Real-Time Syst (2011) 47: 109-142
DOI 10.1007/s11241-011-9117-x

Global scheduling based reliability-aware power
management for multiprocessor real-time systems

Xuan Qi - Dakai Zhu - Hakan Aydin

Published online: 5 February 2011
© Springer Science+Business Media, LLC 2011

Abstract Reliability-aware power management (RAPM) has been a recent research
focus due to the negative effects of the popular power management technique dy-
namic voltage and frequency scaling (DVFS) on system reliability. As a result, sev-
eral RAPM schemes have been studied for uniprocessor real-time systems. In this
paper, for a set of frame-based independent real-time tasks running on multiproces-
sor systems, we study global scheduling based RAPM (G-RAPM) schemes. Depend-
ing on how recovery blocks are scheduled and utilized, both individual-recovery and
shared-recovery based G-RAPM schemes are investigated. An important dimension
of the G-RAPM problem is how to select the appropriate subset of tasks for en-
ergy and reliability management (i.e., scale down their executions while ensuring
that they can be recovered from transient faults). We show that making such decision
optimally (i.e., the static G-RAPM problem) is NP-hard. Then, for the individual-
recovery based approach, we study two efficient heuristics, which rely on local and
global task selections, respectively. For the shared-recovery based approach, a linear
search based scheme is proposed. The schemes are shown to guarantee the timing
constraints. Moreover, to reclaim the dynamic slack generated at runtime from early
completion of tasks and unused recoveries, we also propose online G-RAPM schemes
which exploit the slack-sharing idea studied in previous work. The proposed schemes
are evaluated through extensive simulations. The results show the effectiveness of
the proposed schemes in yielding energy savings while simultaneously preserving

This work was supported in part by NSF awards CNS-0720651, CNS-0720647, CNS-1016855,
CNS-1016974, and NSF CAREER Awards CNS-0546244 and CNS-0953005.

X. Qi - D. Zhu (X0)
Dept. of Computer Science, University of Texas at San Antonio, One UTSA Circle, San Antonio,

TX 78249, USA
e-mail: dzhu@cs.utsa.edu

H. Aydin
Dept. of Computer Science, George Mason University, 4400 University Drive, MS 4A5, Fairfax,
VA 22030, USA

@ Springer

mailto:dzhu@cs.utsa.edu

110 Real-Time Syst (2011) 47: 109-142

system reliability and timing constraints. For the static version of the problem, the
shared-recovery based scheme is shown to provide better energy savings compared
to the individual-recovery based scheme, in virtue of its ability to leave more slack
for DVFS. Moreover, by reclaiming the dynamic slack generated at runtime, online
G-RAPM schemes are shown to yield better energy savings.

Keywords Energy management - Dynamic voltage and frequency scaling -
Reliability management - Multiprocessor real-time systems

1 Introduction

Energy management has become an important research area in the last decade, in
part due to the proliferation of embedded computing devices, and remains as one of
the grand challenges for the research and engineering community, both in industry
and academia (ITRS 2008). One common strategy to save energy in computing sys-
tems is to operate the system components at low-performance (and thus low-power)
states, whenever possible. As one of the most effective and widely-deployed power
management techniques, dynamic voltage and frequency scaling (DVFS) exploits the
convex relation between processor dynamic power consumption and processing fre-
quency/supply voltage (Burd and Brodersen 1995). In essence, the DVFS technique
scales down simultaneously the processing frequency and supply voltage to save en-
ergy (Yao et al. 1995).

For real-time systems where tasks have stringent timing constraints, scaling down
system processing frequency (speed) may cause deadline misses and special provi-
sions are needed. In the recent past, many research studies explored the problem
of minimizing energy consumption while meeting the timing constraints for vari-
ous real-time task models by exploiting the available static and dynamic slack in
a system (Aydin et al. 2004; Pillai and Shin 2001; Saewong and Rajkumar 2003;
Zhu et al. 2003). However, recent studies show that DVFS has a direct and adverse
effect on the rate of transient faults (especially for those induced by electromagnetic
interference and cosmic ray radiations) (Degalahal et al. 2005; Ernst et al. 2004;
Zhu et al. 2004). Therefore, for safety-critical real-time embedded systems (such as
satellite and surveillance systems) where reliability is as important as energy effi-
ciency, reliability-cognizant energy management has become an important objective.

A cost-effective approach to tolerate transient faults is the backward error re-
covery technique in which the system state is restored to a previous safe state and
the computation is repeated (Pradhan 1986). By adopting a backward error recov-
ery approach while considering the negative effects of DVFS on transient faults,
we have introduced a reliability-aware power management (RAPM) scheme (Zhu
2006). The central idea of the RAPM scheme is to exploit the available slack
to schedule a recovery task at the dispatch time of a task before utilizing the
remaining slack for DVFS to scale down the task’s execution and save energy,
thereby preserving the system reliability (Zhu 2006). Following this line of re-
search, several RAPM schemes have been proposed for various task models, schedul-
ing policies, and reliability requirements (Dabiri et al. 2008; Sridharan et al. 2008;

@ Springer

Real-Time Syst (2011) 47: 109-142 111

Zhao et al. 2009; Zhu and Aydin 2006, 2007; Zhu et al. 2007, 2008a, 2008b), all of
which have focused on uniprocessor systems. For a system with multiple DVFS-
capable processing nodes, Pop et al. developed a constraint-logic-programming
(CLP) based solution to minimize energy consumption for a set of dependent tasks
represented by directed acyclic graphs (DAGs), where the user-defined reliability
goal is transformed to the objective of tolerating a fixed number of transient faults
through re-execution (Pop et al. 2007).

In contrast to the existing work, in this paper, for a set of independent frame-
based real-time tasks that share a common deadline, we propose global scheduling
based RAPM (G-RAPM) schemes to minimize energy consumption while preserving
system reliability in multiprocessor real-time systems. We consider both individual-
recovery and shared-recovery based schemes. In general, there are two major para-
digms in multiprocessor real-time scheduling: the partitioned and global approaches
(Dertouzos and Mok 1989; Dhall and Liu 1978). For partitioned scheduling, tasks
are statically mapped to processors and a task can only run on the processor to which
it is assigned. After mapping tasks to processors, applying the existing uniproces-
sor RAPM schemes on each processor can be straightforward. In contrast, in global
scheduling, tasks can run on any processor and migrate between processors at run-
time depending on tasks’ dynamic behaviors, which makes the RAPM problem more
challenging. Moreover, with the emergence of multicore processors where process-
ing cores on a chip can share the last level cache, it is expected that the migration
cost (which has been the traditional argument against global scheduling) can be sig-
nificantly reduced. Hence, in this paper, we focus on investigating global scheduling
based RAPM schemes for multiprocessor real-time systems.

The main contributions of this paper can be summarized as follows. First, for
individual-recovery based approach (where a recovery task is scheduled for each se-
lected task and the execution of selected tasks is then scaled down accordingly), we
show that the static G-RAPM problem is NP-hard. Then, we propose two heuristic
schemes, which are characterized by global and local task selections, respectively,
depending on how the system slack is distributed and when a subset of tasks are
selected for energy and reliability management. Observing the uneven time alloca-
tion for tasks in the G-RAPM schemes, the execution orders (i.e., priorities) of tasks
are determined through a reverse dispatching process in the global queue to ensure
that all tasks can finish their executions in time. For shared-recovery based approach,
where tasks whose executions are scaled down on one processor share a common re-
covery block, a linear search based scheme is explored to find out the subset of tasks
that should be managed. Note that, the unselected tasks will run at the maximum
frequency to preserve system reliability.

In addition, to reclaim the dynamic slack generated from early completion of tasks
or unused recovery blocks, we extend our previous work on slack sharing in global
scheduling based dynamic power management to the reliability-aware settings. The
proposed G-RAPM schemes are evaluated through extensive simulations. The results
show the effectiveness of the proposed G-RAPM schemes in preserving system re-
liability while achieving significant energy savings for multiprocessor real-time sys-
tems. For the static problem, the shared-recovery based scheme is shown to provide
additional savings compared to the individual-recovery based schemes, due to its po-
tential to leave more slack more DVFS. By reclaiming the dynamic slack generated

@ Springer

112 Real-Time Syst (2011) 47: 109-142

at runtime, dynamic G-RAPM schemes can further scale down the processing fre-
quency of the selected tasks and manage more tasks, yielding higher energy savings.

The remainder of this paper is organized as follows. Section 2 reviews the re-
lated work. Section 3 presents the system models and formulates the global schedul-
ing based RAPM (G-RAPM) problem after reviewing the key idea of RAPM. In
Sect. 4, for the individual-recovery based approach, both static heuristics and dy-
namic schemes are proposed. Section 5 presents the shared-recovery based static and
online adaptive G-RAPM schemes. Section 6 discusses the simulation results. We
conclude the paper in Sect. 7.

2 Related work

The DVFS technique has been studied extensively in recent past for single-processor
real-time embedded systems (Aydin et al. 2001; Ishihara and Yasuura 1998; Pillai
and Shin 2001). For multiprocessor systems, Aydin and Yang studied the problem
of partitioning periodic real-time tasks among multiple processors to minimize the
dynamic energy consumption (Aydin and Yang 2003). Their results show that, when
the earliest deadline first (EDF) scheduling is adopted on each processor, balanc-
ing the workload among all processors evenly gives the optimal energy consumption
and the general problem of minimizing energy consumption in partitioned multi-
processor real-time system is NP-hard in the strong sense even when the feasibility is
guaranteed a priori (Aydin and Yang 2003). The work was extended to consider rate
monotonic scheduling (RMS) in later work (AlEnawy and Aydin 2005). Anderson
and Baruah investigated how to synthesize a multiprocessor real-time system with
periodic tasks such that the energy consumption is minimized at runtime (Anderson
and Baruah 2004). Chen et al. proposed a series of approximation algorithms to im-
prove energy-efficiency of multiprocessor real-time systems, for both frame-based
tasks and periodic tasks, with and without leakage power consideration (Chen et al.
2004, 2006; Chen 2005; Yang et al. 2005). In our previous work, we developed slack
reclamation and slack sharing algorithms for energy-aware real-time multiprocessor
systems under global scheduling (Zhu et al. 2003, 2004). More recently, Choi and
Melhem studied the interplay between parallelism of an application, program perfor-
mance, and energy consumption (Cho and Melhem 2010). For an application with a
given ratio of serial and parallel portions and the number of processors, the authors
derived optimal frequencies allocated to the serial and parallel regions of the appli-
cation to either minimize the total energy consumption or minimize the energy-delay
product.

The joint consideration of energy management and fault tolerance has attracted
attention in recent years. For independent periodic tasks, using the primary/back-up
model, Unsal et al. proposed an energy-aware software-based fault tolerance scheme.
The scheme postpones the execution of back-up tasks as much as possible to min-
imize the overlap between primary and backup executions, in an attempt to reduce
energy consumption (Unsal et al. 2002). For duplex systems (where two hardware
platforms are used to run the same software concurrently for fault detection), Mel-
hem et al. explored the optimal number of checkpoints, uniformly or nonuniformly

@ Springer

Real-Time Syst (2011) 47: 109-142 113

distributed, to achieve the minimum energy consumption (Melhem et al. 2004). El-
nozahy et al. proposed an Optimistic-TMR (OTMR) scheme to reduce the energy
consumption for traditional TMR (Triple Modular Redundancy) systems (Elnozahy
et al. 2002). In TMR, three hardware platforms are used to run the same software si-
multaneously to detect and mask faults by allowing one processing unit to start late at
a lower processing frequency provided that it can catch up and finish the computation
before the deadline in case there is an error caused by faults during the execution of
the other two processing units. In Zhu et al. (2004), further explored the optimal fre-
quency settings for OTMR and presented detailed comparisons among Duplex, TMR
and OTMR for reliability and energy consumption figures. Combined with voltage
scaling techniques, Zhang et al. proposed an adaptive checkpointing scheme to save
energy consumption for serial applications while tolerating a fixed number of tran-
sient faults (Zhang and Chakrabarty 2003). The work was further extended to pe-
riodic real-time tasks in Zhang and Chakrabarty (2004). Izosimov et al. studied an
optimization problem for mapping a set of tasks with reliability constraints, timing
constraints and precedence relations to processors and for determining appropriate
fault tolerance policies (re-execution and replication) (Izosimov et al. 2005). How-
ever, the existing research on co-management of energy and reliability either focused
on tolerating a fixed number of faults (Izosimov et al. 2005; Elnozahy et al. 2002;
Melhem et al. 2004) or assumed a constant arrival rate for transient faults (Zhang and
Chakrabarty 2003; Zhang et al. 2003).

