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a b s t r a c t 

Traditionally, real-time scheduling algorithms prioritize tasks solely based on their timing parameters and 

cannot effectively handle tasks that have different execution preferences . In this paper, for a set of peri- 

odic real-time tasks running on a single processor, where some tasks are preferably executed as soon 

as possible (ASAP) and others as late as possible (ALAP) , we investigate Preference-Oriented Fixed-Priority 

(POFP) scheduling techniques. First, based on Audsley’s Optimal Priority Assignment (OPA) , we study a 

Preference Priority Assignment (PPA) scheme that attempts to assign ALAP (ASAP) tasks lower (higher) 

priorities, whenever possible. Then, by considering the non-work-conserving strategy, we exploit the pro- 

motion times of ALAP tasks and devise an online dual-queue based POFP scheduling algorithm. Basically, 

with the objective of fulfilling the execution preferences of all tasks, the POFP scheduler retains ALAP 

tasks in the delay queue until their promotion times while putting ASAP tasks into the ready queue right 

after their arrivals. In addition, to further expedite (delay) the executions of ASAP (ALAP) tasks using 

system slack, runtime techniques based on dummy and wrapper tasks are investigated. The proposed 

schemes are evaluated through extensive simulations. The results show that, compared to the classical 

fixed-priority Rate Monotonic Scheduling (RMS) algorithm, the proposed priority assignment scheme and 

POFP scheduler can achieve significant improvement in terms of fulfilling the execution preferences of 

both ASAP and ALAP tasks, which can be further enhanced at runtime with the wrapper-task based slack 

management technique. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Real-time systems, where application tasks generally have

eadlines, have been studied for decades. For various task and sys-

em models, many classical real-time scheduling algorithms have

een proposed by the research community. For example, for pe-

iodic real-time tasks running on a single processor system, Rate

onotonic Scheduling (RMS) and Earliest Deadline First (EDF) are the

ptimal schedulers for static and dynamic priority based preemp-

ive scheduling algorithms, respectively [15] ). With the exclusive

ocus on meeting tasks’ timing constraints, most existing real-time

cheduling algorithms prioritize and schedule tasks solely based on

heir timing parameters (e.g., deadlines and periods). Moreover, to

omplete the executions of tasks at their earliest possible time in-
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tants, these algorithms normally adopt the work-conserving strat-

gy, which does not leave the processor idle when there are ready

asks for executions. 

However, there are occasions where it can be beneficial to ex-

cute tasks at their latest times. For instance, when both periodic

ard real-time tasks and aperiodic soft real-time tasks share the

ame computing platform, the executions of periodic hard real-

ime tasks can be maximally delayed in order to get better re-

ponse times for aperiodic soft real-time tasks [6,7] . In addition,

n fault-tolerant systems that adopt the primary/backup model,

ackup tasks should also be executed as late as possible to reduce

he overlapped executions with their corresponding primary tasks

which are executed early on other processors) and thus system

verheads to achieve cost efficient fault tolerance [12,17] . 

In contrast to the EDF and RMS schedulers [15] that execute

asks at their earliest possible times, the Earliest Deadline Latest

EDL) [6] and Dual-Priority (DP) schedulers [7] have been proposed

o schedule periodic real-time tasks at their latest times. However,

ll these classical real-time schedulers treat all periodic tasks uni-

ormly when assigning priorities to tasks and making scheduling
iority scheduling for periodic real-time tasks, Journal of Systems 
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decisions. That is, these schedulers do not differentiate the execu-

tion preferences of tasks and thus cannot effectively handle co-

running tasks that have different execution preferences. 

For a set of periodic real-time tasks running on a single pro-

cessor that have different execution preferences, where some tasks

are preferably executed as soon as possible (ASAP) while oth-

ers as late as possible (ALAP) , we have recently studied an on-

line Preference-Oriented Earliest Deadline (POED) scheduling algo-

rithm [10] . Basically, different from the EDF/EDL schedulers that

consider only the deadlines of tasks when making scheduling deci-

sions, the POED scheduler takes the execution preferences of tasks

into consideration and puts ASAP tasks in the central stage. That is,

whenever there are ready ASAP tasks at a scheduling point, these

tasks can be picked for executions even if they have later dead-

lines, provided that such executions do not cause deadline misses

for other tasks in the future. The POED scheduler has been ex-

ploited in fault-tolerant systems to reduce run-time overhead and

improve energy efficiency [11] . In addition, such schedulers can

also be utilized in mixed-criticality systems to differentiate the ex-

ecutions of high-criticality and low-criticality tasks to better ex-

plore system slack at runtime [16] . 

Although POED was the first scheduler that addresses the dif-

ferent execution preferences of periodic tasks, it is a dynamic pri-

ority based scheduler. To the best of our knowledge, no fixed-

priority based preference-oriented scheduling algorithm has been

reported yet in the literature. Our preliminary study on the

Preference-Oriented Fixed-Priority (POFP) scheduler was presented

in [4] , which is extended in this paper to address the topic more

thoroughly. First, based on Audsley’s Optimal Priority Assignment

(OPA) algorithm [3] , we study a Preference Priority Assignment (PPA)

scheme for a set of periodic real-time tasks with ASAP or ALAP

execution preferences to be executed on a single processor sys-

tem under preemptive fixed-priority scheduling. With the intu-

ition that low priority tasks are executed late at runtime, the basic

idea of PPA is to favor ALAP tasks when assigning lower priorities

(and thus ASAP tasks can implicitly have higher priorities) without

sacrificing system schedulability. By taking tasks’ execution pref-

erences into consideration, the resulting PPA priorities can most

likely delay the executions of ALAP tasks while executing ASAP

tasks at earlier times. 

Then, observing that there are normally idle intervals in fixed-

priority schedules, we propose an online preemptive POFP sched-

uler that adopts the non-work-conserving scheduling strategy. Here,

to exploit idle intervals and systematically delay (expedite) the ex-

ecutions of ALAP (ASAP) tasks, POFP utilizes a dual-queue based

scheduling approach. ASAP tasks enter the ready queue immedi-

ately after they arrive. In contrast, an ALAP task is put into a de-

lay queue at its arrival time and will wait there until its promotion

time , which can be derived following the ideas in the dual-priority

scheduling framework [7] . After that, the ALAP task is promoted to

the ready queue. Such a dual-queue scheduling approach can ef-

fectively prevent an ALAP task from being executed before its pro-

motion time, which can in turn give low priority ASAP tasks the

opportunity to run at earlier times. 

Moreover, we investigate runtime techniques to further de-

lay (expedite) the executions of ALAP (ASAP) tasks by exploit-

ing system slack, which can be expected at runtime as real-time

tasks typically take a small fraction of their worst-case execution

times [9] . In summary, the contributions of this work are as fol-

lows: 

• A preference priority assignment (PPA) scheme that explicitly

incorporates the ASAP and ALAP execution preferences of peri-

odic real-time tasks is proposed; 
• An online dual-queue based preference-oriented fixed-priority

(POFP) scheduler is proposed [4] , which is preemptive and non-
Please cite this article as: R. Begam et al., Preference-oriented fixed-pr
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work-conserving in nature to better serve the tasks’ ASAP and

ALAP execution preferences; 
• Runtime techniques are also investigated to further delay (ex-

pedite) the executions of ALAP (ASAP) tasks by exploiting sys-

tem slack at runtime; 
• The proposed PPA scheme, POFP scheduler and runtime tech-

niques are evaluated through extensive simulations with syn-

thetic tasks, which are shown to be very effective to fulfill the

tasks’ ASAP and ALAP execution requirements, when compared

to that of the preference-oblivious RMS scheduler. 

The rest of this paper is organized as follows. We review the

losely related work in Section 2 . Section 3 presents system mod-

ls and necessary preliminaries. The preference-oriented priority

ssignment (PPA) scheme is discussed in Section 4 . In Section 5 ,

he preference-oriented fixed-priority (POFP) scheduler is pro-

osed. The runtime techniques are further addressed in Section 6 .

ection 7 discusses the evaluation results and Section 8 concludes

he paper. 

. Closely related work 

In the past few decades, real-time systems have been studied

xtensively and numerous scheduling algorithms have been pro-

osed for different task and system models. In this section, for pe-

iodic real-time tasks running on a single processor system, we re-

iew closely related scheduling algorithms. 

