
Real-Time Syst (2010) 46: 88–120
DOI 10.1007/s11241-010-9100-y

Competitive analysis of online real-time scheduling
algorithms under hard energy constraint

Vinay Devadas · Fei Li · Hakan Aydin

Published online: 14 July 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper, we undertake the competitive analysis of the online real-time
scheduling problems under a given hard energy constraint. Specifically, we derive
worst-case performance bounds that apply to any online algorithm, when compared
to an optimal algorithm that has the knowledge of the input sequence in advance.
First, by focusing on uniform value-density settings, we prove that no online algo-
rithm can achieve a competitive factor greater than 1 − emax

E
, where emax is the upper

bound on the size of any job and E is the available energy budget. Then we propose
a variant of EDF algorithm, EC-EDF, that is able to achieve this upper bound. We
show that a priori information about the largest job size in the actual input sequence
makes possible the design of a semi-online algorithm EC-EDF∗ which achieves a
constant competitive factor of 0.5. This turns out to be the best achievable competi-
tive factor in these settings. In non-uniform value density settings, we derive an upper
bound on the competitive factor achievable by any online algorithm, as well as the
competitive factors of EC-EDF and EC-EDF∗ algorithms. We also investigate the
implications of having additional constraints on the online scheduling algorithm, in-
cluding non-idling and non-preemptive execution constraints. Moreover, we analyze
the case where the processor can adjust its speed at run-time through Dynamic Volt-
age Scaling (DVS) capability.

Keywords Real-time systems · Energy management · Competitive analysis

V. Devadas · F. Li · H. Aydin (�)
Department of Computer Science, George Mason University, Fairfax, VA 22030, USA
e-mail: aydin@cs.gmu.edu

V. Devadas
e-mail: vdevadas@cs.gmu.edu

F. Li
e-mail: lifei@cs.gmu.edu

mailto:aydin@cs.gmu.edu
mailto:vdevadas@cs.gmu.edu
mailto:lifei@cs.gmu.edu

Real-Time Syst (2010) 46: 88–120 89

1 Introduction

An algorithm is said to be online if it must make its decisions at run-time, without
having any information about the future input. Design and analysis of online algo-
rithms is a well-established field with direct applications in a wide range of areas such
as load balancing, scheduling, circuit design, server performance evaluation, memory
hierarchy design, search, portfolio selection, and revenue management (Borodin and
El-Yavin 1998). In online settings, the performance of an algorithm is often assessed
by comparing it to that of an optimal and clairvoyant algorithm that knows the entire
input in advance. This framework, known as competitive analysis, is considered as
a standard analysis and evaluation tool in Computer Science. The reader is referred
to excellent surveys such as Borodin and El-Yavin (1998), Pruhs et al. (2004) for an
overview of existing techniques and results.

For underloaded real-time systems, where a feasible schedule for the workload is
known to exist, the preemptive Earliest Deadline First (EDF) algorithm is optimal in
the hard real-time sense, meaning that EDF is guaranteed to meet all the deadlines
even when it processes and schedules jobs as they arrive, without any knowledge
of future release times (Dertouzos 1974). This remarkable feature does not extend to
multiprocessor environments, for which it is well-known that no online algorithm can
guarantee to generate a feasible schedule, if future job release times are not known
(Dertouzos and Mok 1989).

A real-time system is said to be overloaded, if there does not exist a schedule
where all jobs meet their deadlines. In these settings where deadline misses are un-
avoidable (even for a clairvoyant algorithm), the goal is typically to maximize a soft
real-time performance metric. A common approach in firm real-time systems is to
associate a value with each job to quantify its contribution to the overall system per-
formance (Baruah et al. 1991a, 1991b; Buttazzo 2005). The value of the job is added
to the overall performance metric (cumulative, or, total system value) if and only if it
meets its deadline—no value is accrued for partial executions that are not completed
before the task deadline.

An online scheduling algorithm is said to have a competitive factor r , 0 ≤ r ≤ 1,
if and only if it is guaranteed to achieve a cumulative value at least r times the cu-
mulative value achievable by a clairvoyant algorithm on any finite input job sequence
(Baruah et al. 1991a; Buttazzo 2005; Koren and Shasha 1992). An online algorithm
is said to be competitive, if it has a constant competitive factor strictly greater than
zero. In general, the higher the competitive factor, the better performance guarantees
provided by an online algorithm. As such, the competitive analysis technique aims
to establish performance bounds that hold even under worst-case scenarios for on-
line algorithms, when compared to an optimal clairvoyant algorithm (Borodin and
El-Yavin 1998; Pruhs et al. 2004).

Another technique in competitive analysis is to explore the impact of giving some
(but still, limited) information to the online algorithm about the actual input sequence
(actual job set), in an effort to improve its competitiveness. Such algorithms are
known as semi-online algorithms (Pruhs et al. 2004). For example, a priori informa-
tion about the largest job size that will appear in the actual input sequence typically
makes possible design of semi-online algorithms with improved competitive factor
(Pruhs et al. 2004).

90 Real-Time Syst (2010) 46: 88–120

A significant body of research has been devoted to the analysis of online schedul-
ing algorithms for overloaded real-time systems, where the goal is to maximize the
total system value (Baruah et al. 1991a, 1991b; Baruah and Haritsa 1997; Koren and
Shasha 1992). In a seminal paper, Baruah et al. showed that no online algorithm can
achieve a competitive factor greater than 0.25 (Baruah et al. 1991a), in an overloaded
real-time system. This result holds for task systems with uniform density settings,
where the value of a job is proportional to its execution time. For more general, non-
uniform value density settings, where different tasks may contribute different values
per execution time, the bound is much smaller. Consider a firm real-time task time
system where the job Ji accrues ki units of value per execution time (value density),
if it completes by the deadline. Then, no online algorithm can achieve a competi-
tive factor greater than 1

(1+√
k)2 , where k = max(ki)

min(ki)
is the importance ratio obtained

through the largest and smallest value densities in the task set (Baruah et al. 1991a).
Remarkably, Koren and Shasha provided an optimal online algorithm Dover which

achieved this upper bound (Koren and Shasha 1992). The same authors also consid-
ered extensions to multiprocessor settings (Koren et al. 1993). Several other studies
addressed competitive online real-time scheduling for imprecise computation tasks
(Baruah and Hickey 1998), tasks with bounded slack factors (Baruah and Haritsa
1997), and tasks with given stretch metrics (Palis 2004) among others.

Recently, energy management has moved to the forefront of research in real-
time systems. This is primarily due to the emergence of devices that rely on battery
power, which is fairly limited. Literally hundreds of research papers were published,
each extending the real-time scheduling results to energy-aware settings for various
task/system models. These studies can be broadly classified in two categories. The
first line targets minimizing the total energy consumption while meeting the timing
constraints (Aydin et al. 2004, 2006; Pillai and Shin 2001). The second line addresses
the settings where the system has to operate within a given and fixed energy budget
and explores ways to maximize the performance of an underloaded real-time sys-
tem, when the energy is not sufficient to meet all the deadlines (AlEnawy and Aydin
2004, 2005; Chen and Kuo 2005; Rusu et al. 2002, 2003; Wu et al. 2007). In the lat-
ter formulation, energy is effectively the hard constraint and the system is said to be
energy-constrained (AlEnawy and Aydin 2004, 2005).

Contributions of this paper The primary objective of this paper is to undertake
a preliminary competitive analysis of energy-constrained online real-time schedul-
ing problem. As mentioned above, most of the online real-time scheduling stud-
ies focus on overloaded settings, where time is the main (and only) limiting fac-
tor. While recognizing the fundamental importance of these pioneering studies, we
posit that there is a need to consider also the online real-time scheduling frameworks
with hard energy constraint (where energy is the main scarce resource). As a first
step, we analyze the energy-constrained settings for underloaded uni-processor sys-
tems (i.e. where energy is the main and only limiting factor), derive inherent perfor-
mance bounds, and prove the existence of online real-time scheduling algorithms that
achieve these bounds for a few fundamental task models. Specifically:

• By extending the conventional online real-time system settings with uniform value
density to energy-constrained environments, we show that no online algorithm can

Real-Time Syst (2010) 46: 88–120 91

achieve a competitive factor better than 1 − emax
E

, where emax is the upper bound
on the size of any job and E is the available energy budget of the system (Sect. 3).

• We develop a variant of EDF algorithm, called EC-EDF, that is provably optimal
in online energy-constrained settings, in the sense that it achieves a competitive
factor equal to the upper bound of 1 − emax

E
(Sect. 3.1).

• We show that if the online algorithm has a priori information about the largest job
size in the actual input instance, then there is a semi-online algorithm (EC-EDF∗)
with a competitive factor of 0.5. We further show that this is the theoretical upper
bound that can be achieved by any semi-online algorithm with such additional
information (Sect. 3.2).

• We analyze the performance of online algorithms in non-idling and non-preemptive
execution settings, separately (Sect. 4). We show that EC-EDF remains optimal in
non-idling settings (Sect. 4.1), even when preemption is not allowed. However, in
Sect. 4.2, we demonstrate that in non-preemptive execution settings, there cannot
exist a competitive algorithm regardless of the emax

E
ratio if the online algorithm

cannot idle.
• We extend our competitive analysis to more general settings with non-uniform

value densities where the importance ratio k > 1 (Sect. 5). We show that, in this
case, no online algorithm can achieve a competitive factor greater than 1

k
emax

E

. We

also derive the competitive factors of EC-EDF and EC-EDF∗ algorithms in non-
uniform value density settings.

• We consider the settings where the processor has the Dynamic Voltage Scaling
(DVS) capability (Sect. 6). We provide a semi-online algorithm EC-DVS∗ which
uses the additional knowledge of the largest job size in the actual input instance
and the maximum loading factor β (Baruah et al. 1990; Jeffay and Stone 1993). It
is shown that the competitive factor of EC-DVS∗ is 0.5 times that of the optimal
semi-online algorithm in these settings.

• We also analyze the EC-EDF algorithm within the context of the resource aug-
mentation technique (Phillips et al. 2002; Kalyanasundaram and Pruhs 1995) and
characterize the conditions under which EC-EDF can achieve a competitive fac-
tor of 1, with extra energy or DVS feature (Sect. 7). Finally, we comment on the
relationship between the problem considered in this paper and the well-known
knapsack problem (Garey and Johnson 1990) (Sect. 8).

A table with a partial list of the basic results of this paper, with the performance
bounds that we establish along with the competitive factors of our solutions, is pre-
sented Table 1.

Before proceeding with the details of our solutions, we underline that competitive
analysis is certainly not the only way to analyze the performance of a scheduling

Table 1
Settings Bound Our solution

Online 1 − emax
E

1 − emax
E

Semi-online 0.5 0.5

Non-uniform value density 1

(kmax)
emax

E

1
2kmax

92 Real-Time Syst (2010) 46: 88–120

algorithm with uncertain job arrival patterns. For example, if we have a reasonable
approximation of the input probability distribution, average-case analysis can be un-
dertaken either analytically or experimentally (through simulations). However, when
such information is not available or reliable and/or when analytical worst-case per-
formance guarantees are sought, competitive analysis is of fundamental importance.