More recently, DVFES has been shown to have a direct and negative effect on sys-
tem reliability due to increased number of transient faults (especially the ones in-
duced by cosmic ray radiations) at lower supply voltages (Degalahal et al. 2005;
Ernst et al. 2004; Zhu et al. 2004). Taking such effects into consideration, Zhu has
studied a reliability-aware power management (RAPM) scheme that can preserve sys-
tem reliability while exploiting slack time for energy savings (Zhu 2006). The central
idea of RAPM is to reserve a portion of the available slack to schedule a recovery
task for the task whose execution is scaled down through DVFS, and thus to recuper-
ate the reliability loss due to the energy management (Zhu 2006). The scheme was
further extended to multiple tasks with a common deadline (Zhu and Aydin 2006), pe-
riodic real-time tasks (Zhu and Aydin 2007; Zhu et al. 2007), as well as models with
different reliability requirements (Zhao et al. 2008, 2009; Zhu et al. 2008a, 2008b).

Ejlali et al. studied a number of schemes that combine the information about hard-
ware resources and temporal redundancy to save energy and to preserve system re-
liability (Ejlali et al. 2005). By employing a feedback controller to track the over-
all miss ratio of tasks in soft real-time systems, Sridharan et al. (2008) proposed a
reliability-aware energy management algorithm to minimize the system energy con-
sumption while still preserving the overall system reliability. Pop et al. considered the
problem of energy and reliability trade-offs for distributed heterogeneous embedded
systems (Pop et al. 2007). The main idea is to transform the user-defined reliability
goals to the objective of tolerating a fixed number of transient faults by switching
to pre-determined contingency schedules and re-executing individual tasks. A con-
strained logic programming-based algorithm was proposed to determine the voltage
levels, process start time and message transmission time to tolerate transient faults
and minimize energy consumption while meeting the timing constraints of the ap-
plication. Dabiri et al. (2008) considered the problem of assigning frequency/voltage

@ Springer

114 Real-Time Syst (2011) 47: 109-142

to tasks for energy minimization subject to reliability and timing constraints. More
recently, Ejlali et al. studied a standby-sparing hardware redundancy technique for
fault tolerance (Ejlali et al. 2009). Following the similar idea in OTMR (Elnozahy
et al. 2002), the standby processor is operated at low power state whenever possible
provided that it can catch up and finish the tasks in time. This scheme was shown
to have better energy performance when compared to that of the backward recovery
based approach (Ejlali et al. 2009).

In this work, we investigate the RAPM problem for a set of independent frame-
based tasks that share a common deadline and run on a multiprocessor real-time sys-
tem under global scheduling. To find the proper priority and frequency assignment for
the tasks, we propose both individual-recovery and shared-recovery based G-RAPM
schemes. The online schemes with dynamic slack reclamation using slack-sharing
technique are also studied. The schemes are evaluated through extensive simulations.

3 System models and problem formulation

In this section, we first present the power and fault models considered in this work
and state our assumptions. Then, the task and application model are discussed and
the problem to be addressed in this paper is formulated after reviewing the key idea
of reliability-aware power management (RAPM).

3.1 Power model

Considering the almost linear relation between processing frequency and supply
voltage (Burd and Brodersen 1995), the dynamic voltage and frequency scaling
(DVFS) technique reduces the supply voltage and processing frequency to reduce
a system’s dynamic power consumption (Weiser et al. 1994). To avoid ambiguity,
in the remainder of this paper, we will use the term frequency change to stand for
both supply voltage and frequency adjustments. With the ever-increasing static leak-
age power due to scaled feature size and increased levels of integration, as well
as other power consuming components (such as memory), it has been noted that
power management schemes that focus on individual components may not be en-
ergy efficient at the system level (Aydin et al. 2006). Hence, several articles consid-
ered system-wide power management problems (Aydin et al. 2006; Irani et al. 2003;
Jejurikar and Gupta 2004).

In our previous work, we proposed and employed a system-level power model for
uniprocessor systems (Aydin et al. 2006; Zhu et al. 2004). Similar power models have
been also adopted in other studies (Irani et al. 2003; Jejurikar and Gupta 2004). In this
paper, we consider a shared-memory system with k identical processors, where each
processor has a separate supply voltage that enables them to have different processing
frequencies. Following the same principles as in (Aydin et al. 2006; Zhu et al. 2004),
the power consumption of a system with k processors can be expressed as:

k
P(fi,.... i) =Ps+ > hi(Pina + Pa)

i=1

@ Springer

Real-Time Syst (2011) 47: 109-142 115

k
=P+ Y hi(Ping + Cef -) (1

i=i

Above, P; is the static power used to maintain the basic circuits of the system (e.g.,
keeping the clock running), which can be removed only by powering off the whole
system. When the ith processor executes a task, it is said to be active (i.e., h; = 1).
In that case, its active power has two components: the frequency-independent active
power (P;,q, which is a constant and assumed to be the same for all processors) and
frequency-dependent active power (Py, which depends on the supply voltage and
processing frequency of each processor). Otherwise, when there is no workload on
a given processor, we assume that the corresponding Pj,4 value can be effectively
removed by putting the processor into power saving sleep states (i.e., i; = 0) (Intel
Corp. 2001). The effective switching capacitance C,r and the dynamic power expo-
nent m (which is, in general, no smaller than 2) are system-dependent constants (Burd
and Brodersen 1995). f; is the frequency for the ith processor. Despite its simplicity,
this power model includes all essential power components of a system with multiple
processors and can support various power management techniques (e.g., DVFS and
power saving sleep states).

Considering the prohibitive overhead of turning on/off a system (e.g., tens of
seconds), we assume that the system will be on and P is always consumed. For
uniprocessor systems, due to the energy consumption related to the frequency-
independent active power Pj,q4, it may not be energy-efficient to execute tasks at
the lowest available frequency that guarantees timing constraints. Hence, an energy-
efficient frequency, below which the system consumes more fotal energy, has been
derived (Aydin et al. 2006; Jejurikar and Gupta 2004; Zhu et al. 2004). In our
settings and power model, by putting idle processors to sleep states to save en-
ergy, we can derive the energy-efficient frequency expression for each processor as

— mf Pind
fee =" Cef‘(m—l)'

We further assume that the processing frequency can vary continuously from the
minimum frequency f,;, to the maximum frequency f;,,.. For processors with only
a few discrete frequency levels, we can either use two adjacent frequency levels to
emulate the desired frequency (Ishihara and Yasuura 1998), or use the next higher dis-
crete frequency to ensure the solution’s feasibility. Moreover, we use normalized fre-
quencies and assume that f;,,,» = 1. From the above discussion, for energy efficiency,
the processing frequency for any task should be limited to the range of [fiow, finaxls
where fioy, = max{ fiuin, fee}. In addition, the time overhead for adjusting frequency
(and supply voltage) is assumed to be incorporated into the worst-case execution time
of tasks, which can also be handled by reserving a small share of slack before utilizing
them for DVFS and recovery as discussed in Aydin et al. (2004), Zhu et al. (2003).

3.2 Fault and recovery models

During the operation of a computing system, both permanent and transient faults
may occur due to, for instance, the effects of hardware defects, electromagnetic in-
terferences or cosmic ray radiations, and thus result in system errors. Unlike crash

@ Springer

116 Real-Time Syst (2011) 47: 109-142

failures that result from permanent faults, a soft error caused by transient faults typi-
cally does not last for long and disappears when the computation is repeated. In this
paper, we focus on transient faults, which have been shown to be dominant (Iyer et al.
1986). Note that, the rate of soft errors caused by transient faults has been assumed
to follow the Poisson distribution (Zhang et al. 2003). For DVFS-enabled computing
systems, considering the negative effect of DVFES on transient faults, the average rate
of soft errors caused by transient faults at a scaled frequency f (< fijqx) (and the
corresponding supply voltage V) can be given as (Zhu et al. 2004):

A(f)=20-8(f) ©))

where A is the average rate of soft errors at fy,4x (and V). That is, g(finax) = 1.
The rate of soft errors caused by transient faults generally increases at lower frequen-
cies and supply voltages. Therefore, we have g(f) > 1 for f < fiax.

In particular, in this work, we consider the exponential rate model for soft errors
caused by transient faults, where g(f) is given by (Zhu and Aydin 2006):

d-(-f)

g(f) =10"iow 3

Here d (> 0) is a constant, representing the sensitivity of soft errors (or more directly
transient faults) to DVFS. That is, the highest rate of soft errors will be A;;4x = A -
104, which corresponds to the lowest energy efficient frequency fiou.

Soft errors caused by transient faults are assumed to be detected by using sanity
(or consistency) checks at the completion of a task’s execution (Pradhan 1986). Once
a soft error is detected, backward recovery technique is employed and a recovery
task (in the form of re-execution) is dispatched for fault tolerance (Zhang et al. 2003;
Zhu 2006). Note that, transient faults may also affect system tasks (such as scheduler),
which can lead to a system failure that cannot be handled through re-execution. For
such system tasks, we assume that their executions are performed on a separate spe-
cial platform with hardware redundancy (such as triple modular redundancy) (Prad-
han 1986). Therefore, with the focus on application tasks, for simplicity, the overhead
for fault detection is assumed to be incorporated into the worst-case execution time
of tasks.

3.3 Task model and problem formulation

In this work, we consider a set of n independent real-time tasks to be executed on a
multiprocessor system with k identical processors. The tasks share a common dead-
line D, which is also the period (or frame) of the task set. The worst-case execution
time (WCET) for task 7; at the maximum frequency f,4y is denoted as ¢; (1 <i <n).
When task 7; is executed at a lower frequency f;, it is assumed that its execution time
will scale linearly and task 7; will need < time units to complete its execution in the
worst case. This simplified task model enables us to identify and tackle several open
issues related to global scheduling based RAPM. In our future work, we plan to ex-
plore dependent real-time tasks represented by a directed acyclic graph (DAG), where
the dependency will affect tasks’ ready times and make the system slack available to
different tasks in varying amounts.

@ Springer

Real-Time Syst (2011) 47: 109-142 117

Fig. 1 Ordinary and P S ‘ S D
Reliability-Aware Power Yor
Management (Zhu 2006) : time
TT——
t t+1 t+2 =3 t+4 45

‘ s
/—/%
f T D
time
t trl 92 43 44 45

b. Reliability—aware power management

Reliability-Aware Power Management (RAPM) Before formally presenting our
problem, we first review the fundamental ideas of RAPM schemes through an ex-
ample. Suppose that a task T is dispatched at time ¢ with the WCET of 2 time units.
If task T needs to finish its execution by its deadline (¢ + 5), there will be 3 units of
available slack. As shown in Fig. 1a, without special attention to the negative effects
of DVEFS on task reliability, the ordinary (and reliability-ignorant) power manage-
ment scheme will use all the available slack to scale down the execution of task 7" for
the maximum energy savings. However, such ordinary power management scheme
can lead to the degradation of task’s reliability by several orders of magnitude (Zhu
2006).