The Earliest-Deadline-First (EDF) scheduling algorithm has been

he well-known optimal scheduler based on the dynamic priority

pproach, where the instances (or jobs) of the same task may have

ifferent priorities [15] . Specifically, EDF prioritizes task instances

jobs) based on their absolute deadlines, where jobs with smaller

eadlines have higher priorities (for jobs that have the same dead-

ines, the order of their priorities can be arbitrarily assigned with-

ut affecting tasks’ schedulability). It has been shown that EDF can

uccessfully schedule a set of periodic tasks on a single processor

s long as the system utilization is no more than 1.0 [15] . 

In comparison, in the fixed-priority scheduling, priorities are

ssigned to tasks and the instances (jobs) of a task have the

ame priority of that task. For instance, as a classical optimal

xed-priority scheduler, the Rate Monotonic Scheduling (RMS) algo-

ithm prioritizes tasks according to their periods, where tasks with

maller periods have higher priorities [15] . That is, if a set of peri-

dic tasks can be feasibly scheduled with fixed-priority scheduling

n a single processor, the task set can be successfully scheduled

nder RMS. Instead of prioritizing tasks solely based on their pe-

iods, in [3] , Audsley studied an Optimal Priority Assignment (OPA)

lgorithm for periodic tasks under fixed-priority scheduling based

n the concept of response time for tasks [1,13] . A comprehensive

eview on various priority assignment schemes for fixed-priority

cheduling can be found in a recent report [8] . 

The well-known work-conserving schedulers EDF and RMS do

ot leave the processor idle if there are ready tasks for execu-

ion, where tasks are executed at their earliest times. However, for

ixed workload with both hard real-time periodic tasks and soft

eal-time aperiodic tasks sharing a computing platform, it would

e necessary for periodic tasks running at their latest times to pro-

ide better response times for soft aperiodic tasks. For such a pur-

ose, the earliest deadline latest (EDL) algorithm has been devel-

ped [6] . By considering all instances of periodic tasks within the

east common multiple (LCM) of their periods, EDL generates an

ffline static schedule to find out their latest execution times while

nsuring that there is no deadline miss. 

With the same objective, the dual-priority (DP) scheme has been

eveloped for fixed-priority scheduling in order to improve the re-

ponsiveness of soft real-time aperiodic tasks [7] . The DP scheduler
iority scheduling for periodic real-time tasks, Journal of Systems 
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s based on the phase delay technique [2] , where the arrivals of pe-

iodic tasks are delayed for a certain offset without missing any

eadline. 

For fault-tolerant systems that adopt the Primary/Backup (PB)

echnique, Unsal et al. studied an offline Secondary Execution

ime Shifting (SETS) scheduling heuristic based on the EDF sched-

ler [17] . Here, to reduce the overlapped executions between

ackup and primary copies of the same task (and thus save system

nergy), SETS iteratively calculates the delayed release time for all

ackup instances within the Least Common Multiple (LCM) of tasks’

eriods. 

As the most closely related work, for a set of periodic

asks running on a single processor system with either ASAP or

LAP execution preferences, we have studied a dynamic-priority

ased Preference-Oriented Earliest Deadline (POED) scheduling algo-

ithm [10] . In this paper, we study an online Preference-Oriented

ixed-Priority (POFP) scheduling algorithm and related priority-

ssignment techniques, which are different from the dynamic-

riority based POED scheduler [10] . Moreover, this work is also

ifferent from the classical real-time schedulers (such as EDF,

MS [15] , EDL [6] and DP [7] ), which cannot effectively handle the

ifferent execution preferences of tasks. 

. System models and preliminaries 

In this section, the task and system models are first presented.

hen, we review preliminaries related to fixed-priority scheduling,

ollowed by the description of the problem to be studied in this

ork. 

.1. Task and system models 

We consider a set of n independent periodic real-time tasks

= { T 1 , . . . , T n } to be executed on a single processor system. The

asks do not share resources other than the processor. A task T i is

epresented by a tuple ( c i , p i , θ i ). Here, c i is its worst-case execu-

ion time (WCET) and p i is its period (i.e., inter-arrival time). We

onsider tasks with implicit deadlines where p i is also the relative

eadline of task T i . The utilization of task T i is defined as u i = 

c i 
p i 

nd the system utilization is further defined as U = 

∑ 

T i ∈ � u i . 

Each task T i represents an infinite sequence of task instances

or jobs ), where the j th instance of task T i is denoted as T i, j ( j =
 , 2 , . . . ). Tasks are assumed to be synchronous with the first in-

tance of each task arriving at time 0. Hence, the task instance T i, j 
rrives at time r i, j = ( j − 1) · p i and has an absolute deadline as

 i, j = r i, j + d i = j · p i , where [ r i, j , d i, j ] denotes the active window

f T i, j . Note that, there is only one active task instance for each

ask at any given time instant. In what follows, we use task T i to

efer to its current active instance when there is no ambiguity. 

The execution preference of task T i is denoted as θ i , which can

e either as soon as possible (ASAP) or as late as possible (ALAP) [10] .

ased on their execution preferences, the tasks in � can be parti-

ioned into two subsets �S and �L (where � = �S ∪ �L ), which

ontain the tasks with ASAP and ALAP preferences, respectively.

ote that, when all tasks have ASAP (or ALAP) preference, they

an be effectively scheduled by the RMS [15] (or Dual-Priority [7] )

cheduler, respectively. Hence, in this work, we focus on task sets

hat have both ASAP and ALAP tasks, where the existing fixed-

riority schedulers cannot handle them effectively. 

.2. FP scheduling and response time analysis 

In fixed-priority (FP) scheduling, the key step is to assign each

ask T i a static priority ηi , which will be utilized by all its in-

tances. Here, the priorities assigned to tasks have to be different

o ensure that tasks can be totally ordered [8] . That is, for any two
Please cite this article as: R. Begam et al., Preference-oriented fixed-pr

Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.07.005 
asks T i and T j ( i � = j ), either ηi > ηj or ηi < ηj holds, corresponding

o the cases where T i ’s priority is higher or lower than T j ’s priority,

espectively. 

Once the priorities for all tasks are assigned, the set of tasks

hat have higher priorities than that of T i can be defined as: 

p(T i ) = { T x | T x ∈ � ∧ ηi < ηx } (1) 

n the classical preemptive FP scheduler (e.g., RMS [15] ), a single

eady queue is utilized to hold all active tasks at runtime. If there

re active tasks and the ready queue is not empty, the one that

as the highest priority will be chosen for execution. However, the

xecution of an active task T i can be preempted when a high pri-

rity task T j ∈ hp ( T i ) arrives. Under preemptive scheduling, the re-

ponse time of T i can be found iteratively through the following

quation [1,13] : 

 

k +1 
i 

= 

∑ 

T j ∈ hp(T i ) 

⌈
R 

k 
i 

p j 

⌉
c j + c i (2) 

here R 0 
i 

= c i . When the above equation converges with R k +1 
i 

= R k 
i 
,

he response time of task T i can be set accordingly as R i = R k 
i 
. 

Note that, for a given priority assignment, if R i ≤ p i (i.e., the re-

ponse time does not exceed the relative deadline) for every task T i 
 � , the task set can be successfully scheduled under the preemp-

ive fixed-priority scheduling [1,13] . More formally, we can have

he following lemma. 

emma 1. For the preemptive fixed-priority scheduling, a priority as-

ignment for the tasks in � is feasible if there are R i ≤ p i ∀ T i . 

.3. Problem description 

Unlike tasks’ deadlines that represent hard constraints of tasks,

he execution preferences of tasks are rather soft requirements,

hich provide only guidelines on how early or late a task should

e preferably executed. Based on the aggregated executions of ASAP

r ALAP tasks within a certain interval, we have formally defined

ptimal schedules in terms of fulfilling the preference require-

ents of tasks [10] . However, it has been shown that, due to the

onflicting demands of ASAP and ALAP tasks regarding the place-

ent of idle times in a schedule, it may be impossible to find a

easible schedule that can optimally fulfill the preference require-

ents of both ASAP and ALAP tasks simultaneously [10] . 

Therefore, instead of aiming at finding optimal fixed-priority

cheduling algorithms, in this work, we focus on investigating var-

ous techniques to improve the fulfillment of tasks’ execution pref-

rences. Specifically, for a set of periodic tasks running on a single

rocessor under fixed-priority scheduling, we study priority assign-

ent, scheduling algorithms and runtime techniques with the objec-

ive of better fulfilling tasks’ execution preferences in the resulting

chedule. 

. Preference priority assignment 

In fixed-priority scheduling, the execution order of tasks (i.e.,

hen tasks are executed) depends directly on their priorities.

herefore, in this section, we first study a Preference Priority Assign-

ent (PPA) scheme, which considers tasks’ execution preferences

hen assigning priorities to tasks. 