2 System model, assumptions, and terminology

We consider a uni-processor system with a limited energy budget of E units. The
system’s total energy consumption during its operation cannot exceed this allowance.
We assume that executing a job consumes one unit of energy per time unit. The
system’s energy consumption in idle state (i.e. when it is not executing any job) is
considered negligible (recent processors indeed have very low energy consumption
figures in Deep Sleep or Halt states).

Real-time jobs enter and leave the system during its operation. We use ψ to de-
note the finite input sequence of jobs that arrive to the system during its operation.
Preemptive scheduling is assumed. Each job Ji is represented by the tuple (ri , ei, di).
Here ri and di are the release time and deadline of the job Ji , respectively. For the
sake of clarity, we use ei to denote the size of the job, indicating both its execution
time and energy requirements (since execution per unit time requires unit energy).
The laxity of the job Ji is given by di − (ri + ei). Since ψ is finite and one unit of ex-
ecution requires one unit of energy, as in AlEnawy and Aydin (2004, 2005) we define
Eb = ∑

Ji∈ψ ei to be the minimum energy needed to complete all the jobs in ψ .
As mentioned in Sect. 1, as opposed to the well-studied online overloaded real-

time scheduling settings (e.g. Baruah et al. 1991a; Koren and Shasha 1992) where
there is sufficient energy, but insufficient time; our objective is to study the impact of
the energy constraint on the competitiveness of online real-time scheduling in settings
when there is sufficient time but no sufficient energy to complete all the workload.
Hence, we make the following assumption throughout the paper.

Underloaded energy-constrained system assumption We assume that the input
instance ψ is feasible in real-time sense; that is, there exists a feasible schedule where
all the jobs in ψ meet their deadlines if the energy constraint is not taken into account.

Each job is associated with a value that is proportional to its execution time. We
consider firm real-time systems where a job that successfully completes execution
by its deadline contributes its value to the system; otherwise no value is obtained
from this job (Baruah et al. 1991a; Koren and Shasha 1992). We consider the uniform
value density model (Baruah et al. 1991a, 1991b; Baruah and Haritsa 1997; Koren
and Shasha 1992), where the job’s value is equal to its size (ei). We also extend our
results (in Sect. 5) to the more general non-uniform value density model. Note that
the off-line problem of maximizing the total system value can be easily shown to be
NP-Hard even for the simple case of uniform value density settings where all jobs
have the same release times and deadlines by a reduction through the subset-sum
problem which is known to be NP-Hard (Garey and Johnson 1990).

Real-Time Syst (2010) 46: 88–120 93

We define emax as the upper bound on the size of any job that can be introduced to
the system. We assume emax ≤ E, since no algorithm can process a job with energy
requirement greater than E. Observe that this definition implies that a job with size
exactly emax may or may not appear in the actual input instance. The information
about emax can be derived from the workload characteristics or from the addressing
capabilities of the underlying hardware.

We denote the minimum processing time (and energy requirement) of any job in
the system by δ. That is, the size of any job is no smaller than δ units.1 Similar to emax,
the exact value of δ can be derived from the workload and/or system characteristics. E
and ei (for each job Ji) are assumed to be expressed as exact multiples of δ. Observe
that this assumption guarantees that the number of jobs introduced to the system is
polynomial with respect to the energy constraint E. However, the ratio δ

E
may be

arbitrarily low.
Before proceeding with our formal analysis, we introduce a specific job arrival

pattern that is proven very useful in deriving competitive factors in online real-time
scheduling (Baruah et al. 1991a; Koren and Shasha 1992). Specifically, we say that a
set of sequential jobs with size ‘x’ are introduced to the system at time t , if they have
the following characteristics:

(1) all jobs in the set have size x,
(2) the first job is released at time t with deadline t + x, and,
(3) each subsequent job is released at the deadline of the previous job in the set.

Hence, all the jobs in the sequence have zero laxity. Note that a similar pattern of
sequential jobs was crucial in obtaining the well-known competitive factor bound of
0.25 for overloaded real-time systems (Baruah et al. 1991a; Koren and Shasha 1992).

3 Basic results

We start by re-iterating a basic proposition, which states that preemptive EDF
achieves the best possible performance without the knowledge of future job release
times, if the system has sufficient energy to execute the entire workload (which is
assumed to be feasible in real-time sense).

Proposition 1 If E ≥ Eb then preemptive EDF has a competitive factor of 1.

Proof Follows from the optimality of preemptive EDF in underloaded real-time en-
vironments (Dertouzos 1974). �

However, in underloaded environments with scarce energy, preemptive EDF turns
out to be a poor online algorithm:

Lemma 1 If E < Eb, then preemptive EDF is non-competitive (i.e. it cannot guar-
antee a non-zero competitive factor).

1As energy and execution requirements (especially with DVS) are expressed as real numbers, δ is assumed
to be a real number strictly greater than zero.

94 Real-Time Syst (2010) 46: 88–120

Fig. 1 The worst-case instance
for preemptive EDF

Proof Figure 1 shows how to construct an instance using n jobs (J1 . . . Jn), with
decreasing deadlines and increasing release times, for which preemptive EDF cannot
guarantee a non-zero value. Let c and D be two positive numbers such that c ≤ emax
and D � c. All jobs have size of c units. Also, r1 = 0 and d1 = D. Given this, the
release times and deadlines of any two successive jobs are related by the following
equations,

ri = ri−1 + c − δ

di = di−1 − δ

Observe that when EDF is about to finish executing a job, another job with a shorter
deadline is released. EDF preempts the currently running job in favor of the job with
earlier deadline. Continuing this way, while executing Jn, for some n ≥ 1, EDF de-
pletes its entire energy budget at time t = E. Notice that at time t = E, EDF has n

pending jobs and zero remaining energy. Since preemptive EDF does not execute any
job to completion in this instance, its total value is zero. �

One can attempt to modify EDF with the following simple rule: Preempt Jl is
favor of Jh with an earlier deadline, only if there is enough energy to execute Jh.
Even with this augmented rule, EDF cannot provide more than a total value of δ, as
can be seen by slightly modifying the scenario given in the proof of Lemma 1: at
the very end when the system has δ units of remaining energy, one can release a job
with size δ and zero laxity. This way, one would get a value of δ, which can be still
arbitrarily low compared to E, making it still technically non-competitive.

An interesting question involves the upper bound on the performance of any on-
line algorithm in energy-constrained settings, in worst-case scenarios. In establish-
ing such upper bounds, the competitive analysis technique typically makes use of
the so-called adversary method (Baruah et al. 1991b; Borodin and El-Yavin 1998;
Koren and Shasha 1992; Pruhs et al. 2004). In this proof technique, the adversary
generates an initial input job sequence, observes the online algorithms’ behavior, and
then decides on what further jobs should be released. This process is repeated a finite
number of times. At some point (which must comply with the problem specifica-
tion), the adversary announces the optimal schedule that it would generate for that
input sequence—and a bound on the competitive factor is established by comparing

Real-Time Syst (2010) 46: 88–120 95

it to that of the schedule selected by the online algorithm. Theorem 1 establishes this
upper bound as a function of energy budget E and the upper bound on the maximum
job size emax.

Theorem 1 In energy-constrained underloaded settings, no online algorithm can
achieve a competitive factor greater than E−emax

E
.

Proof See Appendix 1 for a full proof. �

The proof of Theorem 1 is slightly involved, mainly because the input instance cre-
ated by the adversary must comply with the system model and settings as described
in Sect. 2. Specifically,

• The input sequence ψ created by the adversary must be feasible in real-time
sense. Recall that our purpose is to analyze the online energy-constrained real-time
scheduling for underloaded settings.

• The jobs released by the adversary in the input instance should not violate the upper
bound on possible job size (emax). For example, a job of size E − emax cannot be
released when emax < E

2 .
• Energy budget and execution requirements are expressed as positive real numbers.

Theorem 1 implies that, the upper bound on the competitive factor depends heavily
on the ratio emax

E
: the higher this ratio, the lower the best achievable competitive factor.

For example, if emax
E

= 1/3, then, no algorithm can achieve more than 2/3 of the total
value of a clairvoyant algorithm. However, as emax

E
→ 1, the upper bound approaches

zero; implying that no online algorithm can be competitive.
Further, for a given workload, as the system’s initial energy budget E is reduced,

the best achievable competitive factor quickly decreases. Similarly, for a given energy
budget E, as the upper bound on job size emax for the workload increases, the best
achievable competitive factor quickly decreases. Nevertheless, we show that an online
algorithm that is able to achieve this upper bound indeed exists.

3.1 Algorithm EC-EDF

In this subsection, we develop and show the optimality of an online algorithm called
EC-EDF for energy-constrained real-time scheduling in underloaded settings. EC-
EDF uses an admission test to admit new jobs that arrive at run-time. Specifically,
if the newly-arriving job J fails to pass the admission test, it is discarded (i.e. never
executed). In case that it passes the test, the new job J is added to the set C of admitted
jobs. When a job completes execution it is removed from the set C .

EC-EDF effectively commits to all the admitted jobs, in the sense that, as formally
shown below, it guarantees their timely completion without violating the system’s
energy budget limits. Further, all admitted jobs are scheduled according to the well-
known preemptive EDF policy.

The admission test uses the following relatively simple rule to decide whether the
new job J arriving at time t can be admitted or not: J is admitted if and only if the
system’s remaining energy budget at time t , Er , is sufficient to fully execute J and

96 Real-Time Syst (2010) 46: 88–120

the remaining workload of all the pending admitted jobs (i.e. the remaining workload
in set C).

Let Er and er
i represent the remaining energy with the system and the remaining

execution time of job Ji at time t respectively. We assume both Er and er
i are properly

updated at run-time. Hence, formally, a job J with size e arriving at time t is admitted
to the system if and only if

Er ≥ e +
∑

Ji∈C
er
i

We now give an example illustrating the behavior of EC-EDF. Consider a system
with E = 100. The following four jobs constitute the input sequence: J1(0,20,200),
J2(10,30,190), J3(25,75,150) and J4(85,15,120). Figure 2 shows the schedules
generated by EC-EDF, EDF and the clairvoyant algorithm along with the total values
obtained by each. In each schedule, the unshaded jobs are those that complete before
the corresponding algorithm depletes its energy budget, while the shaded jobs are
those that fail to do so.

At time t = 0, EC-EDF admits J1 and dispatches it (C = {J1}). At t = 10, J2
with higher priority than J1 arrives. EC-EDF admits J2 as there is enough remaining
energy to execute both J2 and the pending workload of admitted jobs, C = {J1} (i.e.
Er ≥ e2 + er

1). EC-EDF updates C as to {J1, J2}.
Notice that at t = 25 when the largest job J3 in the set arrives the remaining energy

is sufficient to execute it. However EC-EDF does not admit J3 as with the remain-
ing energy of 75 units, the system cannot execute J3 and the pending workload of
admitted jobs, C = {J1, J2} (i.e. Er < e3 + er

1 + er
2).

At t = 85, EC-EDF admits and executes J4 to completion. Thus, by executing jobs
J1, J2 and J4 to completion, EC-EDF gathers a total value of 65. It is straightforward
to verify that EDF gets a total value of only 15. The clairvoyant algorithm knowing
the future job sizes and arrival patterns, skips certain jobs and idles as necessary,
making a total value of 95 as shown in Fig. 2.