Instead of using all the available slack for DVES to scale down the execution of
task 7 to save energy, as shown in Fig. 1b, the RAPM scheme reserves a portion
of the slack to schedule a recovery task RT for task T to recuperate the reliability
loss due to energy management before scaling down its execution using the remain-
ing slack (Zhu 2006). The recovery task RT will be dispatched (at the maximum
frequency fiqx) only if errors caused by transient faults are detected when task T
completes. With the help of RT, the overall reliability of task T will be the summa-
tion of the probability of T being executed correctly and the probability of incurring
errors during 7’s execution while RT is executed correctly. This overall reliability
has been shown to be no worse than task 7’s original reliability (which is defined as
the probability of having no error during 7’s execution when DVES is not applied),
regardless of the rate increases of soft errors at scaled processing frequencies (Zhu
2006).

Problem formulation From the above discussion, to address the negative effects of
DVES on reliability, a recovery task needs to be scheduled before the deadline of
any task 7; which is dispatched at a scaled frequency f < 1, so as to preserve its
original reliability. Although it is possible to preserve the overall system reliability
while sacrificing the reliability of some tasks, for simplicity, we focus on maintaining
the original reliability of each task in this work. Moreover, it is assumed that any
faulty scaled task will be recovered sequentially on the same processor and that a
given task cannot run in parallel on multiple processors. Note that, due to workload
constraints and energy efficiency considerations, not all tasks may be selected for
management. The binary variable x; denotes whether 7; is selected, that is, whether

@ Springer

118 Real-Time Syst (2011) 47: 109-142

its execution frequency is scaled down or not. Specifically, x; = 1 indicates that task
T; is selected; otherwise (i.e. if T; is not selected), x; = 0. The tasks that are not
selected run at the maximum processing frequency f,,x to preserve their original
reliability.

Recall that the system is assumed to be on all the time and the static power P
is always consumed. Therefore, we will focus on the energy consumption related to
system active power. At the frequency f;, the active energy consumption to execute
task 7; is:

Ci

Ei(fi) = (Pina + Cer fi") - 7

“

Considering that the probability of incurring errors during a task’s execution is
rather small, we focus on the energy consumption for executing all primary tasks
(i.e. do not account for the energy consumption of the recovery tasks) and try to
minimize the fault-free energy consumption. As the scheduling policy, we consider
static-priority global scheduling where the priorities of tasks form a total order and
remain constant at run-time, once they are statically determined.

Suppose that the worst-case completion time of task T; (and its recovery in case
that the primary scaled execution of 7; fails) under a given schedule is ct;. More
specifically, the global scheduling based RAPM (G-RAPM) problem to be addressed
in this paper is to: find the priority assignment (i.e., execution order of tasks), task
selection (i.e., x;) and the frequencies of the selected tasks (i.e., f;) to:

n
minimize Y E; (fi) 5)
i=1
subject to
Jiow = fi < fnax, ifxi=1 (6)
fi = fnax, ifx;=0 @)
max{ctili=1,...,n} <D (8)

Here, (6) restricts the scaled frequency of any selected task to the range of [fiou,
Jfmax]- Equation (7) states that the un-selected tasks will run at f;,,,. The last condi-
tion (i.e., (8)) ensures the schedulability of the task set under the given global schedul-
ing algorithm with the priority assignments and task selections.

Depending on how recovery tasks are scheduled and utilized, we can have a sep-
arate recovery task for each selected task (i.e., the individual-recovery approach)
or have several selected tasks on the same processor share one recovery task (i.e.,
the shared-recovery approach). In what follows, in increasing level of sophistication
and complexity, we will investigate individual-recovery and shared-recovery based
G-RAPM schemes, and develop both static and dynamic schemes.

@ Springer

Real-Time Syst (2011) 47: 109-142 119

4 G-RAPM with individual recovery tasks

The first and intuitive approach to preserve the system reliability is to have a separate
recovery task statically scheduled for each selected task whose execution is to be
scaled down. In this section, after showing that the static individual-recovery based
G-RAPM problem is NP-hard, we present two static heuristic schemes as well as an
online scheme that can efficiently reclaim the dynamic slack.

4.1 Static individual-recovery based G-RAPM schemes

To start with, when the system has only one processor (i.e., k =1), the static
individual-recovery based G-RAPM problem will reduce to the static RAPM problem
for uniprocessor systems, which has been studied in our previous work and shown to
be NP-hard (Zhu and Aydin 2006). Therefore, finding the optimal solution for the
static individual-recovery based G-RAPM problem to minimize the fault-free energy
consumption will be NP-hard as well. Note that, there are a few inter-related key is-
sues in solving this problem, such as priority assignment, slack determination, and
task selection. Depending on how the available slack is determined and utilized to
select tasks, in what follows, we study two heuristic schemes that are based on local
and global task selection, respectively. The performance of these schemes will be
evaluated against the theoretically optimal bound on energy savings in Sect. 6.

4.1.1 Local task selection

It has been shown that the optimal priority assignment to minimize the schedule
length of a set of real-time tasks on multiprocessor systems under global schedul-
ing is NP-hard (Dertouzos and Mok 1989). Moreover, our previous study revealed
that such priority assignment, even if it is found, may not lead to the maximum en-
ergy savings due to the runtime behaviors of tasks (Zhu et al. 2003). Therefore, to
get an initial mapping of tasks to processors and determine the amount of available
slack on each processor, we adopt the longest-task-first (LTF) heuristic as the initial
priority assignment where tasks are dispatched to processors in the non-increasing
order of their execution times. Then, the worst-fit (WF) heuristic that assigns the
next high-priority task to the processor with lowest load (maximum available time) is
used. If the task set is schedulable under this LTF-WF heuristic, the initial canonical
schedule, in which all tasks are assumed to use their WCETs and run at f;,,x, can
be generated and the amount of available slack on each processor can be determined
accordingly.

The existing RAPM solutions for uniprocessor systems (Zhu and Aydin 2006) can
then be applied on each processor (with its assigned tasks) to determine the final
canonical schedule and frequency assignments, from which the final task priority as-
signments can be obtained. In particular, the execution order in the final canonical
schedule will provide the priority assignment we are looking for. Once the priorities
of tasks are determined, they are assumed to be inserted into a global queue follow-
ing their priority order. At run-time, whenever a processor Py.y; becomes idle, the
next highest-priority task is dispatched on P,.,;. Note that, the actual mapping of

@ Springer

120 Real-Time Syst (2011) 47: 109-142

D

PI | Ti=45 | T4=3 T5=2| 8.5 Xopt,1 = 5.147

P2 | T2=4 | T3=4 | 10 Xopt,2 = 6.055

0 18

Fig. 2 [Initial canonical schedule and the local task selection; shaded tasks are selected

tasks to processors may be different from that in the canonical schedule at runtime
since global scheduling is assumed, which depends on the actual execution times of
individual tasks (Zhu et al. 2003).

To illustrate these steps, we consider a concrete example. Consider a task set
with five tasks T1(4.5), T2(4), T3(4), T4(3) and T5(2), that are to be executed on a
2-processor system with the common deadline of 18. The numbers in the parentheses
are the WCETs of tasks. With the LTF-WF heuristic, the initial canonical schedule is
shown in Fig. 2. Here, three tasks (77, T4 and T5) are mapped on processor P; that
has 8.5 units of slack. The other two tasks (77 and 73) are mapped on the second
processor P, that has 10 units of slack.

In Zhu and Aydin (2006), we have shown that, for a single processor system where
the amount of available slack is §, to maximize energy savings under RAPM, the
optimal aggregate workload for the selected tasks should be:

1
P; =T
ind + Ce f))

Xope =S -
opt (m - Coy

That is, if there exists a subset of tasks such that their total workload is exactly X,p;,
such a subset of tasks would definitely be the optimal selection to maximize energy
savings. Unfortunately, finding such a subset of tasks has shown to be NP-hard (Zhu
and Aydin 2006, 2007). The subset of selected tasks can be determined by using
different heuristics; for example, those that consider the size of tasks (e.g. smallest-
task-first or largest-task-first) (Zhu and Aydin 2007). Alternatively, importance of
tasks as suggested by the user/designer could be considered as a guideline.

In the example above, assume that P;,q = 0.1, C,y =1 and m = 3 (Zhu and
Aydin 2006). Then we obtain X,,;1 = 5.147 and X,p; > = 6.055 for the first and
second processors, respectively. If the largest task is selected first (Zhu and Aydin
2006, 2007), we can see that tasks 77 and 7> will be selected for management on the
two processors, respectively. After scheduling their recovery tasks R7T7 and R7>, and
scaling down the execution of tasks 7 and 73 by utilizing the remaining slack on
each processor, the final canonical schedule is shown in Fig. 3, where each processor
finishes the execution of its assigned tasks just in time.

Note that, due to the uneven slack allocation among the tasks, the execution order
in the final canonical schedule (i.e., the order of tasks being dispatched from the
global queue) can be different from the one following the initial priority assignment
(in the initial canonical schedule). If we blindly follow the priority assignment in

@ Springer

Real-Time Syst (2011) 47: 109-142 121

D
ready queue: T1, T2, T4, T3, TS
8.5
p TT=45 VRIEAS)) T4=3 [T5=1
py [oo /
: :
0 17 18

Fig. 3 Final canonical schedule for the local task selection

ready queue: T1, T2, T3, T4, TS

Fig. 4 Task T5 misses the deadline with the original task order (priority assignment)

the initial canonical schedule where all tasks run at f;,,,, deadline violations can
occur after scaling down certain tasks in different proportions. For instance, with the
original LTF order of tasks and the calculated scaled frequencies for selected tasks,
Fig. 4 shows that, after the first four tasks are dispatched and all tasks (including
recovery tasks, if any) are assumed to take their WCETS, there is not enough time on
any of the processors and task 75 will miss its deadline.

Therefore, to overcome such timing anomalies in global scheduling, after obtain-
ing the final canonical schedule from the G-RAPM with local task selection, we
should re-assign tasks’ priorities (i.e., the order of tasks in the global queue) accord-
ing to the final schedule. For this purpose, based on the start times of tasks in the final
canonical schedule, we can reverse the dispatching process and re-enter the tasks to
the global queue from the last task (with the latest start time) to the first task (with
the earliest start time). For instance, the final order of tasks in the global queue (i.e.,
their priorities) for the above example can be obtained as shown in Fig. 3.

The formal steps of the individual-recovery based G-RAPM scheme with local
task selection are summarized in Algorithm 1. Here, the first step to get the initial
canonical schedule with any given feasible priority assignment of tasks involves or-
dering tasks based on their priorities (with the complexity of O(n - log(n))) and dis-
patching tasks to processors (with O (k - n) complexity). The second step of solving
the RAPM problem and selecting tasks on each processor can be done in O (n) time.
The last step of getting the final priorities of tasks through the reverse dispatching
process can also be done in O (n) time. Therefore, the overall complexity for Algo-
rithm 1 will be O (max(n - log(n), k - n)).

@ Springer

122 Real-Time Syst (2011) 47: 109-142

Algorithm 1 Individual-recovery based G-RAPM with local task selection

1: Step 1: Get the initial canonical schedule from a initial feasible priority assign-
ment (e.g., LTF);

2: if (schedule length > D) report failure and exit;

3: Step 2: For each processor PROC;: apply the uniprocessor RAPM scheme in Zhu
and Aydin (2006) for tasks mapped to that processor (i.e., determine its available
slack S;; calculate X,;; select the managed tasks; calculate the scaled frequency
for selected tasks and obtain the final canonical schedule);

4. Step 3: Get the final execution order (i.e., priority assignment) of tasks based on
the start time of tasks in the final canonical schedule obtained in Step 2, where a
task with earlier start time should have a higher priority.

4.1.2 Global task selection

In the G-RAPM scheme with local task selection, after obtaining the amount of avail-
able slack and the optimal workload desired to be managed for each processor, it is
not always possible to find a subset of tasks that have the exact optimal workload.
Such deviation of the managed workload from the optimal one can accumulate across
processors and thus affect energy savings. Instead, we can take a global approach
when determining the amount of available slack and selecting tasks for management.