In general, when a task arrives and becomes ready for execu-

ion, the higher priority it has, the earlier it can be executed, and

ice versa. Thus, intuitively, we should assign higher and lower pri-

rities to ASAP and ALAP tasks, respectively, to satisfy their execu-

ion preferences. However, such a priority assignment has to con-

ider the schedulability of tasks to avoid deadline misses. That is,
iority scheduling for periodic real-time tasks, Journal of Systems 
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Algorithm 2 : findEligibleTask( �un , � target ) function. 

1: �el igibl e = ∅ ; //eligible tasks for next lowest priority 

2: for ( ∀ T x ∈ (�un ∩ �target ) ) do 

3: hp(T x ) = �un − { T x } ;//assume higher priority task set 

4: Find R x from Equation 2; 

5: Add T x to �el igibl e if there is R x ≤ p x ; 

6: end for 

7: if ( �el igibl e � = ∅ ) then 

8: ∀ T x ∈ �el igibl e , find T k with the largest (p k − R k ) ; 

9: return T k ; //return an eligible unassigned task 

10: else 

11: return NULL; //no eligible unassigned task in �target 

12: end if 
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for tasks with mixed ASAP and ALAP execution preferences, an ef-

fective priority assignment needs to simultaneously consider both

the schedulability of tasks and their execution preferences. 

As mentioned earlier, an Optimal Priority Assignment (OPA) al-

gorithm has been proposed in [3] based on the response times of

tasks [1,13] . Note that, the response time of a task T i depends only

on hp ( T i ), the set of tasks that have higher priorities, rather than

their relative priority order (see Eq. (2) in the last section). Based

on this property of task’s response time, the basic idea of OPA is as

follows: by assuming that other unassigned tasks are given higher

priorities, OPA iteratively finds a task that can be feasibly assigned

the next lowest priority level (where its response time is no more

than its period). Once OPA successfully assigns a priority for each

task, a feasible priority assignment is found. Otherwise, if there is

no task that can be feasibly assigned the next lowest priority level

in one iteration, the task set is deemed to be unschedulable under

the fixed-priority scheduling [3] . 

4.1. The PPA algorithm 

Without considering the execution preferences of tasks, OPA

could assign an ASAP task the lowest priority during an iteration

when it is possible to assign this lowest priority to an ALAP task.

By extending the idea of OPA and incorporating the execution pref-

erences of tasks, we propose a Preference Priority Assignment (PPA)

algorithm, where its major steps are shown in Algorithm 1 . 

The key idea behind PPA is to favor ALAP tasks for lower pri-

orities (which in turn can leave higher priorities for ASAP tasks).

The PPA algorithm starts with the lowest priority and all tasks in

a un-assigned task set �un (line 3). To find an eligible task to as-

sign the next lowest priority level, PPA first checks the ALAP tasks

that have not been assigned a priority yet with the helper function

findEligibleTask() . If such a task T x exists, it is assigned the lowest

priority and is removed from �un (lines 6 to 8). Then, the algo-

rithm continues for the next lowest priority if �un still contains

un-assigned tasks (line 9). 

In case there is no ALAP task that is eligible to take the low-

est priority, PPA checks ASAP tasks with the same helper func-

tion findEligibleTask() (line 11). Similarly, if an eligible ASAP task

is found, it takes the lowest priority and is removed from �un and

PPA continues for the next lowest priority (lines 12 to 14). How-

ever, if there is no eligible ASAP task to take the lowest priority

either, PPA fails to find a feasible priority assignment for the tasks
Algorithm 1 : The PPA algorithm. 

1: Input: � , �S , �L and (c i , p i , θi ) ∀ T i ∈ �; 

2: Output: FAIL or { ηi |∀ T i ∈ �} ; 
3: ηnext = 1 ; �un = �; //initialization 

4: while ( �un � = ∅ ) do 

5: T x = findEligibleTask ( �un , �L );//check ALAP tasks 

6: if ( T x � = NULL ) then 

7: ηx = ηnext ; //task T x has the lowest priority 

8: �un = �un − { T x } ; ηnext + + ; 

9: continue; //continue with the next lowest priority 

10: end if 

11: T x = findEligibleTask ( �un , �S );//check ASAP tasks 

12: if ( T x � = NULL ) then 

13: ηx = ηnext ; //task T x has the lowest priority 

14: �un = �un − { T x } ; ηnext + + ; 

15: else 

16: return FAIL; //no task can have the lowest priority 

17: end if 

18: end while 

19: return { ηi } ; //a feasible priority assignment is found 
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line 16). Once �un becomes empty and all tasks have been as-

igned their priorities, PPA returns the feasible priority assignment

 ηi | ∀ T i ∈ �}. 

The helper function findEligibleTask() is further detailed in

lgorithm 2 , which takes the un-assigned task set �un and a tar-

et task group � target (which can be either �S or �L ) as parame-

ers. For each un-assigned task T x in the target task group (line 2),

ts response time can be found using Eq. (2) by assuming that all

ther un-assigned tasks have higher priorities (lines 3 and 4). The

ask T x is eligible (to take the lowest priority) if its response time

s no more than its period (i.e., R x ≤ p x ), which is also its relative

eadline. 

Note that, any eligible task could be returned to take the lowest

riority. Here, PPA adopts the heuristic that returns the task with

he largest value of ( p k − R k ) when there are more than one eligi-

le un-assigned tasks in the target task group (lines 8 and 9). This

llows other tasks to have higher priorities with reduced response

imes, which can potentially balance the value of ( p k − R k ) for the

asks. In case the target task group does not have any eligible un-

ssigned task, the function returns NULL (line 11). 

We would like to point out that, as a variation of OPA [3] , PPA

s also an optimal priority assignment algorithm. That is, PPA can

nd a feasible priority assignment for the tasks in fixed-priority

cheduling if and only if such a priority assignment exists. From

lgorithm 1 , we can see that the response times of un-assigned

asks monotonically decrease after each iteration since there will be

ewer tasks in their high-priority task sets. Hence, when there are

ore than one eligible tasks in an iteration, the selection of any of

hem for the next lowest priority does not affect the eligibility of

ther tasks in the next iteration. Therefore, the separate consider-

tion of ALAP and ASAP tasks in PPA does not affect its optimality

or finding a feasible priority assignment. 

.2. An example: PPA vs. RMS 

We illustrate the advantages of PPA on improving the fulfill-

ent of tasks’ execution preferences through a concrete example.

he example task set has four tasks: T 1 (1, 5), T 2 (3, 10), T 3 (1, 5) and

 4 (1, 10), where tasks T 1 and T 2 have ASAP preference and T 3 and

 4 have ALAP preference (i.e., �S = { T 1 , T 2 } and �L = { T 3 , T 4 } ). 
For comparison, we first consider the well-known RMS sched-

ler [15] , which is preference-oblivious and assigns priorities to

asks solely based on their periods. More specifically, tasks with

arger periods are assigned lower priorities, and vice versa. When

here are more than one tasks that have the same period, tie

an be broken arbitrarily without affecting the schedulability of

asks [15] . Here, we assume that RMS assigns a higher priority

o the task with smaller index. Hence, for the example task set,

asks’ RMS priorities can be found as η > η > η > η . Fig. 1 a
1 3 2 4 
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Fig. 1. An example with four tasks. 
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urther shows the RMS schedule of the tasks within the LCM (Least

ommon Multiple) of task periods. 

PPA, according to Algorithm 1 , first checks the two ALAP

asks T 3 and T 4 as candidates for the lowest priority level. From

lgorithm 2 , the response times for T 3 and T 4 can be found as

 3 = 7 and R 4 = 8 , respectively. Task T 3 is not eligible since R 3 >

 3 . Therefore, only task T 4 is eligible and it is assigned the lowest

riority. After that, as an ALAP task, T 3 is checked first again for the

ext lowest priority. In this iteration, we can get R 3 = 5 = p 5 and

ask T 3 becomes eligible. Hence, T 3 is assigned the second lowest

riority. 

Continuing with Algorithm 1 , we can find the feasible PPA pri-

rities of tasks as η1 > η2 > η3 > η4 . Even though T 3 has a smaller

eriod than T 2 , as an ALAP task it is assigned a lower priority

han the ASAP task T 2 , which is different from that of the tradi-

ional RMS approach. The PPA schedule of the tasks is shown in

ig. 1 b. 

