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Traditionally, real-time scheduling algorithms prioritize tasks solely based on their timing parameters and
cannot effectively handle tasks that have different execution preferences. In this paper, for a set of peri-
odic real-time tasks running on a single processor, where some tasks are preferably executed as soon
as possible (ASAP) and others as late as possible (ALAP), we investigate Preference-Oriented Fixed-Priority
(POFP) scheduling techniques. First, based on Audsley’s Optimal Priority Assignment (OPA), we study a
Preference Priority Assignment (PPA) scheme that attempts to assign ALAP (ASAP) tasks lower (higher)
priorities, whenever possible. Then, by considering the non-work-conserving strategy, we exploit the pro-
motion times of ALAP tasks and devise an online dual-queue based POFP scheduling algorithm. Basically,
with the objective of fulfilling the execution preferences of all tasks, the POFP scheduler retains ALAP
tasks in the delay queue until their promotion times while putting ASAP tasks into the ready queue right
after their arrivals. In addition, to further expedite (delay) the executions of ASAP (ALAP) tasks using
system slack, runtime techniques based on dummy and wrapper tasks are investigated. The proposed
schemes are evaluated through extensive simulations. The results show that, compared to the classical
fixed-priority Rate Monotonic Scheduling (RMS) algorithm, the proposed priority assignment scheme and
POFP scheduler can achieve significant improvement in terms of fulfilling the execution preferences of
both ASAP and ALAP tasks, which can be further enhanced at runtime with the wrapper-task based slack

management technique.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Real-time systems, where application tasks generally have
deadlines, have been studied for decades. For various task and sys-
tem models, many classical real-time scheduling algorithms have
been proposed by the research community. For example, for pe-
riodic real-time tasks running on a single processor system, Rate
Monotonic Scheduling (RMS) and Earliest Deadline First (EDF) are the
optimal schedulers for static and dynamic priority based preemp-
tive scheduling algorithms, respectively [15]). With the exclusive
focus on meeting tasks’ timing constraints, most existing real-time
scheduling algorithms prioritize and schedule tasks solely based on
their timing parameters (e.g., deadlines and periods). Moreover, to
complete the executions of tasks at their earliest possible time in-
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stants, these algorithms normally adopt the work-conserving strat-
egy, which does not leave the processor idle when there are ready
tasks for executions.

However, there are occasions where it can be beneficial to ex-
ecute tasks at their latest times. For instance, when both periodic
hard real-time tasks and aperiodic soft real-time tasks share the
same computing platform, the executions of periodic hard real-
time tasks can be maximally delayed in order to get better re-
sponse times for aperiodic soft real-time tasks [6,7]. In addition,
in fault-tolerant systems that adopt the primary/backup model,
backup tasks should also be executed as late as possible to reduce
the overlapped executions with their corresponding primary tasks
(which are executed early on other processors) and thus system
overheads to achieve cost efficient fault tolerance [12,17].

In contrast to the EDF and RMS schedulers [15] that execute
tasks at their earliest possible times, the Earliest Deadline Latest
(EDL) [6] and Dual-Priority (DP) schedulers [7] have been proposed
to schedule periodic real-time tasks at their latest times. However,
all these classical real-time schedulers treat all periodic tasks uni-
formly when assigning priorities to tasks and making scheduling
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decisions. That is, these schedulers do not differentiate the execu-
tion preferences of tasks and thus cannot effectively handle co-
running tasks that have different execution preferences.

For a set of periodic real-time tasks running on a single pro-
cessor that have different execution preferences, where some tasks
are preferably executed as soon as possible (ASAP) while oth-
ers as late as possible (ALAP), we have recently studied an on-
line Preference-Oriented Earliest Deadline (POED) scheduling algo-
rithm [10]. Basically, different from the EDF/EDL schedulers that
consider only the deadlines of tasks when making scheduling deci-
sions, the POED scheduler takes the execution preferences of tasks
into consideration and puts ASAP tasks in the central stage. That is,
whenever there are ready ASAP tasks at a scheduling point, these
tasks can be picked for executions even if they have later dead-
lines, provided that such executions do not cause deadline misses
for other tasks in the future. The POED scheduler has been ex-
ploited in fault-tolerant systems to reduce run-time overhead and
improve energy efficiency [11]. In addition, such schedulers can
also be utilized in mixed-criticality systems to differentiate the ex-
ecutions of high-criticality and low-criticality tasks to better ex-
plore system slack at runtime [16].

Although POED was the first scheduler that addresses the dif-
ferent execution preferences of periodic tasks, it is a dynamic pri-
ority based scheduler. To the best of our knowledge, no fixed-
priority based preference-oriented scheduling algorithm has been
reported yet in the literature. Our preliminary study on the
Preference-Oriented Fixed-Priority (POFP) scheduler was presented
in [4], which is extended in this paper to address the topic more
thoroughly. First, based on Audsley’s Optimal Priority Assignment
(OPA) algorithm [3], we study a Preference Priority Assignment (PPA)
scheme for a set of periodic real-time tasks with ASAP or ALAP
execution preferences to be executed on a single processor sys-
tem under preemptive fixed-priority scheduling. With the intu-
ition that low priority tasks are executed late at runtime, the basic
idea of PPA is to favor ALAP tasks when assigning lower priorities
(and thus ASAP tasks can implicitly have higher priorities) without
sacrificing system schedulability. By taking tasks’ execution pref-
erences into consideration, the resulting PPA priorities can most
likely delay the executions of ALAP tasks while executing ASAP
tasks at earlier times.

Then, observing that there are normally idle intervals in fixed-
priority schedules, we propose an online preemptive POFP sched-
uler that adopts the non-work-conserving scheduling strategy. Here,
to exploit idle intervals and systematically delay (expedite) the ex-
ecutions of ALAP (ASAP) tasks, POFP utilizes a dual-queue based
scheduling approach. ASAP tasks enter the ready queue immedi-
ately after they arrive. In contrast, an ALAP task is put into a de-
lay queue at its arrival time and will wait there until its promotion
time, which can be derived following the ideas in the dual-priority
scheduling framework [7]. After that, the ALAP task is promoted to
the ready queue. Such a dual-queue scheduling approach can ef-
fectively prevent an ALAP task from being executed before its pro-
motion time, which can in turn give low priority ASAP tasks the
opportunity to run at earlier times.

Moreover, we investigate runtime techniques to further de-
lay (expedite) the executions of ALAP (ASAP) tasks by exploit-
ing system slack, which can be expected at runtime as real-time
tasks typically take a small fraction of their worst-case execution
times [9]. In summary, the contributions of this work are as fol-
lows:

o A preference priority assignment (PPA) scheme that explicitly
incorporates the ASAP and ALAP execution preferences of peri-
odic real-time tasks is proposed;

e An online dual-queue based preference-oriented fixed-priority
(POFP) scheduler is proposed [4], which is preemptive and non-

work-conserving in nature to better serve the tasks’ ASAP and

ALAP execution preferences;

Runtime techniques are also investigated to further delay (ex-

pedite) the executions of ALAP (ASAP) tasks by exploiting sys-

tem slack at runtime;

o The proposed PPA scheme, POFP scheduler and runtime tech-
niques are evaluated through extensive simulations with syn-
thetic tasks, which are shown to be very effective to fulfill the
tasks’ ASAP and ALAP execution requirements, when compared
to that of the preference-oblivious RMS scheduler.

The rest of this paper is organized as follows. We review the
closely related work in Section 2. Section 3 presents system mod-
els and necessary preliminaries. The preference-oriented priority
assignment (PPA) scheme is discussed in Section 4. In Section 5,
the preference-oriented fixed-priority (POFP) scheduler is pro-
posed. The runtime techniques are further addressed in Section 6.
Section 7 discusses the evaluation results and Section 8 concludes
the paper.

2. Closely related work

In the past few decades, real-time systems have been studied
extensively and numerous scheduling algorithms have been pro-
posed for different task and system models. In this section, for pe-
riodic real-time tasks running on a single processor system, we re-
view closely related scheduling algorithms.