For instance, we can see that the overall workload of all tasks in the above ex-
ample is W = 17.5. With the deadline of 18 and two processors, the total available
computation time is 2 - 18 = 36. Therefore, the total amount of available slack in the
system will be S =36 — 17.5 = 18.5. That is, we can view the system by putting
the processors side by side sequentially (i.e., the same as having the execution of the
tasks on one processor with deadline of 36). In this way, we can calculate that the
overall optimal workload of the selected tasks to minimize energy consumption as
Xopr = 11.2. By following the longest-task-first heuristic, three tasks (77, 77 and 73)
are selected to achieve the maximum energy savings.

However, we may not be able to use the remaining slack to uniformly scale down
the execution of the selected tasks. This is because, scheduling the augmented task set
with recovery tasks and the scaled execution of the managed tasks may require per-
fect load balancing among the processors, which may not be feasible. Therefore, the
scaled frequencies for the selected tasks can be different, which will be determined
after tasks are mapped to individual processors. Note that, when the scaled execution
of a selected task completes successfully, its recovery task can be dropped and its
unused CPU time becomes dynamic slack. Therefore, to provide better opportunities
for dynamic slack reclamation at runtime, we should first map the selected tasks as
well as their recovery tasks to processors, followed by the unselected tasks. The re-
sulting canonical schedule for the above example with global task selection is shown
in Fig. 5.

Here, there are 3 and 4 units of slack that can be utilized to scale down the selected
tasks on the two processors, respectively. The resulting final canonical schedule is
shown in Fig. 6. Again, to address the deadline violation problem due to uneven
slack allocation, the final priority assignment (i.e., order of tasks in the global queue)

@ Springer

Real-Time Syst (2011) 47: 109-142 123

D
PI | Ti=45 P RIVZ45) T3=4 [r5=2[..3
P2 [T2=4 [RIGEN) T4=3 [RAGZH. 4.
0 Xopt=11.2 18
Fig. 5 Initial canonical schedule with global task selection
D

0 Xopt=11.2 18

Fig. 6 Final canonical schedule with global task selection

should be obtained through the reverse dispatching process as discussed earlier. For
this example, considering the scaled execution of those globally selected tasks, the
final order (i.e., priority) of tasks in the global queue can be found as 77, T, T4, T3
and Ts.

For energy savings, with the parameters for the power model given in Sect. 4.1.1,
one can compute that the individual-recovery based G-RAPM scheme with global
task selection can save 32.4% energy when compared to that of no power manage-
ment (NPM) scheme where all tasks run at f,4x. In contrast, the scheme with local
task selection saves only 26.6% (i.e., global task selection obtains an improvement
of 5.8%). Moreover, by scheduling the managed tasks in the front of the schedule,
the scheme with global task selection can provide more opportunities to reclaim the
dynamic slack generated from the unused recovery tasks at runtime, which is further
evaluated and discussed in Sect. 6.

Note that, the scheme with global task selection scheme may have a large value
for X,p;. However, to ensure that any selected task (and its recovery task) can be
successfully mapped to a processor, any task 7; with its WCET ¢; > % should not
be selected. Taking this point into consideration, the steps for the G-RAPM with
global task selection are summarized in Algorithm 2. Similarly, the complexity of
Algorithm 2 can also be found as O (max(n - log(n), k - n)).

4.2 Online individual-recovery based G-RAPM scheme
It is well-known that real-time tasks typically take a small fraction of their WCETs

(Ernst and Ye 1997). Moreover, the recovery tasks are executed only if their corre-
sponding scaled primary tasks fail, which occurs with a small probability. Therefore,

@ Springer

124 Real-Time Syst (2011) 47: 109-142

Algorithm 2 Individual-recovery based G-RAPM with global task selection
1: Step 1:
S=k-D—Y ¢;//Calculate global slack
Calculate X,p;;
Select tasks (with ¢; < %) for management;
Map selected tasks to processors (e.g., by using the LTF heuristic);
Map unselected tasks to processors (e.g., by using the LTF heuristic);
if (schedule length > D) report failure and exit;
Step 2:
Calculate scaled frequency for selected tasks on each processors;
Step 3: Get the final execution order (i.e., priority assignment) of tasks based on
the start time of tasks in the final canonical schedule obtained in Step 2, where a
task with early start time has a higher priority.

B A SR

_
e

significant amount of dynamic slack can be expected at runtime from early comple-
tion of tasks and unused recovery tasks. This, in turn, provides abundant opportunities
to further scale down the execution of selected tasks for additional energy savings or
to manage more tasks to enhance system reliability. However, as shown in our pre-
vious work, simple greedy dynamic slack reclamation under global scheduling for
multiprocessor systems may lead to timing anomalies. Consequently, this may cause
deadline misses and special care is needed to reclaim the dynamic slack safely at
runtime (Zhu et al. 2003).

In our previous work, we have studied a global-scheduling based power manage-
ment scheme based on the idea of slack sharing for multiprocessor real-time sys-
tems (Zhu et al. 2003). The basic idea of slack sharing is to mimic the timing of the
canonical schedule (which is assumed to be feasible) at runtime to ensure that all
tasks can finish in time. That is, when a task completes on a processor and generates
some dynamic slack, the processor should share part of this slack appropriately with
another processor that is supposed to complete its task earlier in the canonical sched-
ule. After that, the remaining slack (if any) can be utilized to scale down the next
task’s execution and save energy.

The slack sharing technique can also be applied on top of the final canonical sched-
ule generated from the static individual-recovery based G-RAPM schemes (with ei-
ther local or global task selection) at runtime. Different from the work in Zhu et al.
(2003) where dynamic slack is only used to further scale down the execution of tasks,
after sharing the slack appropriately, the dynamic slack reclamation should be differ-
entiated for scaled tasks that already have statically scheduled recovery tasks and the
ones that do not have recovery tasks yet.

Algorithm 3 summarizes the steps of the online individual-recovery based
G-RAPM scheme that exploits the slack sharing technique. The input for the al-
gorithm is the global Ready-Q, that includes all tasks in their priority order, with
information about the statically-determined frequencies. Similar to the algorithms
in Zhu et al. (2003), the expected finish time (EFT) of a processor is defined as the
latest time when the processor will complete the execution of its currently running
task (including recovery task) in the worst case, which is essentially the same as the

@ Springer

Real-Time Syst (2011) 47: 109-142 125

Algorithm 3 Online individual-recovery based G-RAPM algorithm
1: Input: priorities and scaled frequencies of tasks obtained from the static individ-
ual recovery based G-RAPM schemes (with either local or global task selection);
2: /* Suppose that the current processor is PROCy; */
3. /* and the current time is ¢; */
4: while (Ready-Q # () do
5 Find processor PROCy, with the minimum EFTy;
6: if (EFT, > EFT,) /* PROC), is supposed to finish some task earlier; */ then
7
8
9

Switch EFT, and EFTy; /* PROC), shares its slack with PROC; */
end if
: T; = Next task in Ready-Q;
10: EFT+= ;—2, //move forward the expected finish time on PROCx;
11: Slack = EFT, — t; //current available time for task 7;;
12: if (T; already has its recovery task) then

13: EFT .+ = c;; /lincorporate T;’s recovery time into expected finish time;
14 fi =max{ fiow, 5oz }; //re-calculate T;’s scaled frequency;

15: else

16: /*task T; has no recovery task yet;*/

17: if (Slack > 2 - ¢;) /* slack is sufficient for a new recovery task;*/ then
18: Schedule a recovery task RT; for task T;;

19: fi =max{ fiow, m}; /lcalculate scaled frequency

20: else

21: /* otherwise, not sufficient slack for a recovery task; */

22: fi = fimax = 1.0;

23: end if

24: end if

25: Execute task 7; at frequency f;;

26: if (T; fails and has a recovery task R7;) then

27: Execute recovery task RT; at frequency finqax;
28: end if

29: end while

completion time of the task (including its recovery task) in the static canonical sched-
ule. All EFT values are initially zero for all processors and f; denotes the scaled
frequency of task T;.

At the beginning or after completing the execution of its current task, the processor
PROC first shares part of its slack (if any) with another processor that is supposed
to complete its current task earlier (lines 5 to 7). Then, the next task 7; in the global
Ready-Q is considered. If T; is a scaled task, the expected finish time for processor
PROC, will be moved forward including the recovery time for task 7; scheduled
offline, and the dynamic slack will be utilized to re-calculate the scaled frequency for
task T; (lines 13 and 14). Notice that the scaled frequency f; is limited by fi,y to
ensure energy efficiency. Otherwise, if 7; is not selected offline and does not have its
recovery task scheduled yet, depending on the amount of available dynamic slack,
task T; can either be scaled down after scheduling its recovery task (lines 17 to 19)

@ Springer

126 Real-Time Syst (2011) 47: 109-142

or it will be executed at the maximum frequency f;,4x to preserve its reliability (line
22). Then, the processor PROC, will execute task 7; and its recovery, if needed (lines
26 and 27).

Note that, with proper slack sharing at runtime, the dynamic slack reclamation
under the global-scheduling based power management scheme does not extend the
completion time of any task compared to that of tasks in the static canonical schedule,
which in turn ensures that all tasks can complete their executions in time (Zhu et al.
2003). Following a similar reasoning, we can have the following theorem.

Theorem 1 For a given set of tasks whose priorities and scaled frequencies have
been determined by an offline individual-recovery based G-RAPM scheme, any task
(including its recovery task, if available) under Algorithm 3 will finish no later than
its finish time in the static final canonical schedule generated offline.

Finally, under the (offline/online) individual-recovery based G-RAPM schemes,
any task whose execution is scaled down will have a recovery task, giving the follow-
ing corollary to conclude this section.

Corollary 1 Under both static and dynamic individual-recovery based G-RAPM
schemes, the original system reliability is preserved.

5 G-RAPM with shared recovery tasks

To overcome the conservatism of the RAPM schemes with individual recovery tasks,
a shared-recovery based RAPM scheme has been studied for uniprocessor systems in
recent work (Zhao et al. 2009). Note that, in uniprocessor systems, the scaled tasks
are executed sequentially and their recovery tasks will not be invoked simultaneously.
Therefore, instead of scheduling a separate recovery task for each selected task, the
shared recovery scheme only reserves slack for one recovery block, which is shared
among all selected tasks, and more slack will be available for DVFES to save more
energy. The superiority of the shared recovery scheme for uniprocessor systems on
energy savings as well as reliability enhancement has been shown in the previous
work (Zhao et al. 2009).

However, extending the shared recovery technique to multiprocessor RAPM
schemes introduces non-trivial issues considering the potentially simultaneous fail-
ures during the concurrent scaled execution of selected tasks on different processors.
In what follows, we first discuss a simple shared-recovery based G-RAPM scheme
and prove its feasibility in terms of meeting the tasks’ deadlines while preserving
system reliability. Then, a linear-search based method to find the size of the shared
recovery and the proper subset of tasks for management is addressed. The online
adaptive shared recovery based G-RAPM scheme is presented at the end of this sec-
tion.

5.1 Using a uniform-size shared recovery on each processor

In the shared recovery RAPM scheme for uniprocessor systems (Zhao et al. 2009),
some of the static slack is first reserved as a recovery block, which can be shared by

@ Springer

Real-Time Syst (2011) 47: 109-142 127

D

8.5

PL | Ti=45 [T4=3f5=2
10

) | T2=4 | T3=4 L %’W

,

T

0 18
(a) Using uniform-size recovery task on each processor

D
f=0.704

Pl | Tl1=45 | T4=3 |T5=2W/f%/
T4] | Wi

0 18
(b) Selected tasks are scaled down uniformly

P2 I T2

Il
~

Fig. 7 The canonical schedule under the shared-recovery based G-RAPM scheme

all selected tasks and has the same size as the largest selected task. The remaining
slack is used to scale down the execution of the selected tasks. The selected tasks
are executed at the scaled frequency as long as no error occurs. However, when a
faulty scaled execution of a selected task is observed and recovered using the shared
recovery block, the execution of the remaining tasks will switch to a contingency
schedule, in which all remaining tasks run at the maximum frequency to preserve
system reliability and to guarantee the timing constraints.