Proposition 2 EC-EDF guarantees the completion of all the admitted jobs before
their deadlines, without violating the system’s energy budget limits.

Proof Assume there exists a non-empty subset C′ of the admitted jobs that cannot
be completed in a timely manner without violating the energy budget limits. We will
show by contradiction that C′ cannot exist.

Recall that by assumption, the input sequence ψ is guaranteed to be feasible from
timing constraints point of view. Thus, C′ ⊂ ψ is also feasible. Further, EC-EDF
schedules the admitted jobs using preemptive EDF which is known to be optimal
in underloaded conditions. Hence, if C′ exists then EC-EDF must run out of energy
before completing the jobs it admitted. Since the admission rule of EC-EDF ensures
that there is always enough remaining energy in the system to meet the computational
demand of all pending admitted jobs along with the newly admitted job, we reach a
contradiction. Hence, C′ cannot exist. �

Theorem 2 EC-EDF has a competitive factor of E−emax
E

.

Real-Time Syst (2010) 46: 88–120 97

Fig. 2 Schedules Generated by EC-EDF, EDF and Optimal

Proof First, note that if Eb ≤ E, EC-EDF reduces to the conventional EDF and can
execute all the jobs in the input sequence ψ (which is assumed to be feasible), achiev-
ing a competitive factor of one. Thus, the adversary must create a feasible input se-
quence ψ such that Eb > E. Under this condition, eventually EC-EDF will be forced
to discard a job due to energy limitations.

Let Jd be the first job discarded by EC-EDF at time t . At time t , let ψ ′ denote
the set of jobs admitted by EC-EDF before discarding Jd and let Ed denote the total
workload (and energy demand) of the jobs in ψ ′. From Proposition 2, EC-EDF is
guaranteed to complete the job set ψ ′ in a timely manner without violating the system
energy budget limits. Thus, EC-EDF guarantees a total value of Ed .

As a consequence of Jd being discarded at time t , we have Ed + ed > E. Since
ed ≤ emax, this implies Ed > E − emax. Thus, the total value obtained by EC-EDF is
at least E − emax, while the adversary can make at most a value of E. We conclude
that EC-EDF has a competitive factor of E−emax

E
. �

We also underline that in settings where E ≥ Eb, EC-EDF is able to finish all the
jobs in the input sequence thanks to the optimality of EDF, achieving a competitive
factor of 1 under that condition. That is, regardless of the relationship between E and
Eb , EC-EDF yields the best competitive factor.

3.2 A semi-online algorithm with a constant competitive factor

As mentioned in Sect. 1, it is occasionally possible to improve the competitive ratio
by providing some limited information about the actual input sequence. For example,
online scheduling algorithms typically benefit from information about the maximum
job size, sum of job processing times or job size patterns in the actual input (Eben-
lendr and Sgall 2009; Pruhs et al. 2004). The online algorithms that exploit this type
of limited information about the actual input are called semi-online and their design

98 Real-Time Syst (2010) 46: 88–120

and analysis have been recently attracting increasing interest (Ebenlendr and Sgall
2009; Pruhs et al. 2004).

In our problem as well, the knowledge of the largest job size in the actual input
instance turns out to be very helpful. For the uniform value density model where the
value of a job is equal to its execution time, the largest size job in the input instance is
also the most valuable job in the set. Below, we describe an algorithm EC-EDF∗ that
achieves a competitive factor of 0.5, using this information. Further, we show that
with only the additional knowledge of the largest job size, no semi-online algorithm
can perform better than EC-EDF∗, demonstrating its optimality.

Let el ≤ E represent the largest job size in the actual input sequence. We first give
the rules for EC-EDF∗. EC-EDF∗ exploits the information about el : in semi-online
settings, the fact that at least one job of size el will be part of the input sequence is
guaranteed by definition. EC-EDF∗ compares el to the available energy budget E.
If el > E

2 , EC-EDF∗ simply waits for the largest size job, el , and executes it. Since
E ≥ el > E

2 , the value of EC-EDF∗ is no less than E
2 + δ. The adversary can gather

a value of at most E. On the other hand, if el ≤ E
2 , EC-EDF∗ schedules jobs using

EC-EDF. By definition, no job size in the actual input sequence can be larger than el .
Thus, from Theorem 2 the competitive factor for EC-EDF becomes E−el

E
. Further,

given the constraint el ≤ E
2 , the lower bound on competitive factor of EC-EDF and

hence that of EC-EDF∗ reduces to 0.5. Thus, in either case, EC-EDF∗ makes at least
half of the value of the adversary.

Lemma 2 EC-EDF∗ has a competitive factor of 0.5.

Lemma 3 With only the additional knowledge of the largest job size, no semi-online
algorithm can achieve a competitive factor greater than 0.5.

Proof We describe a scenario through which the adversary effectively limits the total
value of any semi-online algorithm to half of its value. Let E = k1 · δ and el = k2 · δ.
Where, k1 and k2 are positive integers such that k1 ≥ k2. The proof is similar to that of
Theorem 1. The adversary first releases (k1 − k2 + 1) sequential jobs of size δ (note
that here k2 = el

δ
and not emax

δ
as in Theorem 1). As mentioned in proof of Theorem 1,

let m be the number of jobs not executed by the online algorithm A. We again have
3 cases.

Cases 1, 2 and 3B are similar to those in Theorem 1, except that at the very end
the adversary now releases a job of size el instead of emax. Therefore, repeating the
corresponding arguments from Theorem 1, the competitive factor of A for these cases
is given by E−el

E
.

Case 3A corresponds to k2 jobs of size δ having been released and A having
executed 0 ≤ m′ < m of these jobs. Repeating the corresponding arguments of The-
orem 1, we note that A has accrued a value of (k1 − k2 + 1 + (m′ − m)) · δ and has
a remaining energy budget of (k2 − (m′ − m + 1)) · δ, while the adversary has ac-
crued a total value of E and has no energy budget left. Also, observe that in the input
sequence leading to and terminating in Case 3A, a job of size el has not been re-
leased by the adversary. Thus, at the end of Case 3A, the adversary releases a job

Real-Time Syst (2010) 46: 88–120 99

of size el which A can execute provided it has enough energy budget left to ex-
ecute it (i.e. if (m′ − m + 1) ≤ 0). Thus, the maximum value that A can accrue is
el + (k1 − k2 + 1 + (m′ − m)) · δ and its competitive factor is no better than

el + (k1 − k2 + 1 + (m′ − m)) · δ
E

≥ el

E

From the above 3 cases the competitive factor of A can be expressed as
max(

E−el

E
, el

E
). Since, 0 ≤ el ≤ E, we have max(

E−el

E
, el

E
) ≥ 0.5. Thus, no semi-online

algorithm can achieve a competitive factor greater than 0.5. �

Corollary 1 Among semi-online algorithms that have only the additional knowledge
of the largest job size, EC-EDF∗ is optimal.

We remark that, in online real-time scheduling in overload conditions, the best
achievable competitive factor was shown to be 0.25 (Baruah et al. 1991a) and fur-
ther, there exists an algorithm Dover with this competitive factor (Koren and Shasha
1992). In contrast, in online real-time scheduling with hard energy constraints for
underloaded settings, with the knowledge of the largest job size in the actual input
sequence, the best achievable competitive factor is 0.5 which is twice as large as that
in overloaded settings. Further, the algorithm EC-EDF∗ achieves this competitive
factor.

4 Competitive analysis for non-idling and non-preemptive scheduling
algorithms

Our main results in preceding sections were derived under the assumption that pre-
emption was allowed and that, if needed, the online algorithm could leave the CPU
idle in the presence of ready jobs. In this section, we investigate the implications
of relaxing these assumptions, first separately and then simultaneously. Note that,
in the analysis of each of these sub-models, we still have the underloaded energy-
constrained real-time system assumption. In other words, we assume that there exists
a feasible schedule for the input task set, on the target (i.e. non-idling and/or non-
preemptive) execution settings.

4.1 Non-idling execution settings

In real-time scheduling theory, a scheduling algorithm is said to be idling at time t , if
there is a pending job and the algorithm is not executing any job. The algorithms that
never idle (i.e. non-idling algorithms, or, sometimes called work-conserving algo-
rithms) have practical importance and were studied in the literature (Jeffay et al. 1991;
Liu 2000). We now undertake a basic competitive analysis of non-idling online real-
time scheduling algorithms in energy-constrained settings.

Note that the traditional definition of idling, as given above, is not quite adequate
for our energy-constrained settings, as an algorithm should not be forced to execute a
pending job requiring more than the remaining energy, or waste energy by executing

100 Real-Time Syst (2010) 46: 88–120

a job that is guaranteed to miss its deadline. Thus, in an effort to address non-idling
scheduling issues, we first formally re-define the idling concept in energy-constrained
settings.

Definition 1 In energy constrained settings, an algorithm is considered to be idling
if and only if all of the following four conditions hold at a specific time instant t :

(1) The processor is not executing any job,
(2) There is a pending (ready) job Ji with remaining execution time/energy require-

ment er
i > 0,

(3) er
i ≤ di − t ,

(4) er
i ≤ Er , where Er is the system’s remaining energy budget.

Given this definition, a non-idling algorithm is one that does not idle at any time t .
Observe that, according to these definitions, EC-EDF is a non-idling algorithm, while
EC-EDF∗ is an idling algorithm. Section 3.1 already shows that EC-EDF is the best
non-idling algorithm that can be developed against a potentially idling adversary.

The power of idling for the adversary was crucial in deriving the competitive factor
bound in Theorem 1. The main motivation behind this subsection is to investigate if
there can exist an non-idling algorithm better than EC-EDF against an adversary that
cannot idle either. Hence, as opposed to the previous sections, the adversary cannot
idle in the analysis presented in this subsection.

Lemma 4 No non-idling online algorithm can achieve a competitive factor greater
than E−emax

E
against a non-idling adversary.

Proof Let E = k1 · δ and emax = k2 · δ. Where, k1 and k2 are positive integers such
that k1 ≥ k2. In the execution scenario that will establish the bound, the adversary
first introduces (k1 − k2) sequential jobs each of size δ. By executing these jobs, at
time t = (k1 − k2) · δ, both the online algorithm A and the adversary have accrued a
total value of (k1 − k2) · δ = E − emax and have a remaining energy budget of emax
units. At time t , the adversary introduces the following 2 jobs: J1(t, δ, t + δ) and
J2(t,2δ, t + 5δ). A has two choices.

Case 1: A executes J1. In this case, the adversary executes J2 and waits until
t1 = t + 5δ. Notice that since A scheduled J1, it will have to also schedule J2 after
finishing J1, because it cannot idle. On the other hand by executing J2, the adversary
has effectively created an idle interval for itself by missing the deadline of J1. At
t1, A has accrued a value of E − emax + 3δ and has a remaining energy budget of
emax − 3δ units. On the other hand, at time t1, the adversary has accrued a value
of E − emax + 2δ and has a remaining energy budget of emax − 2δ units. At t1, the
adversary introduces a job with size emax − 2δ that A cannot execute. By executing
this job the adversary accrues a total value of E. The competitive factor is E−emax

E
.