The Earliest-Deadline-First (EDF) scheduling algorithm has been
the well-known optimal scheduler based on the dynamic priority
approach, where the instances (or jobs) of the same task may have
different priorities [15]. Specifically, EDF prioritizes task instances
(jobs) based on their absolute deadlines, where jobs with smaller
deadlines have higher priorities (for jobs that have the same dead-
lines, the order of their priorities can be arbitrarily assigned with-
out affecting tasks’ schedulability). It has been shown that EDF can
successfully schedule a set of periodic tasks on a single processor
as long as the system utilization is no more than 1.0 [15].

In comparison, in the fixed-priority scheduling, priorities are
assigned to tasks and the instances (jobs) of a task have the
same priority of that task. For instance, as a classical optimal
fixed-priority scheduler, the Rate Monotonic Scheduling (RMS) algo-
rithm prioritizes tasks according to their periods, where tasks with
smaller periods have higher priorities [15]. That is, if a set of peri-
odic tasks can be feasibly scheduled with fixed-priority scheduling
on a single processor, the task set can be successfully scheduled
under RMS. Instead of prioritizing tasks solely based on their pe-
riods, in [3], Audsley studied an Optimal Priority Assignment (OPA)
algorithm for periodic tasks under fixed-priority scheduling based
on the concept of response time for tasks [1,13]. A comprehensive
review on various priority assignment schemes for fixed-priority
scheduling can be found in a recent report [8].

The well-known work-conserving schedulers EDF and RMS do
not leave the processor idle if there are ready tasks for execu-
tion, where tasks are executed at their earliest times. However, for
mixed workload with both hard real-time periodic tasks and soft
real-time aperiodic tasks sharing a computing platform, it would
be necessary for periodic tasks running at their latest times to pro-
vide better response times for soft aperiodic tasks. For such a pur-
pose, the earliest deadline latest (EDL) algorithm has been devel-
oped [6]. By considering all instances of periodic tasks within the
least common multiple (LCM) of their periods, EDL generates an
offline static schedule to find out their latest execution times while
ensuring that there is no deadline miss.

With the same objective, the dual-priority (DP) scheme has been
developed for fixed-priority scheduling in order to improve the re-
sponsiveness of soft real-time aperiodic tasks [7]. The DP scheduler
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is based on the phase delay technique [2], where the arrivals of pe-
riodic tasks are delayed for a certain offset without missing any
deadline.

For fault-tolerant systems that adopt the Primary/Backup (PB)
technique, Unsal et al. studied an offline Secondary Execution
Time Shifting (SETS) scheduling heuristic based on the EDF sched-
uler [17]. Here, to reduce the overlapped executions between
backup and primary copies of the same task (and thus save system
energy), SETS iteratively calculates the delayed release time for all
backup instances within the Least Common Multiple (LCM) of tasks’
periods.

As the most closely related work, for a set of periodic
tasks running on a single processor system with either ASAP or
ALAP execution preferences, we have studied a dynamic-priority
based Preference-Oriented Earliest Deadline (POED) scheduling algo-
rithm [10]. In this paper, we study an online Preference-Oriented
Fixed-Priority (POFP) scheduling algorithm and related priority-
assignment techniques, which are different from the dynamic-
priority based POED scheduler [10]. Moreover, this work is also
different from the classical real-time schedulers (such as EDF,
RMS [15], EDL [6] and DP [7]), which cannot effectively handle the
different execution preferences of tasks.

3. System models and preliminaries

In this section, the task and system models are first presented.
Then, we review preliminaries related to fixed-priority scheduling,
followed by the description of the problem to be studied in this
work.

3.1. Task and system models

We consider a set of n independent periodic real-time tasks
v ={T,..., T,} to be executed on a single processor system. The
tasks do not share resources other than the processor. A task T; is
represented by a tuple (c;, p;, 0;). Here, ¢; is its worst-case execu-
tion time (WCET) and p; is its period (i.e., inter-arrival time). We
consider tasks with implicit deadlines where p; is also the relative

deadline of task T;. The utilization of task T; is defined as u; = &

and the system utilization is further defined as U = Yrew Ui

Each task T; represents an infinite sequence of task instances
(or jobs), where the jth instance of task T; is denoted as T; ; (j =
1,2,...). Tasks are assumed to be synchronous with the first in-
stance of each task arriving at time 0. Hence, the task instance T; ;
arrives at time r; ;= (j—1)-p; and has an absolute deadline as
dij=rij+d;=j-p; where [r; ;, d; ;] denotes the active window
of T; j. Note that, there is only one active task instance for each
task at any given time instant. In what follows, we use task T; to
refer to its current active instance when there is no ambiguity.

The execution preference of task T; is denoted as #;, which can
be either as soon as possible (ASAP) or as late as possible (ALAP) [10].
Based on their execution preferences, the tasks in W can be parti-
tioned into two subsets W5 and W; (where W = WsuU W), which
contain the tasks with ASAP and ALAP preferences, respectively.
Note that, when all tasks have ASAP (or ALAP) preference, they
can be effectively scheduled by the RMS [15] (or Dual-Priority [7])
scheduler, respectively. Hence, in this work, we focus on task sets
that have both ASAP and ALAP tasks, where the existing fixed-
priority schedulers cannot handle them effectively.

Pi

3.2. FP scheduling and response time analysis

In fixed-priority (FP) scheduling, the key step is to assign each
task T; a static priority n;, which will be utilized by all its in-
stances. Here, the priorities assigned to tasks have to be different
to ensure that tasks can be totally ordered [8]. That is, for any two

tasks T; and T; (i # j), either n; > n; or ; < n; holds, corresponding
to the cases where Tj's priority is higher or lower than T;’s priority,
respectively.

Once the priorities for all tasks are assigned, the set of tasks
that have higher priorities than that of T; can be defined as:

hp(T) ={Tx|Tx € ¥ A ;i < nx} (1)

In the classical preemptive FP scheduler (e.g., RMS [15]), a single
ready queue is utilized to hold all active tasks at runtime. If there
are active tasks and the ready queue is not empty, the one that
has the highest priority will be chosen for execution. However, the
execution of an active task T; can be preempted when a high pri-
ority task T; e hp(T;) arrives. Under preemptive scheduling, the re-
sponse time of T; can be found iteratively through the following
equation [1,13]:

#- ¥

R
— |G +Gi (2)
Tehpy | P

where R? = ¢;. When the above equation converges with Rf.‘“ = R:.‘,

the response time of task T; can be set accordingly as R; = R;‘.

Note that, for a given priority assignment, if R; < p; (i.e., the re-
sponse time does not exceed the relative deadline) for every task T;
€ W, the task set can be successfully scheduled under the preemp-
tive fixed-priority scheduling [1,13]. More formally, we can have
the following lemma.

Lemma 1. For the preemptive fixed-priority scheduling, a priority as-
signment for the tasks in W is feasible if there are R; < p; VT;.

3.3. Problem description

Unlike tasks’ deadlines that represent hard constraints of tasks,
the execution preferences of tasks are rather soft requirements,
which provide only guidelines on how early or late a task should
be preferably executed. Based on the aggregated executions of ASAP
or ALAP tasks within a certain interval, we have formally defined
optimal schedules in terms of fulfilling the preference require-
ments of tasks [10]. However, it has been shown that, due to the
conflicting demands of ASAP and ALAP tasks regarding the place-
ment of idle times in a schedule, it may be impossible to find a
feasible schedule that can optimally fulfill the preference require-
ments of both ASAP and ALAP tasks simultaneously [10].

Therefore, instead of aiming at finding optimal fixed-priority
scheduling algorithms, in this work, we focus on investigating var-
ious techniques to improve the fulfillment of tasks’ execution pref-
erences. Specifically, for a set of periodic tasks running on a single
processor under fixed-priority scheduling, we study priority assign-
ment, scheduling algorithms and runtime techniques with the objec-
tive of better fulfilling tasks’ execution preferences in the resulting
schedule.

4. Preference priority assignment

In fixed-priority scheduling, the execution order of tasks (i.e.,
when tasks are executed) depends directly on their priorities.
Therefore, in this section, we first study a Preference Priority Assign-
ment (PPA) scheme, which considers tasks’ execution preferences
when assigning priorities to tasks.

