
Journal of Systems Architecture 61 (2015) 127–139
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
Preference-oriented real-time scheduling and its application
in fault-tolerant systems
http://dx.doi.org/10.1016/j.sysarc.2014.12.001
1383-7621/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +1 210 458 7453; fax: +1 210 458 4437.
E-mail address: dakai.zhu@utsa.edu (D. Zhu).
Yifeng Guo a, Hang Su a, Dakai Zhu a,⇑, Hakan Aydin b

a Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA
b Department of Computer Science, George Mason University, Fairfax, VA 22030, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 26 August 2014
Received in revised form 14 November 2014
Accepted 21 December 2014
Available online 3 January 2015

Keywords:
Periodic real-time tasks
Preference-oriented execution
Scheduling algorithms
Fault-tolerant systems
In this paper, we consider a set of real-time periodic tasks where some tasks are preferably executed as
soon as possible (ASAP) and others as late as possible (ALAP) while still meeting their deadlines. After intro-
ducing the idea of preference-oriented (PO) execution, we formally define the concept of PO-optimality. For
fully-loaded systems (with 100% utilization), we first propose a PO-optimal scheduler, namely ASAP-
Ensured Earliest Deadline (SEED), by focusing on ASAP tasks where the optimality of ALAP tasks’ preference
is achieved implicitly due to the harmonicity of the PO-optimal schedules for such systems. Then, for
under-utilized systems (with less than 100% utilization), we show the discrepancies between different
PO-optimal schedules. By extending SEED, we propose a generalized Preference-Oriented Earliest Deadline
(POED) scheduler that can obtain a PO-optimal schedule for any schedulable task set. The application of
the POED scheduler in a dual-processor fault-tolerant system is further illustrated. We evaluate the
proposed PO-optimal schedulers through extensive simulations. The results show that, comparing to that
of the well-known EDF scheduler, the scheduling overheads of SEED and POED are higher (but still man-
ageable) due to the additional consideration of tasks’ preferences. However, SEED and POED can achieve
the preference-oriented execution objectives in a more successful way than EDF.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The real-time scheduling theory has been studied for decades
and many well-known scheduling algorithms have been proposed
for various task and system models. For instance, for a set of peri-
odic tasks running on a uniprocessor system, the rate monotonic
(RM) and earliest-deadline-first (EDF) scheduling policies are shown
to be optimal for static and dynamic priority based preemptive
scheduling algorithms, respectively [16]. With the main objective
of meeting all the timing constraints, most existing scheduling
algorithms (e.g., EDF and RM) prioritize and schedule tasks based
only on their timing parameters (e.g., deadlines and periods).
Moreover, these algorithms usually adopt the work conservation
strategy (that is, the processor will not idle if there are tasks ready
for execution) and execute tasks as soon as possible (ASAP).

However, there are occasions where it can be beneficial to
execute tasks as late as possible (ALAP). For example, to provide bet-
ter response time for soft aperiodic tasks, the earliest deadline latest
(EDL) algorithm has been developed to execute periodic tasks at
their latest times provided that all the deadlines will still be met
[8]. By delaying the execution of all periodic tasks as much as pos-
sible, EDL has been shown to be optimal where no task will miss its
deadline if the system utilization is no more than one [8]. By its
very nature, EDL is a non-work-conserving scheduling algorithm:
the processor may remain idle even though there are ready tasks.
With the same objective, dual-priority (DP) was developed based
on the phase delay technique [1] for fixed-priority rate-monotonic
scheduling [9]. Here, periodic tasks with hard deadlines start at
lower priority levels and, to ensure that there is no deadline miss,
their priorities are promoted to higher levels after a fixed time off-
set. Soft aperiodic tasks are executed at the medium-priority level
to improve their responsiveness.

Such selectively delayed execution of tasks can be useful for
fault-tolerant systems as well. For example, to minimize the over-
lap between the primary and backup tasks on different processors
(and thus save energy), the execution of backup tasks should be
delayed as much as possible [4,12,22]. In fact, EDL has been
exploited to schedule periodic backup tasks on the secondary
processor to reduce the overlapped execution with their primary
tasks for better energy savings [14].

However, when backup tasks (whose primary tasks are on
different processors) are scheduled with another set of primary
periodic tasks in a mixed manner on one processor [4,12,22], the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2014.12.001&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2014.12.001
mailto:dakai.zhu@utsa.edu
http://dx.doi.org/10.1016/j.sysarc.2014.12.001
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

128 Y. Guo et al. / Journal of Systems Architecture 61 (2015) 127–139
execution of backup tasks needs to be postponed as much as pos-
sible while the primary tasks should be executed as soon as possi-
ble for better performance. Note that, the well-known scheduling
algorithms generally treat all periodic tasks uniformly. They nor-
mally schedule tasks solely based on their timing parameters
either at their earliest (e.g., with EDF and RM) or latest times
(e.g., with EDL and DP). Hence, neither of them can effectively han-
dle tasks with different preferences.

Intuitively, one may consider adopting the hierarchical schedul-
ing approach [18,19] to solve such problems, where tasks with the
same preference form a task group and the high-level scheduler
would determine only how to schedule different task groups. How-
ever, the existing hierarchical scheduling frameworks consider
mostly work-conserving algorithms (such as EDF and RM) at both
parent and child scheduling components. It is not obvious how
such framework can be generalized to non-work-conserving algo-
rithms (such as EDL and DP) in order to comply with tasks’ differ-
ent execution preferences while guaranteeing their timing
constraints.

Therefore, we believe that there is a strong incentive to develop
effective uniprocessor scheduling algorithms for periodic tasks
with different execution preferences (e.g., ASAP and ALAP). In addi-
tion to fault-tolerant systems, such algorithms can also be applied
in mixed-criticality task systems [2], where high-criticality tasks
can be given the preference of running early. This makes it possible
to discover large amount of slack at earlier time, which could be fur-
ther exploited to provide better service to low-criticality tasks [20].

However, to the best of our knowledge, such scheduling algo-
rithms have not been well studied in the literature yet. In this
work, we consider periodic tasks running on a uniprocessor system
where some tasks are preferably executed ASAP while others ALAP.
We study effective scheduling algorithms and illustrate their appli-
cations. Specifically, the main contributions of this paper are sum-
marized as follows:

� The concept of preference-oriented (PO) execution is introduced
for tasks with ASAP and ALAP preferences. Two types of PO-opti-
mal schedules are defined, where their harmonicity and discrep-
ancies for fully-loaded and under-utilized systems, respectively,
are analyzed.
� An optimal ASAP-Ensured Earliest Deadline (SEED) scheduling

algorithm, which takes the preference of ASAP tasks into con-
sideration when making scheduling decisions, is proposed for
fully-loaded systems.
� A generalized Preference-Oriented Earliest Deadline (POED)

scheduler is also studied by extending SEED and explicitly man-
aging system idle time, which can obtain a PO-optimal schedule
for any schedulable task set.
� The application of the POED scheduler in dual-processor fault-

tolerant systems to reduce execution overhead and thus
improve system efficiency is further illustrated.
� Finally, we evaluate the proposed schedulers through extensive

simulations. The results show that, with manageable scheduling
overheads (less than 35 microseconds per invocation for up to
100 tasks), the SEED and POED schedulers can obtain superior
performance in terms of achieving tasks’ preference objectives
when comparing to that of the EDF scheduler. Moreover, the
execution overhead in dual-processor fault-tolerant systems
can be significantly reduced under POED when compared to
the state-of-the-art standby-sparing scheme.

The remainder of this paper is organized as follows. Section 2
reviews closely related work. Section 3 presents system models
and some notations. In Section 4, we formally define and investi-
gate the optimality of different preference-oriented schedules.
The SEED scheduling algorithm is proposed and analyzed in
Section 5. The generalized POED scheduler is addressed in Section
6 and Section 7 illustrates the application of POED in fault-tolerant
systems. Section 8 presents the evaluation results and Section 9
concludes the paper.
2. Closely related work

In this section, we review closely related work on scheduling
algorithms for periodic real-time tasks running on uniprocessor sys-
tems and techniques to reduce execution overhead in fault-tolerant
systems. The earliest-deadline-first (EDF) and rate monotonic (RM)
scheduling algorithms, which are well-known optimal schedulers
for periodic tasks running on a uniprocessor system, have been
studied in [16]. Here, EDF is a dynamic-priority scheduler that pri-
oritizes and schedules tasks based on the deadlines of their current
task instances. In comparison, RM is a fixed-priority scheduler that
prioritizes tasks according to their periods where tasks with
smaller periods have higher priorities. With the objective of
meeting all tasks’ deadlines, both EDF and RM adopt the work
conservation strategy, which do not let the processor idle if there
are ready tasks, and execute tasks as soon as possible.

For systems that have mixed workload with hard real-time
periodic tasks and soft real-time aperiodic tasks, to provide better
response time for soft aperiodic tasks, the earliest deadline latest
(EDL) algorithm has been developed to execute periodic tasks at
their latest times [8]. To ensure that there is no deadline miss,
EDL considers all instances of periodic tasks within the least com-
mon multiple (LCM) of their periods and generate an offline static
schedule. For fixed-priority rate-monotonic scheduling, the phase
delay technique was investigated where the arrival of tasks can
be delayed for a certain offset without missing any deadline [1].
Based on this technique, the dual-priority (DP) scheme has been
developed for rate-monotonic scheduling to improve the respon-
siveness of soft real-time aperiodic tasks [9].

The idea of delaying the execution of selected tasks has also
been exploited in fault-tolerant systems [4,22]. As a common and
effective fault-tolerance technique, the primary/backup (PB)
approach normally schedules multiple copies (i.e., one as primary
and others as backup) of a real-time task on different processors
to tolerate a certain number of faults [17]. However, this technique
can potentially consume significant system resources (e.g. CPU
time and power). Thus, the backup copies are normally canceled
as soon as their corresponding primary tasks complete successfully
[5]. Hence, to reduce the execution overhead, backup tasks should
be scheduled at their latest times to minimize the overlap with
their corresponding primary tasks that run on different processors
[4,22].