However, on multiprocessor systems, multiple scaled tasks may run concurrently.
Obviously, having only one shared recovery task cannot guarantee the preservation
of the original reliability, as more than a single task may incur soft errors concur-
rently. Intuitively, each processor in the system needs to have a recovery block that
can be shared by the selected tasks that are mapped to that processor. However, it is
not trivial to find the proper size of the recovery block on each processor as tasks may
run on a different processor from the one in the canonical schedule at runtime under
global scheduling, especially considering the dynamic behaviors (varying actual exe-
cution times) of real-time tasks. Moreover, to ensure timing constraints, coordination
is needed among the processors in global scheduling on the recovery steps once errors
are detected.

In this work, to ensure that the largest selected task can be recovered on any
processor, we study a simple shared-recovery based G-RAPM scheme, where the
recovery block on each processor is assumed to have the same size as that of the
largest selected task. Before formally presenting the algorithm, we use the aforemen-
tioned example to illustrate the basic ideas. Figure 7(a) shows the static schedule,
where there are 8.5 and 10 units of slack on the first and second processors, respec-
tively. Suppose that all tasks are selected for management. After reserving the shared

@ Springer

128 Real-Time Syst (2011) 47: 109-142

recovery block on each processor, where both recovery blocks have the size of 4.5
(the maximum size of selected tasks), the remaining slack is used to scaled down the
selected tasks uniformly to the frequency f = 0.704, as shown in Fig. 7(b). Note that,
it is possible to further scale down tasks 7> and 73 on the second processor. How-
ever, exploiting such possibility brings additional complexity and we will adopt the
common scaled frequency for simplicity.

By having a shared recovery block on each processor, more slack will be available
for DVFS. In the above example, with the same parameters for the power model as
the ones given in Sect. 4.1.1, the energy savings under the shared recovery based G-
RAPM scheme can be calculated as 41.3% (assuming no fault occurs), which is a sig-
nificant improvement over the individual recovery based G-RAPM schemes (28.6%
and 32.4% for local and global task selection, respectively).

Another important feature of the shared-recovery based G-RAPM scheme is its
handling of faulty tasks. When the faulty scaled execution of a selected task is de-
tected on one processor, other processors need to be notified as well to coordinate the
adoption of a contingency schedule. The tasks concurrently running on other proces-
sors can continue their executions at the scaled frequency. Moreover, they can be re-
covered later in case errors occur during their scaled executions. Note that, as shown
next, with one recovery block on each processor, the shared-recovery based G-RAPM
scheme ensures that any faulty execution of the concurrently running tasks can be re-
covered in time without violating tasks’ timing constraints. However, the remaining
tasks that are still in the global ready queue, similar to the shared recovery RAPM
scheme for uniprocessor systems, should be dispatched at the maximum frequency
for reliability preservation.

For the above example, suppose that task 77 fails and is recovered on the first
processor. If task Ty is still dispatched at the scaled frequency and fails as shown
in Fig. 8(a), we can see that it cannot be recovered on time, which in turn leads to
system reliability degradation. On the other hand, when Tj runs at f,,,, the task 73
that runs on the second processor concurrently with 77 can continue its execution at
the scaled frequency, and be still recovered on time in case of an error. Moreover, the
remaining tasks 74 and 75 can also finish in time as long as they are dispatched at the
maximum frequency as shown in Fig. 8(b).

The outline of the shared-recovery based G-RAPM algorithm is summarized in
Algorithm 4. Here, a global boolean variable (flag) FaultOccurrence is used to indi-
cate whether faults have been detected during the scaled execution of selected tasks
in the current frame (period) or not. Note that, some tasks that are not selected for
management are dispatched at the maximum frequency f,,., hence their original
reliability is preserved by definition as DVFS is not applied.

The input for Algorithm 4 is assumed to be a set of feasible global priority and
frequency assignment for tasks. That is, if tasks are dispatched from the global queue
following their priorities at their assigned frequencies, the canonical schedule where
all tasks are assumed to take their WCETs will finish ¢$¢/¢**? time units (the size
of the largest selected task, which is also the size for recovery blocks) before the
deadline. When there is no error, from Zhu et al. (2003), we know that under global
scheduling all tasks will be dispatched no later than their start times in the canonical
schedule.

@ Springer

Real-Time Syst (2011) 47: 109-142 129

f=0.704 D
2.84

<—— Recover T1 == m e e >
I T L N
PT | TI=45 XW//Q T4=3 x| RT=3|

Mibs D
P2 | T2 =4 [T3=4 [T5=2 -7
}

0 ! ! 8

10 tl
(a) Dispatching remaining tasks at scaled frequency after a fault results
in a deadline miss

D
f=0.704

P1 | TI=45 X%WM T4=3 Hs:z\
P2 | T2=4 [T3=4 XW%

i ! !
0 t0 tl 18

(b) Concurrent failures (of 77 and T3) are recovered in time

Fig. 8 Handling faults in the static shared-recovery based G-RAPM scheme

Algorithm 4 : Outline of the shared-recovery based G-RAPM algorithm

1:
2:
3:

11:
12:
13:
14:

R A

Input: Feasible priority and frequency assignments for tasks;
At task completion events:
if (the completed task is executed at scaled frequency) AND (execution fails)
then
Set the global flag: FaultOccurrence = true;
Re-invoke the faulty task for re-execution at the maximum frequency fiqax;
end if
At task dispatch events:
if (FaultOccurrence == false) then
Dispatch the task 7; at the head of Ready-Q at its assigned frequency f;;
else
Dispatch the task 7; at the head of Ready-Q at the maximum frequency f,ax;
end if
At every period (frame) boundary:
Reset the global flag: FaultOccurrence = false;

After a faulty scaled task is detected and recovered, its recovery will finish no

later than c¢/¢¢'¢d time units after its finish time in the canonical schedule. The same

max

applies to the scaled tasks running concurrently on other processors regardless of
whether errors occur or not during their executions. Recall that all remaining tasks in
the global queue will be dispatched at the maximum frequency f;;,4x and take no more

@ Springer

130 Real-Time Syst (2011) 47: 109-142

time compared than the case in the canonical schedule. Therefore, all the remaining
tasks will be dispatched at a time no later than ¢$¢/¢¢’¢ units after their start times
in the canonical schedule, which in turn ensures that they can complete before the
deadline. Moreover, by recovering all faulty scaled tasks and dispatching remaining
tasks at fiqx, the reliability of all tasks will be preserved. These conclusions are

summarized in the following theorem.

Theorem 2 For a given set of feasible priority and frequency assignments to tasks,
where the canonical schedule (assuming all tasks take their WCETs and no error
occurs) finishes i<l time units (the size of the largest selected task, which is
also the size for recovery blocks) before the deadline, Algorithm 4 ensures that the
reliability of all tasks will be preserved and all tasks (including their recoveries, if

any) will finish in a timely manner before their respective deadlines.
5.2 A linear search heuristic for task selection

In the last section, we assumed that a set of feasible global priority assignment for
tasks’ priorities and frequencies are given as the input for Algorithm 4. However,
finding the appropriate priority and frequency assignment for the tasks to get the
maximum energy savings is not trivial, especially for tasks with large variation on
their WCETS. Note that, for the shared-recovery based G-RAPM scheme discussed
in the above section, the size of the recovery blocks on all processors is determined
by the largest task to be selected and managed. Therefore, for better energy savings,
we may exclude a few large tasks from management to reduce the size of the recovery
blocks, which in turn leaves more slack on all processors for DVFS to scale down the
selected tasks.

Moreover, if we schedule the unselected large tasks along with the selected tasks
on all processors, the total spare system capacity will be distributed across all proces-
sors and the resulting available slack on each processor may not be enough to sched-
ule a uniform-size recovery block. In this paper, for simplicity, we dedicate a few
processors to handle these unselected large tasks at the maximum frequency fqy-
The selected tasks are mapped to the remaining processors following a given heuris-
tic (such as LTF and worst-fit) and the uniform-size recovery tasks are reserved ac-
cordingly. Then, the uniform scaled frequency can be determined.

The outline of the linear search heuristic can be given as follows. Initially, we
assume that all tasks will be managed. If the available static slack is enough for a
uniform-size recovery task on each processor, the remaining slack will be used to
determine the scaled frequency and the amount of energy savings will be calculated.
Otherwise, if the system load is high and the static slack is not enough to schedule
the uniform-size recovery blocks, all tasks will be tentatively assigned the frequency
Sfmax- Then, in each round, the largest task will be excluded from the consideration,
which enables us to gradually reduce the size of the required recovery blocks and
thus to leave more slack for DVFS. Note that, as more large tasks are excluded, more
dedicated processors will be needed to process them. The remaining processors will
be used to execute the managed tasks. Through this procedure, we can find out the
number of large tasks that should be excluded as well as the scaled frequency and
execution order (i.e., priority) of the managed tasks for the best energy savings.

@ Springer

Real-Time Syst (2011) 47: 109-142 131

5.3 Online adaptive G-RAPM with shared recovery

Although the shared-recovery based G-RAPM scheme can preserve the system re-
liability while guaranteeing tasks’ timing constraints, it has also some pessimism
since it dispatches all remaining tasks at the maximum frequency f;,,, once an error
caused by transient faults has been detected at the end of a scaled execution. Such a
drawback becomes a more severe problem at low system loads, where early fault de-
tections can cause many follow-up tasks on all processors to run at f,4, and hurt the
energy savings. The simulation results in Sect. 6 underline this problem. Therefore,
the online adaptive schemes with shared recovery warrant some investigation, in par-
ticular, with the goal of using low frequencies as long as possible without sacrificing
the system’s reliability.

In the online shared recovery RAPM scheme for uniprocessor systems (Zhao et al.
2009), the size of the shared recovery block and scaled frequency of remaining tasks
will be adjusted after a faulty scaled execution has been recovered or tasks complete
early and more dynamic slack is generated. Such adaptation has been shown to be
very effective for more energy savings and reliability enhancement. Following the
same direction, we can also adaptively adjust the frequency setting for remaining
tasks at runtime instead of following the static conservative decision to execute them
at fiuqx after an error occurs.

Once again, the adaptation for online shared-recovery based G-RAPM scheme for
multiprocessor systems involves coordination among the processors. Note that, un-
der the shared-recovery based G-RAPM scheme, once a faulty scaled execution of
a selected task occurs, the system will run in the recovery mode to ensure that the
faulty execution is recovered. Moreover, it should also ensure that the scaled execu-
tions of the concurrently running tasks on other processors complete or are recovered
successfully. After all scaled executions of the concurrently running tasks (including
their recoveries in case of errors being detected) have completed, instead of letting all
processors execute the newly-dispatched tasks at f;,,,,, we can perform an online re-
packing process for the current and remaining tasks, where all of them are assumed
to take their WCETs. Following the same heuristic (i.e., LTF-WF), such re-packing
process can generate a new partial canonical schedule and the amount of slack on
each processor can be found. For cases where the available slack in the system af-
ter re-packing is not enough for a uniform-size recovery block on each processor,
we can repeat such re-packing process whenever a task completes its execution early
and more dynamic slack is generated. Otherwise, based on the current and remaining
tasks, a new recovery block with appropriate uniform size can be reserved on each
processor and scaled frequency can be determined accordingly.

Figure 9 illustrates how the online adaptive shared-recovery based G-RAPM
scheme works with the previous example. Here, tasks are assumed to take their
WCETs. After the faulty scaled execution of task 75 is recovered on the second
processor (the first processor executes task 73 at f,4 at that time following the con-
tingency schedule), tasks 74 and 75 are re-mapped. With the assumption that tasks
will take their WCETS, there will be 5.6 and 5.3 units of slack available on these two
processors, respectively, as shown in Fig. 9(a).