In general, when a task arrives and becomes ready for execu-
tion, the higher priority it has, the earlier it can be executed, and
vice versa. Thus, intuitively, we should assign higher and lower pri-
orities to ASAP and ALAP tasks, respectively, to satisfy their execu-
tion preferences. However, such a priority assignment has to con-
sider the schedulability of tasks to avoid deadline misses. That is,
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for tasks with mixed ASAP and ALAP execution preferences, an ef-
fective priority assignment needs to simultaneously consider both
the schedulability of tasks and their execution preferences.

As mentioned earlier, an Optimal Priority Assignment (OPA) al-
gorithm has been proposed in [3] based on the response times of
tasks [1,13]. Note that, the response time of a task T; depends only
on hp(T;), the set of tasks that have higher priorities, rather than
their relative priority order (see Eq. (2) in the last section). Based
on this property of task’s response time, the basic idea of OPA is as
follows: by assuming that other unassigned tasks are given higher
priorities, OPA iteratively finds a task that can be feasibly assigned
the next lowest priority level (where its response time is no more
than its period). Once OPA successfully assigns a priority for each
task, a feasible priority assignment is found. Otherwise, if there is
no task that can be feasibly assigned the next lowest priority level
in one iteration, the task set is deemed to be unschedulable under
the fixed-priority scheduling [3].

4.1. The PPA algorithm

Without considering the execution preferences of tasks, OPA
could assign an ASAP task the lowest priority during an iteration
when it is possible to assign this lowest priority to an ALAP task.
By extending the idea of OPA and incorporating the execution pref-
erences of tasks, we propose a Preference Priority Assignment (PPA)
algorithm, where its major steps are shown in Algorithm 1.

The key idea behind PPA is to favor ALAP tasks for lower pri-
orities (which in turn can leave higher priorities for ASAP tasks).
The PPA algorithm starts with the lowest priority and all tasks in
a un-assigned task set W"" (line 3). To find an eligible task to as-
sign the next lowest priority level, PPA first checks the ALAP tasks
that have not been assigned a priority yet with the helper function
findEligibleTask(). If such a task Ty exists, it is assigned the lowest
priority and is removed from WU" (lines 6 to 8). Then, the algo-
rithm continues for the next lowest priority if W“" still contains
un-assigned tasks (line 9).

In case there is no ALAP task that is eligible to take the low-
est priority, PPA checks ASAP tasks with the same helper func-
tion findEligibleTask() (line 11). Similarly, if an eligible ASAP task
is found, it takes the lowest priority and is removed from W“" and
PPA continues for the next lowest priority (lines 12 to 14). How-
ever, if there is no eligible ASAP task to take the lowest priority
either, PPA fails to find a feasible priority assignment for the tasks

Algorithm 1 : The PPA algorithm.
1: Input: W, Vg, ¥, and (¢, p;, 6;) VT, € W,
2: Output: FAIL or {n;|VT; € ¥V};
3: et = 1; WU = P, [[initialization
4: while (VU" £ ) do
Tx = findEligibleTask(\WU", W, );//check ALAP tasks
if (Tx # NULL) then
nx = n"e; [[task Ty has the lowest priority
pun — pun _ (7,1 77ne‘xt + o+
continue; [[continue with the next lowest priority
10:  end if
11: Ty = findEligibleTask(W"", Ws);//check ASAP tasks
12:  if (Ty # NULL) then

LW

13: nx = N"et; [[task Ty has the lowest priority

14: Qun — pun _ {TX}: nnext + 4+

15:  else

16: return FAIL; //no task can have the lowest priority
17:  end if

18: end while
19: return {7;}; //a feasible priority assignment is found

Algorithm 2 : findEligibleTask( W, W@get) function.

1: Weligible — - /jeligible tasks for next lowest priority

2: for (VT e (W' n wtarget)) do

3:  hp(Ty) = WU — {Ty};//assume higher priority task set
4:  Find Ry from Equation 2;

5:  Add Ty to Weligible if there is Ry < px;

6: end for

7: if (Weligible -2 g7y then

8: VT e welighle find T, with the largest (p — Ry);

9: return T; /[return an eligible unassigned task

10: else

11:  return NULL; //no eligible unassigned task in Wt@rset
12: end if

(line 16). Once W“" becomes empty and all tasks have been as-
signed their priorities, PPA returns the feasible priority assignment
{nilVT; € W}.

The helper function findEligibleTask() is further detailed in
Algorithm 2, which takes the un-assigned task set W¥" and a tar-
get task group W@t (which can be either Wy or W;) as parame-
ters. For each un-assigned task Ty in the target task group (line 2),
its response time can be found using Eq. (2) by assuming that all
other un-assigned tasks have higher priorities (lines 3 and 4). The
task Ty is eligible (to take the lowest priority) if its response time
is no more than its period (i.e., Ry < px), which is also its relative
deadline.

Note that, any eligible task could be returned to take the lowest
priority. Here, PPA adopts the heuristic that returns the task with
the largest value of (p, — Ry) when there are more than one eligi-
ble un-assigned tasks in the target task group (lines 8 and 9). This
allows other tasks to have higher priorities with reduced response
times, which can potentially balance the value of (p, — Ry) for the
tasks. In case the target task group does not have any eligible un-
assigned task, the function returns NULL (line 11).

We would like to point out that, as a variation of OPA [3], PPA
is also an optimal priority assignment algorithm. That is, PPA can
find a feasible priority assignment for the tasks in fixed-priority
scheduling if and only if such a priority assignment exists. From
Algorithm 1, we can see that the response times of un-assigned
tasks monotonically decrease after each iteration since there will be
fewer tasks in their high-priority task sets. Hence, when there are
more than one eligible tasks in an iteration, the selection of any of
them for the next lowest priority does not affect the eligibility of
other tasks in the next iteration. Therefore, the separate consider-
ation of ALAP and ASAP tasks in PPA does not affect its optimality
for finding a feasible priority assignment.

4.2. An example: PPA vs. RMS

We illustrate the advantages of PPA on improving the fulfill-
ment of tasks’ execution preferences through a concrete example.
The example task set has four tasks: T;(1, 5), T»(3, 10), T3(1, 5) and
T4(1, 10), where tasks T; and T, have ASAP preference and T3 and
T, have ALAP preference (i.e., ¥s = {T;, b} and V¥ = {T3, T4}).

For comparison, we first consider the well-known RMS sched-
uler [15], which is preference-oblivious and assigns priorities to
tasks solely based on their periods. More specifically, tasks with
larger periods are assigned lower priorities, and vice versa. When
there are more than one tasks that have the same period, tie
can be broken arbitrarily without affecting the schedulability of
tasks [15]. Here, we assume that RMS assigns a higher priority
to the task with smaller index. Hence, for the example task set,
tasks’ RMS priorities can be found as n; > 13 > 17, > ny4. Fig. 1a
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a. The RMS schedule with RMS priorities: 1 > 13 > 12 > na
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arrival
LCM
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b. The PPA schedule with PPA priorities: 71 > 72 > 13 > ma

times

T1,1

Fig. 1. An example with four tasks.

further shows the RMS schedule of the tasks within the LCM (Least
Common Multiple) of task periods.

PPA, according to Algorithm 1, first checks the two ALAP
tasks T3 and T4 as candidates for the lowest priority level. From
Algorithm 2, the response times for T3 and T, can be found as
R3; =7 and R4 = 8, respectively. Task T3 is not eligible since R; >
p3. Therefore, only task T, is eligible and it is assigned the lowest
priority. After that, as an ALAP task, T3 is checked first again for the
next lowest priority. In this iteration, we can get R3 =5 = ps and
task T3 becomes eligible. Hence, T3 is assigned the second lowest
priority.

Continuing with Algorithm 1, we can find the feasible PPA pri-
orities of tasks as 177 > 17, > 13 > n4. Even though T3 has a smaller
period than T,, as an ALAP task it is assigned a lower priority
than the ASAP task T,, which is different from that of the tradi-
tional RMS approach. The PPA schedule of the tasks is shown in
Fig. 1b.