By dedicating one processor as the spare for backup tasks, Ejlali
et al. studied a novel Standby-Sparing (SS) technique for dependent
and aperiodic real-time tasks running on dual-processor systems
with the goal of saving system energy consumption while
tolerating a single permanent fault [10]. Based on the same idea
of separating tasks on different processors, Haque et al. extended
the standby-sparing technique to a more practical periodic task
model based on the earliest deadline scheduling [14]. Here, to
reduce the overlap between primary and backup copies of the
same task, primary and backup tasks are scheduled according to
EDF and EDL, respectively, on their dedicated processors [14].
Following this line of research, the fixed-priority (rate-monotonic
priority) based standby-sparing scheme was studied in [15]. The
generalized standby-sparing schemes for systems with more than
two processors were investigated in [13].

Instead of dedicating a processor as the spare, it can be more
efficient to allocate primary and backup copies of tasks in a mixed
manner on both processors [12]. In this case, on each processor, the

Y. Guo et al. / Journal of Systems Architecture 61 (2015) 127–139 129
primary tasks should be executed as soon as possible (ASAP) while
the execution of backup tasks (whose primary tasks are on another
processor) needs to be postponed as late as possible (ALAP). Note
that, the existing uniprocessor real-time scheduling algorithms
normally schedule tasks solely based on their timing parameters.
For instance, EDF and RM [16] schedule tasks at their earliest times
while EDL [8] and DP [9] schedule them at their latest times. How-
ever, by treating all periodic tasks uniformly, none of the existing
scheduling algorithms can effectively handle mixed tasks that have
different execution preferences.

By considering both phase delay [1] and backup overloading
[11,21] techniques, Bertossi et al. studied several schemes for
fixed-priority rate-monotonic scheduling to improve system
resource utilization and reduce the number of required processors
to tolerate a given number of faults [4]. Here, backup tasks (whose
primary tasks run on other processors) can be allocated in a mixed
manner with other primary tasks on one processor (e.g., in the
ARR1 scheme). However, the static nature of the phase delay tech-
nique [1] makes it not feasible for dynamic priority based schedul-
ing (e.g., EDF). Based on EDF scheduling, Unsal et al. studied an
offline Secondary Execution Time Shifting (SETS) heuristic which iter-
atively calculates the delayed release time for all backup task
instances within the least common multiple (LCM) of tasks’ periods
to reduce the overlap between backup and primary tasks (and thus
save system energy) [22].

In contrast to the scheduling algorithms in the existing work
[4,22], we study the preference-oriented scheduling algorithms
based on dynamic priority (i.e., deadline) of tasks running on uni-
processor systems. Specifically, by explicitly taking the execution
preferences (ASAP/ALAP) of tasks into consideration when making
scheduling decisions, we propose two online scheduling algo-
rithms and show their optimality. We illustrate the application of
the proposed schedulers in fault-tolerant systems and show that
they can effectively reduce the overlap between primary and
backup tasks.

3. Preliminaries

We consider a set of n periodic real-time tasks W ¼ fT1; . . . ; Tng
to be executed on a single processor system. Each task Ti is repre-
sented as a tuple ðci; piÞ, where ci is its worst-case execution time
(WCET) and pi is its period. The utilization of a task Ti is defined
as ui ¼ ci

pi
. The system utilization of a given task set is the summa-

tion of all task utilizations: U ¼
P

Ti2Wui.
Tasks are assumed to have implicit deadlines. That is, the jth task

instance (or job) of Ti, denoted as Ti;j, arrives at time ðj� 1Þ � pi and
needs to complete its execution by its deadline at j � pi. Note that, a
task has only one active task instance at any time. When there is no
ambiguity, we use Ti to represent both the task and its current task
instance.

In addition to its timing parameters, each task Ti in W is
assumed to have a preference to indicate how its task instances
are ideally executed at run-time. The preference can be either as
soon as possible (ASAP) or as late as possible (ALAP). Hence, based
on tasks’ preferences, we can partition them into two sets: WS

and WL (where W ¼ WS [WL), which contain the tasks with ASAP
and ALAP preferences, respectively.

A schedule of tasks essentially shows when to execute which
task. We consider discrete-time schedules. More formally, a sche-
dule S is defined as:

S : t ! Ti

where 0 6 t and 1 6 i 6 n. If a task Ti is executed in time slot
½t; t þ 1Þ in the schedule S, we have SðtÞ ¼ Ti. Furthermore, a feasible
schedule is defined as a schedule in which no task instance misses
its deadline [16].

We focus on dynamic priority-based scheduling algorithms in
this work. Note that, if WL is empty (i.e., no task has ALAP prefer-
ence), we can simply adopt the EDF scheduler to optimally execute
all ASAP tasks [16]. Similarly, when WS ¼ ; (i.e., no task has ASAP
preference), all tasks in W can be optimally scheduled with the
EDL algorithm [8].

In this paper, we consider the cases where W consists of tasks
with different preferences (i.e., both WS and WL are non-empty).
For such cases, both EDF and EDL can still feasibly schedule the
tasks in W as long as U 6 1 [8,16]. However, neither EDF nor EDL
can effectively address the different preference requirements of
various tasks.
4. PO-optimal schedules

Before discussing the proposed scheduling algorithms for tasks
with ASAP and ALAP preferences, in this section, we first formally
define the optimality of different preference-oriented schedules
and investigate their relationships. Considering the periodicity of
the problem, we focus on the schedule of tasks within the LCM
(least common multiple) of their periods. Intuitively, in an optimal
preference-oriented schedule, (a) tasks with ASAP preference
should be executed before the ones with ALAP preference
whenever possible; and (b) the execution of ALAP tasks should
be delayed as much as possible without causing any deadline
miss.

To quantify the early execution of ASAP tasks in WS in a feasible
schedule S, the accumulated ASAP execution at any time t
(0 6 t 6 LCM) is defined as the total amount of execution time of
ASAP tasks from time 0 to time t in the schedule S, which is
denoted as DðS; tÞ. Formally, we have

DðS; tÞ ¼
Xt

z¼0

dðS; zÞ ð1Þ

where dðS; zÞ ¼ 1 if SðzÞ ¼ Ti and Ti 2 WS; otherwise, dðS; zÞ ¼ 0.
Similarly, the accumulated ALAP execution of tasks in WL is

defined as the total amount of execution time of WL’s tasks from
time t to LCM in a feasible schedule S and is denoted as XðS; tÞ.
Formally,

XðS; tÞ ¼
XLCM�1

z¼t

xðS; zÞ ð2Þ

where xðS; zÞ ¼ 1 if SðzÞ ¼ Ti and Ti 2 WL; otherwise, xðS; zÞ ¼ 0.
When only ASAP or ALAP tasks are of interest in a given task set,

we define the ASAP and ALAP optimalities of a schedule based on
the above notations.

Definition 1. [ASAP-optimality] A feasible schedule Sopt
asap is ASAP-

optimal if, for any other feasible schedule S, DðSopt
asap; tÞP DðS; tÞ at

any time t (0 6 t 6 LCM).
Definition 2. [ALAP-optimality] A feasible schedule Sopt
alap is ALAP-

optimal if, for any other feasible schedule S, XðSopt
alap; tÞP XðS; tÞ at

any time t (0 6 t 6 LCM).

As we show in Section 4.2, since ASAP and ALAP tasks may have
conflicting demands in a schedule, in general it is not possible to
find a feasible schedule which is both ASAP-Optimal and ALAP-

130 Y. Guo et al. / Journal of Systems Architecture 61 (2015) 127–139
Optimal for a given task set. Therefore, we introduce the following
preference-oriented (PO) optimality definitions, which capture the
notions of how a schedule can be ASAP-Optimal while delaying
the ALAP tasks as much as possible, or ALAP-optimal while execut-
ing the ASAP tasks as early as possible.

Definition 3. [PO-optimality] A feasible schedule Sopt is PO-
optimal if, at any time t (0 6 t 6 LCM),

� XðSopt; tÞP XðSopt
asap; tÞ holds, where both Sopt and Sopt

asap are ASAP-
optimal (denoted as POS-optimal); or,
� DðSopt ; tÞP DðSopt

alap; tÞ holds, where both Sopt and Sopt
alap are ALAP-

optimal (denoted as POL-optimal).

Note that PO-optimal schedules are defined based on the accu-
mulated executions of ASAP and ALAP tasks without distinguishing
the execution orders of individual tasks with the same preference.
That is, when determining the optimality of a feasible schedule, we
can essentially divide the schedule into a sequence of ASAP and
ALAP execution sections. Hence, provided that there is no deadline
miss, switching the execution order of some task instances with
the same preference in their execution sections will not affect
the optimality of a feasible schedule. Therefore, as shown later,
more than one optimal schedule may exist for a set of periodic
tasks with ASAP and ALAP preferences.

Moreover, the existence of optimal schedules highly depends on
the system utilization of a given task set. In what follows, we inves-
tigate the relationship between different optimal schedules of
tasks with ASAP and ALAP preferences based on system utilization.
This investigation gives a foundation for the preference-oriented
execution framework and provides insightful guidelines to develop
optimal preference-oriented schedulers as shown later.

4.1. Harmonious PO-optimal schedules: U ¼ 1

When the system utilization of a task set is U ¼ 1, we know that
the processor will be fully loaded and there is no idle time in any
feasible schedule [16]. Therefore, if a feasible schedule S is an
ASAP-optimal schedule (i.e., the execution of tasks with ASAP pref-
erence in WS is performed at their earliest possible time), this also
implies that the execution of tasks with ALAP preference in WL has
been maximally delayed at any time instance. Therefore, the feasi-
ble schedule S is an ALAP-optimal schedule as well. More formally,
we can have the following lemma.

Lemma 1. For a set of periodic tasks with ASAP and ALAP preferences
where the system utilization is U ¼ 1, if a feasible schedule Sopt is an
ASAP-optimal schedule, it is also an ALAP-optimal schedule. That is,
Sopt is both POS-optimal and POL-optimal. Hence, Sopt is a PO-optimal
schedule for the task set under consideration.
Fig. 1. An example task system with discrepant PO-optimal schedules; Here,
W ¼ fT1ð1;3Þ; T2ð1;4Þ; T3ð1;6Þg; WS ¼ fT1g and WL ¼ fT2; T3g.
Proof. When the system utilization U ¼ 1, we know that the sys-
tem is fully loaded and there is no idle time in the schedule Sopt .
Therefore, for any time t (0 6 t 6 LCM), the overall execution time
for tasks in WL from time 0 to t in the schedule Sopt can be found as
(t � DðSopt; tÞ), where DðSopt ; tÞ represents the accumulated execu-
tion time for tasks in WS from time 0 to t.

