.M., Garcia, M., Diaz, J.L. and Garcia, D.F. (2003)
‘Utilization bounds for multiprocessor rate-monotonic
systems’, Real-Time Systems, January, Vol. 24, No. 1,
pp.5-28.

Mollison, M.S., Erickson, J.P., Anderson, J.H., Baruah, S.K. and
Scoredos, J.A. (2010) ‘Mixed-criticality real-time scheduling
for multicore systems’, in Proceedings of the 10th IEEE
International Conference on Computer and Information
Technology.

Pathan, R.M. (2012) ‘Schedulability analysis of mixed-criticality
systems on multiprocessors’, in Proceedings of the 24th
Euromicro Conference on Real-Time Systems.

Vestal, S. (2007) ‘Preemptive scheduling of multi-criticality
systems with varying degrees of execution time assurance’,
in Proceedings of the 28th IEEE International Real-Time
Systems Symposium.