Considering both the currently running task 73 and the remaining tasks 74 and
Ts, the size of the shared recovery blocks reserved on each processor should be 4

@ Springer

132 Real-Time Syst (2011) 47: 109-142

f=0.704 repacking D
Pl [Ti=45 | r3o4l Jrs=2lo 56 i
Recover T2 i ___________
P2 =4 x| RUZh) m=3iL . 55|
‘ f
0 o 18
(a) Re-packing the tasks T4 and T} after T%’s recovery
f=0704 repacking D
7 g
Pl [Ti=45 | mob e A
Recover T2 E
77 7 7
P2 To-4 x| RiZh/| Ta=3 | KI+h
f T :
0 18
0]
(b) Scaling down the remaining tasks after new recovery blocks are re-

served

Fig. 9 Illustration of the online adaptive shared recovery G-RAPM scheme with the above example

(although only part of task 73 is scaled down, a full recovery is needed to preserve its
original reliability). Then, the remaining slack can be used to get the scaled frequency
for tasks T3, T4 and Ts as shown in Fig. 9(b). Therefore, instead of executing task 74
at fnax, the second processor can execute it at the scaled frequency with the newly
reserved shared recovery block to ensure its reliability preservation.

Algorithm 5 shows the outline of the online adaptive shared recovery G-RAPM
scheme. Here, a global flag is used to indicate the current running state of the sys-
tem: normal scaled execution (with RunMode = normal) or contingency full speed
execution (with RunMode = contingency). In addition, each processor has its local
running state indicator: scaled execution, recovery execution or full speed execution.
Such states of processors are used to help determine when the re-packing process
should be performed after a faulty execution has been detected. According to the ini-
tial frequency assignment, the system’s running states are first initialized at the very
beginning (lines 2 to 6).

When a task 7; completes its execution on processor PROC, it will be recovered
if its execution has been scaled down and an error is detected. The system’s running
states are set to contingency mode accordingly (lines 8 to 11). Otherwise, if task T;
completes its execution successfully, we first check to see if the new scaled frequency
should be calculated (i.e., the system runs at the contingency mode and all proces-
sors have completed the recovery execution). If so, the new scaled frequency will be
calculated through the re-packing process (line 14). The new scaled frequency will
be set appropriately depending on whether there is enough slack for a new shared
recovery block or not (lines 15 to 24). In case the recovery process has not completed
on other processors (line 25), the system still needs to run at contingency mode and

@ Springer

Real-Time Syst (2011) 47: 109-142 133

Algorithm 5 : Outline of the online adaptive shared-recovery based G-RAPM scheme

1: Input: A feasible priority and frequency assignments for tasks;
2: if (Initial frequency assignment f < fi,x) then

3. Set RunMode = normal and Flag ; = scaled; // case of sufficient slack
4: else
5. Set RunMode = contingency and Flag ; = FullSpeed,
6: end if
7. Event: The task 7; completes on processor PROC,:
8: if (7; run at scaled frequency f; < fiqx) AND (execution fails) then
9: Set the global flag: RunMode = contingency;
10: Set the local flag for PROCy: Flag, = recovery;
11: Re-invoke task 7; for re-execution at the maximum frequency fi,qx;
12: else if (7; completes its execution successfully) then
13: if (RunMode == contingency) AND (all other processors have Flag; ==
FullSpeed) then
14: Re-pack the remaining tasks to processors to get new scaled frequency f;
15: if (f < finax) //slack is enough for a new scaled frequency then
16: Set f as the frequency for the remaining tasks;
17: Notify all other processors about the new scaled frequency f;
18: For all processors, set Flag; = scaled,
19: Set RunMode = normal,
20: Execute the task T} at the head of Ready-Q at fi;
21: else
22: Set Flag, = FullSpeed; //not enough slack, run at fy.x;
23: Execute the task 7} at the head of Ready-Q at fi4x;
24: end if
25: elseif (RunMode == contingency) && (Iy Flag, == recovery||scaled) then
26: Set Flag, = FullSpeed; /[recovery process is not done yet
27: Execute the task 7 at the head of Ready-Q at f4x;
28: else if (RunMode == normal) then
29: Set Flag, = scaled; //normal scaled execution;
30: Consider the task T} at the head of Ready-Q;
31: Reclaim dynamic slack using the slack-sharing technique and re-calculate
Jis
32: Execute task T at the scaled frequency f;
33: endif
34: end if

processor PROC, will pick up the next task and execute it at the maximum frequency
Jfmax (lines 26 and 27). Finally, if the system runs in the normal model, the processor
PROC, will fetch and execute the next task after reclaiming the dynamic slack (if
any) using the slack-sharing technique (lines 29 to 32).

The adaptation for calculating the new scaled frequency through the re-packing

process can be performed with the complexity of O(x), where x is the number of
remaining tasks. Although the adaptation is invoked only occasionally after soft er-

@ Springer

134 Real-Time Syst (2011) 47: 109-142

rors are detected and recovered, for task sets with large number of tasks, repeatedly
performing such re-packing process after the completion of each task can incur sig-
nificant runtime overhead. To reduce such overhead, we may limit the minimum inter-
val between consecutive invocations of the re-packing process to accumulate enough
slack time.

Moreover, the adaptation process does not extend the worst-case schedule (includ-
ing recovery blocks) beyond the deadline. As the online dynamic slack reclamation
will not extend the finish time of tasks as well, all tasks’ reliabilities will be preserved
since any scaled execution of tasks will be protected by a recovery block and all tasks
will complete their executions (including recovery) before the deadline under Algo-
rithm 5.

6 Simulations and evaluations

To evaluate the performance of our proposed G-RAPM schemes on energy savings
and reliability, we developed a discrete event simulator. The no power management
(NPM) scheme, which executes all tasks at f;,,,x and puts processors to power savings
sleep states when idle, is used as the baseline and normalized energy consumption are
reported. Note that, as discussed in Sect. 3.1, the static power Py will always be con-
sumed for all schemes, which is set as Py = 0.01 - k (k is the number of processors).
We further assume that m = 3, C.y =1, P4 = 0.1 and normalized frequency is used
with f,.x = 1. In these settings, the lowest energy efficient frequency can be found
as fiow = fee = 0.37 (Sect. 3.1).

For transient faults that follow the Poisson distribution, the lowest fault rate at
the maximum processing frequency f.x (and corresponding supply voltage) is
assumed to be A9 = 107>, This number corresponds to 10000 FITs (failures in
time, in terms of errors per billion hours of use) per megabit, which is a realistic
fault rate as reported in Hazucha and Svensson (2000), Ziegler (2004). The expo-
nent in the exponential fault model is assumed to be d = 3 (see (3)). That is, the
average fault rate is assumed to be 1000 times higher at the lowest energy effi-
cient speed fj,, (and corresponding supply voltage). The effects of different values
of d have been evaluated in our previous work (Zhu 2006; Zhu and Aydin 2006;
Zhu et al. 2004).

We consider systems with 4, 8 and 16 processors. The number of real-time tasks
in each synthetic task set varies from 40 to 800, which results in roughly 10 to 50
tasks per processor. For each task, its WCET is generated following a uniform distri-
bution within the range of [10, 100]. Moreover, to emulate the actual execution time
at runtime, we define «; as the ratio of average- to worst-case execution time for task
T; and the actual execution time of tasks follows a uniform distribution with the mean
of «; - ¢;. The system load is defined as the ratio of overall workload of all tasks to
the system processing capacity y = %, where k is the number of processors and
D is the common deadline (period) of tasks. Each data point in the figures is the
average of 100 task sets and the execution of each task set is repeated for 5000 000
times. In what follows, we focus on the results for systems with 4 and 16 processors.
Simulations with 8 processors have yielded similar results.

@ Springer

Real-Time Syst (2011) 47: 109-142 135

1

1 T T T

s SPM ot
2 ool L NPM ---x--
g o 0.1F ey G-RAPM-IND-L E
= osl : e R
8F =} = -
5 2 ootf ARKLSHR —=—
o =1 - -
> 0.7] s +.
3 :
5 2 0.001p = E
S 065k b 3
T b 8 0.0001-
R 05 - G-RAPM-IND-L R <}
S G-RAPM-INDI-G % a
€ 044 OPT-Bound-IND - - - | 1e-05
5 G-RAPM-SHR ---&---
< 0'3 Il Il Il Il SPM\ 19'06 Il Il Il Il Il
30 40 50 60 70 80 90 30 40 50 60 70 80 90
v (%) Y (%)
a) Normalized energy consumption robability of failure
) N lized gy pt b) Probability of fail

Fig. 10 Static G-RAPM schemes for systems with 4 processors

6.1 Static G-RAPM schemes

First, assuming that all tasks take their WCETs, we evaluate the performance of
the static G-RAPM schemes. The first two are individual-recovery based G-RAPM
schemes with local and global task selection, which are denoted by G-RAPM-IND-L
and G-RAPM-IND-G in the figures, respectively. The shared recovery based G-
RAPM scheme is denoted as G-RAPM-SHR. For comparison, the ordinary static
power management (SPM), which uniformly scales down the execution of all tasks
based on the schedule length, is also considered. Moreover, by assuming that there
exists a subset of managed tasks with aggregate workload exactly equal to X, (see
Sect. 4), the fault-free energy consumption of the task set is calculated, which pro-
vides an upper-bound on energy savings for any optimal static individual-recovery
based G-RAPM solution. That scheme is denoted as OPT-Bound-IND.

Figure 10(a) first shows the normalized energy consumption of the static G-RAPM
schemes under different system loads (which is represented in the X-axis) for a sys-
tem with 4 processors. Here, each task set contains 40 tasks. Smaller values of y
indicate more system slack. From the figure we can see that, for individual-recovery
based G-RAPM schemes, local and global task selection perform roughly the same
in terms of energy savings. This is because, in most cases, the managed workload
of the selected tasks under both schemes shows little difference. As the system load
increases, less static slack is available and in general more energy will be consumed.
For moderate to high system loads, the normalized energy consumption under the
static individual-recovery based G-RAPM schemes is very close (within 3%) to that
of OPT-Bound-IND, which is in line with our previous results for uniprocessor sys-
tems (Zhu and Aydin 2006, 2007). However, when the system load is low (e.g.,
y = 30%), almost all tasks will be managed under both individual-recovery based
G-RAPM schemes and run at a scaled frequency close to fj,, = 0.37, which may
incur higher probability of failure and thus more energy is consumed by the recov-
ery tasks. Therefore, the normalized energy consumption for both G-RAPM-IND-L
and G-RAPM-IND-G increases. Compared to that of OPT-Bound-IND that does not
include energy consumption of recovery tasks, the difference becomes large when
y = 30%. When compared to that of the ordinary (but reliability-ignorant) static

@ Springer

136 Real-Time Syst (2011) 47: 109-142

-
-

5 SPM s
3 0.9 . NPM -+ -+
g 0.9 0.1F . G-RAPM-IND-L 1
5 oo : Cogmes
sl 5 ' X
5 5 oot} AR]
8 8
> 0.7 S R
3
o} Z 0.001¢ . 1
S 064 %
kS r 2o 0.00014-
8 05F - G-RAPM-IND-L b <]
T G-RAPM-INDI-G - a
E 04% OPT-Bound-IND - -%- - | 1e-05
5 G-RAPM-SHR &
< 0'3 Il Il Il Il SPM\ 1e_06 Il Il Il Il Il
30 40 50 60 70 80 90 30 40 50 60 70 80 90
Y (%) (%)
(a) Normalized energy consumption (b) Probability of failure

Fig. 11 Static G-RAPM schemes for systems with 16 processors

power management (SPM) scheme, from 15% to 30% more energy will be consumed
by the individual-recovery based G-RAPM schemes.