Compared to the RMS schedule in Fig. 1a, we can see that the
execution of the ALAP task instance T3 ; is delayed to its latest
time while ASAP task instance T, ; is executed at an earlier time.
That is, by incorporating tasks’ execution preferences into priority
assignment, PPA can fulfill the execution preferences of tasks T,
and T3 in a better way when compared to the preference-oblivious
RMS scheduler.

5. Preference-oriented FP scheduler

To effectively address the execution preferences of ASAP and
ALAP tasks, we have identified two basic principles for designing
preference-oriented scheduling algorithms [10]: a) at any time ¢, if
there are ready ASAP tasks, the scheduler should not let the pro-
cessor idle; and b) at any time t, if all ready tasks are ALAP tasks,
the scheduler should let the processor stay idle if it is possible to
do so without causing any deadline miss for current and future
task instances.

Here, the second design principle conflicts directly with the
work-conserving strategy adopted in the classical fixed-priority
scheduling, where the processor becomes idle only if there is no
ready task for execution. For instance, from Fig. 1, we can see that
both RMS and PPA schedules have two units of idle time at the
end after all tasks finish their executions. Here, for the ALAP task
instances T3 , and Ty 4, their executions could be further delayed
by exploring such idle time without missing their deadlines.

In this work, focusing on the second design principle, we pro-
pose a non-work-conserving Preference-Oriented Fixed-Priority (POFP)
scheduling algorithm. Before presenting the algorithm, in what fol-
lows, we first investigate how to find the safe amount of delay
for ALAP tasks without violating their timing constraints under the
fixed-priority scheduling.

5.1. Promotion times for delayed executions

Based on the phase delay technique [2], the concept of promo-
tion time was introduced for periodic tasks in the Dual-Priority (DP)
scheduling algorithm [7]. In that work, the promotion time of a
periodic task defines the longest time the task can safely wait, af-
ter its arrival, before entering the ready queue without missing its
deadline. This provides a crucial guideline for the DP scheduler to
postpone the executions of hard real-time periodic tasks with the
objective of improving the response time of soft real-time aperi-
odic tasks when they are executed on the same processor [7].

Hence, it is critical to properly derive the safe promotion time
for periodic tasks. From Lemma 1 (see Section 3), we know that,
for a given feasible priority assignment in fixed-priority schedul-
ing, the response time for any task in W will be no more than its
period (i.e., R; < p;, VT; € W) [1,13]. The promotion time of task T;
is formally defined as [7]:

Vi=Di— R (3)

That is, upon arrival, any instance of task T; can be safely delayed
for y; time units before entering the ready queue without missing
its deadline [2,7].

In this work, we also exploit promotion times to systematically
delay the executions of ALAP tasks without causing any deadline
miss. Specifically, once a feasible priority assignment for all tasks
is given, the promotion times for (only) ALAP tasks are calculated
according to Eq. (3).

5.2. The POFP scheduling algorithm

The POFP scheduler utilizes two runtime queues to handle
the different execution preferences of tasks: the ready and delay
queues, which are denoted as Qr and Qp, respectively. As in other
schedulers, the ready queue Qg holds the tasks that can be imme-
diately executed, in the order of their priorities. ASAP tasks enter
the ready queue Qp in order to be executed quickly. The second
queue Qp is used to temporarily hold ALAP tasks upon their ar-
rival. Each ALAP task stays in Qp until its promotion time, at that
time the task is promoted to the ready queue Qg and becomes eli-
gible for execution.

Basically, POFP leverages the delay queue Qp to postpone the
executions of ALAP tasks until their promotion times, which also
provides opportunities for low priority ASAP tasks to get executed
at earlier times. Unlike the work-conserving Dual-Priority sched-
uler [7], POFP leaves the processor idle as long as the ready queue
Qr is empty, regardless of the contents of the delay queue Qp.
Since the tasks are independent, an ALAP task is technically ready
for execution whenever it arrives. Hence, POFP is a non-work-
conserving scheduler.

The basic steps of the POFP scheduler are given in Algorithm 3,
which is invoked at a few occasions involving task Tj: a) the arrival
time of task Tj; b) the completion of task T;; and, c) when an ALAP
task T, is promoted from the delay queue Qp to the ready queue
Og. When an ALAP task T, arrives, it is put into the delay queue
by the function Enqueue(T,, Qp), where a timer with its promotion
time is set (lines 2 and 3). Observe that, if the promotion time of
Ty is y, = 0, it will be promoted immediately after its arrival.

When a task T, completes its execution, POFP will execute the
next highest-priority task in the ready queue Qp (line 6). However,
if there is no ready task in Qg, POFP lets the processor idle (line
8), which effectively delays the execution of ALAP tasks in the de-
lay queue until their promotion times. When an ALAP task is pro-
moted or an ASAP task arrives, it preempts the currently running
task T¢ if it has a higher priority than that of T, (lines 12 and 13);
otherwise, the task is inserted to the ready queue (line 15).
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Algorithm 3 : The POFP scheduling algorithm.
1: Input: {c;, p;, n;} for VT; € Wand y; for VT; € ¥; Invocation af-
ter anevent at time t involving task instance Ty; The current
runningtask instance is denoted by T¢;

2: if (T, € W, arrives at time t) then

3:  Enqueue(Ty, Op); SetTimer(y,);

4: else if (T, completes at time t) then

5. if (Ready queue Qx is not empty) then

6: T = Dequeue(Qg); Execute(Ty);

7. else

8: Let the processor idle; //regardless of tasks in Op
9: end if

10: else

11:  [[T, € Y| is promoted OR T, € Ws arrives at time t
12:  if (g, > nc) then

13: Enqueue(T., Qr); Execute(T,);//T, preempts Tc

14: else

15: Enqueue(T,, Qr); //Insert T, to ready queue Qp
16: end if

17: end if

5.3. Analysis of the POFP scheduler

From the algorithm, we can see that, when an ALAP task is
promoted from the delay queue to ready queue, the processing
of such a promotion event is similar to that of a normal task ar-
rival event. Compared to the classical fixed-priority scheduler (i.e.,
RMS), only the promotion events for ALAP tasks are additional
scheduling events for POFP. Therefore, the run-time complexity of
POFP will be at the same level as that of the preemptive fixed-
priority scheduler.

Moreover, when there is no ALAP task in a task set, POFP re-
duces to the classical preemptive fixed-priority scheduler. Based on
the results related to phase delay [2] and promotion time [7], the
delayed executions of ALAP tasks in POFP will not cause deadline
misses for such tasks. Therefore, for a set of periodic tasks that
have either ASAP or ALAP execution preferences, as long as the
task set is schedulable and has a feasible priority assignment (e.g.,
either RMS or PPA), the tasks can be successfully scheduled under
POFP.

As a generic preemptive fixed-priority scheduler, POFP can be
applied to any feasible priority assignment of schedulable task sets.
In what follows, as the exemplary optimal priority assignments,
we focus on RMS and PPA, which are preference-oblivious and
preference-aware, respectively.

5.4. An example: PORMS vs. POPPA

We illustrate how the POFP scheduler works by considering the
task set introduced in Section 4.2. Here, both RMS and PPA pri-
orities are used for the purpose of comparison, where the corre-
sponding scheduler instances are denoted as PORMS and POPPA,
respectively.

First, for PORMS, recall that tasks’ priorities are set as 17 > 73
> 15 > n4. Based on Egs. (2) and (3), the promotion times for the
ALAP tasks T3 and T, can be found as: y3 =3 and y, = 2, respec-
tively. From Fig. 2a, we can see that, when the ALAP task instances
T3, 1 and T4 ¢ arrive, they are put into the delay queue to prevent
their immediate execution. In comparison, the ASAP task instances
T; 1 and T, ¢ enter the ready queue right after their arrivals.

Once the highest priority T ; completes its execution at time 1,
the ready queue has only one task instance T, ;, which is picked
for execution next. Although Ts ; has higher priority, it is forced
to stay in the delay queue until its promotion time (i.e., time 3)

since it is an ALAP task instance. At time 2, T ; is promoted to
the ready queue, but it has lower priority than that of the current
running task instance T,, ;. When T3 4 is promoted at time 3, it has
higher priority and will preempt the execution of T, ;.