Compared to the RMS schedule in Fig. 1 a, we can see that the

xecution of the ALAP task instance T 3, 1 is delayed to its latest

ime while ASAP task instance T 2, 1 is executed at an earlier time.

hat is, by incorporating tasks’ execution preferences into priority

ssignment, PPA can fulfill the execution preferences of tasks T 2 
nd T 3 in a better way when compared to the preference-oblivious

MS scheduler. 

. Preference-oriented FP scheduler 

To effectively address the execution preferences of ASAP and

LAP tasks, we have identified two basic principles for designing

reference-oriented scheduling algorithms [10] : a) at any time t , if

here are ready ASAP tasks, the scheduler should not let the pro-

essor idle; and b) at any time t , if all ready tasks are ALAP tasks,

he scheduler should let the processor stay idle if it is possible to

o so without causing any deadline miss for current and future

ask instances. 

Here, the second design principle conflicts directly with the

ork-conserving strategy adopted in the classical fixed-priority

cheduling, where the processor becomes idle only if there is no

eady task for execution. For instance, from Fig. 1 , we can see that

oth RMS and PPA schedules have two units of idle time at the

nd after all tasks finish their executions. Here, for the ALAP task

nstances T 3, 2 and T 4, 1 , their executions could be further delayed

y exploring such idle time without missing their deadlines. 

In this work, focusing on the second design principle, we pro-

ose a non-work-conserving Preference-Oriented Fixed-Priority (POFP) 

cheduling algorithm. Before presenting the algorithm, in what fol-

ows, we first investigate how to find the safe amount of delay

or ALAP tasks without violating their timing constraints under the

xed-priority scheduling. 
Please cite this article as: R. Begam et al., Preference-oriented fixed-pr
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.1. Promotion times for delayed executions 

Based on the phase delay technique [2] , the concept of promo-

ion time was introduced for periodic tasks in the Dual-Priority (DP)

cheduling algorithm [7] . In that work, the promotion time of a

eriodic task defines the longest time the task can safely wait, af-

er its arrival, before entering the ready queue without missing its

eadline. This provides a crucial guideline for the DP scheduler to

ostpone the executions of hard real-time periodic tasks with the

bjective of improving the response time of soft real-time aperi-

dic tasks when they are executed on the same processor [7] . 

Hence, it is critical to properly derive the safe promotion time

or periodic tasks. From Lemma 1 (see Section 3 ), we know that,

or a given feasible priority assignment in fixed-priority schedul-

ng, the response time for any task in � will be no more than its

eriod (i.e., R i ≤ p i , ∀ T i ∈ �) [1,13] . The promotion time of task T i 
s formally defined as [7] : 

i = p i − R i (3) 

hat is, upon arrival, any instance of task T i can be safely delayed

or γ i time units before entering the ready queue without missing

ts deadline [2,7] . 

In this work, we also exploit promotion times to systematically

elay the executions of ALAP tasks without causing any deadline

iss. Specifically, once a feasible priority assignment for all tasks

s given, the promotion times for ( only ) ALAP tasks are calculated

ccording to Eq. (3) . 

.2. The POFP scheduling algorithm 

The POFP scheduler utilizes two runtime queues to handle

he different execution preferences of tasks: the ready and delay

ueues, which are denoted as Q R and Q D , respectively. As in other

chedulers, the ready queue Q R holds the tasks that can be imme-

iately executed, in the order of their priorities. ASAP tasks enter

he ready queue Q R in order to be executed quickly. The second

ueue Q D is used to temporarily hold ALAP tasks upon their ar-

ival. Each ALAP task stays in Q D until its promotion time, at that

ime the task is promoted to the ready queue Q R and becomes eli-

ible for execution. 

Basically, POFP leverages the delay queue Q D to postpone the

xecutions of ALAP tasks until their promotion times, which also

rovides opportunities for low priority ASAP tasks to get executed

t earlier times. Unlike the work-conserving Dual-Priority sched-

ler [7] , POFP leaves the processor idle as long as the ready queue

 R is empty, regardless of the contents of the delay queue Q D .

ince the tasks are independent, an ALAP task is technically ready

or execution whenever it arrives. Hence, POFP is a non-work-

onserving scheduler. 

The basic steps of the POFP scheduler are given in Algorithm 3 ,

hich is invoked at a few occasions involving task T k : a) the arrival

ime of task T k ; b) the completion of task T k ; and, c) when an ALAP

ask T k is promoted from the delay queue Q D to the ready queue

 R . When an ALAP task T k arrives, it is put into the delay queue

y the function Enqueue( T k , Q D ) , where a timer with its promotion

ime is set (lines 2 and 3). Observe that, if the promotion time of

 k is γk = 0 , it will be promoted immediately after its arrival. 

When a task T k completes its execution, POFP will execute the

ext highest-priority task in the ready queue Q R (line 6). However,

f there is no ready task in Q R , POFP lets the processor idle (line

), which effectively delays the execution of ALAP tasks in the de-

ay queue until their promotion times. When an ALAP task is pro-

oted or an ASAP task arrives, it preempts the currently running

ask T c if it has a higher priority than that of T c (lines 12 and 13);

therwise, the task is inserted to the ready queue (line 15). 
iority scheduling for periodic real-time tasks, Journal of Systems 
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Algorithm 3 : The POFP scheduling algorithm. 

1: Input: { c i , p i , ηi } for ∀ T i ∈ �and γi for ∀ T i ∈ �L ; Invocation af- 

ter anevent at time t involving task instance T k ; The current 

runningtask instance is denoted by T c ; 

2: if ( T k ∈ �L arrives at time t) then 

3: Enqueue( T k , Q D ) ; SetTimer( γk ); 

4: else if ( T k completes at time t) then 

5: if (Ready queue Q R 

is not empty) then 

6: T k = Dequeue( Q R 

) ; Execute( T k ) ; 

7: else 

8: Let the processor idle ; //regardless of tasks in Q D 
9: end if 

10: else 

11: // T k ∈ �L is promoted OR T k ∈ �S arrives at time t

12: if ( ηk > ηc ) then 

13: Enqueue( T c , Q R 

) ; Execute( T k ) ;// T k preempts T c 
14: else 

15: Enqueue( T k , Q R 

) ; //Insert T k to ready queue Q R 

16: end if 

17: end if 
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5.3. Analysis of the POFP scheduler 

From the algorithm, we can see that, when an ALAP task is

promoted from the delay queue to ready queue, the processing

of such a promotion event is similar to that of a normal task ar-

rival event. Compared to the classical fixed-priority scheduler (i.e.,

RMS), only the promotion events for ALAP tasks are additional

scheduling events for POFP. Therefore, the run-time complexity of

POFP will be at the same level as that of the preemptive fixed-

priority scheduler. 

Moreover, when there is no ALAP task in a task set, POFP re-

duces to the classical preemptive fixed-priority scheduler. Based on

the results related to phase delay [2] and promotion time [7] , the

delayed executions of ALAP tasks in POFP will not cause deadline

misses for such tasks. Therefore, for a set of periodic tasks that

have either ASAP or ALAP execution preferences, as long as the

task set is schedulable and has a feasible priority assignment (e.g.,

either RMS or PPA), the tasks can be successfully scheduled under

POFP. 

As a generic preemptive fixed-priority scheduler, POFP can be

applied to any feasible priority assignment of schedulable task sets.

In what follows, as the exemplary optimal priority assignments,

we focus on RMS and PPA, which are preference-oblivious and

preference-aware, respectively. 

5.4. An example: PORMS vs. POPPA 

We illustrate how the POFP scheduler works by considering the

task set introduced in Section 4.2 . Here, both RMS and PPA pri-

orities are used for the purpose of comparison, where the corre-

sponding scheduler instances are denoted as PORMS and POPPA,

respectively. 

First, for PORMS, recall that tasks’ priorities are set as η1 > η3 

> η2 > η4 . Based on Eqs. (2) and (3) , the promotion times for the

ALAP tasks T 3 and T 4 can be found as: γ3 = 3 and γ4 = 2 , respec-

tively. From Fig. 2 a, we can see that, when the ALAP task instances

T 3, 1 and T 4, 1 arrive, they are put into the delay queue to prevent

their immediate execution. In comparison, the ASAP task instances

T 1, 1 and T 2, 1 enter the ready queue right after their arrivals. 