Note that, for a given task set, the total execution time for tasks
with ALAP preference in WL within a LCM is fixed, which can be
denoted as ttotal

alap . Thus, the accumulated execution time for ALAP
tasks in WL from time t to LCM in any feasible schedule S can be
found as:

XðS; tÞ ¼ ttotal
alap � ðt � DðS; tÞÞ
Since Sopt is also a feasible schedule, we have:

XðSopt; tÞ ¼ ttotal
alap � ðt � DðSopt; tÞÞ

As Sopt is an ASAP-optimal schedule, from Definition 1, for any fea-
sible schedule S, we have DðSopt ; tÞP DðS; tÞ. Therefore, from the
above equations, we can get:

XðSopt; tÞP ttotal
alap � ðt � DðS; tÞÞ ¼ XðS; tÞ

From Definition 2, we know that Sopt is also an ALAP-optimal sche-
dule. Therefore, from Definition 3, Sopt is a PO-optimal (essentially
both POS-optimal and POL-optimal) schedule for the task set under
consideration. This concludes the proof. h
4.2. Discrepant PO-optimal schedules: U < 1

For task sets with system utilization U < 1, the processor will
not be fully loaded and there will be idle intervals in any feasi-
ble schedule. However, the conflicting requirements of ASAP and
ALAP tasks make the distribution of these intervals an intriguing
problem. Intuitively, for ASAP tasks in WS, such idle intervals
should appear as late as possible; whereas for ALAP tasks in
WL, they should appear as early as possible in a feasible
schedule.

To illustrate the discrepancies between POS-optimal and
POL-optimal schedules for task systems with U < 1, we consider
an example task set with three tasks T1 ¼ ð1;3Þ; T2 ¼ ð1;4Þ and
T3 ¼ ð1;6Þ. Here, task T1 has ASAP preference while T2 and T3 have
ALAP preference. That is, WS ¼ fT1g and WL ¼ fT2; T3g. It can be
easily found that the system utilization is U ¼ 0:75 and the least
common multiple of all tasks’ periods is LCM ¼ 12. Therefore, for
any feasible schedule within LCM, the amount of idle time can be
found as ð1� UÞ � LCM ¼ ð1� 0:75Þ � 12 ¼ 3.

First, for the schedule in Fig. 1a, we can see that all instances of
the ASAP task T1 are executed right after their arrival times. That is,
it is an ASAP-optimal schedule. Moreover, for all possible
executions of the ALAP tasks T2 and T3 in ASAP-optimal schedules,
the one as shown in Fig. 1a has been maximally delayed with most
of T2 and T3’s instances are executed right before their deadlines. It
turns out that it is actually a POS-optimal schedule.

Y. Guo et al. / Journal of Systems Architecture 61 (2015) 127–139 131
Note that, the schedule in Fig. 1a is not ALAP-optimal. By further
delaying the execution of task T2’s first instance T2;1 for one more
unit, we can obtain another feasible schedule as shown in Fig. 1b,
which turns out to be another PO-optimal (specifically, POL-opti-
mal) schedule.

Here, we can see that there are discrepancies with the execution
of ASAP and ALAP tasks during the interval ½2;5Þ in two PO-optimal
schedules. Such discrepancies come from the conflicting demands
from the ASAP task T1 and ALAP task T2, where both of their active
instances at time 3 ideally should be executed in time slot ½3;4Þ to
optimally satisfy their preferences.

Therefore, for under-utilized systems, it is possible to have
discrepant PO-optimal schedules due to the conflicting demands
of ASAP and ALAP tasks for their executions as well as their
conflicting requirements for the idle times in feasible schedules.
This observation is formally presented as the remark below.

Remark 1. For a set of periodic tasks with ASAP and ALAP
preferences, if the system is under-utilized with U < 1, there may
exist discrepancies between the execution of ASAP and ALAP tasks
in different PO-optimal (i.e., POS-optimal and POL-optimal)
schedules.
5. An ASAP-optimal scheduler

Intuitively, when designing preference-oriented scheduling
algorithms, there are two basic principles to address the preference
requirements of ASAP and ALAP tasks, respectively.

� P1 (ASAP Scheduling Principle): at any time t, if there are
ready ASAP tasks in WS, the scheduler should not let the proces-
sor idle – however, it may have to first execute some ALAP tasks
in WL to meet their deadlines.
� P2 (ALAP Scheduling Principle): at any time t, if all ready tasks

belong to WL, the scheduler should not execute these tasks and
should let the processor stay idle if it is possible to do so with-
out causing any deadline miss for current and future task
instances.

These two principles can have conflicts at run time (from Remark 1
and a scheduler may have to favor one over the other. However, for
fully-loaded systems, we know that their PO-optimal schedules are
harmonious (see Lemma 1). Hence, if the ASAP scheduling principle
is fully complied with when scheduling tasks in such systems, it
means that the ALAP scheduling principle is (implicitly) respected
as well.

Therefore, by focusing on ASAP tasks and adhering to the first
principle, we first propose an optimal preference-oriented schedul-
ing algorithm, namely ASAP-Ensured Earliest Deadline (SEED), for
fully-loaded systems. In Section 6, by explicitly taking both ASAP
and ALAP scheduling principles into consideration, a generalized
preference-oriented scheduler is devised, which can obtain a PO-
optimal schedule for any schedulable task set.

5.1. SEED scheduling algorithm

To ensure that all ASAP tasks run as early as possible, SEED
puts tasks with ASAP preference in the center stage when making
scheduling decisions instead of scheduling the tasks solely based
on their deadlines. That is, even if an ASAP task instance has later
deadline than an ALAP task instance, SEED may schedule the
ASAP task instance first if it is possible to delay the execution
of the ALAP task. Therefore, to fully comply with the ASAP sched-
uling principle, the main steps of SEED are summarized in Algo-
rithm 1.

Algorithm 1. The SEED Scheduling Algorithm
1: //The invocation time of the algorithm is denoted as t.
2: Input: QSðtÞ and QLðtÞ;
3: if (QSðtÞ ¼¼ ; OR QLðtÞ ¼¼ ;) then
4: if (QSðtÞ! ¼ ;) then
5: Tk ¼Dequeue(QSðtÞ) and execute Tk;
6: else if (QLðtÞ! ¼ ;) then
7: Tl ¼Dequeue(QLðtÞ) and execute Tl;
8: else
9: Let CPU idle;//QSðtÞ ¼ QLðtÞ ¼ ;;
10: end if
11: else if (dk > dl) then
12: //Tk ¼Header(QSðtÞ) and Tl ¼Header(QLðtÞ);
13: Construct the look-ahead queue Qla for interval ½t; dk�;
14: Mark(t; dk;Qla);//determine reserved sections in
½t; dk�;//Suppose the first section ends at time t0;

15: if (½t; t0� is marked as ‘‘reserved’’) then
16: Tl ¼Dequeue(QLðtÞ) and execute Tl;
17: else
18: Tk ¼Dequeue(QSðtÞ) and execute Tk until time t0;
19: end if
20: else
21: Tk ¼Dequeue(QSðtÞ) and execute Tk;
22: end if
Here, SEED can be invoked on different occasions: a) a new task
arrives; b) the current task completes or is preempted. At any invo-
cation time t, we use two ready queues QSðtÞ and QLðtÞ to manage
active ASAP and ALAP tasks, respectively.

Recall that, from the definitions in Section 4, the optimality of a
feasible schedule for a given set of periodic tasks with ASAP and
ALAP preferences depends on only the accumulated executions of
such tasks rather than when each individual task is executed.
Therefore, tasks in both queues are ordered and processed in the
decreasing order of their priorities. We assume that, at any time
t, SEED is invoked after newly arrived tasks (if any) are added to
their corresponding queues, which is not shown for brevity.

For fully-loaded systems, it is not possible to have both ready
queues be empty when SEED is invoked. However, to facilitate
the discussion later (Section 5.4) on applying SEED to under-uti-
lized systems, such a case is included (line 9) when there is no
active task and CPU should be idle. If there is only one empty ready
queue, then all active tasks have either ASAP or ALAP preference
and there is no conflicting requirement at time t. For such
cases, the active task with the earliest deadline is executed
(lines 5 and 7).

The complicated case comes when there are both active ASAP
and ALAP tasks. Here, according to the ASAP scheduling principle,
SEED should first execute the highest priority ASAP task Tk in
QSðtÞ whenever possible. If Tk’s deadline is no later than that of
QLðtÞ’s header task Tl; Tk can be executed immediately (line 21).
Otherwise, if we want to execute Tk by delaying the execution of
Tl, it may delay potentially not only Tl but also other active ALAP
tasks, and transitively other (ALAP or ASAP) task instances that
arrive in the future with deadlines earlier than dk. Therefore, to find
out whether Tk can be executed at time t without causing any
deadline miss, as the centerpiece of the SEED scheduler, the han-
dling of this special case has the following steps.

132 Y. Guo et al. / Journal of Systems Architecture 61 (2015) 127–139
Algorithm 2. The function Mark(t; dk;Qla)
1: Input: ½t; dk�, the look-ahead interval; Qla, the queue of task
instances in Wlaðt; dkÞ with decreasing priority order;

2: while (Qla – ;) do
3: Ti = Dequeue(Qla);//Ti has the highest priority with di

4: //Suppose the (remaining) execution time of Ti is ci;
5: if (Ti 2 WL) then
6: For the free sections in ½t; di�, in the reverse order of

their appearance, mark them as ‘‘reserved’’, where the
marked sections have the length of ci;

7: else
8: //Suppose Ti arrives at time ai (after time t); and
9: //the total length of free sections in ½ai; di� is L;
10: if (ci 6 L) then
11: Mark the free sections in ½ai; di� as ‘‘reserved’’, where

the marked sections have the length of ci;
12: else
13: Mark all free sections in ½ai; di� as ‘‘reserved’’;
14: For the free sections in ½t; ai�, in the reverse order of

their appearance, mark them as ‘‘reserved’’, where
marked sections have the length of (ci � L);

15: end if
16: end if
17: end while

First, we determine the look-ahead interval as ½t; dk�, where dk is
Tk’s current deadline. Note that, to meet its deadline, the (remain-
ing) execution of Tk has to be performed within the interval ½t; dk�.
Moreover, at/after time t, only the task instances (including the
future arrivals) that have higher priorities than Tk may execute
before dk and affect Tk’s execution. As the second step, we find
these task instances that form a look-ahead set Wlaðt; dkÞ; and, in
the order of their priorities, put them into a look-ahead queue
Qla (line 13). More formally, Wlaðt; dkÞ is defined as:

Wlaðt;dkÞ ¼ fTi;jjðTi;j 2 QLðtÞ _ ai;j > tÞ ^ di;j < dkg ð3Þ

where ai;j is the arrival time of a future task instance Ti;j. That is,
Wlaðt;dkÞ includes both the active ALAP tasks in QLðtÞ and future task
instances that have earlier deadlines than dk. Essentially, Wlaðt;dkÞ
contains all task instances that can prevent Tk from being executed
immediately at time t.