Case 2: A executes J2. In this case, the adversary executes J1 followed by J2.
When A finishes J2 at time t + 2δ, the adversary has finished executing only half of
J2. At this stage the adversary introduces job J3(t + 2δ,2δ, t + 4δ). Note that, A is
forced to execute J3 (as it cannot idle). The adversary, by continuing with execution
of J2, misses J3 and again creates an idle period for itself from t + 3δ to t + 5δ.

Real-Time Syst (2010) 46: 88–120 101

At time t1 = t + 5δ, A has accrued a value of E − emax + 4δ and has a remaining
energy budget of emax − 4δ units. On the other hand, at time t1, the adversary has
accrued a value of E − emax + 3δ and has a remaining energy budget of emax − 3δ

units. At t1, the adversary introduces a job with size emax − 3δ that A cannot execute.
By executing this job the adversary accrues a total value of E. The competitive factor
is E−emax

E
. �

In the non-idling model, the knowledge of the largest job size in the actual input
sequence does not help as the algorithm A cannot idle and wait for it, which was
crucial for achieving a competitive idling semi-online algorithm EC-EDF∗. In the
non-idling model, the adversary can introduce jobs such that when the largest size
job is released, the remaining energy budget of A is not sufficient to execute it.

Corollary 2 EC-EDF is also optimal against an adversary that cannot idle.

4.2 Non-preemptive execution settings

Non-preemptive execution has several attractive features, such as ease of imple-
mentation, low run-time overhead, implicit exclusive access to shared resources,
among others (Liu 2000). As such, non-preemptive scheduling algorithms have been
studied in literature and in the realm of real-time scheduling (Jeffay et al. 1991;
Liu 2000). In general, non-preemptive hard real-time scheduling is known to be NP-
Hard in the strong sense, even in off-line settings (Jeffay et al. 1991). In this subsec-
tion, we consider non-preemptive online scheduling in energy-constrained settings
and we derive a basic result for settings where both the online algorithm A and the
adversary schedule jobs through non-preemptive algorithms. In accordance with the
underloaded real-time system assumption, we assume that there exists a feasible non-
preemptive scheduling for the input task set, if the energy constraint is not considered.

Lemma 5 There does not exist a competitive non-preemptive online algorithm, irre-
spective of the ratio emax

E
.

Proof In the scenario that enforces this upper bound, the adversary introduces a job
of size 2δ and deadline emax + 2δ. If the online algorithm A idles until t = emax + 2δ

and skips this job, the adversary continues the pattern. A will have to execute one
of these jobs before the cumulative workload released by the adversary equals or
exceeds E. When A executes a job (say at time t), the adversary releases a job of size
emax with zero laxity at time t + δ. The non-preemptive algorithm A gathers a value
of 2δ, while the adversary gathers a value of emax. By repeating the same pattern a
finite number of times, the algorithm A can be made technically non-competitive,
regardless of the ratio emax

E
. �

Notice that with non-preemption, while the online algorithm is executing a job of
size X for execution, the adversary can release a job of size Y � X and no laxity,
causing excessive value loss for the algorithm. This was the key to the instance given
in the proof of Lemma 5. As a consequence, with the knowledge of the largest job

102 Real-Time Syst (2010) 46: 88–120

size (say el) in the input instance, no (potentially) idling non-preemptive semi-online
algorithm can achieve a competitive factor greater than el

E
and the algorithm that

achieves this bound simply waits for the largest job with size el . The ratio el

E
may

be arbitrarily small if el < E
2 . However, if el ≥ E

2 , this semi-online algorithm has a
competitive factor of 0.5.

4.3 Non-idling and non-preemptive execution settings

In this section, we consider the settings where the scheduling must be both non-
preemptive and non-idling. In one of the most cited studies (Jeffay et al. 1991), non-
idling EDF is shown to be optimal among all non-idling non-preemptive scheduling
policies, in the sense that it can generate a feasible schedule whenever it is possible to
do so. Lemma 6 below establishes a fundamental result for non-preemptive and non-
idling settings. Once again, the underloaded system assumption implies that the work-
load under consideration can be scheduled in feasible manner on non-preemptive and
non-idling settings. The optimality of the non-preemptive EDF (Jeffay et al. 1991)
(which is non-idling by definition) implies that it can schedule the input job set (or,
any subset thereof) in feasible manner when the energy constraint is not considered.

Lemma 6 No non-preemptive non-idling online algorithm can achieve a competitive
factor greater than E−emax

E
and non-preemptive EC-EDF achieves this competitive

factor.

Proof The proof is very similar to that of Lemma 4. However, in Case 2 where A ex-
ecutes J2, introduce the third job J3 at time t + δ (i.e. J3(t + δ,2δ, t + 4δ)). Observe
that this allows feasibility of J1, J2 and J3 under non-preemptive non-idling schedul-
ing. Now, by repeating the arguments of Lemma 4 the upper bound on performance
of any online non-preemptive and non-idling algorithm can be found as E−emax

E
. Since

non-preemptive non-idling EDF is an optimal real-time scheduling algorithm in the
sense that it can generate a feasible schedule whenever another non-preemptive non-
idling algorithm can do so (Jeffay et al. 1991), the non-preemptive EC-EDF is found
as the optimal online non-idling non-preemptive algorithm (in terms of the competi-
tive factor it achieves), in energy-constrained settings. �

It is also straightforward to verify that the additional knowledge of the largest job
size in the actual input sequence does not help design better non-preemptive non-
idling online algorithms.

5 Non-uniform value densities

In the settings of this paper, each job is associated with a value proportional to its
execution time. The value density of a job is its value divided by its execution time.
The ratio of the largest value density to the smallest value density is called impor-
tance ratio (Baruah et al. 1991a; Koren and Shasha 1992). In uniform density settings
(Sect. 3), the importance ratio is one and hence the value of the job is equal to its size.

Real-Time Syst (2010) 46: 88–120 103

In this section, we extend our competitive analysis to the more general non-uniform
density settings.

In these settings, the value of a job Ji with value density ki is given by kiei . Let
kmin and kmax denote the smallest and largest value densities that can be associated
with any job. Without loss of generality, we assume that kmin = 1 and thus the ratio
of kmax

kmin
is simply kmax. Observe that in comparison to uniform density settings, the

largest size job is no longer guaranteed to be the most valuable job.

Theorem 3 In non-uniform value settings where kmax > 1, no online algorithm can
achieve a competitive factor greater than 1

(kmax)
emax

E

.

Proof See Appendix 2 for a full proof. �

We note that the upper bound established by Theorem 3 is not tight when the ratio
kmax
kmin

is close to one. This can be verified by setting kmax = 1 + � ≈ 1, where � is
a positive number arbitrarily close to zero, and repeating the input instance given in
the proof of Theorem 1 with the following two changes: (1) All jobs released have
value density kmax. (2) At the very end, in every execution scenario, the adversary
releases a single job of size δ with value density kmin = 1. In this specific modified
sequence the upper bound can easily be verified to be kmax(E−emax)

kmaxE
= E−emax

E
, while

for the given parameters the upper bound suggested by Theorem 3 is close to 1, irre-
spective of the ratio emax

E
. However, as kmax increases the upper bound established by

Theorem 3 decreases in exponential fashion. Investigating the tightness of the upper
bound established by Theorem 3 when the ratio kmax

kmin
is large is an open problem.

We also add that the upper bound on performance established by Theorem 3 holds
with or without the knowledge of the largest job size in the input sequence. This can
be verified by the job release pattern given in the proof of Theorem 3. Thus, the a
priori knowledge of the largest job size does not help design better online algorithms
in non-uniform value density settings. Lemma 7 establishes the competitive factor of
the semi-online algorithm, EC-EDF∗, which uses the additional knowledge of largest
job size.

Lemma 7 Algorithm EC-EDF∗ has a competitive factor of 1
2kmax

.

Proof Let el ≤ E represent the largest job size in the input sequence. If el > E
2 , EC-

EDF∗ waits for the largest job of size el and is guaranteed a value of kmin(
E
2 + δ) =

E
2 +δ. The adversary can make at most kmaxE. The competitive factor is 1

2kmax
. On the

other hand, if el ≤ E
2 , EC-EDF∗ follows EC-EDF which would guarantee a value of

at least kmin(E −el + δ) even when executed on jobs with the minimum value density
kmin = 1. Again, the adversary can make a total value of at most kmaxE. Thus, the
competitive factor is found as the minimum value of E−el+δ

kmaxE
which is 1

2kmax
(obtained

when el = E
2). As a result, in both cases, the competitive factor is 1

2kmax
. �

It is also interesting to consider the upper bound on the competitive factor of any
non-idling algorithm (compared against an idling adversary) in these settings. Theo-
rem 4 below establishes this bound.

104 Real-Time Syst (2010) 46: 88–120

Theorem 4 No non-idling online algorithm can achieve a competitive factor greater
than min(E−emax

E+(kmax−1)emax
, 1

2kmax
) against a potentially idling adversary.

Proof We define two constants c1 = � E
emax

 and c2 = E − (c1 · emax). First, the ad-
versary introduces a workload W1 of E − emax + δ units using n ≥ 1 jobs, each with
value density kmin = 1. All jobs in W1 have zero laxity and are released back to back,
one at a time (i.e. the release time of the ith job coincides with the deadline of the
(i − 1)th job and the deadline of the ith job is its release time plus execution time).
At least one job in W1 will be of size exactly c2. At the end of the workload W1 the
non-idling algorithm A has exhausted E − emax + δ units of energy and gathered a
value of E − emax + δ. Now, we distinguish two cases.

Case 1: Assume emax ≤ E
2

At this stage, the adversary introduces another workload W2 of c1emax units using c1

jobs of size emax and value density kmax (as with W1 all jobs in W2 have zero laxity
and are released back to back). A cannot execute any job in W2 irrespective of the job
deadlines. The adversary gathers a value of c1kmaxemax + c2 by executing all jobs in
workload W2 and the job of size c2 in workload W1. The value of A is E−emax +δ. If
c2 = 0, the competitive factor is E−emax

kmaxE
. If c2 �= 0, by setting c2 = δ the competitive

factor is minimized and in that case, is bounded by E−emax
kmaxE

. Thus, either way the

competitive factor is no more than 1
2kmax

(obtained by setting emax = E
2).

Case 2: Assume emax > E
2

In this case c1 = 1 and c2 = E − emax. The adversary has two different strategies to
reduce the competitive factor as much as possible depending on the value of kmax

(similar to Case 1 above). First, the adversary can follow the exact same sequence
given in Case 1 above by restricting the largest job size in the actual instance to E

2 .
In this case the competitive factor as explained in Case 1 would be 1

2kmax
.

Second, the adversary can introduce another workload, W2, of c1emax units using
c1 jobs of size emax and value density kmax. A cannot execute any job in W2 irrespec-
tive of their deadlines. The adversary gathers a value of c1kmaxemax + c2 by executing
all jobs in workload W2 and the job of size c2 in workload W1. The competitive factor
would then be E−emax

kmaxemax+E−emax
.

From Cases 1 and 2 one can conclude that the competitive factor is constrained
either by 1

2kmax
or by E−emax

kmaxemax+E−emax
. Further, since the ordering between these two

terms is dependent on the values of emax and kmax, no non-idling algorithm can
achieve a competitive factor greater than min(E−emax

E+(kmax−1)emax
, 1

2kmax
). �

We now show that EC-EDF is the optimal non-idling algorithm in non-uniform
value density settings as well.