For the shared-recovery based G-RAPM scheme, the energy savings under differ-
ent system loads exhibit interesting patterns. When system load is high (e.g., y = 80-
90%) where the amount of static slack is limited, there are not much opportunities for
energy management and the shared-recovery based G-RAPM scheme performs very
close to that of the individual-recovery based G-RAPM schemes. As system load be-
comes lower (e.g., ¥ = 50-60%), since the amount of static slack reserved for recov-
ery blocks is limited by the largest managed task, more static slack will be available
for DVFS to scale down the execution of managed tasks at lower frequency, which
results in better energy savings compared to that of the individual-recovery based
G-RAPM scheme. However, at very low system load (e.g., y = 30%), the scaled
frequency for managed tasks will be close to fj,,, and the probability of having tran-
sient faults during the execution of any task becomes high. Recall that, whenever a
scaled task incurs an error, the static shared-recovery based G-RAPM scheme will
switch to a contingency schedule where all remaining tasks in the current frame will
be executed at f,,, and consume more energy. Therefore, the higher probability of
incurring a fault during the scaled execution of first few tasks at low system loads
results in much less energy savings for the static shared-recovery based G-RAPM
scheme.

Figure 10(b) further shows the probability of failure, which is the ratio of the
number of failed tasks (by taking the recovery tasks into consideration) to the total
number of executed tasks. We can see that all the static G-RAPM schemes can pre-
serve system reliability (by having lower probability of failure during the execution
of the tasks) when compared to that of NPM. In contrast, although the ordinary (but
reliability-ignorant) SPM can save more energy, it can lead to significant system reli-
ability degradation (up to two orders of magnitude) at low to moderate system loads.

For systems with 16 processors where each task set has 160 tasks, similar results
have been obtained and are reported in Fig. 11.

@ Springer

Real-Time Syst (2011) 47: 109-142 137

1

1
G-RAPM-SHR+DYN ---+--- ‘ "DPM

c
2 (9| .G-RAPM-IND-L+DYN) NPM. - %:::...
g 7Y [G-RAPM-IND-G+DYN - 04 Lot GoRAPMSHRFDYN " ——]
5 DPM o T G-RAPM-IND-L+DYN - & -
2 08} b E G-RAPM-IND-G+DYN
s | ST et T
° L e deeeeeT o i = 0.01F B
> 07 . ot o
o L. N
o) e £
& 06 N T o001} -
& 05T 1 @
T = 0.0001
£ 04 B
[} Al
e -
0'3 Il Il Il Il Il 19'05[Il Il Il Il Il
30 40 50 60 70 80 90 30 40 50 60 70 80 90
o (%) o (%)
(a) Normalized Energy Consumption (b) Probability of Failure

Fig. 12 Dynamic G-RAPM schemes for a system with 4 processors and system load y =40%

6.2 Dynamic G-RAPM schemes

In this section, we evaluate the performance of the online G-RAPM schemes with
dynamic slack reclamation. Here, G-RAPM-IND-L+DYN represents the case of ap-
plying dynamic slack reclamation on top of the static schedule generated by the
individual-recovery based G-RAPM scheme with local task selection. Similarly, G-
RAPM-IND-G+DYN stands for individual-recovery based G-RAPM with global task
selection and G-RAPM-SHR+DYN for online adaptive shared-recovery based G-
RAPM scheme. Again, for comparison, the ordinary dynamic power management
(DPM) on top of the static schedule from SPM is also included. To obtain different
amount of dynamic slack, we vary o from 30% to 90%.

At low system load y = 40%, Fig. 12(a) first shows the normalized energy con-
sumption of the dynamic G-RAPM schemes for a system with 4 processors. Again,
there are 40 tasks in each task set. Note that, there is more dynamic slack for smaller
values of . We can see that, for the individual-recovery based G-RAPM schemes, ap-
plying dynamic slack reclamation on top of the static schedules will achieve almost
the same energy savings. The reason is that, when y = 40%, there is around 60%
static slack available and the optimal workload to manage for individual-recovery
based G-RAPM schemes is 36%. That is, almost all tasks will be managed statically
and run at f = 0.42 under both individual-recovery based G-RAPM schemes, which
leave little space (with the limitation of f,,, = 0.37) for further energy savings at
runtime. When o decreases, more dynamic slack will be available and more tasks
can be scaled to the lowest energy efficient frequency fj,,, for slightly higher en-
ergy savings. Compared to that of DPM, from 10% to 22% more energy is consumed
under the individual-recovery based G-RAPM schemes.

Surprisingly, even with online adaptation, the online adaptive shared-recovery
based G-RAPM scheme performs consistently worse and consumes around 18%
more energy compared to that of individual-recovery based G-RAPM schemes. This
is due to the required synchronous handling of faults (which occur quite frequently
under low system loads) and the frequent contingency execution of tasks at the max-
imum frequency.

Not surprisingly, Fig. 12(b) shows that system reliability can be preserved under
all the online dynamic G-RAPM schemes. Although the ordinary DPM can obtain

@ Springer

138 Real-Time Syst (2011) 47: 109-142
T T T 0.1 o T § T
5 G-RAPM-IND-L+DYN - g,
E o9 G-RAPM-IND-G+DYN - g
E° G-RAPM-SHR+[[))}\:('\I\III e o 001} DPM -t i
@ = NPM ---%---
& 08f 4 el G-RAPM-SHR+DYN —x*—
o " = 0.001} G-RAPM-IND-L+DYN - -E- - i
= ;)) G-RAPM-IND-G+DYN — =
2 07 e > RV Xeoeee Xemeenee *
e e PO ST e T £ b _— e m
) 2 0.0001F g om
° 06 U 4 o F
N e R [\’\\
N S s
g 05k | 1e-05F k
153
c
0.4 ! ! ! ! ! 16-06 ! ! ! ! !
30 40 50 60 70 80 90 30 40 50 60 70 80 90
o (%) o (%)
(a) Normalized Energy Consumption (b) Probability of Failure

Fig. 13 Dynamic G-RAPM schemes for a system with 4 processors and system load y = 80%

more energy savings, it can lead to increased probability of failure by three orders of
magnitude.

Figure 13(a) further shows the results for the same system at a higher system load
y = 80%. Here, we can see that, for individual-recovery based G-RAPM schemes,
applying dynamic slack reclamation to the static schedule of global task selection can
lead to more energy savings (up to 13%) compared to that of local task selection. The
main reason is that, at high system load y = 80%, very few tasks can be managed sta-
tically. By intentionally scheduling these managed tasks at the front of the schedule,
G-RAPM-IND-G+DYN provides more opportunities for remaining tasks to reclaim
the dynamic slack and yields more energy savings at runtime. Moreover, by manag-
ing more tasks at run time, G-RAPM-IND-G+DYN also has better system reliability
as more tasks will have recovery tasks when compared to that of the scheme with
local task selection (shown in Fig. 13(b)).

Moreover, at high system load, tasks are executed at higher frequencies with small
probability of failure, which in turn requires fewer synchronous handling of faulty
tasks under the online adaptive shared recovery based G-RAPM scheme. There-
fore, the performance difference between the online shared-recovery and individual-
recovery based G-RAPM schemes becomes less noticeable.

Figure 14(a) further shows the normalized energy consumption for a system with
16 processors at the system load y = 80%, when each task set has 160 tasks. The
results are quite similar to that of the 4-processor system as shown in Fig. 13(a).
Interestingly, as the number of tasks in each task set increases, Fig. 14(b) shows
that the performance difference between the two individual-recovery based G-RAPM
schemes diminishes. The reason is that, when more tasks are available, the managed
tasks are more likely to be scattered in the static schedule under local task selec-
tion, which leads to similar opportunities for dynamic slack reclamation as those of
the global task selection and thus similar overall energy savings. Moreover, as the
amount of slack reserved for recovery blocks under the shared-recovery based G-
RAPM scheme becomes relatively small when there are more tasks, we can see that
the online adaptive shared-recovery G-RAPM scheme performs better when no much
dynamic slack is available (i.e., « = 90%). However, as o becomes smaller and more
dynamic slack is available, the resulting low frequency from dynamic slack reclama-

@ Springer

Real-Time Syst (2011) 47: 109-142 139

-

s G-RAPM-SHRADYN -+ S G-RAPM-IND-L+DYN
= G-RAPM-IND-L+DYN = G-RAPM-IND-G+DYN
g 0.9 [G-RAPM-IND-G+DYN - R g 0.9 G-RAPM-SHR+DYN ---x--- B
=1 DPM = DPM
€ o8l { £ osf 3
g 08 .. oo .1 §¢°
s e e . S
5 0.7 »J_,.»*l 5 07p . Weeeeeeen .. ,(b
c = c - .
[x [
g 06 " 4 QS 0.6
N —— e S N RIS ey,
e 05 1 e 05¥ B
15 S
= c
0'4 Il Il Il Il Il 0'4 i i Il Il Il
30 40 50 60 70 80 90 30 40 50 60 70 80 920
o (%) o (%)
(a) 16-processor and 160 tasks per task set (b) 4-processor and 200 tasks per task set

Fig. 14 Dynamic G-RAPM schemes with system load y = 80%

tion will lead to more frequent contingency execution of tasks at f;,,x for the online
adaptive shared-recovery based G-RAPM scheme and thus more energy consump-
tion.

7 Conclusions

In this paper, for independent real-time tasks that share a common deadline, we
studied global-scheduling-based reliability-aware power management (G-RAPM)
schemes for multiprocessor systems. We consider both individual-recovery and
shared-recovery based G-RAPM schemes. For the individual-recovery based G-
RAPM problem, after showing that the problem is NP-hard, we propose two effi-
cient static heuristics, which rely on global and local task selections, respectively.
To overcome the timing anomaly in global scheduling, the tasks’ priorities (i.e., ex-
ecution order) are determined through a reverse dispatching process. For the shared-
recovery based G-RAPM problem, a simple G-RAPM scheme with uniform-size re-
covery tasks on each processor as well as an online adaptive scheme are investigated.
Moreover, we extend our previous work on dynamic power management with slack
sharing to the reliability-aware settings.

Simulation results confirm that, all the proposed G-RAPM schemes can preserve
system reliability while achieving significant energy savings in multiprocessor real-
time systems. For individual-recovery based static G-RAPM schemes, the energy
savings are within 3% of a theoretically computed ideal upper-bound for most cases.
Moreover, by assigning higher priorities to scaled tasks with recoveries, the global
task selection heuristic provides better opportunities for dynamic slack reclamation
at runtime compared to that of the local task selection. For the shared-recovery based
G-RAPM scheme, it performs best at the modest system loads. However, due to
the requirements of synchronous handling of faulty tasks among the processors and
the contingency execution of tasks at the maximum frequency, the online adaptive
shared-recovery based G-RAPM generally saves less energy compared to its coun-
terpart with dynamic slack reclamation.