Then, for all the task instances in Wlaðt; dkÞ, the length of the CPU
time that must be reserved before their respective deadlines is
determined in the function Mark(t; dk;Qla) (line 14). There are
two possibilities for the result as illustrated in Fig. 2. If the first sec-
tion ½t; t0� is marked as ‘‘reserved’’, it means that some active ALAP
tasks have to be executed immediately to avoid deadline misses
Fig. 2. The marking of the look-ahead interval.
(line 16). Otherwise, if there is a ‘‘free’’ section starting at time
t; Tk is deemed to be safe to run at that time (line 18). Note that,
the execution of Tk: (a) may complete or be preempted due to
the arrival of a new task instance before time t0; or (b) has to stop
at time t0 (with the help of a timer) to meet other tasks’ deadlines.

Algorithm 2 further details the steps of Mark(t; dk;Qla). Again,
the objective of this function is to determine whether it is possible
to execute task Tk at time t. Thus, we just need to find out the loca-
tion of the reserved sections rather than to generate the schedule
for the task instances in Qla within the interval ½t; dk�. Therefore,
in decreasing order of their priorities, the task instances in Qla

are handled one at a time as discussed below (lines 2 and 3).
If Ti is an ALAP task instance, in the backward order, we mark

the free sections before di as ‘‘reserved’’. Here, a free section may
be divided into pieces and the total length of the marked sections
should equal to Ti’s (remaining) execution time ci (line 6). If Ti is a
future task instance, the backward marking process may use free
sections before its arrival time ai. Note that this does not mean that
we need to execute a task instance before its arrival, but merely
indicates that the marked sections before ai have to be reserved
for the task instances in Qla.

As an example, suppose that there are two ALAP task instances
in Qla, where Tx has an earlier deadline and Ty is a future task
instance that arrives at time ayð> tÞ. Since Tx has a higher priority,
it first marks the section of size cx right before its deadline dx as
‘‘reserved’’ as shown in Fig. 2a. Then, for Ty, its execution time cy

is larger than the free section within ½ay; dy�. In this case, it will first
mark the free section within ½ay; dy� and then part of the free sec-
tion before ay as ‘‘reserved’’. As there is no other task instance in
Qla, the first section ½t; t0� is left as ‘‘free’’. Therefore, even though
its deadline dk is later than that of the ALAP task Tx; Tk can be exe-
cuted right away at time t (up to the time point t0).

If the next task instance Ti in Qla is an ASAP task, it must arrive
after time t and have its deadline before dk (i.e., ai > t and di < dk).
For the free sections within ½ai; di�, if their overall size L is no smal-
ler than Ti’s execution time ci, we mark them as ‘‘reserved’’ in the
forward order such that the marked sections have the total length
of ci (line 11). Otherwise, all the free sections within ½ai; di� will be
marked as ‘‘reserved’’ (line 13). Then, similar to the handling of
ALAP tasks, the free sections before ai will be reserved in the back-
ward order for the amount of ci � L (line 14).

Continuing with the example in Fig. 2a, suppose that there is
one more ASAP task instance (Tz) in Qla, where dy < dz. As the free
section within ½az; dz� is not large enough, it turns out that Tz marks
all free sections before dz as shown in Fig. 2b, where the first sec-
tion ½t; az� is ‘‘reserved’’. That is, to guarantee that there is no dead-
line miss for the task instances in Qla, we have to execute Tx (and
even Ty) immediately at time t. However, such urgent execution
will be preempted when a new task Tz arrives at the nearest future
time az by re-invoking the SEED scheduler.

5.2. Optimality of the SEED scheduler

In this section, we provide formal analysis and proof for the
optimality of the SEED scheduling algorithm. Specifically, we first
show that, for any schedulable task set with system utilization
U 6 1, the SEED scheduler can successfully schedule all tasks and
guarantee that there is no deadline miss. Then, we prove that, for
any schedulable task set, SEED will generate an ASAP-optimal
schedule. This further implies that, for fully-loaded task systems,
SEED is essentially an optimal preference-oriented scheduler.

From Algorithm 1, we can see that SEED follows the earliest
deadline first (EDF) principle when scheduling tasks with the same
preference. Specifically, when all active tasks have the same prefer-
ence, the task with the earliest deadline will be executed next (lines
5 and 7 for ASAP and ALAP tasks, respectively). For cases where

Y. Guo et al. / Journal of Systems Architecture 61 (2015) 127–139 133
active tasks have different preferences, the look-ahead interval is
determined by an ASAP task with the earliest deadline. Therefore,
if the initial part of the look-ahead interval is ‘‘free’’, the earliest
deadline ASAP task is executed (line 18); otherwise, if the initial
part is ‘‘reserved’’, the earliest deadline ALAP task will be executed
(line 16). Hence, we can have the following observation:

Observation 1. At any time t, the SEED scheduler executes tasks
with the same preference according to the earliest deadline first
(EDF) principle. That is, whenever SEED executes an ASAP (or
ALAP) task, the task should have the earliest deadline among all
active ASAP (or ALAP) tasks.

Hence, before a task Tk completes its execution, no other task
with the same preference but a later deadline can be executed
within the interval ½rk; dk�, where rk and dk are Tk’s arrival time
and deadline, respectively. From Algorithm 1, we can further get
the following lemma:

Lemma 2. Suppose that a task Tk misses its deadline at time dk, no
task that has a deadline later than dk can be executed within ½rk; dk�
under SEED.

Proof. If Tk is an ASAP task, from Observation 1, we know that no
ASAP task with a deadline later than dk can be executed within
½rk; dk�. Moreover, from Algorithm 1, we know that no ALAP task
with a deadline later than dk will be in the look-ahead task queue
Qla when SEED is invoked at time t, where (rk 6 t 6 dk). Therefore,
no task with a deadline later than dk can be executed within ½rk; dk�
when Tk is an ASAP task.

When Tk is an ALAP task, from Observation 1, we know that no
ALAP task with a deadline later than dk can be executed within
½rk; dk�. Moreover, from Algorithms 1 and 2, we know that the
execution of any ASAP task with a deadline later than dk within
½rk; dk� would indicate that enough time has been reserved for task
Tk before dk, which contradicts with our assumption that Tk misses
its deadline. Therefore, no task with a deadline later than dk can be
executed within ½rk; dk� when Tk is an ALAP task.

To conclude, if a task Tk misses its deadline at time dk, no task
(regardless of its preference) that has a deadline later than dk can
be executed within ½rk; dk� under SEED. h

From Lemma 2 and Algorithms 1 and 2, we can get the follow-
ing theorem regarding to the schedulability of tasks under SEED:

Theorem 1. For a set of periodic tasks with ASAP and ALAP
preferences where U 6 1, the SEED scheduler can successfully schedule
all tasks without missing any deadline.
Proof. Suppose that a task Tk arrives at time rk and misses its
deadline at dk. From Lemma 2, we know that there is no task with
a deadline later than dk can be executed within ½rk; dk�, which is
defined as the problematic interval.

Let t0 denote the last processor idle time before dk. Note that,
there must exist tasks with deadlines later than dk that are
executed before rk. Otherwise, we can find that the processor
demand in ½t0; dk�, defined as the sum of the computation times of
all tasks that arrive no earlier than t0 and have deadlines no later
than dk [3], is more than ðdk � t0Þ, which contradicts with the
condition of U 6 1.

Moreover, there must exist tasks that arrives before rk with
deadlines earlier than dk and are executed in ½rk; dk� (otherwise,
there will be a contradiction for the processor demand within the
interval ½rk; dk�). Suppose r0 is the earliest arrival time of such tasks,
we can extend backward our problematic interval to be ½r0; dk�.
Following the above steps, we can finally extend our problem-
atic interval to be ½t0; dk�, which indicates that there is no task with
a deadline later than dk that has been executed before rk. This
contradicts with our earlier findings that there must exist tasks
with deadlines later than dk that are executed before rk, and thus
concludes the proof. h
Theorem 2. For a set of periodic tasks with ASAP and ALAP prefer-
ences where the system utilization is U 6 1, the generated schedule
under SEED is an ASAP-optimal schedule.
Proof. Suppose that the schedule Sseed obtained under SEED for the
tasks being considered is not an ASAP-optimal schedule. There
must exist another feasible schedule S such that DðS; tÞP
DðSseed; tÞ (0 6 t 6 LCM). Moreover, there must exist at least one
interval during which ASAP tasks are executed in S but not in
Sseed. Assume ½t1; t2� (0 6 t1 < t2 6 LCM) is the first of such inter-
vals. That is, during the interval ½0; t1�;S and Sseed must execute
ASAP tasks for the same amount and at the same time.

As there are active ASAP tasks during ½t1; t2�, from Algorithm 1,
we know that SEED must have executed ALAP tasks during ½t1; t2�
and such ALAP tasks (which form a set U) have to be executed
during ½t1; t2� to meet their deadlines. Since SEED is a work-
conserving scheduler and it executes ALAP tasks in the order of
their deadlines, the total amount of execution time for ALAP tasks
in U during ½0; t1� in the schedule S will be no more than that of
Sseed. Therefore, such ALAP tasks in U have to be executed during
½t1; t2� in the schedule S as well to meet their deadlines, which
contradicts with our assumption and thus concludes the proof. h

From Theorem 2 and Lemma 1, for fully-loaded systems with
U ¼ 1, SEED is essentially an optimal preference-oriented sched-
uler. Thus, we have the following theorem.