Once the highest priority T 1, 1 completes its execution at time 1,

the ready queue has only one task instance T 2, 1 , which is picked

for execution next. Although T 3, 1 has higher priority, it is forced

to stay in the delay queue until its promotion time (i.e., time 3)
Please cite this article as: R. Begam et al., Preference-oriented fixed-pr
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ince it is an ALAP task instance. At time 2, T 4, 1 is promoted to

he ready queue, but it has lower priority than that of the current

unning task instance T 2, 1 . When T 3, 1 is promoted at time 3, it has

igher priority and will preempt the execution of T 2, 1 . 

At time 5, both T 1, 2 and T 3, 2 arrive. Again, the ASAP task in-

tance T 1, 2 enters the ready queue for immediate execution while

he ALAP task instance T 3, 2 is put in the delay queue and has to

ait there until time 8 (i.e., γ3 = 3 units after its arrival). Here,

hen the task instance T 4, 1 finishes its execution at time 7, the

eady queue is empty and the processor becomes idle. Although

he ALAP task instance T 3, 2 in the delay queue is ready for execu-

ion, it is effectively forced to wait until time 8. 

The final PORMS schedule is shown at the bottom of Fig. 2 a.

ompared to the RMS schedule as shown in Fig. 1 a, the executions

f both ALAP task T 3 ’s instances are delayed in the PORMS sched-

le. Moreover, part of the ASAP task instance T 2, 1 is executed at an

arlier time. Therefore, by exploiting the promotion times for ALAP

asks to delay their executions, the PORMS scheduler can fulfill the

xecution preferences of tasks in a better way when compared to

he preference-oblivious RMS scheduler. 

For POPPA, where the priorities are η1 > η2 > η3 > η4 , the

romotion times for the ALAP tasks T 3 and T 4 can be found as

3 = 0 and γ4 = 2 , respectively. Here, we can see that, although

he ALAP task T 3 takes a lower priority in POPPA, the increased re-

ponse time for this task makes its promotion time to be 0. This

eans that, the instances of the ALAP task T 3 have to enter the

eady queue right after their arrivals, and cannot take advantage

f the delay queue in the POPPA scheduler to postpone their exe-

utions. 

The states of the runtime queues, transitions of tasks and the

nal POPPA schedule are shown in Fig. 2 b. It is interesting to see

hat, for this particular task set, its POPPA schedule is the same as

ts PPA schedule as shown in Fig. 1 b. Since its promotion time is

, the ALAP task T 3 is scheduled the same way in both POPPA and

PA. We observe that the promotion time of the ALAP task T 4 is

4 = 2 ; but this time interval is not long enough to keep it in the

elay queue and affect its execution. Since it has the lowest prior-

ty, T 4, 1 waits in the ready queue until time 7 before execution in

oth schedules. 

From this example, we can see that, although the lower pri-

rities of ALAP tasks help delay their executions under PPA, the

ecreased promotion times (due to increased response times) for

uch tasks reduce their opportunities to take advantage of the

elay queue in POPPA. Moreover, by comparing the PORMS and

OPPA schedules, it is hard to say which one performs better in

erms of fulfilling the tasks’ execution preferences. For instance, al-

hough the first instance of task T 3 executes one time unit late in

OPPA, its second instance was much delayed to time 8 in PORMS.

e have quantitatively evaluated the performance of these sched-

lers on fulfilling the execution preferences of tasks through ex-

ensive simulations and the results will be discussed in Section 7 . 

. Runtime techniques for preference-oriented execution 

It is well-known that real-time tasks typically take a small frac-

ion of their worst-case execution times (WCETs) [9] and signifi-

ant amount of slack time can be expected at runtime. Such slack

ime could be exploited to further delay (expedite) the executions

f ALAP (ASAP) tasks, respectively. However, from Algorithm 3 , we

an see that the execution of ALAP tasks can only be delayed in

he delay queue until their promotion times. Once such tasks are

romoted to the ready queue, the POFP scheduler treats them in

he same way as ASAP tasks and no further delay will be imposed

n their executions. Before presenting the runtime techniques to

urther improve the preference-oriented executions of tasks based
iority scheduling for periodic real-time tasks, Journal of Systems 
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Fig. 2. The PORMS and POPPA schedules for the example task set in Section 4.2 . 
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Fig. 3. Impact of runtime slack management in PORMS for the example in 

Section 6.1 . 
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n slack management, in what follows, we first illustrate the idea

hrough an example. 

.1. An example for runtime techniques 

To illustrate different aspects with runtime slack, we consider

nother example task set with four tasks: T 1 (1.5, 4), T 2 (1, 8),

 3 (1.5, 4) and T 4 (1, 12). Here, tasks T 1 and T 2 have ASAP prefer-

nce while T 3 and T 4 have ALAP preference (i.e., �S = { T 1 , T 2 } and

L = { T 3 , T 4 } ). The PORMS scheduler is considered with RMS prior-

ties of tasks as η1 > η3 > η2 > η4 . From Eq. (3) , the promotion

imes of ALAP tasks T 3 and T 4 can be found as γ3 = 1 and γ4 = 4 ,

espectively. To have runtime slack times, it is assumed that the

ctual execution times of tasks are: a 1 = 0 . 5 , a 2 = 1 , a 3 = 1 and

 4 = 0 . 5 . 

When the actual execution times are less than the WCETs, tasks

enerate dynamic slack time at runtime. In this example, each in-

tance of task T 1 produces 1 unit of slack time while each instance

f tasks T 3 and T 4 yields 0.5 unit of slack time. If no special con-

ideration is taken for these slack times, following the steps in

lgorithm 3 , the states of runtime queues and the PORMS sched-

le for the first few instances of the tasks can be found as those

hown in Fig. 3 a. 

When T 3, 1 is promoted at time 1, it preempts the execution of

 2, 1 since it has higher priority (i.e., η3 > η2 ). Similarly, when T 4, 1 

s promoted at time 4, it is executed right after the early comple-

ion of T 1, 2 since it is the only ready task in the ready queue. 

Next, we show that how the executions of tasks can be affected

hen the slack times are explicitly managed at runtime. When the

ask instance T 1, 1 completes its execution early at time 0.5, its gen-

rates one unit of slack time S 1 , which is kept in a separate slack

ueue as shown in Fig. 3 b. Here, the slack inherits the priority

f its generating task and will compete the processor with other

eady tasks. 

That is, at time 0.5, S 1 will be picked for execution since it has

igher priority than the ready task instance T 2, 1 . However, since

 1 is not a real task, it actually wraps the execution of the available

SAP task instance T 2, 1 in the ready queue with the priority of

 1 during its allocated time. From a different perspective, this can

e viewed as S 1 lending its allocated time to T 2, 1 . However, since

uch wrapped execution is performed with S 1 ’s priority (i.e., T 1 ’s

riority), when the ALAP task instance T 3, 1 is promoted at time 1,

t cannot preempt the wrapped execution of T 2, 1 as the priority of

 3, 1 is lower than that of S 1 . 
Please cite this article as: R. Begam et al., Preference-oriented fixed-pr
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When T 2, 1 finishes with the wrapped execution at time 1.5, it

as to return the borrowed time as a new slack S 2 , which has the

ize of one unit and inherits T 2, 1 ’s priority. After that, T 3, 1 is ex-

cuted as it has higher priority than S 2 . When T 3, 1 completes its

xecution early at time 2.5, another new piece of slack S 3 is gen-

rated that has the size of 0.5 unit with T 3, 1 ’s priority. The state

f the slack queue at time 2.5 is also shown in the figure where

lacks are ordered in their priorities. 

Since the ready queue is empty, S 3 and S 2 occupy the processor

n the order of their priorities and let it idle during their allocated

imes. At the meantime, the ALAP task instance T 4, 1 is held in the

elay queue until time 4. At that time, T 4, 1 is promoted to the

eady queue and a higher priority ASAP task instance T 1, 2 arrives.

n addition, the ALAP task instance T 3, 2 also arrives and enters the

elay queue, 

When T 1, 2 completes early at time 4.5, it generates another

iece of slack S 1 , which inherits T 1, 2 ’s priority. When S 1 takes the
iority scheduling for periodic real-time tasks, Journal of Systems 

http://dx.doi.org/10.1016/j.sysarc.2016.07.005


8 R. Begam et al. / Journal of Systems Architecture 0 0 0 (2016) 1–14 

ARTICLE IN PRESS 

JID: SYSARC [m5G; August 3, 2016;21:31 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  

u

6

 

s  

(  

l  

t  

s  

s  

i

 

w  

t  

m  

d  

o  

i  

a  

p  

d  

a

 

t  

a  

p  

p  

m  

s

 

s  

t  

t  

l  

n  

t  

s

 

a  

t  

a  

i  

s  

d  

e  

q

7

 

s  

e  

t  

e  

fi  

P

 

p  

o  

w

 

 

processor at time 4.5, it lets the processor idle even though the

ready queue has an ALAP task instance T 4, 1 . The reason is that,

as an ALAP task instance, T 4, 1 should be executed at a later time

when possible. Moreover, idling the processor in view of S 1 will

not cause T 4, 1 to miss its deadline as this would be the time it

would have to wait if T 1, 2 had taken its WCET. 