Lemma 8 EC-EDF has a competitive factor of min(E−emax
E+(kmax−1)emax

, 1
2kmax

).

Proof Let t represent the time instance at which EC-EDF discards a job for the first
time. Let the execution requirement of this job discarded by EC-EDF be ed . Since
ed ≤ emax, at time t , EC-EDF has accepted a workload of at least E − ed + δ and

Real-Time Syst (2010) 46: 88–120 105

from Proposition 2, EC-EDF is guaranteed to make a value of at least:

V = kmin(E − ed + δ) = E − ed + δ

Thus, the total value accrued by EC-EDF is V + �V , where �V ≥ 0.
If V ∗ represents the total value accrued by the adversary then 0 ≤ V ∗ ≤ kmaxE.

Thus the competitive factor can be defined as V +�V
V ∗ . However, in non-uniform value

density settings, it is not necessary that �V is minimized (i.e. �V = 0) when V ∗ is
maximized (i.e. V ∗ = kmaxE); which was the case in uniform value density settings.
Thus, when jobs have different value densities, there is a non-trivial relation between
V ∗ and �V . We will distinguish two cases.

Case 1: 0 < ed ≤ E
2

In this case the maximum value the adversary can make without increasing the value
accrued by EC-EDF beyond V is kmaxE; which is also the maximum value the ad-
versary can make in non-uniform value density settings. This can be achieved by
releasing a workload consisting of jobs with execution requirement ed and value den-
sity kmax after time t . While EC-EDF has not enough energy left to execute any of
these jobs, the adversary can execute all these jobs making a value of at most kmaxE.
Thus, in this case �V = 0 and V ∗ = kmaxE giving a competitive factor of E−ed

kmaxE

which is minimized at ed = E
2 to 1

2kmax
.

Case 2: emax ≥ ed > E
2

In this case, the maximum value the adversary can make without increasing the value
accrued by EC-EDF beyond V is:

V ∗
1 = E − ed + δ + kmaxed < kmaxE

In this case, the competitive factor is minimized at ed = emax and is given by

E − emax

E + (kmax − 1)emax

On the other hand, if the adversary intends to make a value V ∗
2 > V ∗

1 then �V > 0
and the following observation holds.

Observe that, if V ∗
2 is maximized (i.e. V ∗

2 = kmaxE) then �V ≥ (2ed − E). As a
consequence, if V ∗

2 = kmaxE then V + �V ≥ ed + δ. In this case, the competitive
factor is minimized at ed = E

2 + δ and is given by 1
2kmax

.
From Cases 1 and 2, the competitive factor of EC-EDF is:

min

(
E − emax

E + (kmax − 1)emax
,

1

2kmax

)

�

Corollary 3 EC-EDF is an optimal non-idling algorithm in non-uniform value set-
tings.

We conclude this subsection with the following remarks.

106 Real-Time Syst (2010) 46: 88–120

• The bound of (kmax)
− emax

E holds in general for any online algorithm (idling or non-
idling). The knowledge of the largest job size does not help improve the upper
bound on competitive factor achievable by any online algorithm.

• Again, the competitive factor of the algorithm heavily depends on the ratio emax
E

.
When emax ≤ E

2 , the best achievable competitive factor is 1√
kmax

. As emax
E

→ 1, the

best achievable competitive factor reduces to 1
kmax

.

• The upper bound established in Theorem 3 is not tight when the ratio kmax
kmin

is close

to one. For larger values of kmax
kmin

, investigating the tightness of this upper bound is
an interesting open problem that deserves further research.

6 DVS settings

Dynamic Voltage Scaling (DVS) is a popular energy management technique through
which the processor frequency and voltage can be varied at run-time. Since proces-
sor power consumption increases in convex manner with processor clock frequency,
DVS significantly reduces processor dynamic energy consumption. DVS has been
subject to extensive research in the past decade (Aydin et al. 2004; Lee and Shin 2004;
Pillai and Shin 2001). DVS-capable processors can play a critical role also in energy-
constrained real-time systems. Using effective DVS policies that help minimize the
energy spent on processing a workload, the energy-constrained system can success-
fully process additional workload with a given energy budget, thus giving higher
overall system value compared to non-DVS systems. In this section, we derive an
upper bound on the competitive factor of DVS-enabled online algorithms.

There have been a few research efforts on competitive analysis of DVS-based
systems (Bansal et al. 2004; Chan et al. 2007; Yao et al. 1995). These efforts deal with
the energy minimization problem of hard real-time sporadic jobs (without the hard
energy constraint) where the objective is to minimize energy consumption subject
to meeting the temporal constraints. Same studies assume no upper bound on the
maximum CPU clock frequency. In contrast, our work considers soft real-time jobs
running on a DVS-enabled system (with minimum and maximum frequency limits)
and a fixed energy budget. Our objective is to maximize the total value of jobs that
meet their deadlines, subject to the system’s energy budget constraint.

We consider a DVS capable processor whose frequency can be varied in the range
[fmin, fmax]. Without loss of generality, we assume fmax = 1. Power consumption of
the processor at frequency f is modeled as a convex function P(f) = af α , where
a is a constant characterized by the processor parameters2 and 2 ≤ α ≤ 3. Thus, at
frequency f , the time and energy required to execute a job with processing time x

are given by x
f

and E(f) = P(f) · x
f

= f α−1x, respectively.

2In this section we assume a = 1. We also point out that recently there have been research efforts address-
ing system energy models, where it was shown that lowering frequency below a certain threshold (called
energy-efficient speed) may adversely affect overall system energy consumption (Aydin et al. 2006). Our
upper bound results can easily be adapted to these system-level energy models by enforcing arbitrarily low
energy-efficient speed levels.

Real-Time Syst (2010) 46: 88–120 107

In line with the previous sections we still make the underloaded energy-con-
strained system assumption according to which, in DVS settings, there exists a feasi-
ble schedule for all jobs in ψ , when the processor executes all jobs at frequency fmax
and the energy constraints are not taken into account.

Notice that with DVS, the energy required to execute a job depends on the fre-
quency at which the job is executed. As such, there is no longer one-to-one cor-
respondence between job execution times and energy requirements. By taking this
into account, in this section, we represent a job Ji as Ji(ri , ci ,Di, ei), where ri is
its release time, ci is its execution time at frequency fmax (also referred to as work-
load of Ji), Di is its relative deadline and ei is its minimum energy requirement.
The minimum energy requirement ei is computed by assuming the minimum fre-
quency ci

Di
that would allow the timely completion of Ji before its deadline. That is,

ei = E(
ci

Di
) = (

ci

Di
)α−1 · ci .

Note that we assume the uniform density model throughout this section and the
value of a job Ji is assumed to be equal to ci (execution time at fmax). That is,
executing a job at a low frequency reduces the energy consumption but does not affect
its value. Before proceeding, we give some basic definitions and existing results that
will be instrumental in our analysis.

Definition 2 Let l(t1, t2) denote the total amount of workload of jobs with release
times at or later than t1 and deadlines at or earlier than t2. The effective loading
factor h(t1, t2) over an interval [t1, t2] is defined as h(t1, t2) = l(t1,t2)

t2−t1
.

Definition 3 The absolute effective loading factor (or simply the loading factor) β is
the maximum effective loading factor over all intervals [t1, t2]: β = max(h(t1, t2)),

0 ≤ t1 < t2.

Theorem 5 (from Baruah et al. 1990; Jeffay and Stone 1993) A set of real-time jobs
can be scheduled in feasible manner (by preemptive EDF) if and only if β ≤ 1.

Given the loading factor β , if the processor executes all jobs at constant frequency
f = max(fmin, β), then the new loading factor β ′ (increased due to the reduced
frequency) would be β

f
. Further, one can easily verify that β ′ would still not ex-

ceed 1.0 under that condition (Yao et al. 1995). Thus, running jobs at frequency
f = max(fmin, β) preserves the system feasibility (without the energy constraint).

Proposition 3 A DVS algorithm that runs at constant speed f ≥ max(fmin, β) can-
not make a total value > E

f α−1 .

Proposition 3 can be justified by observing that with DVS, to deplete e units of
energy, the system will have to execute a workload of e

f α−1 at constant frequency f .

Thus, with e units of energy, a maximum value of e

f α−1 can be made by running
the processor at constant speed f . Note that this implies that with DVS the system is
able to achieve a value greater than E. In settings where both the online algorithm and
adversary have DVS, the pre-knowledge of β can potentially provide some advantage
to the online algorithm. Theorem 6 characterizes this result.

108 Real-Time Syst (2010) 46: 88–120

Theorem 6 Assuming β > fmin where 0 < β ≤ 1,

(i) Without the knowledge of β , there is no online DVS algorithm with a competitive
factor greater than f α−1

min .
(ii) With the knowledge of β , there is no online DVS algorithm with a competitive

factor greater than (
fmin
β

)α−1.

Proof Case 1: Assume β is unknown to the algorithm. Consider the following in-
stance. The adversary sets β = 1 and introduces a job J1(0,E,E,E) (Notice the
minimum energy requirement for J1 is e1 = E). Clearly, if the online algorithm A
does not execute J1, it will miss its deadline. The adversary executes J1 and releases
no more jobs. The value of A is zero, while that of the adversary is E.

If A executes J1, then, at time t = E, the adversary introduces J2(E, E

kα−1 , E
kα ,E),

where fmin ≤ k ≤ 1. Observe that J2 can be executed at frequency
E

kα−1
E
kα

= k. By skip-

ping J1, the adversary executes J2 gathering a value of E

kα−1 . Thus, the competitive

factor is E
E

kα−1
= kα−1. Since the minimum possible frequency is fmin, by setting

k = fmin, the adversary can force an upper bound of (fmin)
α−1 on the competitive

factor.
Case 2: Assume β is known to the algorithm. The pattern in Case 1 can be repeated

with a slight modification. J1 is given with parameters J1(0, E

βα−1 , E
βα ,E). A is forced

to execute J1 at frequency β to guarantee a non-zero total value. At that point, the
adversary introduces J2 with the following parameters J2(E, E

f α−1
min

, E
f α

min
,E). Observe

that J2 can be executed by the adversary at frequency fmin, yielding a value of E

f α−1
min

.

Further, since fmin < β , the processor loading factor can be easily shown to be β ,
satisfying the assumption. A has a value of E

βα−1 and thus the competitive factor is

bounded by (
fmin
β

)α−1. �

The case where β ≤ fmin is relatively simple: consider the algorithm EC-EDF
using a constant speed fmin. Notice that this algorithm does never spend more energy
than required while processing jobs, as the system limitations do not allow processing
below fmin. Also, due to the same constraint, fmin is the least possible frequency
with which the adversary can process jobs. As such, this case can be shown to be
equivalent to the non-DVS case (Sect. 3), where both the online algorithm and the
adversary had to process jobs at the same (constant) speed. Thus, all the results of
Sect. 3 apply.

As a consequence of Theorem 6, the upper bound on competitive factor ap-
proaches zero as fmin → 0 and β → 1.

6.1 Semi-online algorithm EC-DVS∗

In this subsection we present a semi-online algorithm EC-DVS∗ that uses the knowl-
edge of both β and the maximum job size in the input instance. EC-DVS∗ is a variant
of EC-EDF∗ for DVS settings where β > fmin. First, we will describe a variant of
EC-EDF called EC-DVS which will later be used by EC-DVS∗.