At time 5, both Ty , and Tj , arrive. Again, the ASAP task in-
stance Ty , enters the ready queue for immediate execution while
the ALAP task instance T3 ; is put in the delay queue and has to
wait there until time 8 (i.e., 3 = 3 units after its arrival). Here,
when the task instance T4 ; finishes its execution at time 7, the
ready queue is empty and the processor becomes idle. Although
the ALAP task instance T3 , in the delay queue is ready for execu-
tion, it is effectively forced to wait until time 8.

The final PORMS schedule is shown at the bottom of Fig. 2a.
Compared to the RMS schedule as shown in Fig. 1a, the executions
of both ALAP task T3’s instances are delayed in the PORMS sched-
ule. Moreover, part of the ASAP task instance T,  is executed at an
earlier time. Therefore, by exploiting the promotion times for ALAP
tasks to delay their executions, the PORMS scheduler can fulfill the
execution preferences of tasks in a better way when compared to
the preference-oblivious RMS scheduler.

For POPPA, where the priorities are n; > 1y > 13 > 14, the
promotion times for the ALAP tasks T3 and T4 can be found as
y3 =0 and y4 = 2, respectively. Here, we can see that, although
the ALAP task T3 takes a lower priority in POPPA, the increased re-
sponse time for this task makes its promotion time to be 0. This
means that, the instances of the ALAP task T3 have to enter the
ready queue right after their arrivals, and cannot take advantage
of the delay queue in the POPPA scheduler to postpone their exe-
cutions.

The states of the runtime queues, transitions of tasks and the
final POPPA schedule are shown in Fig. 2b. It is interesting to see
that, for this particular task set, its POPPA schedule is the same as
its PPA schedule as shown in Fig. 1b. Since its promotion time is
0, the ALAP task T3 is scheduled the same way in both POPPA and
PPA. We observe that the promotion time of the ALAP task Ty is
¥4 = 2; but this time interval is not long enough to keep it in the
delay queue and affect its execution. Since it has the lowest prior-
ity, T4 ;1 waits in the ready queue until time 7 before execution in
both schedules.

From this example, we can see that, although the lower pri-
orities of ALAP tasks help delay their executions under PPA, the
decreased promotion times (due to increased response times) for
such tasks reduce their opportunities to take advantage of the
delay queue in POPPA. Moreover, by comparing the PORMS and
POPPA schedules, it is hard to say which one performs better in
terms of fulfilling the tasks’ execution preferences. For instance, al-
though the first instance of task T3 executes one time unit late in
POPPA, its second instance was much delayed to time 8 in PORMS.
We have quantitatively evaluated the performance of these sched-
ulers on fulfilling the execution preferences of tasks through ex-
tensive simulations and the results will be discussed in Section 7.

6. Runtime techniques for preference-oriented execution

It is well-known that real-time tasks typically take a small frac-
tion of their worst-case execution times (WCETs) [9] and signifi-
cant amount of slack time can be expected at runtime. Such slack
time could be exploited to further delay (expedite) the executions
of ALAP (ASAP) tasks, respectively. However, from Algorithm 3, we
can see that the execution of ALAP tasks can only be delayed in
the delay queue until their promotion times. Once such tasks are
promoted to the ready queue, the POFP scheduler treats them in
the same way as ASAP tasks and no further delay will be imposed
on their executions. Before presenting the runtime techniques to
further improve the preference-oriented executions of tasks based
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Fig. 2. The PORMS and POPPA schedules for the example task set in Section 4.2.

on slack management, in what follows, we first illustrate the idea
through an example.

6.1. An example for runtime techniques

To illustrate different aspects with runtime slack, we consider
another example task set with four tasks: T;(1.5, 4), T»(1, 8),
T3(1.5, 4) and T4(1, 12). Here, tasks T; and T, have ASAP prefer-
ence while T3 and T4 have ALAP preference (i.e., Ys = {T;, T,} and
W; = {T3, T4}). The PORMS scheduler is considered with RMS prior-
ities of tasks as 7 > n3 > 1y > n4. From Eq. (3), the promotion
times of ALAP tasks T3 and T4 can be found as y3 =1 and y; =4,
respectively. To have runtime slack times, it is assumed that the
actual execution times of tasks are: a; =0.5, a; =1, a3 =1 and
as =0.5.

When the actual execution times are less than the WCETSs, tasks
generate dynamic slack time at runtime. In this example, each in-
stance of task T; produces 1 unit of slack time while each instance
of tasks T3 and T4 yields 0.5 unit of slack time. If no special con-
sideration is taken for these slack times, following the steps in
Algorithm 3, the states of runtime queues and the PORMS sched-
ule for the first few instances of the tasks can be found as those
shown in Fig. 3a.

When T3 ¢ is promoted at time 1, it preempts the execution of
T, 1 since it has higher priority (i.e., 73 > 1,). Similarly, when Ty 4
is promoted at time 4, it is executed right after the early comple-
tion of Ty , since it is the only ready task in the ready queue.

Next, we show that how the executions of tasks can be affected
when the slack times are explicitly managed at runtime. When the
task instance T; ; completes its execution early at time 0.5, its gen-
erates one unit of slack time S;, which is kept in a separate slack
queue as shown in Fig. 3b. Here, the slack inherits the priority
of its generating task and will compete the processor with other
ready tasks.

That is, at time 0.5, S; will be picked for execution since it has
higher priority than the ready task instance T, ;. However, since
S; is not a real task, it actually wraps the execution of the available
ASAP task instance T, ; in the ready queue with the priority of
S1 during its allocated time. From a different perspective, this can
be viewed as S; lending its allocated time to T, ;. However, since
such wrapped execution is performed with S;’s priority (i.e., T;’s
priority), when the ALAP task instance T3 ; is promoted at time 1,
it cannot preempt the wrapped execution of T, ; as the priority of
T3, 1 is lower than that of Sj.

Ty Ty

Delay
Queue

i
promoted
T, Y

Read;

at time 0 at time 1 at time 4 at time 5

ol - 47 -
0 S 1 1.5 2 25 3 35 4 45 5 55 6 65 7 15

a. PORMS without runtime slack management
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Delay :' ””” T :'”””7
R e feo- [
T, Ty, ! promoted T, ;\\pmmoled | promoted
Queue
at time 0 at time 1 at time 4 attime 5
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Slack Queue S, ‘ Ss S, ‘
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b. PORMS with runtime slack management

Fig. 3. Impact of runtime slack management in PORMS for the example in
Section 6.1.

When T, ; finishes with the wrapped execution at time 1.5, it
has to return the borrowed time as a new slack S,, which has the
size of one unit and inherits T, {’s priority. After that, T3 ; is ex-
ecuted as it has higher priority than S,. When T5 ; completes its
execution early at time 2.5, another new piece of slack S3 is gen-
erated that has the size of 0.5 unit with T3 ¢’s priority. The state
of the slack queue at time 2.5 is also shown in the figure where
slacks are ordered in their priorities.

Since the ready queue is empty, S3 and S, occupy the processor
in the order of their priorities and let it idle during their allocated
times. At the meantime, the ALAP task instance T4 ; is held in the
delay queue until time 4. At that time, T, ; is promoted to the
ready queue and a higher priority ASAP task instance T; , arrives.
In addition, the ALAP task instance T3 ; also arrives and enters the
delay queue,

When T; , completes early at time 4.5, it generates another
piece of slack S;, which inherits T; ,’s priority. When S; takes the
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processor at time 4.5, it lets the processor idle even though the
ready queue has an ALAP task instance T4 ;. The reason is that,
as an ALAP task instance, T4 ; should be executed at a later time
when possible. Moreover, idling the processor in view of S; will
not cause T, 1 to miss its deadline as this would be the time it
would have to wait if T; ; had taken its WCET.

Similarly, when the ALAP task instance T3 , is promoted at time
5, Sq continues idling the processor as its has higher priority. Once
Sy uses up its time, T3 , starts its execution at time 5.5. Again,
T3, ,’s early completion generates another piece of slack S3, which
further delays the execution of T4 ; until time 7 (actually, it is the
time T4, ; would start its execution should all other task instances
take their WCETs).