Theorem 3. For a set of periodic tasks with ASAP and ALAP
preferences where the system is fully-loaded with U ¼ 1, SEED is an
optimal preference-oriented scheduler and the generated SEED
schedule is a PO-optimal schedule.
5.3. The improved SEED algorithm and complexity

From Algorithms 1 and 2, we can see that the most complex
case happens when the deadline of the highest priority ASAP task
is later than that of the highest priority ALAP task. To determine
whether it is possible to first execute the ASAP task and comply
with the ASAP scheduling principle, SEED needs to consider all
(active and future) task instances within the look-ahead interval.
However, the Mark() function in Algorithm 2 is computationally
costly by requiring every task instance in Qla to search through
the look-ahead interval and mark all corresponding reserved
sections.

Note that, except for the first section, SEED does not need the
detailed information about other sections within the look-ahead
interval. Essentially, the only information that SEED needs is how
much time (if any) it can use to safely execute the highest priority
ASAP task Tk at the invocation time t without causing any deadline
miss in the future.

From the discussion of Algorithm 2, we know that, when the
first section is ‘‘reserved’’, it indicates there is no available time
for task Tk at time t. In this case, there must exist at least one
task instance Tx 2 Qla such that there is no free section between
t and Tx’s deadline dx. Define the accumulated workload for
task instances in Qla that has to be done before a given deadline
D as:

134 Y. Guo et al. / Journal of Systems Architecture 61 (2015) 127–139
WðD;QlaÞ ¼
X

Ti2Qla^di6D

crem
i ð4Þ

where crem
i denotes the remaining execution time of Ti. That is, we

have Wðdx;QlaÞ ¼ dx � t. Otherwise, the first section is a ‘‘free’’ sec-
tion and its size can be found as

tfree ¼ minfðdx � tÞ �Wðdx;QlaÞj8Tx 2 Qlag ð5Þ

Therefore, based on the above two equations, the process of deter-
mining the status of the first section can be simplified. Here, tfree ¼ 0
indicates the first section is ‘‘reserved’’, while tfree > 0 represents the
size of the first ‘‘free’’ section.

Suppose that the minimum and maximum periods of tasks are
pmin and pmax, respectively. In the worst case, the look-ahead inter-
val can be as large as pmax. Moreover, the worst case number of task
instances in Qla can be found as n � pmax

pmin
. Hence, by checking the

accumulated workload that has to be done before the deadline of

each task instance in Qla; tfree can be found in O n � pmax
pmin

� �
, which is

also the complexity of the SEED scheduler.
5.4. SEED for under-utilized systems

From Algorithm 1, we can see that the processor will not be idle
under SEED if there is any active (ASAP or ALAP) task. That is, SEED
adopts the work-conserving approach, which conflicts with the
ALAP scheduling principle when a task system is not fully-loaded.

For the example task set discussed earlier in Section 4, following
the steps in Algorithms 1 and 2, its SEED schedule can be found as
shown in Fig. 1c. Here, we can see that, all instances of the ASAP
task T1 are also executed right after their arrival times (i.e., the
SEED schedule is an ASAP-optimal schedule). However, the work-
conserving property of SEED (which is critical to comply with the
ASAP scheduling principle) also forces it to execute the ALAP tasks
T2 and T3 at an earlier time. Such early executions of T2 and T3

make the resulting SEED schedule inferior to the POS-optimal sche-
dule as shown in Fig. 1a.
6. Generalized POED scheduler

The preceding discussion shows that, despite the sophistication
of the SEED algorithm, we need a more general framework to
explicitly delay the ALAP tasks in under-utilized systems, by judi-
ciously letting the processor idle. By extending the central ideas of
SEED and explicitly taking the ALAP scheduling principle into con-
sideration, in this section, we propose a generalized Preference-Ori-
ented Earliest Deadline (POED) scheduling algorithm. POED can
obtain a PO-optimal schedule for any schedulable task system as
shown later.

Here, to manage the idle times and appropriately delay the exe-
cution of ALAP tasks without causing any deadline miss, we aug-
ment a under-utilized task set W (i.e., U < 1) with a dummy task
T0 that has period p0 and utilization as u0 ¼ ð1� UÞ. That is, after
the augmentation, we have the task set as W ¼ ðW [fT0gÞ with
U ¼ 1. Moreover, in order to postpone the execution of ALAP tasks
with the help of dummy task T0, we assume that T0 has ASAP
preference.

However, unlike (genuine) ASAP tasks, the purpose of the
dummy task is to simply introduce idle times into the schedule
periodically and thus delay the execution of ALAP tasks. Therefore,
to comply with the ASAP scheduling principle, the idle times
introduced by the dummy task should not block (or delay) the
execution of other active ASAP tasks even if the deadline of the
current dummy task instance is earlier than those of the active
ASAP tasks.
From another perspective, we can consider the idle times as sys-
tem slack, which can be borrowed by the real ASAP tasks for early
executions. To systematically manage system slack (i.e., idle times)
and enable appropriate scheduling of such idle intervals at runtime,
we adopt the wrapper-task mechanism studied in our previous work
[23]. Essentially, a wrapper-task WT represents a piece of slack with
two parameters ðc; dÞ, where size c denotes the amount of slack and
deadline d equals to that of the task giving rise to this slack.

For the dummy task T0, there is no real workload and its execu-
tion time will be converted to slack whenever it arrives. At any
time t, wrapper-tasks are kept in a separate wrapper-task queue
QWTðtÞ with increasing order of their deadlines. At runtime, wrap-
per-tasks compete for the processor with other active tasks based
on their priorities (i.e., deadlines). When a wrapper-task has the
earliest deadline, it actually wraps the execution of the highest pri-
ority ASAP task (if any) by lending its allocated processor time to
the ASAP task and pushing forward the slack; if there is no active
ASAP task, an idle interval will appear when the slack is consumed.

More details about wrapper-tasks can be found in [23], and we
list below two basic operations that are used in this work:

� AddSlack(c; d): create a wrapper-task WT with parameters ðc; dÞ
and add it to QWTðtÞ. Here, all wrapper-tasks represent slack
with different deadlines. Therefore, WT may need to merge with
an existing wrapper-task in QWTðtÞ if they have the same
deadline.
� RemoveSlack(c): remove wrapper-tasks from the front of QWTðtÞ

with accumulated size of c. The last one may be partially
removed by adjusting its remaining size.
Algorithm 3. The POED Scheduling Algorithm

1: //The invocation time of the algorithm is denoted as t.
2: Input: QSðtÞ;QLðtÞ and QWTðtÞ;
3: if (CPU idle or wrapped-execution occurs in ½tl; t�) then
4: RemoveSlack(t � tl);//tl is previous scheduling time
5: if (The execution of an ASAP task Tk is wrapped) then
6: AddSlack(t � tl; dk);//push forward the slack
7: end if
8: end if
9: if (new dummy task arrives at time t) then
10: AddSlack(c0; t þ p0);//add new slack
11: end if
12: //suppose that Tk; Tj and WTx are the header tasks of
13: //QSðtÞ;QLðtÞ and QWTðtÞ, respectively
14: if (QSðtÞ! ¼ ;) then
15: Determine/mark look-ahead interval: ½t;minðdx; dkÞ�;
16: if (the first interval ½t; t0� is marked ‘‘free’’) then
17: Execute Tk in ½t; t0�;//wrapped execution if dx < dk

18: else
19: Execute Tj in ½t; t0�;//urgent execution of ALAP tasks
20: end if
21: else if (QWTðtÞ! ¼ ;) then
22: Determine/mark look-ahead interval: ½t; dx�;
23: if (the first interval ½t; t0� is marked ‘‘free’’) then
24: Processor idles in ½t; t0�;//idle interval appears
25: else
26: Execute Tj in ½t; t0�;//urgent execution of ALAP tasks
27: end if
28: else
29: Execute Tj normally;//only ALAP tasks are active
30: end if

Y. Guo et al. / Journal of Systems Architecture 61 (2015) 127–139 135
6.1. POED scheduling algorithm

With the help of the two operations for wrapper-tasks, the
major steps of POED for scheduling the augmented task set with
the newly added dummy task are summarized in Algorithm 3.
Basically, when making scheduling decisions, POED aims at follow-
ing both ASAP and ALAP scheduling principles by considering first
active ASAP tasks, then wrapper-tasks (to let the processor idle)
and finally, active ALAP tasks.

Specifically, at any invocation time t, the slack time is first prop-
erly managed through the two wrapper-task operations. Here, if
the processor is idle during last interval and the slack time is actu-
ally consumed, the corresponding wrapper-tasks are removed with
the RemoveSlack() operation (line 4). Otherwise, if wrapped-
execution occurs during last interval, the slack time is actually
pushed forward by having a later deadline through the
AddSlack() operation (line 6) [23]. Moreover, whenever a new
instance of the dummy task arrives, its execution time is converted
to slack time immediately with the AddSlack() operation as well
(line 10).

Whenever there are active ASAP tasks, POED tries to execute
them in the first place (lines 14 to 20) by following the same steps
as in SEED. Note that wrapper-tasks also compete for processor.
Therefore, when the highest priority ASAP task has a later deadline
than that of the wrapper-task, the processor will be allocated to the
wrapper-task if the first section in the look-ahead interval is ‘‘free’’,
which will wrap the execution of the ASAP task; otherwise, if the
ASAP task has the earliest deadline, it is executed normally (line
17). For the case where there is no ‘‘free’’ section at the beginning
of the look-ahead interval, urgent execution of active ALAP tasks
will be performed to meet their deadlines (line 19).

When there is no active real ASAP task, POED will try to let the
processor idle and delay the execution of ALAP tasks if possible.
Recall that the dummy task has ASAP preference, which will be
inherited by the wrapper-tasks. Therefore, for the wrapper-task
with the earliest deadline, similar to the handling of other real
ASAP tasks, a look-ahead interval is checked by constructing the
corresponding look-ahead task instance set (line 22). If there is a
‘‘free’’ section at the beginning of the look-ahead interval (which
means that all active ALAP tasks can be delayed), the processor will
idle by consuming the slack time represented by the wrapper task
(line 24). Otherwise, urgent execution of ALAP tasks is performed
(line 26). Finally, when there are only active ALAP tasks, they are
executed in the order of their priorities (line 29).
6.2. Analysis of the POED scheduler

Note that, POED can also be applied to task sets with full system
utilization (i.e., U ¼ 1). With the dummy task having u0 ¼ 0, there
is no idle time and wrapped execution. Here, POED will reduce to
SEED, which can optimally schedule all tasks without missing
any deadline as shown in Section 5.