Real-Time Syst (2010) 46: 88–120 109

The EC-DVS algorithm uses an admission test similar to that of EC-EDF and
admits a new job to the system if and only if there is enough remaining energy to
completely execute both the new job and the remaining workload from all pending
admitted jobs. All admitted jobs are executed in EDF order and at a constant speed β .

Observe that in executing a workload of W units, EC-DVS spends βα−1 · W units
of energy. Thus, formally, at time t , when the system has remaining energy bud-
get of Er units and remaining workload of R units from all pending admitted jobs,
EC-DVS admits a newly arriving job Ji(t, ci ,Di, ei) if and only if

Er ≥ βα−1 · (ci + R)

Lemma 9 If the largest job size in the input instance cl is such that cl ≤ 1
2 (E

βα−1)

then EC-DVS has a competitive factor of 1
2 (

fmin
β

)α−1.

Proof If EC-DVS rejects a job Ji with execution time ci , then it implies that EC-DVS
has depleted (or will eventually deplete upon completely executing the remaining
workload of pending admitted jobs) at least E′ = E − βα−1ci + δ units of energy. In
other words, EC-DVS has admitted a workload of at least E′

βα−1 units.
The following property of EC-DVS can be easily verified in the lines of Propo-

sition 2: EC-DVS executes all admitted jobs to completion before their respective
deadlines without violating the system’s energy constraints. Thus, EC-DVS guaran-
tees a value of at least E′

βα−1 . Since ci ≤ cl ≤ 1
2 (E

βα−1), we have:

E′

βα−1
= E − βα−1ci + δ

βα−1
≥ E − βα−1cl + δ

βα−1

E′

βα−1
≥

E − (βα−1 · 1
2 (E

βα−1)) + δ

βα−1

E′

βα−1
≥ 1

2

(
E

βα−1

)

Since the optimal algorithm can make a value of at most E

f α−1
min

, the competitive

factor of EC-DVS is 1
2 (

fmin
β

)α−1. �

The EC-DVS∗ algorithm is based on EC-DVS and has the following rules. If the
maximum job size in the input instance cl is such that cl > 1

2 (E

βα−1) then EC-DVS∗

just waits for the job Jl with execution time cl and executes it at speed f = cl

Dl
, where

Dl is the deadline of Jl . Since the processor cannot run at a frequency lower than
fmin and the minimum execution requirement of any job cannot exceed the system
energy budget E, f is guaranteed to be in the range [fmin, β]. On the other hand, if
cl ≤ 1

2 (E

βα−1) then EC-DVS∗ follows the rules of EC-DVS.

Lemma 10 EC-DVS∗ has a competitive factor of 1
2 (

fmin
β

)α−1.

110 Real-Time Syst (2010) 46: 88–120

Proof Let cl denote the maximum job size in the input instance.
Case 1: If cl > 1

2 (E

βα−1) then EC-DVS∗ makes a value of at least cl while the

optimal online algorithm can make at most E

f α−1
min

. Thus, the competitive factor of

EC-DVS∗ is 1
2 (

fmin
β

)α−1.

Case 2: If cl ≤ 1
2 (E

βα−1) then EC-DVS∗ follows EC-DVS and thus has a competitive

factor of 1
2 (

fmin
β

)α−1 (Lemma 9).

From Cases 1 and 2, EC-DVS∗ has a competitive factor of 1
2 (

fmin
β

)α−1. �

Lemma 11 below establishes the upper bound on the best achievable competitive
factor by any semi-online algorithm that uses only the knowledge of β and the largest
job size in the input instance.

Lemma 11 No semi-online algorithm with the knowledge of β and the largest job
size in the input instance can achieve a competitive factor greater than (

fmin
β

)α−1.

Proof The adversary constructs an instance of back-to-back jobs (Ji+1 released at
the deadline of Ji) with the following parameters: c = δ, D = δ

f α−1
min

and e = f α−1
min · δ.

This sequence of jobs ends either when the total workload released by the adversary
reaches E

f α−1
min

or A executes one of these jobs at time t < E

f α−1
min

. We will consider both

of these cases separately. Let cl denote the maximum job size in the input instance.

• Case A: The total workload released by the adversary reaches E

f α−1
min

. In this case,

the adversary introduces job J (E

f α−1
min

, cl,
cl

β
, βα−1cl). Observe that job J ensures

the loading factor of the input instance created by the adversary is β . Since the
online algorithm A has not executed any job (and hence not depleted any energy
budget) until the release time of job J , it can execute job J and accrue a value
no more than cl . On the other hand, executing all jobs except job J , the adversary
makes a total value of E

f α−1
min

. Thus, the competitive factor is f α−1
min · cl

E
. Since the

minimum energy requirement of cl must not exceed E we have: βα−1cl ≤ E. Thus,
setting cl = E

βα−1 the competitive factor is bounded by (
fmin
β

)α−1 .

• Case B: A executes one of the jobs at time t < E

f α−1
min

. In this case, A has depleted

f α−1
min · δ units of energy and accrued a value of δ. At this stage the adversary in-

troduces job J (t, cl,
cl

β
,E). Observe again that job J ensures the instance created

by the adversary has a loading factor β . By executing J at frequency β the adver-
sary makes a value of cl . The competitive factor is δ

cl
, where cl ≤ E

βα−1 . Thus the
competitive factor in this case can be arbitrarily small.

From Cases A and B above we conclude that no semi-online algorithm with the
knowledge of β and the largest job size in the input instance can achieve a competitive
factor greater than (

fmin
β

)α−1. �

Corollary 4 The competitive factor of EC-DVS∗ is 0.5 times that of the optimal semi-
online algorithm in these settings.

Real-Time Syst (2010) 46: 88–120 111

7 Resource augmentation

While the competitive analysis characterizes performance guarantees in the worst-
case scenarios, some recent efforts exploited alternative means to quantify the
performance of online algorithms. Resource augmentation technique, introduced
by Phillips et al. (2002) and popularized by Kalyanasundaram and Pruhs (1995),
is such a framework. With resource augmentation, the online algorithm is given ad-
ditional resources compared to the adversary in an effort to compensate for the lack
of knowledge about the future. For example, the online algorithm may run on a
faster processor (Kalyanasundaram and Pruhs 1995), or it may have access to addi-
tional CPUs (Baruah 1998). In the following, we show how resource augmentation
can help significantly improve the performance of EC-EDF, especially when emax

E
is

close to one.
First, we explore the implications of providing the online algorithm EC-EDF with

additional energy. Specifically, if the adversary possesses an energy budget of E units,
then EC-EDF is assumed to have an initial energy of (1+x)E units, where x > 0. We
know from Theorem 2 that given an initial energy of E, EC-EDF guarantees a value
of at least E − emax. Thus, with (1 + x)E units of initial energy, EC-EDF guarantees
a value of at least (1 + x)E − emax. The competitive factor is 1 + x − emax

E
. Hence, if

x = emax
E

then EC-EDF has a competitive factor of 1.

Proposition 4 The online algorithm EC-EDF achieves a competitive factor of 1 com-
pared to an adversary with E units of energy budget, if it is allocated (E+emax) units
of energy.

Further, since emax
E

≤ 1, we have:

Corollary 5 If EC-EDF is provided twice as much energy as the clairvoyant adver-
sary Cadv, it becomes at least as powerful as Cadv.

Using the terminology made popular by the seminal resource augmentation analy-
sis paper (Kalyanasundaram and Pruhs 1995), we can state the following thanks to
Proposition 4: Energy is as powerful as clairvoyance.

In the following, we describe a practical way to effectively give more energy to
EC-EDF. Specifically, we augment the EC-EDF scheduler with the knowledge of the
absolute loading factor β , and a DVS-capable processor. We will show that EC-EDF
can successfully compete with a clairvoyant adversary without DVS feature. With this
resource augmentation, EC-EDF always executes all jobs at speed f = β . We refer to
this modified EC-EDF as β-EC-EDF. Observe that since the processor always runs
at constant speed β , to deplete e units of energy, the processor must execute e

βα−1

units of workload. Thus, the initial energy budget of β-EC-EDF is effectively 1
βα−1

times that of the adversary. Following Theorem 2, β-EC-EDF guarantees a value of
E

βα−1 − emax.

Proposition 5 β-EC-EDF has a competitive factor of E−βα−1emax
βα−1E

.

112 Real-Time Syst (2010) 46: 88–120

As a consequence of Proposition 5 and since emax ≤ E, we have the following:

Corollary 6 If β ≤ (1
2)

1
α−1 , β-EC-EDF is as powerful as a clairvoyant adversary

without DVS.

8 Relationship to the knapsack problem

While inspired by existing articles on the competitive analysis of real-time schedul-
ing algorithms under overload, our study has introduced the novel dimension of hard
energy constraint for competitive analysis of underloaded real-time systems. How-
ever, a careful look suggests some interesting similarities between energy-constrained
real-time scheduling (ECRTS) and the well-known knapsack (KNP) problems. In this
section, we investigate these similarities and clarify the unique characteristics of our
problem. We first formally define the knapsack problem:

Knapsack Problem (KNP) Given a knapsack of capacity W , a set K of n items each
with weight wi and value vi , select a subset S ⊆ K such that

∑
i∈S vi is maximized

subject to the constraint
∑

i∈S wi ≤ W .

The offline version of the knapsack problem is known to be NP-Hard. If we con-
sider the offline version of our ECRTS problem for non-uniform density settings, we
can see some parallelism. Consider the special case of the offline ECRTS problem
where all jobs have the same release time, deadline, but possibly different values and
execution times (non-uniform value density settings). In this special case, the dimen-
sion of job scheduling is trivial (as the system is underloaded and there is a common
deadline, any scheduling order is valid). Thus, the only dimension that needs to be
addressed is that of selecting a subset of jobs to maximize the system value subject
to the energy budget constraint. As such, this special case maps directly to the offline
KNP problem.

On the other hand, in the more general offline ECRTS problem settings where jobs
may have arbitrary release times and deadlines, scheduling also becomes an issue in
addition to the selection of the jobs. Now, since we assume an underloaded system,
the general offline ECRTS problem can be mapped to the offline knapsack in two
steps: first, selecting the set of jobs to be executed using the offline knapsack solution,
and second, using preemptive EDF to schedule the selected set of jobs in feasible
manner. After this transformation, standard heuristics and approximation algorithms
developed for the offline KNP problem (Martello and Toth 1990) could be used to
address the offline ECRTS problem.

However, the focus of this paper is online settings where parameters of jobs are
not available in advance. As a result, one needs to compare the online KNP and online
ECRTS problems. The online version of the knapsack problem occurs when the items
are presented one after the other, and the algorithm has to make decisions about ac-
cepting or rejecting an item without seeing future items. Research efforts have studied
the online knapsack problem using the competitive analysis framework and there are
two variants of the online problem (Iwama and Taketomi 2002).

Real-Time Syst (2010) 46: 88–120 113

• Irrevokable Knapsack (IR-KNP): In this version once the algorithm accepts an
item, it cannot revoke or undo its decision at a later point of time. Thus, the online
algorithm cannot replace an item it accepted in the past with a currently available
and more valuable item. For the IR-KNP problem, there does not exist a compet-
itive algorithm (i.e. an algorithm with a non-zero competitive factor) (Iwama and
Taketomi 2002).