6.2. Slack management with wrapper-tasks

From the above example, we can see that, through judicious
slack management, ASAP tasks can borrow high priority slack time
and be executed at their earliest possible times. Moreover, the ex-
ecutions of ALAP tasks can be dramatically delayed by such high
priority slack even after they are promoted to the ready queue.
To generalize the above idea and enable runtime slack to compete
for the processor, we extend the wrapper-task based slack manage-
ment, which has been studied for dynamic priority based task sys-
tems [18], to the fixed-priority setting.

Basically, each piece of slack time will be represented by a
wrapper-task with two parameters (c;, 1;). Here, ¢; denotes the size
of the slack and n; represents the slack’s priority, which is inher-
ited from the task whose early completion gives rise to this slack.
At runtime, wrapper-tasks are kept in a separate slack queue Qg
and compete for the processor with tasks in the ready queue. At
the dispatch time of the POFP scheduler, there are four possibilities
regarding the states of the ready queue Qp and the slack queue Qg.

If both queues are empty, the POFP scheduler will let the pro-
cessor idle while waiting for the new arrival of ASAP tasks and/or
the promotion of ALAP tasks from the delay queue. Otherwise, sup-
pose that T, and S;, are the highest priority task and wrapper-task
in Qr and Qs, respectively.

For the cases where 7, > 1, (the ready task T has higher prior-
ity) OR the slack queue is empty (i.e., S, = NULL), the POFP sched-
uler can dispatch task T, normally from the ready queue Qg. How-
ever, for the cases of n, > n; (i.e., the slack S, has higher prior-
ity), if the ready queue is empty (i.e., T, = NULL) OR all tasks in
the ready queue Qp are ALAP tasks, the slack (represented by the
wrapper task S;,) will get the processor and keep it idle for the in-
terval of its allocated time. This effectively delays the executions
of the ALAP tasks (if any) that have been promoted to the ready
queue Qg.

The most interesting case occurs when the slack has higher pri-
ority (i.e, np > 1) and the ready queue Qg contains at least one
ASAP task. Suppose that the highest priority ASAP task in Qp is T
(and it is possible that ns < n). In this case, the slack (i.e., the
wrapper task S,) obtains the processor and will lend its time to Ty
by wrapping its execution. That is, during the wrapped execution
of Ts, Ts inherits the higher priority of S, which can prevent pre-
emptions from future promoted ALAP tasks as shown in the above
example.

Note that, once such wrapped execution ends due to the com-
pletion of Ts or S, using up its slack time, a new piece slack with
the size of the wrapped execution and Ty's priority will be gen-
erated and inserted back to the slack queue Qg. The operations
of slack (i.e., wrapper tasks) are similar to those for the dynamic
priority based scheme and interested readers can find more de-
tailed discussions in [18]. However, we would like to point out
that, the wrapper-task based slack management is a generic tech-

nique, which can be applied to any classical fixed-priority sched-
uler (e.g., RMS) as well.

6.3. Dummy task to exploit spare capacity

For a given set of tasks that are schedulable under fixed-priority
scheduling, it is more likely that the system is not fully utilized
(i.e., U < 1). However, the wrapper-task technique discussed in the
last section is designed to handle dynamic slack generated from
the early completion of tasks, which cannot directly utilize such
spare capacity. In [18], we utilized a dummy task Ty to represent
system spare capacity, which can periodically introduce slack time
into the system at runtime.

Following the same idea, we can also augment a given task set
with a dummy task Ty(cg, pg, Mo). From [18], we know that the
timing parameters of Ty have a direct impact on system perfor-
mance by controlling how slack from the spare capacity is intro-
duced to the system. For instance, Ty's period py determines how
often the slack is introduced at runtime. In fixed-priority schedul-
ing, Ty's priority 1y also plays a very important role. From the
above discussions, we know that slack time needs to have a higher
priority to wrap an ASAP task for its early execution as well as to
delay the execution of ALAP tasks. Therefore, it is desirable to have
a higher priority for the dummy task Ty.

However, on the other hand, the choice of Ty’s timing parame-
ters and priority should not compromise the schedulability of the
augmented task set. Considering the much more complex inter-
play between tasks’ schedulability and their priorities and timing
parameters, selecting the appropriate (cg, pg, 1o) for Ty becomes
more challenging than the case for the dynamic-priority based
scheduling [18].

A simple utilization based dummy task: In this work, we con-
sider a simple but conservative utilization-based approach to de-
termine Ty's timing parameters and priority. From [15], we know
that, a given task set W is schedulable under RMS if the system uti-
lization of the task set satisfies: U < Ubound (n) = n(21/" — 1). Here,
n is the number of tasks in a task set and UP°t"d(n) is the utiliza-
tion bound to ensure the task set’s schedulability under the RMS
scheduler.

In this work, we set uy = Ubnd(n) —U, py=min{p;|T; € ¥}
and cg = ug - pg. According to the results in [14], since the dummy
task has the same period as the task with the smallest period, the
addition of the dummy task will not compromise the schedulabil-
ity of the augmented task set under RMS. Moreover, by having the
smallest period, Ty will have the highest priority 1 in RMS. In ad-
dition, we assume that the dummy task To will have the ASAP ex-
ecution preference, which enables it act as slack time in the ready
queue at the earliest possible time.

7. Evaluations and discussions

The performance of the proposed PPA algorithm, the POFP
scheduler and the runtime techniques, in terms of on how well the
execution preferences of tasks are fulfilled, have been evaluated
through extensive simulations. To this end, we developed a discrete
event simulator using C++ and implemented the work-conserving
fixed-priority (FP) scheduler as well as the non-work-conserving
POFP scheduler.

Moreover, we consider both the classical RMS and the pro-
posed PPA priority assignments for the tasks. Combining the pri-
ority assignments with the two different fixed-priority schedulers,
we evaluated four different schemes:

o RMS: which represents the classical RMS scheduler [15] and is
used as the baseline in our evaluations;

o PPA, standing for the work-conserving FP scheduler with the
proposed PPA priority assignment;
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o PORMS, which denotes the proposed POFP scheduler with RMS
priority assignment; and

o POPPA, which stands for the proposed POFP scheduler with our
new PPA priority assignment.

7.1. Evaluation metrics and simulation settings

Due to the preemptive nature of the fixed-priority schedulers
under consideration, it is not straightforward to quantify how well
the execution preferences of tasks are fulfilled. Here, we use the
preference value (PV) of tasks, a simple metric proposed in our pre-
vious work [10], which is defined over the completion and start
times of ASAP and ALAP tasks. Specifically, the preference value
for a task instance T; ; is defined as [10]:

It LTI ,
Fra i if T e Ws;
1 1
PVij =1 g —stmn (4)
st; j—st! T cw
s s i € L
1 1

where st; ; and ft; ; denote the actual start and complete times,
respectively, of the task instance T; ; during a specific execution
under a given scheduler. Moreover, ft{"i” and ft/"*™ represent the
ideal earliest and latest completion times, respectively, if T; is an
ASAP task. Similarly, st{"i” and st/"™ stand for the ideal earliest and
latest start times, respectively, if T; is an ALAP task.

Note that, due to preemptions and interference among tasks, it
would be very difficult (if not impossible) to find the earliest/latest
start/completion times for each individual task instance. In this
work, we use the ideal values for those time points by assuming
that there is only one task T; in the system. Specifically, suppose
that T; ; arrives at time r; ;. T; ; could start its execution as early
as stMn =r; ;. while the latest time it has to start its execution
to avoid a deadline miss would be st/"* = (r; ; + p;) — ¢;, where ¢;
and p; are the WCET and period of task T;, respectively. Similarly,
assume that the actual execution time of T; ; is g; j, we can find
its ideal earliest and latest finish times are ft{"f" =r1;j+a;; and
ftl™ =1 ; + p; — ¢; + q; j, respectively.