For under-utilized task sets where U < 1, the execution time of
the dummy task is converted to slack at run-time, which is further
represented by and managed through wrapper-tasks. However,
from the discussions in [23], we know that such a wrapper-task
based slack management mechanism does not introduce addi-
tional workload into the system. Moreover, from Algorithm 3, we
can see that there are two possibilities for the execution of such
wrapper-tasks: (a) consuming the corresponding slack time to let
the processor idle; or (b) wrapping the execution of an ASAP task
to push forward the corresponding slack to a later time.

When the slack time is actually consumed, it indicates that
there is no active ASAP task and the execution time of active ALAP
tasks (and future tasks) can be guaranteed before their correspond-
ing deadlines. That is, the idling of the processor consumes the exe-
cution time of a wrapper-task and will not affect the timeliness of
any real task. For the case of wrapped execution, the allocated time
for the wrapper-task is actually lent to an ASAP task (that has a
later deadline), which will return it at a later time (i.e., the slack
is pushed forward). From another point of view, the idling of the
processor (which supposes to happen at an earlier time) and the
execution of the ASAP task (which supposes to happen at a later
time) are essentially switched in the schedule to better fulfill our
scheduling objectives. Therefore, following the similar reasonings
as those for SEED and in [23], we have:

Theorem 4. For any task set W with U < 1 that is augmented with a
dummy task T0 (where u0 ¼ 1� U), there is no deadline miss when
the tasks are scheduled under POED.

From Algorithm 3, we can also see that, when processing a
wrapper-task to delay the execution of ALAP tasks, POED adopts
the same steps as in SEED to scrutinize the look-ahead interval
with the corresponding task instance set. Therefore, POED has
the same complexity as that of SEED, which can be given as

O n � p0max
pmin

� �
where p0max ¼maxfpmax; p0g. That is, the period of the

dummy task can have a significant impact on the scheduling over-
head of POED.

Intuitively, having a smaller period for the dummy task can
reduce POED’s scheduling overhead with a shorter look-ahead
interval when a corresponding wrapper-task has a higher priority
than those of the active ASAP tasks. However, when there is no
active ASAP task and POED needs to decide the idle time of the pro-
cessor, the smaller period can limit the amount of available slack
(i.e., idle time) within the shorter look-ahead intervals. Thus the
idling of the processor may not be able to delay the execution of
ALAP tasks to the maximum extent, which results in a sub-optimal
schedule.

On the other hand, if the dummy task’s period is set as
p0 ¼ LCM, we can always find the longest idle time for the proces-
sor whenever there is no active ASAP task, which can maximally
delay the execution of ALAP tasks. That is, the resulting POED sche-
dule is ALAP-optimal. Moreover, with the wrapper-tasks and
wrapped executions, we know that POED will not let the processor
idle whenever there are active ASAP tasks (see Algorithm 3).
Hence, the resulting POED schedule is essentially POL-optimal
when p0 ¼ LCM. In fact, the example in Fig. 1b is such a POED sche-
dule. More formally, we have the following theorem.

Theorem 5. For any task set W with U < 1 that is augmented with a
dummy task T0 (where u0 ¼ 1� U), the POED schedule is POL-optimal
when the dummy task’s period is p0 ¼ LCM.
Proof. We first show that the resulting POED schedule SPOED is
ALAP-optimal when p0 ¼ LCM.

Suppose that SPOED is not ALAP-optimal. Without loss of
generality, we assume that a different feasible schedule Sopt

alap is
ALAP-optimal. From Definition 2, we know that

XðSopt
alap; tÞP XðSPOED; tÞ; 8tð0 6 t 6 LCMÞ

Moreover, there must exist time t (0 < t < LCM) such that
XðSopt

alap; tÞ > XðSPOED; tÞ. That is, there must exist time intervals dur-
ing which ALAP tasks are executed in one schedule but not the
other.

Suppose that ½t1; t2� (0 < t1 < t2 < LCM) is the earliest such
interval. It must be the case that, during the interval ½t1; t2�, ALAP
tasks are executed in the schedule SPOED but not in Sopt

alap (where the
corresponding ALAP execution is performed at a later time). That is,

136 Y. Guo et al. / Journal of Systems Architecture 61 (2015) 127–139
before time t1, both schedules execute ALAP tasks (may not be the
same) during exactly the same time intervals, which are denoted as
concurrent ALAP-intervals.

In what follows, we define a set of task instances based on their
executions in the POED schedule SPOED and show that there must
be deadline miss for these task instances in the schedule Sopt

alap,
which contradicts with our assumption.

From Algorithm 3, we know that the execution of ALAP tasks
during the interval ½t1; t2� under POED is urgent, which must be
demanded by some task instances in the look-ahead interval to
meet their timing constraints. Suppose that the earliest deadline of
these task instances is dz (t2 6 dz; see Fig. 2b for an example). For
the tasks in W, define the set of their task instances that have
deadlines no later than dz as QðW; dzÞ. From Eqs. (4) and (5), we
know that the remaining workload for the task instances in
QðW; dzÞ under POED at time t1 is exactly (dz � t1), which leaves no
‘‘free’’ section and causes urgent execution.

Note that, for the active ASAP task instances at time t1 under
POED, their deadlines should be later than dz and they are not in
the set QðW; dzÞ. That is, if there is any remaining ASAP workload
for task instances in QðW; dzÞ at time t1 under POED, the ASAP task
instances must arrive after t1.

Moreover, POED follows the earliest deadline first principle and
executes task instances in the non-decreasing order of their dead-
lines. Therefore, during the concurrent ALAP-intervals before time
t1, the executed workload for the ALAP task instances in QðW; dzÞ
under POED is no less than that in the schedule Sopt

alap. Hence, for the
scheduleSopt

alap at time t1, the sum of the remaining ALAP workload for
task instances in QðW; dzÞ and the workload for future arrival ASAP
task instances (if any) in QðW; dzÞ is no less than ðdz � t1Þ.

However, in our assumption, the processor is either idle or
executing ASAP tasks in the schedule Sopt

alap during the interval
½t1; t2�. In either case, there must exist an interval within ½t1; t2�
during which the processor does not execute the remaining ALAP
task instances or the future arrival ASAP task instances in QðW; dzÞ.
That is, it is not possible for such task instances in QðW; dzÞ to
complete their executions within the interval ½t1; dz� in Sopt

alap and
deadline misses will occur, which contradicts with our assumption
that Sopt

alap is a feasible schedule. Hence, SPOED is ALAP-optimal.
Next, we show that SPOED is essentially a POL-optimal schedule.

From Algorithm 3, once ASAP tasks arrive, they are executed at the
earliest possible time with the wrapped-execution under POED
and the processor can only be idle when there is no active ASAP
tasks. Therefore, for any other ALAP-optimal schedule Sopt

alap, the

accumulated execution for ASAP tasks at any time t in SPOED will
not be less than that of Sopt

alap. From Definition 3, we know that SPOED

is POL-optimal, which concludes our proof. h
Fig. 3. An example with two tasks: T1 ¼ ð3;5Þ and T2 ¼ ð3;10Þ on a dual-processor
system.
7. An application of POED scheduler

Fault tolerance has been the traditional research topic for real-
time systems, where tasks have to complete their executions suc-
cessfully no later than their deadlines even in the presence of var-
ious faults [5,7,11]. In this section, as an example application of the
POED scheduler, we illustrate how it can be applied in fault-toler-
ant systems to reduce execution overhead and thus improve sys-
tem efficiency. Specifically, we consider a set of periodic real-
time tasks running on a dual-processor system. To tolerate a single
fault, a simple and well-studied approach is hot-standby, which
runs two copies of the same task concurrently and simultaneously
on the processors [17]. However, such an approach can be quite
costly with 100% execution overhead.

In this work, we focus on an efficient primary/backup (PB) tech-
nique [5]. Here, with the objective of tolerating a single (perma-
nent) fault, each (primary) task will have a backup task with the
same timing parameters where the primary and backup of the
same task have to be scheduled on different processors. To reduce
the overlap between the primary and backup of the same task, the
backup task should be scheduled at the latest time [14,22].
7.1. An example

As a concrete example, we consider two periodic tasks
T1 ¼ ð3;5Þ and T2 ¼ ð3;10Þ that run on a dual-processor system.
In our recently studied Standby-Sparing (SS) technique [14], all pri-
mary tasks are scheduled on a (primary) processor, while backup
tasks are executed on another (spare) processor, as shown in
Fig. 3a. Here, to reduce the overlapped executions of primary and
backup copies of the same task, primary tasks are scheduled
according to EDF on the primary processor while backup tasks
are delayed as much as possible according to EDL on the spare pro-
cessor [14].

Suppose that there is no failure during the execution of the
tasks in the above example. The corresponding SS schedule within
the LCM is shown in Fig. 3a, where the canceled (partial) backup
(or primary) copies are marked with ‘‘X’’. Here, we can see that,
there are five (5) units of overlapped executions. Compared to
the hot-standby scheme [17] that would need nine (9) units of
overlapped executions within one LCM, the execution overhead
under the Standby-Sparing technique can be reduced to 5

9 ¼ 56%.
To further reduce the overlapped execution, instead of dedicat-

ing a processor as the spare, we can schedule the primary and
backup copies of tasks in a mixed manner. For example, we can
schedule the primary task T1 and backup task B2 on the first pro-
cessor while backup task B1 and primary task T2 on the second pro-
cessor, as shown in Fig. 3b. Here, the mixed task set on each
processor are scheduled with the POED scheduler, where primary
and backup tasks are assigned ASAP and ALAP preferences, respec-
tively. In this case, when there is no failure during tasks’ execution,
there are only 3 units of overlapped execution. It leads to the exe-
cution overhead as 3

9 ¼ 33%, a 23% reduction on the overhead com-
pared to that of the Standby-Sparing technique.

By reducing the execution overhead, we can reduce the energy
consumption of the system and thus improve its energy efficiency.
In particular, by exploiting the commonly used energy saving tech-
niques, such as dynamic voltage scaling (DVS) and dynamic power
management (DPM), we have studied an energy-efficient fault-tol-
erance scheme based on the POED scheduler in our recent work
[12].