• Revokable Knapsack (R-KNP): In this version, the algorithm is allowed to drop
items it accepted in the past, in favor of more valuable items. However, the items
that are rejected or dropped in favor of more valuable items cannot be later ac-
cepted. In other words only the decision of accepting an item can be revoked (no-
tice that the problem becomes offline if both accept and reject decisions can be
revoked). For the IR-KNP problem there exists a constant competitive optimal al-
gorithm with a competitive factor of 2√

5+1
(Iwama and Taketomi 2002).

To start with, in online ECRTS, the concept of revoking a decision is not ap-
plicable. This is because with the knapsack problem, when an accepted item is later
removed (as in R-KNP), the space (or resource) it held becomes available. However,
in ECRTS, the resource (or energy) spent in executing a job cannot be reclaimed at a
later time. Thus, the results of R-KNP do not apply to our settings.

For IR-KNP, only a limited mapping is possible. Specifically, consider a special
instance of the online ECRTS where jobs are released back-to-back and one at a time
(i.e. the release time of the ith job coincides with the deadline of the (i − 1)th job).
Assume non-uniform value densities. Since, at any given time the scheduler has only
one job to execute and further a new job is released only when an existing job ex-
pires, this specific instance of ECRTS maps to IR-KNP. On the other hand, for the
general online ECRTS instance, where job release times and deadlines can be arbi-
trary, execution intervals of jobs will overlap. As a result, scheduling will become
a major dimension of the problem, while it is non-existent in KNP problem. More-
over, the scheduler can be idling or non-idling, preemptive or non-preemptive; jobs
can be executed partially and later abandoned, and a proper admission test must be
designed. Obviously, in such settings, there does not exist a clear one-to-one map-
ping between online ECRTS and IR-KNP problems, as the latter is subsumed by the
former.

The main result available in the competitive analysis of the IR-KNP problem is
the non-existence of a constant-competitive algorithm (which does not imply much
for the ECRTS settings). In this paper, we formally derived and quantified the upper
bound on best achievable competitive factor in terms of maximum job size (emax)
and energy budget (E). Also, we provide an algorithm EC-EDF that uses a non-
trivial admission test rule and scheduling policy in order to achieve this upper bound.
Finally, the considerations of DVS and resource augmentation dimensions do not
have any immediate mapping in the KNP problems.

9 Conclusion

In this paper, we undertook a preliminary study of competitive analysis for energy-
constrained online real-time scheduling in underloaded settings. We proposed an op-

114 Real-Time Syst (2010) 46: 88–120

timal algorithm EC-EDF which achieves the best possible performance guarantee ob-
tainable by any online algorithm. Further, by assuming the knowledge of the largest
job size, we proposed an optimal semi-online algorithm EC-EDF∗, which has a com-
petitive factor of 0.5. We extended our analysis and provided fundamental results in
various models and settings including those of non-uniform value density and DVS.
To the best of our knowledge, this is the first theoretical investigation of the problem
of online real-time scheduling in underloaded but energy-constrained environments.
We hope that this research effort will trigger further research in this direction. In par-
ticular, obtaining competitive factors for more general power models (that explicitly
consider, for example, off-chip and on-chip workload components as done in Aydin
et al. 2006) is an interesting research avenue.

Acknowledgements This work has been supported, in part, by US National Science Foundation grants
CCF-0915681, CNS-072047 and CNS-546244 (CAREER Award). We would like to also extend our sin-
cere thanks to the anonymous reviewers who helped us to improve our paper through their suggestions.

Appendix 1: Proof of Theorem 1

To prove Theorem 1, we are going to create an input sequence ψ such that for any
given positive small value δ and for any online algorithm A, A accrues a value no
more than E − emax + δ and the adversary gains a total value of E. Thus, the compet-
itive factor of A will be shown to be no better than E−emax

E
. Recall that E and ei for

any job Ji are exact multiples of δ. This implies emax, the upper bound on the size of
any job, is also an exact multiple of δ.

Let E = k1 · δ and emax = k2 · δ. Where, k1 and k2 are integers such that k1 ≥ k2,
k1 ≥ 1 and k2 ≥ 1. In the following, we feed the algorithm A the input sequence
ψ such that there exists a time t , where A obtains a total value of no more than
E − emax + δ. Further, A will be unable to accrue any additional value after time t .

We start with time t = 0. The adversary introduces (k1 − k2 + 1) sequential jobs
with size δ (recall from Sect. 2, that sequential jobs have zero laxity and are released
back to back one at a time). At time t1 = (k1 −k2 +1) ·δ, let m ≥ 0 denote the number
of jobs that are not executed by A. We have the following three cases.

• Case 1: m = 0. In this case A has executed to completion a total workload of
W = (k1 − k2 + 1) · δ, accruing a value of W units while also depleting W units of
the initial energy budget E. At time t1, the adversary introduces a single job with
size emax = k2 · δ. With only (k2 − 1) · δ units of energy left, A cannot execute this
job. On the other hand, the adversary by executing (k1 − k2) jobs of size δ and the
job with size emax accrues a value of (k1 − k2) · δ + emax. Thus, the competitive
factor is given by:

(k1 − k2 + 1) · δ
(k1 − k2) · δ + emax

= E − emax + δ

E

• Case 2: m ≥ k2. In this case A has skipped execution of at least k2 jobs. Thus, at
time t1, the value accrued by A is no more than (k1 − 2k2 + 1) · δ and its remain-

Real-Time Syst (2010) 46: 88–120 115

ing energy budget is no more than (2k2 − 1) · δ. At t1, the adversary introduces a
single job of size emax. By executing this job, A can increase its value to at most
(k1 − 2k2 + 1) · δ + emax. Similar to Case 1 above, the adversary makes a value
of E by executing (k1 − k2) jobs of size δ along with the job of size emax. The
competitive factor is given by:

(k1 − 2k2 + 1) · δ + emax

E
= E − emax + δ

E

• Case 3: 0 < m < k2. In this case, first observe that in the time interval [0, t1], A ac-
crues a value of W1 = (k1 − k2 + 1 − m) · δ. Starting from time t1, the adversary
continues to incrementally release sequential jobs of size δ until one of the follow-
ing two conditions holds: (1) k2 jobs have been released since time t1 and A has
executed 0 ≤ m′ < m of these jobs, or, (2) A executes m of these jobs. We have the
following two sub-cases.
– Case 3a: k2 jobs of size δ have been released and A has executed 0 ≤ m′ < m

of these jobs. Thus, in the time interval (t1, (k1 + 1) · δ], A accrues a value of
W2 = m′ · δ. The adversary can accrue a total value of E by executing (k1 − k2)

jobs released in interval [0, t1] and k2 jobs released interval [t1, (k1 + 1) · δ]. The
competitive factor is given by:

W1 + W2

E
= (k1 − k2 + 1 + (m′ − m)) · δ

E

Since m′ < m, we have

(k1 − k2 + 1 + (m′ − m)) · δ
E

<
(k1 − k2 + 1) · δ

E
= E − emax + δ

E

– Case 3b: A executes m of these jobs. Let t2 ≤ (k1 + 1) · δ be the time when A
completes executing m jobs. At time t2, A has accrued a value of

W = W1 + m · δ = (k1 − k2 + 1) · δ = E − emax + δ

Note that at time t2 the remaining energy budget of A is (k2 −1) ·δ units. At time
t2, the adversary releases a single job with size emax which A cannot execute.
The adversary, by executing (k1 − k2) jobs released in interval [0, t1) and the job
with size emax released at t2, accrues a total value of E. Thus, the competitive
factor is given by W

E
= E−emax+δ

E
.

From Cases 1, 2, and 3, we can conclude that no online algorithm can achieve a
competitive factor greater than E−emax+δ

E
. Since δ

E
can be arbitrarily low, the upper

bound on the achievable competitive factor is given by E−emax
E

.

Appendix 2: Proof of Theorem 3

In order to prove Theorem 3, we will provide an input instance for which the ratio of
the total value accrued by any online algorithm A to that of a clairvoyant adversary
cannot be more than 1

(kmax)
emax

E

.

116 Real-Time Syst (2010) 46: 88–120

This instance consists of a series of periods P1,P2, . . . ,Pm m ≥ 1. The exact
number of periods (m), as well as the exact number of jobs released in each period,
depend on the actions of the algorithm A. Our strategy will consist in showing that,
in each period, the ratio of the value accrued by A to that of the adversary cannot
be greater than 1

(kmax)
emax

E

. This, in turn, will establish the upper bound over all the

periods, that is, the competitive factor of the entire input instance.
Let the remaining energy of A at the beginning of the period Pi be Ei . Clearly,

E1 = E ≥ emax. All the jobs released within a period are released back-to-back and
with laxity zero; that is, at the deadline of a job, a new job is released. We first
describe the structure of the first period P1 and then show how it can be generalized
to multiple periods.

In the first period, first a job with value density kmin and size X ≤ emax is released
by the adversary. The adversary keeps releasing such jobs with value density kmin and
size X back to back (i.e. the following job is released at the deadline of the previous
one) until one of the following conditions occurs:

a. Either the online algorithm A does not accept any of these jobs until the total
energy requirement (the total size) of the released jobs in period P1 reaches E1.

In this case, the adversary stops releasing any new jobs. No more periods are
introduced and this marks the end of the input instance as well. While A obtained
a value of zero in this period, the adversary announces that it has accrued a non-
zero value by executing all �E1

X

 jobs that it has released; yielding the total value

ratio zero in this (last) period.
b. Or, the online algorithm A accepts one of these jobs at some point before their

total energy requirement does not exceed E1.
At this point, the adversary releases another job of size X but with the value

density k · kmin at the deadline of the first job accepted by A. If A executes this
second job as well, the adversary releases a third job of size X, and value density
k2 · kmax at the deadline of the second job and so on. This pattern continues,
i.e. the adversary keeps releasing jobs where the value density of each job is
equal to k times that of the previous one, until one of the following conditions
is satisfied: either the remaining energy of the player becomes strictly less than
emax, or, A rejects executing a job even though its remaining energy is greater
than or equal to emax. We examine each of these cases in detail below.

b1. After executing s + 1 jobs with value densities kmin, k · kmin, . . . , k
s · kmin, the

remaining energy of A becomes strictly smaller than emax.
In this case, as the last job of this period (and as the last job of the entire input

instance), the adversary releases a job of size emax, zero laxity and value density
ks+1 · kmin. Observe that A cannot execute this job due to the energy deficiency.
However, the adversary announces that it has skipped all the jobs with value
density kmin, but executed the s jobs with value densities k · kmin, . . . , k

s · kmin
and the last one with value density ks+1 · kmin in this period.3

3Observe that, in this case, E1 = (s +1) ·X +Y where s ≥ 0 and 0 ≤ Y < emax. Recalling that E1 ≥ emax
and X ≤ emax, we can infer that E1 ≥ (X + Y) ≥ emax; because if this was not true, there would not be a
non-negative integer s for which E1 = (s + 1) · X + Y holds. So, we can re-write E1 as s · X + (X + Y)

Real-Time Syst (2010) 46: 88–120 117

Thus, the ratio of the values of accrued by A and the adversary in this last
period is given by:

c = (1 + k + k2 + · · · + ks) · X · kmin

(k + k2 + · · · + ks) · X · kmin + (ks+1kmin) · emax

≤ (1 + k + k2 + · · · + ks) · X · kmin

(k + k2 + · · · + ks) · X · kmin + (ks+1kmin) · X
≤ 1

k
.

b2. Or, after executing s + 1 jobs with value densities kmin, k · kmin, . . . , k
s · kmin,

A rejects executing the job with value density ks+1 · kmin even though its remain-
ing energy is greater than or equal to emax.