From these definitions, we can see that the value of PV; ; has
the range of [0, 1], where a larger value indicates that T; ;'s exe-
cution preference has been fulfilled better. For a specific running
of a task set under a given scheduler, a task’s preference value is
defined as the average PV of all its instances. Moreover, the overall
PV of a task set is the average preference value of all its tasks.

Task generation: We consider synthetic tasks that are gener-
ated as follows: for a given number of tasks n and system utiliza-
tion U, the utilization of each task is generated using the UUniFast
scheme proposed in [5]. Then, the period of each task is uniformly
distributed within the range of [10, 100] and its WCET (Worst-Case
Execution Time) is set accordingly. A certain number k of these
n tasks are randomly chosen to have ASAP execution preference
while the remaining are considered as ALAP tasks.

We vary the system utilization U (from 0.1 to 0.8), the number
of tasks in a task set n (from 10 to 100), and the number of ASAP
tasks k (0.2 - n, 0.5 - n and 0.8 - n) and evaluate their impacts on
the performance of the proposed schedulers and techniques. In the
figures below, each data point corresponds to the average result of
100 schedulable task sets (where task sets that are not schedulable
under RMS, especially for high system utilizations, are discarded in
our simulations). Tasks are assumed to take their WCETs at run-
time unless otherwise specified.

7.2. Effects of system utilizations

The effects of system utilization on the achieved PVs for differ-
ent types of tasks under the four scheduling schemes (i.e., RMS,

PPA, PORMS, and POPPA) are first shown in Fig. 4. Here, we con-
sider task sets with n =10 tasks. The number of ASAP tasks in
each task set is indicated with the value of k. Three cases with
k=2, k=5 and k =8, respectively, are considered to represent
different workload mixtures of ASAP and ALAP tasks. The results
for these three cases under different scheduling schemes are de-
noted accordingly.

Focusing on only ASAP tasks in the task sets, Fig. 4a shows their
achieved average PVs. Recall that the PV for each task has a up-
per bound of 1, which may not be simultaneously achievable for
all tasks by any scheduler when there are more than one tasks in
a task set. Here, we can see that, for the cases with low system
utilizations (e.g., U < 30%), the resultant PVs for ASAP tasks un-
der different schemes are very close where all values are larger
than 0.97. The reason is that, at low system utilizations, almost all
ASAP tasks can be executed right after their arrivals under differ-
ent scheduling schemes, regardless of the number of ASAP tasks in
a task set.

However, as system utilization increases where the size of each
task becomes larger, the differences between the four schedul-
ing schemes for different workload mixtures become more pro-
nounced. In particular, when there are more ASAP tasks in a task
set, it becomes more difficult to execute them right after their ar-
rivals under all scheduling schemes, which leads to reduced PVs
for such tasks. Moreover, for all the settings, by having higher pri-
orities for ASAP tasks (where ALAP tasks take lower priorities), PPA
can execute ASAP tasks at earlier times with larger achieved PVs
when compared to that of RMS, especially at higher system uti-
lizations.

With the help of the dual-queue technique, PORMS performs
slightly better than RMS as it provides more opportunities to ex-
ecute ASAP tasks at earlier times by holding (possibly high prior-
ity) ALAP tasks in the delay queue. However, the differences in the
achieved PVs for ASAP tasks between PPA and POPPA are almost
negligible for all the settings. The reason is that, the higher pri-
orities of ASAP tasks under PPA already enable them to execute
at earlier times. Therefore, it becomes extremely difficult for ASAP
tasks to explore the delayed executions of ALAP tasks under POPPA
and to further improve their early executions.

Next, we focus on the achieved PVs for ALAP tasks, where the
results are shown in Fig. 4b. Compared to those for ASAP tasks,
the achieved PVs for ALAP tasks have much larger variations. Note
that, the execution preference of ALAP tasks conflicts directly with
the design principle of the work-conserving fixed-priority sched-
uler. In particular, the classical RMS scheduler does not have any
special consideration for ALAP tasks, which results in very low PVs
for ALAP tasks (i.e., poor fulfillment of ALAP tasks’ execution pref-
erence), especially for the cases with low system utilizations. As
system utilization increases, the resultant PVs get slightly higher
under RMS where the executions of ALAP tasks start relatively
late due to increased system loads. However, even for the case of
U = 80%, the values are still less than 0.2.

By assigning lower priorities to ALAP tasks, PPA can perform
slightly better than RMS in all the settings under consideration.
However, due to the work-conserving nature of its underlying
fixed-priority scheduler, ALAP tasks are still executed quite early,
which leads to small PVs for such tasks.

With the help of the dual-queue technique, our proposed non-
work-conserving POFP scheduler delays the executions of ALAP
tasks (at least) until their promotion times. Such delays lead to
dramatically increased PVs for ALAP tasks under both PORMS
and POPPA, when compared to their corresponding counterparts,
RMS and PPA, respectively. Therefore, the dual-queue technique
adopted in the POFP scheduler plays a dominant rule in delaying
the executions of ALAP tasks, when compared to that of the PPA
priorities.
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Fig. 4. Achieved PV vs. system utilization U under different schedulers for task sets with n = 10 tasks.

For different workload mixtures (i.e., different values of k),
PORMS performs roughly the same for a given system utilization.
This comes from the fact that, with the randomly chosen execu-
tion preferences for tasks, the priorities of ALAP tasks scatter quite
evenly within the priority spectrum regardless of the number of
ALAP tasks in a task set. Therefore, the average promotion times of
ALAP tasks will be similar, which results in roughly the same PVs
for ALAP tasks.

However, it is interesting to see that higher PVs can be achieved
for ALAP tasks under PORMS than POPPA, especially for cases with
higher system utilizations. The reason is that, the lower priorities
of ALAP tasks in POPPA lead to reduced promotion times for such
tasks (due to their increased response times). Hence, ALAP tasks
can be held in the delay queue for less time before they are forced
to move to the ready queue, which potentially leads to earlier start
times and thus reduced PVs for them. Moreover, when there are
fewer number of ALAP tasks (i.e., larger values of k), it is more
likely that PPA will assign the lowest few priorities to them and
such effects become more prominent.

Fig. 4c further shows the overall achieved PVs for all tasks (in-
cluding both ASAP and ALAP tasks) in a task set. Note that, the

underlying work-conserving fixed-priority scheduler for RMS and
PPA performs well only for ASAP tasks. Thus, the overall achieved
PVs under RMS and PPA depend heavily on the number of ASAP
tasks, where larger overall PVs are achieved with more ASAP tasks.
The benefit of having PPA priorities on improving the fulfillment
of tasks’ execution preferences is very marginal where the overall
PVs are only slightly larger compared to those of RMS.

Both PORMS and POPPA have quite stable performance on the
overall PVs of tasks, which vary only slightly for different work-
load mixtures for a given system utilization. As system utilization
increases, both PORMS and POPPA performs slightly worse since it
becomes more difficult to satisfy the execution preferences of all
tasks. Again, PORMS performs slightly better than POPPA due to
decreased promotion times for ALAP tasks in POPPA, which turns
to be a dominant factor for fulfilling the execution preferences of
all tasks in the underlying POFP scheduler.

Fig. 4 also shows the 95% confidence intervals of the achieved
PVs, which have a rather small range for all the settings. This in-
dicates that the reported average results for the PVs of tasks are
quite reliable statistically.
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Fig. 5. Effects of task number n on the normalized PVs (compared to RMS; U = 50%).

7.3. Effects of number of tasks

When the system utilization is U = 50%, we evaluate the ef-
fects of n (i.e., the number of tasks in a task set) on the resul-
tant PVs of tasks. The number of tasks n varies from 10 to 100.
As before, three cases are considered to represent different work-
load mixtures, where the number of ASAP tasks k in a task set
are k=0.2-n, k=0.5-n and k = 0.8 - n, respectively. For different
scheduling schemes, these three cases are denoted as 20%, 50% and
80% accordingly. The PVs obtained under RMS are considered as
the baseline, and the PVs of the schemes are indicated as normal-
ized with respect to those baseline values (Fig. 5).