Similarly, when the ALAP task instance T 3, 2 is promoted at time

5, S 1 continues idling the processor as its has higher priority. Once

S 1 uses up its time, T 3, 2 starts its execution at time 5.5. Again,

T 3, 2 ’s early completion generates another piece of slack S 3 , which

further delays the execution of T 4, 1 until time 7 (actually, it is the

time T 4, 1 would start its execution should all other task instances

take their WCETs). 

6.2. Slack management with wrapper-tasks 

From the above example, we can see that, through judicious

slack management, ASAP tasks can borrow high priority slack time

and be executed at their earliest possible times. Moreover, the ex-

ecutions of ALAP tasks can be dramatically delayed by such high

priority slack even after they are promoted to the ready queue.

To generalize the above idea and enable runtime slack to compete

for the processor, we extend the wrapper-task based slack manage-

ment, which has been studied for dynamic priority based task sys-

tems [18] , to the fixed-priority setting. 

Basically, each piece of slack time will be represented by a

wrapper-task with two parameters ( c i , ηi ). Here, c i denotes the size

of the slack and ηi represents the slack’s priority, which is inher-

ited from the task whose early completion gives rise to this slack.

At runtime, wrapper-tasks are kept in a separate slack queue Q S 

and compete for the processor with tasks in the ready queue. At

the dispatch time of the POFP scheduler, there are four possibilities

regarding the states of the ready queue Q R and the slack queue Q S .

If both queues are empty, the POFP scheduler will let the pro-

cessor idle while waiting for the new arrival of ASAP tasks and/or

the promotion of ALAP tasks from the delay queue. Otherwise, sup-

pose that T k and S h are the highest priority task and wrapper-task

in Q R and Q S , respectively. 

For the cases where ηk > ηh (the ready task T k has higher prior-

ity) OR the slack queue is empty (i.e., S h = NULL ), the POFP sched-

uler can dispatch task T k normally from the ready queue Q R . How-

ever, for the cases of ηh > ηk (i.e., the slack S h has higher prior-

ity), if the ready queue is empty (i.e., T k = NULL ) OR all tasks in

the ready queue Q R are ALAP tasks, the slack (represented by the

wrapper task S h ) will get the processor and keep it idle for the in-

terval of its allocated time. This effectively delays the executions

of the ALAP tasks (if any) that have been promoted to the ready

queue Q R . 

The most interesting case occurs when the slack has higher pri-

ority (i.e., ηh > ηk ) and the ready queue Q R contains at least one

ASAP task. Suppose that the highest priority ASAP task in Q R is T s 
(and it is possible that ηs < ηk ). In this case, the slack (i.e., the

wrapper task S h ) obtains the processor and will lend its time to T s 
by wrapping its execution. That is, during the wrapped execution

of T s , T s inherits the higher priority of S h , which can prevent pre-

emptions from future promoted ALAP tasks as shown in the above

example. 

Note that, once such wrapped execution ends due to the com-

pletion of T s or S h using up its slack time, a new piece slack with

the size of the wrapped execution and T s ’s priority will be gen-

erated and inserted back to the slack queue Q S . The operations

of slack (i.e., wrapper tasks) are similar to those for the dynamic

priority based scheme and interested readers can find more de-

tailed discussions in [18] . However, we would like to point out

that, the wrapper-task based slack management is a generic tech-
Please cite this article as: R. Begam et al., Preference-oriented fixed-pr
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ique, which can be applied to any classical fixed-priority sched-

ler (e.g., RMS) as well. 

.3. Dummy task to exploit spare capacity 

For a given set of tasks that are schedulable under fixed-priority

cheduling, it is more likely that the system is not fully utilized

i.e., U < 1). However, the wrapper-task technique discussed in the

ast section is designed to handle dynamic slack generated from

he early completion of tasks, which cannot directly utilize such

pare capacity. In [18] , we utilized a dummy task T 0 to represent

ystem spare capacity, which can periodically introduce slack time

nto the system at runtime. 

Following the same idea, we can also augment a given task set

ith a dummy task T 0 ( c 0 , p 0 , η0 ). From [18] , we know that the

iming parameters of T 0 have a direct impact on system perfor-

ance by controlling how slack from the spare capacity is intro-

uced to the system. For instance, T 0 ’s period p 0 determines how

ften the slack is introduced at runtime. In fixed-priority schedul-

ng, T 0 ’s priority η0 also plays a very important role. From the

bove discussions, we know that slack time needs to have a higher

riority to wrap an ASAP task for its early execution as well as to

elay the execution of ALAP tasks. Therefore, it is desirable to have

 higher priority for the dummy task T 0 . 

However, on the other hand, the choice of T 0 ’s timing parame-

ers and priority should not compromise the schedulability of the

ugmented task set. Considering the much more complex inter-

lay between tasks’ schedulability and their priorities and timing

arameters, selecting the appropriate ( c 0 , p 0 , η0 ) for T 0 becomes

ore challenging than the case for the dynamic-priority based

cheduling [18] . 

A simple utilization based dummy task: In this work, we con-

ider a simple but conservative utilization-based approach to de-

ermine T 0 ’s timing parameters and priority. From [15] , we know

hat, a given task set � is schedulable under RMS if the system uti-

ization of the task set satisfies: U ≤ U 

bound (n ) = n (2 1 /n − 1) . Here,

 is the number of tasks in a task set and U 

bound ( n ) is the utiliza-

ion bound to ensure the task set’s schedulability under the RMS

cheduler. 

In this work, we set u 0 = U 

bound (n ) − U, p 0 = min { p i | T i ∈ �}
nd c 0 = u 0 · p 0 . According to the results in [14] , since the dummy

ask has the same period as the task with the smallest period, the

ddition of the dummy task will not compromise the schedulabil-

ty of the augmented task set under RMS. Moreover, by having the

mallest period, T 0 will have the highest priority η0 in RMS. In ad-

ition, we assume that the dummy task T 0 will have the ASAP ex-

cution preference, which enables it act as slack time in the ready

ueue at the earliest possible time. 

. Evaluations and discussions 

The performance of the proposed PPA algorithm, the POFP

cheduler and the runtime techniques, in terms of on how well the

xecution preferences of tasks are fulfilled, have been evaluated

hrough extensive simulations. To this end, we developed a discrete

vent simulator using C++ and implemented the work-conserving

xed-priority (FP) scheduler as well as the non-work-conserving

OFP scheduler. 

Moreover, we consider both the classical RMS and the pro-

osed PPA priority assignments for the tasks. Combining the pri-

rity assignments with the two different fixed-priority schedulers,

e evaluated four different schemes: 

• RMS : which represents the classical RMS scheduler [15] and is

used as the baseline in our evaluations; 
• PPA , standing for the work-conserving FP scheduler with the

proposed PPA priority assignment; 
iority scheduling for periodic real-time tasks, Journal of Systems 
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• PORMS , which denotes the proposed POFP scheduler with RMS

priority assignment; and 

• POPPA , which stands for the proposed POFP scheduler with our

new PPA priority assignment. 

.1. Evaluation metrics and simulation settings 

Due to the preemptive nature of the fixed-priority schedulers

nder consideration, it is not straightforward to quantify how well

he execution preferences of tasks are fulfilled. Here, we use the

reference value (PV) of tasks, a simple metric proposed in our pre-

ious work [10] , which is defined over the completion and start

imes of ASAP and ALAP tasks. Specifically, the preference value

or a task instance T i, j is defined as [10] : 

 V i, j = 

⎧ ⎨ 

⎩ 

f t max 
i 

− f t i, j 

f t max 
i 

− f t min 
i 

if T i ∈ �S ;
st i, j −st min 

i 

st max 
i 

−st min 
i 

if T i ∈ �L . 
(4) 

here st i, j and ft i, j denote the actual start and complete times,

espectively, of the task instance T i, j during a specific execution

nder a given scheduler. Moreover, f t min 
i 

and f t max 
i 

represent the

deal earliest and latest completion times, respectively, if T i is an

SAP task. Similarly, st min 
i 

and st max 
i 

stand for the ideal earliest and

atest start times, respectively, if T i is an ALAP task. 