In this case, in this period A accrues a total value of kmin · X · ∑s
i=0 ki . Then,

the adversary announces that it has skipped all the jobs it has released with
value density kmin; instead, it has executed the (s + 1) jobs with value densities
k · kmin, . . . , k

s · kmin, k
s+1 · kmin, making a total value of kmin · X · ∑s+1

i=1 ki .
Hence, the ratio of the total value of A to that of the adversary in this period is:

c = kmin · X · ∑s
i=0 ki

kmin · X · ∑s+1
i=1 ki

= 1

k
. (1)

At this point, this period ends and we start a new period with the same job
release pattern as that in the previous one. Observe that, up to this point, the
adversary and A have executed exactly the same number of jobs with the same
size; hence, at the beginning of the next period, their remaining energy levels are
identical. Further, by the very nature of the condition that must be satisfied at the
beginning of the case (b2), this energy level is definitely greater than or equal to
emax.

Thus, the adversary starts a new period by releasing jobs of size X and value
density kmin back to back, until A picks up one of these and the whole analysis
above can be repeated to establish that the value ratio at the end of the second,
third, and all subsequent periods cannot exceed 1

k
. Obviously, this sequence of

periods will end after a finite number of steps, either when A does not pick up
any job in the sequence of back-to-back released jobs with value density kmin (in
case (a)), or by the triggering condition of the case (b1) above (as the remaining
energy monotonically decreases whenever A executes a job). By considering the
fact that the value ratio cannot exceed 1

k
in any of the periods, we show that the

competitive factor is indeed bounded by 1
k

.
We now examine how large k can be. Let Pj be the period during which the

algorithm A executes the maximum number of jobs. The last job released by the
adversary in this period Pj has value density ki+1. We will fix the value density

where (X +Y) ≥ emax; that is, the adversary has sufficient energy to execute the s jobs with size X, along
with the last one of size emax.

118 Real-Time Syst (2010) 46: 88–120

of this job to kmax. Thus, ki+1 = kmax. Observe that A executed exactly i + 1
jobs in this period Pj . Note that the number of jobs executed by A in the period
Pj puts a constraint on i + 1; that is, (i + 1) · X ≤ E. That is, (i + 1) can be,

at most, equal to E
X

. As a result we obtain, kmax = ki+1 = k
E
X ; or equivalently,

k = (kmax)
X
E . To maximize k, we need to choose the maximum possible value

for X, which is equal to emax. In that case, the competitive factor c is bounded
by at most 1

k
= 1

(kmax)
emax

E

, completing the proof.

References

AlEnawy TA, Aydin H (2005) Energy-constrained scheduling for weakly-hard real-time systems. In: Pro-
ceedings of the real-time systems symposium (RTSS’05)

AlEnawy TA, Aydin H (2004) On energy-constrained real-time scheduling. In: Proceedings of the Euro-
pean conference on real-time systems (ECRTS’04)

Aydin H, Devadas V, Zhu D (2006) System-level energy management for periodic real-time tasks. In:
Proceedings of real-time systems symposium (RTSS’06)

Aydin H, Melhem R, Mosse D, Mejia-Alvarez P (2004) Power-aware scheduling for periodic real-time
tasks. IEEE Trans Comput 53(10)

Bansal N, Kimbrel T, Pruhs K (2004) Dynamic speed scaling to manage energy and temperature. In:
Symposium on foundations of computer science (FOCS’04)

Baruah S, Rosier L, Howell R (1990) Algorithms and complexity concerning the preemptive scheduling
of periodic, real-time tasks on one processor. In: Real time systems(2)

Baruah S, Koren G, Mishra B, Raghunathan A, Rosier L, Shasha D (1991a) Online scheduling
in the presence of overload. In: Proceedings of the symposium on foundations of computer science
(FOCS’91)

Baruah S, Koren G, Mao D, Mishra B, Raghunathan A, Rosier L, Shasha D, Wang F (1991b) On the com-
petitiveness of online real-time task scheduling. In: Proceedings of the real-time systems symposium
(RTSS’91)

Baruah S (1998) Overload tolerance for single-processor workloads. In: Proceedings of the real-time tech-
nology and application symposium (RTAS’98)

Baruah S, Haritsa J (1997) Scheduling for overload in real-time systems. IEEE Trans Comput 46(9)
Baruah S, Hickey ME (1998) Competitive online scheduling of imprecise computations. IEEE Trans Com-

put 47(9)
Borodin A, El-Yavin R (1998) Online computation and competitive analysis. Cambridge University Press,

Cambridge
Buttazzo G (2005) Hard real-time computing systems: predictable scheduling algorithms and applications,

2nd edn. Springer, Berlin
Chan HL, Chan WT, Lam TW, Lee LK, Mak KS, Wong P (2007) Energy efficient online deadline schedul-

ing. In: Proceedings of the symposium on discrete algorithms (SODA’07)
Chen JJ, Kuo TW (2005) Voltage scaling scheduling for periodic real-time tasks in reward maximization.

In: Proceedings of the real-time system symposium (RTSS’05)
Dertouzos M, Mok AK (1989) Multiprocessor online scheduling for hard real-time tasks. IEEE Trans

Softw Eng 15(12)
Dertouzos M (1974) Control robotics: the procedural control of physical processes. In: Proceedings of

IFIP congress
Ebenlendr T, Sgall J (2009) Semi online preemptive scheduling: one algorithm for all variants. In: Pro-

ceedings of international symposium on theoretical aspects of computer science (STACS’09)
Garey MR, Johnson DS (1990) Computers and intractability. A guide to the theory of Np-completeness.

Freeman, New York
Iwama K, Taketomi S (2002) Removable online knapsack problems. In: Proceedings of the international

colloquium on automata, languages and programming (ICALP’02)

Real-Time Syst (2010) 46: 88–120 119

Jeffay K, Stone DL (1993) Accounting for interrupt handling costs in dynamic priority task systems. In:
Proceedings of the real-time systems symposium (RTSS’93)

Jeffay K, Stanat DF, Martel CU (1991) On non-preemptive scheduling of periodic and sporadic tasks. In:
Proceedings of the real-time systems symposium (RTSS’91)

Kalyanasundaram B, Pruhs K (1995) Speed is as powerful as clairvoyance. In: Proceedings of the sympo-
sium on foundations of computer science (FOCS’95)

Koren G, Shasha D (1992) D-over: an optimal online scheduling algorithm for overloaded real-time sys-
tems. In: Proceedings of the real-time systems symposium (RTSS’92)

Koren G, Shasha D, Huang SC (1993) MOCA: a multiprocessor online competitive algorithm for real-time
scheduling. In: Proceedings of the real-time systems symposium (RTSS’93)

Lee CH, Shin KG (2004) Online dynamic voltage scaling for hard real-time systems using the EDF algo-
rithm. In: Proceedings of the real-time systems symposium (RTSS’04)

Liu J (2000) Real time systems. Prentice Hall, New York
Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementation. Wiley, New

York
Palis MA (2004) Competitive algorithms for fine-grain real-time scheduling. In: Proceedings of the real-

time systems symposium (RTSS’04)
Phillips C, Stein C, Torng E, Wein J (2002) Optimal time-critical scheduling via resource augmentation.

Algorithmica 163–200
Pillai P, Shin KG (2001) Real-time dynamic voltage scaling for low-power embedded operating systems.

In: Proceedings of the symposium on operating systems principles (SOSP’01)
Pruhs K, Sgall J, Torng E (2004) Maximizing rewards for real-time applications with energy constraints.

In: Leung JYT (ed) The handbook of scheduling, algorithms, models and performance analysis. CRC
press, Boca Raton

Rusu C, Melhem R, Mosse D (2003) Maximizing rewards for real-time applications with energy con-
straints. ACM Trans Embed Comput Syst 2(4)

Rusu C, Melhem R, Mosse D (2002) Maximizing the system value while satisfying time and energy
constraints. In: Proceedings of the real-time system symposium (RTSS’02)

Wu H, Ravindran B, Jensen ED (2007) Utility accrual real-time scheduling under the unimodal arbitrary
arrival model with energy bounds. IEEE Trans Comput 56(10)

Yao F, Demers A, Shenker S (1995) A scheduling model for reduced CPU energy. In: Proceedings of the
symposium on foundations of computer science (FOCS’95)

Vinay Devadas received his B.S. degree in Computer Science and En-
gineering from Visvesvaraya Technological University, Bangalore, In-
dia in 2005 and his M.S. degree in Computer Science from George Ma-
son University, Fairfax, VA in 2007. He is currently a Ph.D. candidate
at the Department of Computer Science, George Mason University. His
research interests include low-power computing, real-time embedded
systems and operating systems.

120 Real-Time Syst (2010) 46: 88–120

Fei Li received the B.S. degree in Computer Science from Jilin Univer-
sity, Changchun, China, in 1997, the M.S., M.Phil., and Ph.D. degrees
in Computer Science from Columbia University, New York, NY, in
2002, 2007, and 2008, respectively. He joined the Department of Com-
puter Science at George Mason University as an Assistant Professor
in 2007. His research interests include online and approximation algo-
rithm design and analysis, combinatorial optimization, and scheduling
algorithms.

Hakan Aydin received the B.S. and M.S. degrees in Control and Com-
puter Engineering from Istanbul Technical University in 1991 and 1994,
respectively, and the Ph.D. degree in computer science from the Univer-
sity of Pittsburgh in 2001. He is currently an Associate Professor in the
Computer Science Department at George Mason University, Fairfax,
Virginia. He has served on the program committees of several confer-
ences and workshops, including the IEEE Real-Time Systems Sympo-
sium and IEEE Real-time Technology and Applications Symposium.
He is currently serving as the Technical Program Committee Chair of
IEEE Real-time Technology and Applications Symposium (RTAS’11).
He was a recipient of the US National Science Foundation (NSF) Fac-
ulty Early Career Development (CAREER) Award in 2006. His re-
search interests include real-time systems, low-power computing, and
fault tolerance.

	Competitive analysis of online real-time scheduling algorithms under hard energy constraint
	Abstract
	Introduction
	Contributions of this paper

	System model, assumptions, and terminology
	Basic results
	Algorithm EC-EDF
	A semi-online algorithm with a constant competitive factor

	Competitive analysis for non-idling and non-preemptive scheduling algorithms
	Non-idling execution settings
	Non-preemptive execution settings
	Non-idling and non-preemptive execution settings

	Non-uniform value densities
	DVS settings
	Semi-online algorithm EC-DVS*

	Resource augmentation
	Relationship to the knapsack problem
	Conclusion
	Acknowledgements
	Appendix 1: Proof of Theorem 1
	Appendix 2: Proof of Theorem 3
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