First we consider ASAP tasks only and show their normalized
PVs with varying number of tasks in Fig. 5a. Here, we can see that,
the normalized PVs for ASAP tasks are quite stable (close to 1 with
very small variations) for different number of tasks under different
scheduling schemes. For the case of n = 10, the results are in line
with the previously reported PVs for ASAP tasks with U = 50%. In
general, when there are more ASAP tasks, it becomes more difficult
to complete all ASAP tasks early under all schemes, which leads to
slightly smaller normalized PVs for ASAP tasks.

Fig. 5b shows the normalized PVs for ALAP tasks. Recall that
RMS performs very poorly for ALAP tasks and PVs for such tasks
are very small (less than 0.2). Hence, we can see that the nor-
malized PVs of ALAP tasks have quite large variations for different
schemes, especially for the case of n = 10. However, as the num-
ber of tasks increases, the performance variation of the scheduling
scheme becomes more stable with smaller sizes of tasks. Here, the
achieved PVs for ALAP tasks under PPA are almost twice as that
under RMS with the normalized PVs being close to 2 (when n >
20). For PORMS, the normalized PVs for ALAP tasks can be as high
as 17, which indicates significant improvement for ALAP tasks to
fulfill their execution preference. The same as before, POPPA per-
forms slightly worse than PORMS with smaller normalized PVs,
which can be as high as 14 when there are more ALAP tasks in
the task sets (i.e., k = 20%).

The normalized overall PVs for all the tasks, as a function of the
number of tasks are further shown in Fig. 5c. Again, as task num-
ber varies, the different scheduling schemes perform quite stable
with very little variations in the normalized overall PVs. Moreover,
with its preference-aware priority assignment, PPA can perform
slightly better than RMS, where its normalized PVs are marginally
larger than 1. When there are more ALAP tasks in the task sets,
the normalized PVs under PORMS and POPPA are close to 3.5 since
the underlying POFP scheduler can effectively delay the execu-
tions of ALAP tasks. However, when there are more ASAP tasks,
the normalized PVs for PORMS and POPPA reduce quickly since all
schemes achieve similar PVs for ASAP tasks.

7.4. Effects of runtime techniques

From the above discussions, we can see that PPA can only mod-
erately improve the fulfillment of tasks’ execution preferences over
RMS. Therefore, in the evaluations of runtime techniques, we con-
sider only the non-work-conserving schedulers PORMS and POPPA.
In addition, for the number of tasks, we consider the case of n = 10
with each task set having k = 5 ASAP tasks (i.e., the balanced work-
load mixtures).

Effects of dummy task: With varying system utilization, the ef-
fects of dummy task on the normalized PVs of tasks are shown
in Fig. 6. Since we focus on exploiting static spare capacity us-
ing dummy task, we assume that all tasks take their WCETs at
runtime and all slack times are introduced by the dummy task.
Moreover, for simplicity, the utilization of the dummy task is set
as ug =In2 — U, where In2 is the asymptotic utilization bound for
task sets to be schedulable under fixed-priority scheduling [15].

First, the normalized PVs for ASAP tasks can be seen in Fig. 6a.
Here, the normalized PVs are close to 1 with quite small varia-
tions. The reason is that, both PORMS and POPPA can perform very
well for ASAP tasks especially for low system utilizations, which
is consistent with our previous results. As system utilization in-
creases and tasks become larger, PORMS and POPPA can perform
slightly better than RMS, which leads to marginally increased PVs
for ASAP tasks. However, for both PORMS and POPPA, the addi-
tional improvement of utilizing the dummy task is almost negligi-
ble.

From Fig. 6b shows the normalized PVs for ALAP tasks, which
again have quite large variations. By delaying ALAP tasks with the
dual-queue technique, both PORMS and POPPA can perform signif-
icantly better for such tasks than RMS (close to two magnitudes
for the case of U = 10%). As system utilization increases, the size
of tasks become larger and the promotion times of ALAP tasks can
decrease quickly, which leads to much smaller normalized PVs for
such tasks.

Moreover, it is interesting to see that, although the dummy task
has been introduced with the objective of further delaying the exe-
cution of ALAP tasks, both PORMS and POPPA perform worse when
the dummy task is utilized. The reason is that, the dummy task
has the highest priority in RMS with its the smallest period. More-
over, with its ASAP execution preference, it is very likely that PPA
also assigns it the highest priority. Hence, the reduced promotion
times of ALAP tasks due to the highest priority dummy task in the
augmented task set can overshadow the benefits of the introduced
slack time.

The normalized overall PVs for all tasks are shown in Fig. 6c,
which further confirms that the dummy task can lead to nega-
tive effects on the achieved PVs of tasks. When we consider all the
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Fig. 7. Effects of dynamic slack on normalized PVs (compared to RMS; n = 10,k =5 and U = 50%).

tasks, the PVs of tasks can be improved by more than 50% under
both PORMS and POPPA over RMS.

Effects of dynamic slack: The effects of dynamic slack are also
evaluated and the results are shown in Fig. 7. Here, we consider
the case of U = 50% (without dummy task). We vary the dynamic
load « of tasks from 10% to 100%. Smaller values of « indicate
more dynamic slack can be expected from the early completion of
tasks and « = 100% represents the case where no dynamic slack is
available at runtime. For a given value of «, the actual execution
times for the instances of task T; are randomly generated within a
range to have the average value as « - ¢;.

Similar patterns of the normalized PVs for tasks can be ob-
served. First, most ASAP tasks can complete at their earliest times
under all scheduling schemes, especially for the low dynamic loads
where tasks only take a small fraction of their WCETs. This leads to
the normalized PVs for ASAP tasks being close to 1 as can be seen
in Fig. 7a. Although PORMS and POPPA perform better than RMS as
the dynamic load increases, the improvement is very marginal (less
than 1.5% even at o = 100%). Moreover, the advantage of managing
such dynamic slack for ASAP tasks is hardly noticeable, especially
for POPPA.

The normalized PVs of ALAP tasks can be as high as 180 when
the dynamic load is low (e.g., @ = 10%) due to extremely poor per-
formance of RMS for completing such tasks at earlier times (see
Fig. 7b). When tasks have longer executions at high dynamic loads,
the advantages of PORMS and POPPA over RMS quickly diminish.
Moreover, although managing dynamic slack can improve the PVs
of ALAP tasks under POPPA, such improvements decrease quickly
as dynamic load increases (with less slack time). The effects of dy-
namic slack on PORMS are hardly noticeable.

Fig. 7c shows the normalized overall PVs for all the tasks, and
the results are consistent with previous evaluations. The additional
improvement from dynamic slack is rather marginal. Note that, the
PV of an ASAP (ALAP) task instance is defined on a single finish
(start) time point. With the complex interference among tasks’ ex-
ecutions, we can see that the overall PVs of tasks do not change
monotonically as dynamic load increases.

8. Conclusions

In this work, for periodic real-time tasks where some tasks are
preferably executed ASAP while others ALAP, we investigated vari-
ous techniques for fixed-priority scheduling. First, as a variation of
Audsley’s optimal priority assignment, we studied a preference pri-
ority assignment (PPA) algorithm that favors ALAP tasks for lower
priorities. Then, a non-work-conserving preference-oriented fixed-
priority (POFP) scheduling algorithm is proposed that exploits the
dual-queue technique to address the late execution requirements
of ALAP tasks. Runtime techniques based on slack management
with dummy and wrapper tasks are also investigated with the ob-
jective of further improving tasks’ execution preferences.

The proposed techniques and schemes are evaluated through
extensive simulations. The results show that, although both PPA
and the dual-queue POFP scheduler are quite effective, the non-
work-conserving POFP scheduler plays a dominant role in address-
ing tasks’ execution preferences. In particular, for ALAP tasks, the
performance can be improved up to two magnitudes when com-
pared to the classical RMS scheduler, which is preference-oblivious.
The wrapper-task based runtime technique can slightly improve
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tasks’ performance, while the dummy task can have negative im-
pacts due to reduced promotion times of ALAP tasks.

In our future work, we will investigate better evaluation met-
rics that can incorporate all execution segments of task in-
stances for perference-oriented executions. Moreover, we will
study preference-oriented scheduling algorithms for multiproces-
sor real-time systems.
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