Note that, due to preemptions and interference among tasks, it

ould be very difficult (if not impossible) to find the earliest/latest

tart/completion times for each individual task instance. In this

ork, we use the ideal values for those time points by assuming

hat there is only one task T i in the system. Specifically, suppose

hat T i, j arrives at time r i, j . T i, j could start its execution as early

s st min 
i 

= r i, j , while the latest time it has to start its execution

o avoid a deadline miss would be st max 
i 

= (r i, j + p i ) − c i , where c i 
nd p i are the WCET and period of task T i , respectively. Similarly,

ssume that the actual execution time of T i, j is a i, j , we can find

ts ideal earliest and latest finish times are f t min 
i 

= r i, j + a i, j and

f t max 
i 

= r i, j + p i − c i + a i, j , respectively. 

From these definitions, we can see that the value of PV i, j has

he range of [0, 1], where a larger value indicates that T i, j ’s exe-

ution preference has been fulfilled better. For a specific running

f a task set under a given scheduler, a task’s preference value is

efined as the average PV of all its instances. Moreover, the overall

V of a task set is the average preference value of all its tasks. 

Task generation: We consider synthetic tasks that are gener-

ted as follows: for a given number of tasks n and system utiliza-

ion U , the utilization of each task is generated using the UUniFast

cheme proposed in [5] . Then, the period of each task is uniformly

istributed within the range of [10, 100] and its WCET (Worst-Case

xecution Time) is set accordingly. A certain number k of these

 tasks are randomly chosen to have ASAP execution preference

hile the remaining are considered as ALAP tasks. 

We vary the system utilization U (from 0.1 to 0.8), the number

f tasks in a task set n (from 10 to 100), and the number of ASAP

asks k (0.2 · n , 0.5 · n and 0.8 · n ) and evaluate their impacts on

he performance of the proposed schedulers and techniques. In the

gures below, each data point corresponds to the average result of

00 schedulable task sets (where task sets that are not schedulable

nder RMS, especially for high system utilizations, are discarded in

ur simulations). Tasks are assumed to take their WCETs at run-

ime unless otherwise specified. 

.2. Effects of system utilizations 

The effects of system utilization on the achieved PVs for differ-

nt types of tasks under the four scheduling schemes (i.e., RMS,
Please cite this article as: R. Begam et al., Preference-oriented fixed-pr
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PA, PORMS, and POPPA) are first shown in Fig. 4 . Here, we con-

ider task sets with n = 10 tasks. The number of ASAP tasks in

ach task set is indicated with the value of k . Three cases with

 = 2 , k = 5 and k = 8 , respectively, are considered to represent

ifferent workload mixtures of ASAP and ALAP tasks. The results

or these three cases under different scheduling schemes are de-

oted accordingly. 

Focusing on only ASAP tasks in the task sets, Fig. 4 a shows their

chieved average PVs. Recall that the PV for each task has a up-

er bound of 1, which may not be simultaneously achievable for

ll tasks by any scheduler when there are more than one tasks in

 task set. Here, we can see that, for the cases with low system

tilizations (e.g., U ≤ 30%), the resultant PVs for ASAP tasks un-

er different schemes are very close where all values are larger

han 0.97. The reason is that, at low system utilizations, almost all

SAP tasks can be executed right after their arrivals under differ-

nt scheduling schemes, regardless of the number of ASAP tasks in

 task set. 

However, as system utilization increases where the size of each

ask becomes larger, the differences between the four schedul-

ng schemes for different workload mixtures become more pro-

ounced. In particular, when there are more ASAP tasks in a task

et, it becomes more difficult to execute them right after their ar-

ivals under all scheduling schemes, which leads to reduced PVs

or such tasks. Moreover, for all the settings, by having higher pri-

rities for ASAP tasks (where ALAP tasks take lower priorities), PPA

an execute ASAP tasks at earlier times with larger achieved PVs

hen compared to that of RMS, especially at higher system uti-

izations. 

With the help of the dual-queue technique, PORMS performs

lightly better than RMS as it provides more opportunities to ex-

cute ASAP tasks at earlier times by holding (possibly high prior-

ty) ALAP tasks in the delay queue. However, the differences in the

chieved PVs for ASAP tasks between PPA and POPPA are almost

egligible for all the settings. The reason is that, the higher pri-

rities of ASAP tasks under PPA already enable them to execute

t earlier times. Therefore, it becomes extremely difficult for ASAP

asks to explore the delayed executions of ALAP tasks under POPPA

nd to further improve their early executions. 

Next, we focus on the achieved PVs for ALAP tasks, where the

esults are shown in Fig. 4 b. Compared to those for ASAP tasks,

he achieved PVs for ALAP tasks have much larger variations. Note

hat, the execution preference of ALAP tasks conflicts directly with

he design principle of the work-conserving fixed-priority sched-

ler. In particular, the classical RMS scheduler does not have any

pecial consideration for ALAP tasks, which results in very low PVs

or ALAP tasks (i.e., poor fulfillment of ALAP tasks’ execution pref-

rence), especially for the cases with low system utilizations. As

ystem utilization increases, the resultant PVs get slightly higher

nder RMS where the executions of ALAP tasks start relatively

ate due to increased system loads. However, even for the case of

 = 80% , the values are still less than 0.2. 

By assigning lower priorities to ALAP tasks, PPA can perform

lightly better than RMS in all the settings under consideration.

owever, due to the work-conserving nature of its underlying

xed-priority scheduler, ALAP tasks are still executed quite early,

hich leads to small PVs for such tasks. 

With the help of the dual-queue technique, our proposed non-

ork-conserving POFP scheduler delays the executions of ALAP

asks (at least) until their promotion times. Such delays lead to

ramatically increased PVs for ALAP tasks under both PORMS

nd POPPA, when compared to their corresponding counterparts,

MS and PPA, respectively. Therefore, the dual-queue technique

dopted in the POFP scheduler plays a dominant rule in delaying

he executions of ALAP tasks, when compared to that of the PPA

riorities. 
iority scheduling for periodic real-time tasks, Journal of Systems 
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Fig. 4. Achieved PV vs. system utilization U under different schedulers for task sets with n = 10 tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u  

P  

P  

t  

T  

o  

P

 

o  

l  

i  

b  

t  

d  

t  

a

 

P  

d  

q

For different workload mixtures (i.e., different values of k ),

PORMS performs roughly the same for a given system utilization.

This comes from the fact that, with the randomly chosen execu-

tion preferences for tasks, the priorities of ALAP tasks scatter quite

evenly within the priority spectrum regardless of the number of

ALAP tasks in a task set. Therefore, the average promotion times of

ALAP tasks will be similar, which results in roughly the same PVs

for ALAP tasks. 

However, it is interesting to see that higher PVs can be achieved

for ALAP tasks under PORMS than POPPA, especially for cases with

higher system utilizations. The reason is that, the lower priorities

of ALAP tasks in POPPA lead to reduced promotion times for such

tasks (due to their increased response times). Hence, ALAP tasks

can be held in the delay queue for less time before they are forced

to move to the ready queue, which potentially leads to earlier start

times and thus reduced PVs for them. Moreover, when there are

fewer number of ALAP tasks (i.e., larger values of k ), it is more

likely that PPA will assign the lowest few priorities to them and

such effects become more prominent. 

Fig. 4 c further shows the overall achieved PVs for all tasks (in-

cluding both ASAP and ALAP tasks) in a task set. Note that, the
Please cite this article as: R. Begam et al., Preference-oriented fixed-pr

Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.07.005 
nderlying work-conserving fixed-priority scheduler for RMS and

PA performs well only for ASAP tasks. Thus, the overall achieved

Vs under RMS and PPA depend heavily on the number of ASAP

asks, where larger overall PVs are achieved with more ASAP tasks.

he benefit of having PPA priorities on improving the fulfillment

f tasks’ execution preferences is very marginal where the overall

Vs are only slightly larger compared to those of RMS. 

Both PORMS and POPPA have quite stable performance on the

verall PVs of tasks, which vary only slightly for different work-

oad mixtures for a given system utilization. As system utilization

ncreases, both PORMS and POPPA performs slightly worse since it

ecomes more difficult to satisfy the execution preferences of all

asks. Again, PORMS performs slightly better than POPPA due to

ecreased promotion times for ALAP tasks in POPPA, which turns

o be a dominant factor for fulfilling the execution preferences of

ll tasks in the underlying POFP scheduler. 