@ Springer

140 Real-Time Syst (2011) 47: 109-142

References

AlEnawy TA, Aydin H (2005) Energy-aware task allocation for rate monotonic scheduling. In: RTAS
’05: Proceedings of the 11th IEEE real time on embedded technology and applications symposium,
pp 213-223

Anderson JH, Baruah SK (2004) Energy-efficient synthesis of periodic task systems upon identical multi-
processor platforms. In: ICDCS ’04: Proceedings of the 24th international conference on distributed
computing systems (ICDCS’04), pp 428-435

Aydin H, Devadas V, Zhu D (2006) System-level energy management for periodic real-time tasks. In: Proc
of the 27th IEEE real-time systems symposium

Aydin H, Melhem R, Mossé D, Mejia-Alvarez P (2001) Dynamic and aggressive scheduling techniques
for power-aware real-time systems. In: Proc of the 22th IEEE real-time systems symposium

Aydin H, Melhem R, Mossé D, Mejia-Alvarez P (2004) Power-aware scheduling for periodic real-time
tasks. IEEE Trans Comput 53(5):584-600

Aydin H, Yang Q (2003) Energy-aware partitioning for multiprocessor real-time systems. In: Proc of the
17th international parallel and distributed processing symposium (IPDPS), Workshop on Parallel and
Distributed Real-Time Systems (WPDRTS)

Burd TD, Brodersen RW (1995) Energy efficient cmos microprocessor design. In: Proc of the HICSS
conference

Chen JJ (2005) Multiprocessor energy-efficient scheduling for real-time tasks with different power char-
acteristics. In: ICPP *05: Proceedings of the 2005 international conference on parallel processing,
pp 13-20

Chen JJ, Hsu HR, Chuang KH, Yang CL, Pang AC, Kuo TW (2004) Multiprocessor energy-efficient
scheduling with task migration considerations. In: ECRTS ’04: Proceedings of the 16th euromicro
conference on real-time systems, pp 101-108

Chen JJ, Hsu HR, Kuo TW (2006) Leakage-aware energy-efficient scheduling of real-time tasks in multi-
processor systems. In: RTAS *06: Proceedings of the 12th IEEE real-time and embedded technology
and applications symposium, pp 408417

Cho S, Melhem RG (2010) On the interplay of parallelization, program performance, and energy con-
sumption. IEEE Trans Parallel Distrib Syst 21(3):342-353

Intel Corp. (2001) Mobile pentium iii processor-m datasheet. Order Number: 298340-002

Dabiri F, Amini N, Rofouei M, Sarrafzadeh M (2008) Reliability-aware optimization for dvs-enabled real-
time embedded systems. In: Proc of the 9th int symposium on quality electronic design (ISQED),
pp 780-783

Degalahal V, Li L, Narayanan V, Kandemir M, Irwin MJ (2005) Soft errors issues in low-power caches.
IEEE Trans Very Large Scale Integr 13(10):1157-1166

Dertouzos ML, Mok AK (1989) Multiprocessor on-line scheduling of hard-real-time tasks. IEEE Trans
Softw Eng 15(12):1497-1505

Dhall SK, Liu CL (1978) On a real-time scheduling problem. Oper Res 26(1):127-140

Ejlali A, Al-Hashimi BM, Eles P (2009) A standby-sparing technique with low energy-overhead for fault-
tolerant hard real-time systems. In: Proc of the 7th IEEE/ACM int conference on hardware/software
codesign and system synthesis (CODES), pp 193-202

Ejlali A, Schmitz MT, Al-Hashimi BM, Miremadi SG, Rosinger P (2005) Energy efficient seu-tolerance
in dvs-enabled real-time systems through information redundancy. In: Proc of the int symposium on
low power and electronics and design (ISLPED)

Elnozahy EM, Melhem R, Mossé D (2002) Energy-efficient duplex and tmr real-time systems. In: Proc of
the 23rd IEEE real-time systems symposium

Ernst D, Das S, Lee S, Blaauw D, Austin T, Mudge T, Kim NS, Flautner K (2004) Razor: circuit-level
correction of timing errors for low-power operation. IEEE MICRO 24(6):10-20

Ernst R, Ye W (1997) Embedded program timing analysis based on path clustering and architecture clas-
sification. In: Proc of the int conference on computer-aided design, pp 598-604

Hazucha P, Svensson C (2000) Impact of cmos technology scaling on the atmospheric neutron soft error
rate. IEEE Trans Nucl Sci 47(6):2586-2594

http://public.itrs.net: International technology roadmap for semiconductors (2008). S. R. Corporation

Irani S, Shukla S, Gupta R (2003) Algorithms for power savings. In: Proc of the 14th symposium on
discrete algorithms

Ishihara T, Yasuura H (1998) Voltage scheduling problem for dynamically variable voltage processors. In:
Proc of the int symposium on low power electronics and design

@ Springer

http://public.itrs.net

Real-Time Syst (2011) 47: 109-142 141

Iyer RK, Rossetti DJ, Hsueh MC (1986) Measurement and modeling of computer reliability as affected by
system activity. ACM Trans Comput Syst 4(3):214-237

Izosimov V, Pop P, Eles P, Peng Z (2005) Design optimization of time-and cost-constrained fault-tolerant
distributed embedded systems. In: Proc of the conference on design, automation and test in Europe
(DATE), pp 864-869

Jejurikar R, Gupta R (2004) Dynamic voltage scaling for system wide energy minimization in real-time
embedded systems. In: Proc of the int symposium on low power electronics and design (ISLPED),
pp 78-81

Melhem R, Mossé D, Elnozahy EM (2004) The interplay of power management and fault recovery in
real-time systems. IEEE Trans Comput 53(2):217-231

Pillai P, Shin KG (2001) Real-time dynamic voltage scaling for low-power embedded operating systems.
In: Proc of the eighteenth ACM symposium on operating systems principles, pp 89—102

Pop P, Poulsen K, Izosimov V, Eles P (2007) Scheduling and voltage scaling for energy/reliability trade-
offs in fault-tolerant time-triggered embedded systems. In: Proc of the 5th IEEE/ACM int conference
on hardware/software codesign and system synthesis (CODES+ISSS), pp 233-238

Pradhan DK (1986) Fault tolerance computing: theory and techniques. Prentice Hall, New York

Saewong S, Rajkumar R (2003) Practical voltage scaling for fixed-priority rt-systems. In: Proc of the 9th
IEEE real-time and embedded technology and applications symposium

Sridharan R, Gupta N, Mahapatra R (2008) Feedback-controlled reliability-aware power management
for real-time embedded systems. In: Proc of the 45th annual design automation conference (DAC),
pp 185-190

Unsal OS, Koren I, Krishna CM (2002) Towards energy-aware software-based fault tolerance in real-time
systems. In: Proc of the international symposium on low power electronics design (ISLPED)

Weiser M, Welch B, Demers A, Shenker S (1994) Scheduling for reduced cpu energy. In: Proc of the first
USENIX symposium on operating systems design and implementation

Yang CY, Chen JJ, Kuo TW (2005) An approximation algorithm for energy-efficient scheduling on a
chip multiprocessor. In: DATE ’05: Proceedings of the conference on design, automation and test in
Europe, pp 468473

Yao F, Demers A, Shenker S (1995) A scheduling model for reduced cpu energy. In: Proc of the 36th
symposium on foundations of computer science

Zhang Y, Chakrabarty K (2003) Energy-aware adaptive checkpointing in embedded real-time systems. In:
Proc of the conference on design, automation and test in Europe

Zhang Y, Chakrabarty K (2004) Task feasibility analysis and dynamic voltage scaling in fault-tolerant real-
time embedded systems. In: Proc of IEEE/ACM design, automation and test in Europe conference
(DATE)

Zhang Y, Chakrabarty K, Swaminathan V (2003) Energy-aware fault tolerance in fixed-priority real-time
embedded systems. In: Proc of the 2003 IEEE/ACM int conference on computer-aided design

Zhao B, Aydin H, Zhu D (2008) Reliability-aware dynamic voltage scaling for energy-constrained real-
time embedded systems. In: Proc of the IEEE international conference on computer design (ICCD)

Zhao B, Aydin H, Zhu D (2009) Enhanced reliability-aware power management through shared recovery
technique. In: Proc of the int conf. on computer aidded design (ICCAD)

Zhu D (2006) Reliability-aware dynamic energy management in dependable embedded real-time systems.
In: Proc of the IEEE real-time and embedded technology and applications symposium (RTAS)

Zhu D, Aydin H (2006) Energy management for real-time embedded systems with reliability requirements.
In: Proc of the int conf. on computer aidded design

Zhu D, Aydin H (2007) Reliability-aware energy management for periodic real-time tasks. In: Proc of the
IEEE real-time and embedded technology and applications symposium (RTAS)

Zhu D, Aydin H, Chen JJ (2008a) Optimistic reliability aware energy management for real-time tasks with
probabilistic execution times. In: Proc of the 29th IEEE real-time systems symposium (RTSS)

Zhu D, Qi X, Aydin H (2008b) Energy management for periodic real-time tasks with variable assurance
requirements. In: Proc of the IEEE int conference on embedded and real-time computing systems and
applications (RTCSA)

Zhu D, Melhem R, Childers BR (2003) Scheduling with dynamic voltage/speed adjustment using slack
reclamation in multi-processor real-time systems. IEEE Trans Parallel Distrib Syst 14(7):686—700

Zhu D, Melhem R, Mossé D (2004) The effects of energy management on reliability in real-time embedded
systems. In: Proc of the int conf. on computer aidded design

Zhu D, Melhem R, Mossé D, Elnozahy E (2004) Analysis of an energy efficient optimistic tmr scheme.
In: Proc of the 10th int conference on parallel and distributed systems

@ Springer

142

Real-Time Syst (2011) 47: 109-142

Zhu D, Mossé D, Melhem R (2004) Power aware scheduling for and/or graphs in real-time systems. IEEE
Trans Parallel Distrib Syst 15(9):849-864

Zhu D, Qi X, Aydin H (2007) Priority-monotonic energy management for real-time systems with reliability
requirements. In: Proc of the IEEE international conference on computer design (ICCD)

Ziegler JF (2004) Trends in electronic reliability: Effects of terrestrial cosmic rays. Available at
http://www.srim.org/SER/SERTrends.htm

@ Springer

Xuan Qi received the B.S. degree in computer science from Beijing
University of Posts and Telecommunications in 2005. He is now a Ph.D.
candidate in Computer Science Department, University of Texas at San
Antonio. His research interests include real-time systems, parallel sys-
tems, and high performance computing. His current research focuses on
energy-efficient scheduling algorithms for multi-processor/multi-core
real-time systems with reliability requirements.

Dakai Zhu received the BE in Computer Science and Engineering from
Xi’an Jiaotong University in 1996, the ME degree in Computer Science
and Technology from Tsinghua University in 1999, the MS and Ph.D.
degrees in Computer Science from University of Pittsburgh in 2001 and
2004, respectively. He joined the University of Texas at San Antonio
as an assistant professor in 2005. His research interests include real-
time systems, power aware computing and fault-tolerant systems. He
has served on program committees (PCs) for several major IEEE and
ACM-sponsored real-time conferences (e.g., RTAS and RTSS). He was
a recipient of the US National Science Foundation (NSF) Faculty Early
Career Development (CAREER) Award in 2010. He is a member of the
IEEE and the IEEE Computer Society.

Hakan Aydin received the B.S. and M.S. degrees in Control and Com-
puter Engineering from Istanbul Technical University in 1991 and 1994,
respectively, and the Ph.D. degree in computer science from the Univer-
sity of Pittsburgh in 2001. He is currently an Associate Professor in the
Computer Science Department at George Mason University, Fairfax,
Virginia. He has served on the program committees of several confer-
ences and workshops, including the IEEE Real-Time Systems Sympo-
sium and IEEE Real-time Technology and Applications Symposium.
In addition, he served as the Technical Program Committee Chair of
IEEE Real-time and Embedded Technology and Applications Sympo-
sium (RTAS’11). He was a recipient of the US National Science Foun-
dation (NSF) Faculty Early Career Development (CAREER) Award in
2006. His research interests include real-time systems, low-power com-
puting, and fault tolerance.

http://www.srim.org/SER/SERTrends.htm

	Global scheduling based reliability-aware power management for multiprocessor real-time systems
	Abstract
	Introduction
	Related work
	System models and problem formulation
	Power model
	Fault and recovery models
	Task model and problem formulation
	Reliability-Aware Power Management (RAPM)
	Problem formulation

	G-RAPM with individual recovery tasks
	Static individual-recovery based G-RAPM schemes
	Local task selection
	Global task selection

	Online individual-recovery based G-RAPM scheme

	G-RAPM with shared recovery tasks
	Using a uniform-size shared recovery on each processor
	A linear search heuristic for task selection
	Online adaptive G-RAPM with shared recovery

	Simulations and evaluations
	Static G-RAPM schemes
	Dynamic G-RAPM schemes

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