Y. Guo et al. / Journal of Systems Architecture 61 (2015) 127–139 137
7.2. POED-based fault-tolerance technique

As shown in the example, to reduce the execution overhead for
periodic real-time tasks tolerating a single fault in a dual-processor
system, both processors will adopt the POED scheduler to execute
the mixed tasks allocated to them. Specifically, the basic steps of
the POED-based fault-tolerance technique can be summarized as
follows (which are similar to [12]):

� Step 1: Partition primary tasks to the processors and mark them
as ASAP tasks; (The worst-fit decreasing (WFD) heuristic is
adopted to balance primary workload).
� Step 2: For each primary task, allocate its backup task to the

processor other than its own processor and mark all the backup
tasks as ALAP tasks.
� Step 3: On each processor, schedule the mixed set of primary

tasks (with ASAP preference) and backup tasks (with ALAP pref-
erence) by the POED algorithm.

At runtime, the same as in other primary/backup schemes, the
backup task on one processor will be canceled as soon as its corre-
sponding primary task completes successfully on another processor.
Moreover, the canceled backup tasks can generate slack time, which
can be exploited to execute future primary tasks at earlier time.
Such early execution of primary tasks can further cause more can-
cellation of backup tasks. More detailed discussions on cancellation
of backup tasks at runtime under POED-based scheme can be found
in [12]. The performance of the POED-based technique on reducing
execution overhead is evaluated through simulations and discussed
in Section 8.3.
8. Evaluations and discussions

To evaluate the scheduling overhead and how well tasks’ pref-
erence requirements are achieved, we have implemented the pro-
posed SEED and POED scheduling algorithms and developed a
discrete event simulator using C++. For comparison, the well-
known EDF scheduler is also implemented.

We consider synthetic task sets with up to 100 tasks, where the
utilization of each task is generated using the UUniFast scheme
proposed in [6]. The period of each task is uniformly distributed
in the range of ½pmin; pmax�. Each data point in the figures corre-
sponds to the average result of 100 task sets.

8.1. Scheduling overhead of SEED and POED

Recall that the complexity of SEED is O n � pmax
pmin

� �
, which depends

on both the number of tasks in a task set and tasks’ periods. Here,
we fix pmin ¼ 10. With U ¼ 1 and n ¼ 20, Fig. 4a first shows the nor-
malized scheduling overhead of SEED when varying pmax. The over-
head of EDF is used as the baseline, which depends only on the
number of tasks. The two numbers in the labels represent the num-
bers of ASAP and ALAP tasks, respectively. All experiments were
 1

 2

 3

 4

 5

 6

 7

 8

 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 o

ve
rh

ea
d

ov
er

 E
D

F

max period of tasks

SEED (10, 10)
SEED (16, 4)
SEED (4, 16)

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7

 20 30 40 50 60 70 80 90 100

ov
er

he
ad

 p
er

 in
vo

ca
tio

n
(µ

s)

max period of tasks

SEED (10, 10)
SEED (16, 4)
SEED (4, 16)

Fig. 4. Scheduling overheads of SEED and POED
conducted on a Linux box with an Intel Xeon E5507 (2:0 GHz)
processor.

Not surprisingly, when pmax becomes larger, the normalized
overhead of SEED increases due to larger look-ahead intervals
and more task instances in such intervals. With 20 tasks per task
set, the overhead of SEED can be up to 5:5 times of that of EDF
when pmax ¼ 100. The actual scheduling overhead of SEED at each
invocation with varying pmax are further shown in Fig. 4b, which
is less than 6 microseconds.

Interestingly, different mixes of ASAP and ALAP tasks can affect
SEED’s scheduling overhead as well. When the numbers of ASAP
and ALAP tasks are equal, the scheduling overhead is much higher
than other unbalanced cases. The reason is that, the probability of
having both active ASAP and ALAP task instances at each schedul-
ing point is higher for such cases, which require examining the
look-ahead intervals.

When pmax ¼ 100, Fig. 4c shows scheduling overhead of SEED
with varying number of tasks, where the two numbers in the labels
represent ratio of ASAP over ALAP tasks. As expected, the overhead
increases when there are more tasks. However, the overhead is
manageable with less than 35 microseconds per invocation for
up to 100 tasks.

Fig. 4d further shows the overhead of POED with varying p0 for
systems with U ¼ 0:8 and n ¼ 20. When p0 increases and becomes
much larger than pmax, POED’s overhead can become prohibitive.
Moreover, when there are less ASAP tasks, it is more likely to have
the look-ahead interval to be p0, where the overhead is generally
higher than other cases.
8.2. Fulfillment of preference requirements

In Section 4, the optimality of a schedule for tasks with ASAP
and ALAP preferences has been defined based on the accumulated
executions of those tasks over varying time intervals, which is dif-
ficult to evaluate. To effectively evaluate the performance of differ-
ent schedulers, we define a new performance metric, denoted as
preference value (PV) for a periodic task schedule. For a task
instance Ti;j that arrives at time r with a deadline d, the earliest
and latest times to start execution are stmin ¼ r and stmax ¼ d� ci,
respectively, where ci is Ti’s WCET. Similarly, its earliest and latest
finish times are ftmin ¼ r þ ci and ftmax ¼ d, respectively.

Suppose that Ti;j starts and completes its execution at time st
and ft, respectively. According to the preference of task Ti, the pref-
erence value for Ti;j is defined as:

PVi;j ¼
ftmax�ft

ftmax�ftmin
if Ti 2 WS;

st�stmin
stmax�stmin

if Ti 2 WL:

8<
: ð6Þ

which has the value within the range of ½0;1�. Here, a larger value of
PVi;j indicates that Ti;j’s preference has been served better. More-
over, for a given schedule of a task set, the preference value of a task
is defined as the average preference value of all its task instances. In
 0
 5

 10
 15
 20
 25
 30
 35
 40

 10 20 30 40 50 60 70 80 90 100

ov
er

he
ad

 p
er

 in
vo

ca
tio

n
(µ

s)

number of tasks

SEED (1 : 1)
SEED (4 : 1)
SEED (1 : 4)

100

101

102

103

104

105

101 102 103 104

ov
er

he
ad

 p
er

 in
vo

ca
tio

n
(µ

s)

dummy task period

POED (4 , 16)
POED (10 , 10)
POED (16 , 4)

vs. EDF with U ¼ 1:0 and 0:8, respectively.

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

10% 20% 30% 40% 50% 60% 70% 80% 90%

no
rm

al
iz

ed
 P

V
va

lu
e

ASAP task load (US)

Overall
ASAP

 1

 1.5

 2

 2.5

 3

 3.5

10% 20% 30% 40% 50% 60% 70%

no
rm

al
iz

ed
 P

V
va

lu
e

ASAP task load (US)

POED: overall
SEED: overall

 0.95

 1

 1.05

 1.1

 1.15

 1.2

10% 20% 30% 40% 50% 60% 70%

no
rm

al
iz

ed
 P

V
va

lu
e

ASAP task load (US)

POED: asap
SEED: asap

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2

101 102 103 104

no
rm

al
iz

ed
 P

V
va

lu
e

dummy task period

POED (4 , 16)
POED (10 , 10)
POED (16 , 4)

Fig. 5. Normalized preference values achieved for tasks under SEED and POED (pmin ¼ 10;pmax ¼ 100 and n ¼ 20).

138 Y. Guo et al. / Journal of Systems Architecture 61 (2015) 127–139
what follows, we report the normalized preference values achieved
for tasks under SEED and POED with that of EDF as the baseline.

For fully-loaded systems (i.e., U ¼ 1), Fig. 5a shows the achieved
preference values for all and ASAP tasks with varying ASAP task
loads (US), which are labeled as ‘‘Overall’’ and ‘‘ASAP’’, respectively.
There are 20 tasks per task set (i.e., n ¼ 20) and the number of
ASAP tasks is proportional to ASAP loads. For the overall PVs of
all tasks, SEED performs the best when there are roughly equal
numbers of ASAP and ALAP tasks (i.e., US ¼ 40%). This is because
it is more likely to have both active ASAP and ALAP tasks at run
time where SEED can better address their preferences through
the look-ahead intervals.

Note that, if there are only ASAP or ALAP tasks in a task set,
SEED essentially reduces to EDF. Therefore, when there are only a
few (US ¼ 10%) or more (US ¼ 90%) ASAP tasks, SEED performs
more closely to EDF as the results show. Moreover, if only ASAP
tasks are of interest, their achieved PVs with SEED decrease with
increasing number of tasks.

For under-utilized systems with U ¼ 0:8, Fig. 5b shows the
achieved PVs for all tasks under POED (where p0 ¼ 10) and SEED.
By considering both ASAP and ALAP scheduling principles, POED
achieves much better PVs than SEED that focuses on only the ASAP
scheduling principle. When task sets contain mostly ALAP tasks
with only a few ASAP tasks (i.e., US ¼ 0:1), POED can achieve close
to (more than) 3 times PVs when compared to that of SEED (EDF)
since both SEED and EDF are work-conserving schedulers that have
conflicts with the ALAP scheduling principle. When there are more
ASAP tasks (i.e., larger US), the performance of POED gets closer to
that of SEED.

Fig. 5c further shows the achieved PVs for only ASAP tasks
under both SEED and POED when U ¼ 0:8. Clearly, SEED performs
better here as it puts ASAP tasks in the center stage when making
scheduling decisions. More interestingly, we can see that POED can
perform even worse than that of EDF. The reason could be that, by
forcing the processor to be idle at earlier times, the delayed execu-
tion of ALAP tasks under POED can prevent future ASAP tasks from
executing early, especially when most tasks have ASAP preference.

For the case of U ¼ 0:8, Fig. 5d shows the achieved PVs for all
tasks with varying period (p0) of the dummy task. Here, we can
see that, having larger p0 has very limited improvement on the
overall achieved PVs under POED, except for the cases with more
ALAP tasks where it is more likely to have the dummy task’s period
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.5 0.6 0.7 0.8 0.9 1

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

ov
er

he
ad

system utilization (U)

SS: n = 5
SS: n = 10
SS: n = 20

POED: n = 5
POED: n = 10
POED: n = 20

Fig. 6. Overheads for different fault-tolerance schemes.
as the look-ahead interval. Moreover, having p0 ¼ 102 (i.e., pmax) is
sufficient to achieve good PVs for tasks without incurring prohibi-
tive scheduling overhead.
8.3. Reduction of execution overhead with POED

Fig. 6 shows the normalized execution overhead for the
Standby-Sparing and POED-based schemes under different system
loads with different numbers of tasks per task set. Here, the
execution overhead of the hot-standby scheme is used as the
baseline [17]. From the results, we can see that, when the system
load is low (i.e., U 6 0:7), the normalized execution overhead is
close to 0. The reason is that the primary copies of all task can com-
plete before their corresponding backup copies start and almost all
backup copies can be canceled under both schemes. However,
when the system load is high (e.g., U P 0:95), the overhead of
the POED-based scheme can be substantially lower than that of
Standby-Sparing, especially for the cases with only a few tasks.
The reason is that, the locations of the backup copies of tasks are
fixed according to EDL in the Standby-Sparing scheme. However,
as discussed previously, canceled backup copies generate slack,
which can be exploited at runtime in the POED-based scheme to
execute primary tasks at earlier times and further delay/cancel
more backup tasks, which in turn leads to much reduced execution
overhead.
9. Conclusions

In this paper, we introduced the concept of preference-oriented
(PO) execution, where some tasks are ideally to be executed as soon
as possible (ASAP), while others as late as possible (ALAP). We define
different types of PO-optimal schedules and show their harmonicity
and discrepancies for fully-loaded and under-utilized task systems,
respectively. Then, for fully-loaded systems, we proposed and ana-
lyzed an optimal preference-oriented scheduling algorithm (SEED)
that explicitly takes the preference of tasks into consideration
when making scheduling decisions. Moreover, by taking the idle
times in the schedules of under-utilized systems into consider-
ation, we proposed a generalized preference-oriented earliest dead-
line (POED) scheduling algorithm that can generate a PO-optimal
schedule for any schedulable task set. We further illustrate how
such preference-oriented schedulers can be applied to fault-toler-
ant systems to reduce execution overhead and improve system
efficiency.

The proposed schedulers are evaluated through extensive sim-
ulations. The results show that, with manageable scheduling over-
heads (less than 35 microseconds per invocation for up to 100
tasks), SEED and POED can achieve significantly better (up to three-
fold) preference values when compared to that of EDF. For dual-
processor fault-tolerant systems, the results further show that
the POED-based technique can significantly reduce the execution

Y. Guo et al. / Journal of Systems Architecture 61 (2015) 127–139 139
overhead (especially at high system loads) when comparing to the
existing standby-sparing technique.

In our future work, we will study the extension of the prefer-
ence-oriented scheduling framework to multiprocessor systems.
References

[1] N. Audsley, K. Tindell, A. Burns. The end of line for static cyclic scheduling? In
Real-Time Systems, 1993. Proceedings., Fifth Euromicro Workshop on, pages
36 –41, Jun. 1993.

[2] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, L.
Stougie, Scheduling real-time mixed-criticality jobs, IEEE Trans. Comput.
(2011).

[3] S. Baruah, R. Howell, L. Rosier, Algorithms and complexity concerning the
preemptive scheduling of periodic real-time tasks on one processor, Real-Time
Syst. 22 (4) (1990) 301–324.

[4] A.A. Bertossi, L.V. Mancini, A. Menapace, Scheduling hard-real-time tasks with
backup phasing delay, in: Proceedings of the 10th IEEE International
Symposium on Distributed Simulation and Real-Time Applications, IEEE
Computer Society, Washington, DC, USA, 2006, pp. 107–118.

[5] A.A. Bertossi, L.V. Mancini, F. Rossini, Fault-tolerant rate-monotonic first-fit
scheduling in hard-real-time systems, IEEE Trans. Parallel Distrib. Syst. 10 (9)
(1999) 934–945.

[6] E. Bini, G.C. Buttazzo. Biasing effects in schedulability measures, in:
Proceedings of the Euromicro Conference on Real-Time Systems, 2004.

[7] A. Burns, R. Davis, S. Punnekkat, Feasibility analysis of fault-tolerant real-time
task sets, in: Proceedings of the Eighth Euromicro Workshop on Real-Time
Systems, 1996, June 1996, pp. 29–33.

[8] H. Chetto, M. Chetto, Some results of the earliest deadline scheduling
algorithm, IEEE Trans. Softw. Eng. 15 (1989) 1261–1269.

[9] R. Davis, A. Wellings, Dual priority scheduling, in: Proceedings of the IEEE Real-
Time Systems Symposium, 1995, pp. 100–109.

[10] A. Ejlali, B.M. Al-Hashimi, P. Eles, A standby-sparing technique with low
energy-overhead for fault-tolerant hard real-time systems, in: Proceedings of
the IEEE/ACM Int’l Conference on Hardware/Software Codesign and System
Synthesis, New York, NY, USA, 2009, pp. 193–202.

[11] S. Ghosh, R. Melhem, D. Mossé, Fault-tolerance through scheduling of
aperiodic tasks in hard real-time multiprocessor systems, IEEE Trans. Parallel
Distrib. Syst. 8 (3) (March 1997) 272–284.

[12] Y. Guo, D. Zhu, H. Aydin, Efficient power management schemes for dual-
processor fault-tolerant systems, in: Proceedings of the First Workshop on
Highly-Reliable Power-Efficient Embedded Designs (HARSH), in Conjunction
with HPCA, Feb. 2013.

[13] Y. Guo, D. Zhu, H. Aydin, Generalized standby-sparing techniques for energy-
efficient fault tolerance in multiprocessor real-time systems, in: Proceedings
of the IEEE Int’l Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), Aug. 2013.

[14] M. Haque, H. Aydin, D. Zhu, Energy-aware standby-sparing technique for
periodic real-time applications, in: Proceedings of the IEEE International
Conference on Computer Design (ICCD), 2011.

[15] M.A. Haque, H. Aydin, D. Zhu, Energy management of standby-sparing systems
for fixed-priority real-time workloads, in: Proceedings of the Second Int’l
Green Computing Conference (IGCC), Jun. 2013.

[16] C.L. Liu, J. Layland, Scheduling algorithms for multiprogramming in a hard-
real-time environment, J. ACM 20 (January 1973) 46–61.

[17] D.K. Pradhan (Ed.), Fault-Tolerant Computer System Design, Prentice-Hall Inc,
Upper Saddle River, NJ, USA, 1996.

[18] J. Regehr, A. Reid, K. Webb, M. Parker, J. Lepreau. Evolving real-time systems
using hierarchical scheduling and concurrency analysis, in: Proceedings of the
IEEE Real-Time Systems Symposium, 2003, pp. 25–36.

[19] I. Shin, I. Lee, Compositional real-time scheduling framework with periodic
model, ACM Trans. Embed. Comput. Syst. 7 (3) (2008).

[20] H. Su, D. Zhu, An elastic mixed-criticality task model and its scheduling
algorithm, in: Proceedings of the Design, Automation and Test in Europe
(DATE), Mar. 2013.

[21] W. Sun, Y. Zhang, C. Yu, X. Defago, Y. Inoguchi, Hybrid overloading and
stochastic analysis for redundant real-time multiprocessor systems, in: 26th
IEEE International Symposium on Reliable Distributed Systems, 2007. SRDS
2007, oct. 2007, pp. 265–274.
[22] O.S. Unsal, I. Koren, C.M. Krishna, Towards energy-aware software-based fault
tolerance in real-time systems, in: Proceedings of the Int’l Symposium on Low
Power Electronics and Design, 2002, pp. 124–129.

[23] D. Zhu, H. Aydin, Reliability-aware energy management for periodic real-time
tasks, IEEE Trans. Comput. 58 (10) (2009) 1382–1397.

Yifeng Guo received the PhD degree in Computer
Science from the University of Texas at San Antonio in
2013. He currently works at NetApp Inc. His research
interests include real-time systems, power manage-
ment and fault tolerance.
Hang Su is currently a PhD Candidate in the Depart-
ment of Computer Science at the University of Texas at
San Antonio. His research interests include real-time
systems, cyberphysical systems and mixed-criticality
scheduling.
Dakai Zhu received the PhD degree in Computer Sci-
ence from University of Pittsburgh in 2004. He is cur-
rently an Associate Professor in the Department of
Computer Science at the University of Texas at San
Antonio. His research is in the general area of real-time
systems. He was a recipient of the US National Science
Foundation (NSF) Faculty Early Career Development
(CAREER) Award in 2010. He is a member of the IEEE
and the IEEE Computer Society.
Hakan Aydin received the PhD degree in computer
science from the University of Pittsburgh in 2001. He is
currently an associate professor in the Computer Sci-
ence Department at George Mason University. He was a
recipient of the US National Science Foundation (NSF)
Faculty Early Career Development (CAREER) Award in
2006. His research interests include real-time systems,
low-power computing, and fault tolerance. He is a
member of the IEEE.

http://refhub.elsevier.com/S1383-7621(14)00145-3/h0010
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0010
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0010
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0015
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0015
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0015
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0020
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0020
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0020
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0020
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0020
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0025
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0025
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0025
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0040
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0040
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0055
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0055
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0055
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0080
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0080
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0085
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0085
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0085
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0095
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0095
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0115
http://refhub.elsevier.com/S1383-7621(14)00145-3/h0115

	Preference-oriented real-time scheduling and its application in fault-tolerant systems
	1 Introduction
	2 Closely related work
	3 Preliminaries
	4 PO-optimal schedules
	4.1 Harmonious PO-optimal schedules: ?
	4.2 Discrepant PO-optimal schedules: [$]U?1[$]

	5 An ASAP-optimal scheduler
	5.1 SEED scheduling algorithm
	5.2 Optimality of the SEED scheduler
	5.3 The improved SEED algorithm and complexity
	5.4 SEED for under-utilized systems

	6 Generalized POED scheduler
	6.1 POED scheduling algorithm
	6.2 Analysis of the POED scheduler

	7 An application of POED scheduler
	7.1 An example
	7.2 POED-based fault-tolerance technique

	8 Evaluations and discussions
	8.1 Scheduling overhead of SEED and POED
	8.2 Fulfillment of preference requirements
	8.3 Reduction of execution overhead with POED

	9 Conclusions
	References