Fig. 4 also shows the 95% confidence intervals of the achieved

Vs, which have a rather small range for all the settings. This in-

icates that the reported average results for the PVs of tasks are

uite reliable statistically. 
iority scheduling for periodic real-time tasks, Journal of Systems 
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Fig. 5. Effects of task number n on the normalized PVs (compared to RMS; U = 50% ). 
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.3. Effects of number of tasks 

When the system utilization is U = 50% , we evaluate the ef-

ects of n (i.e., the number of tasks in a task set) on the resul-

ant PVs of tasks. The number of tasks n varies from 10 to 100.

s before, three cases are considered to represent different work-

oad mixtures, where the number of ASAP tasks k in a task set

re k = 0 . 2 · n, k = 0 . 5 · n and k = 0 . 8 · n, respectively. For different

cheduling schemes, these three cases are denoted as 20%, 50% and

0% accordingly. The PVs obtained under RMS are considered as

he baseline, and the PVs of the schemes are indicated as normal-

zed with respect to those baseline values ( Fig. 5 ). 

First we consider ASAP tasks only and show their normalized

Vs with varying number of tasks in Fig. 5 a. Here, we can see that,

he normalized PVs for ASAP tasks are quite stable (close to 1 with

ery small variations) for different number of tasks under different

cheduling schemes. For the case of n = 10 , the results are in line

ith the previously reported PVs for ASAP tasks with U = 50% . In

eneral, when there are more ASAP tasks, it becomes more difficult

o complete all ASAP tasks early under all schemes, which leads to

lightly smaller normalized PVs for ASAP tasks. 

Fig. 5 b shows the normalized PVs for ALAP tasks. Recall that

MS performs very poorly for ALAP tasks and PVs for such tasks

re very small (less than 0.2). Hence, we can see that the nor-

alized PVs of ALAP tasks have quite large variations for different

chemes, especially for the case of n = 10 . However, as the num-

er of tasks increases, the performance variation of the scheduling

cheme becomes more stable with smaller sizes of tasks. Here, the

chieved PVs for ALAP tasks under PPA are almost twice as that

nder RMS with the normalized PVs being close to 2 (when n ≥
0). For PORMS, the normalized PVs for ALAP tasks can be as high

s 17, which indicates significant improvement for ALAP tasks to

ulfill their execution preference. The same as before, POPPA per-

orms slightly worse than PORMS with smaller normalized PVs,

hich can be as high as 14 when there are more ALAP tasks in

he task sets (i.e., k = 20% ). 

The normalized overall PVs for all the tasks, as a function of the

umber of tasks are further shown in Fig. 5 c. Again, as task num-

er varies, the different scheduling schemes perform quite stable

ith very little variations in the normalized overall PVs. Moreover,

ith its preference-aware priority assignment, PPA can perform

lightly better than RMS, where its normalized PVs are marginally

arger than 1. When there are more ALAP tasks in the task sets,

he normalized PVs under PORMS and POPPA are close to 3.5 since

he underlying POFP scheduler can effectively delay the execu-

ions of ALAP tasks. However, when there are more ASAP tasks,

he normalized PVs for PORMS and POPPA reduce quickly since all

chemes achieve similar PVs for ASAP tasks. 
Please cite this article as: R. Begam et al., Preference-oriented fixed-pr
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.4. Effects of runtime techniques 

From the above discussions, we can see that PPA can only mod-

rately improve the fulfillment of tasks’ execution preferences over

MS. Therefore, in the evaluations of runtime techniques, we con-

ider only the non-work-conserving schedulers PORMS and POPPA.

n addition, for the number of tasks, we consider the case of n = 10

ith each task set having k = 5 ASAP tasks (i.e., the balanced work-

oad mixtures). 

Effects of dummy task: With varying system utilization, the ef-

ects of dummy task on the normalized PVs of tasks are shown

n Fig. 6 . Since we focus on exploiting static spare capacity us-

ng dummy task, we assume that all tasks take their WCETs at

untime and all slack times are introduced by the dummy task.

oreover, for simplicity, the utilization of the dummy task is set

s u 0 = ln 2 − U, where ln 2 is the asymptotic utilization bound for

ask sets to be schedulable under fixed-priority scheduling [15] . 

First, the normalized PVs for ASAP tasks can be seen in Fig. 6 a.

ere, the normalized PVs are close to 1 with quite small varia-

ions. The reason is that, both PORMS and POPPA can perform very

ell for ASAP tasks especially for low system utilizations, which

s consistent with our previous results. As system utilization in-

reases and tasks become larger, PORMS and POPPA can perform

lightly better than RMS, which leads to marginally increased PVs

or ASAP tasks. However, for both PORMS and POPPA, the addi-

ional improvement of utilizing the dummy task is almost negligi-

le. 

From Fig. 6 b shows the normalized PVs for ALAP tasks, which

gain have quite large variations. By delaying ALAP tasks with the

ual-queue technique, both PORMS and POPPA can perform signif-

cantly better for such tasks than RMS (close to two magnitudes

or the case of U = 10% ). As system utilization increases, the size

f tasks become larger and the promotion times of ALAP tasks can

ecrease quickly, which leads to much smaller normalized PVs for

uch tasks. 

Moreover, it is interesting to see that, although the dummy task

as been introduced with the objective of further delaying the exe-

ution of ALAP tasks, both PORMS and POPPA perform worse when

he dummy task is utilized. The reason is that, the dummy task

as the highest priority in RMS with its the smallest period. More-

ver, with its ASAP execution preference, it is very likely that PPA

lso assigns it the highest priority. Hence, the reduced promotion

imes of ALAP tasks due to the highest priority dummy task in the

ugmented task set can overshadow the benefits of the introduced

lack time. 

The normalized overall PVs for all tasks are shown in Fig. 6 c,

hich further confirms that the dummy task can lead to nega-

ive effects on the achieved PVs of tasks. When we consider all the
iority scheduling for periodic real-time tasks, Journal of Systems 
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Fig. 6. Effects of the dummy task on normalized PVs (compared to RMS; n = 10 and k = 5 ). 

Fig. 7. Effects of dynamic slack on normalized PVs (compared to RMS; n = 10 , k = 5 and U = 50% ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

i  

P  

(  

e  

m

8

 

p  

o  

A  

o  

p  

p  

d  

o  

w  

j

 

e  

a  

w  

i  

p  

p  
tasks, the PVs of tasks can be improved by more than 50% under

both PORMS and POPPA over RMS. 

Effects of dynamic slack: The effects of dynamic slack are also

evaluated and the results are shown in Fig. 7 . Here, we consider

the case of U = 50% (without dummy task). We vary the dynamic

load α of tasks from 10% to 100%. Smaller values of α indicate

more dynamic slack can be expected from the early completion of

tasks and α = 100% represents the case where no dynamic slack is

available at runtime. For a given value of α, the actual execution

times for the instances of task T i are randomly generated within a

range to have the average value as α · c i . 

Similar patterns of the normalized PVs for tasks can be ob-

served. First, most ASAP tasks can complete at their earliest times

under all scheduling schemes, especially for the low dynamic loads

where tasks only take a small fraction of their WCETs. This leads to

the normalized PVs for ASAP tasks being close to 1 as can be seen

in Fig. 7 a. Although PORMS and POPPA perform better than RMS as

the dynamic load increases, the improvement is very marginal (less

than 1.5% even at α = 100% ). Moreover, the advantage of managing

such dynamic slack for ASAP tasks is hardly noticeable, especially

for POPPA. 

The normalized PVs of ALAP tasks can be as high as 180 when

the dynamic load is low (e.g., α = 10% ) due to extremely poor per-

formance of RMS for completing such tasks at earlier times (see

Fig. 7 b). When tasks have longer executions at high dynamic loads,

the advantages of PORMS and POPPA over RMS quickly diminish.

Moreover, although managing dynamic slack can improve the PVs

of ALAP tasks under POPPA, such improvements decrease quickly

as dynamic load increases (with less slack time). The effects of dy-

namic slack on PORMS are hardly noticeable. 

T  
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Fig. 7 c shows the normalized overall PVs for all the tasks, and

he results are consistent with previous evaluations. The additional

mprovement from dynamic slack is rather marginal. Note that, the

V of an ASAP (ALAP) task instance is defined on a single finish

start) time point. With the complex interference among tasks’ ex-

cutions, we can see that the overall PVs of tasks do not change

onotonically as dynamic load increases. 

. Conclusions 

In this work, for periodic real-time tasks where some tasks are

referably executed ASAP while others ALAP, we investigated vari-

us techniques for fixed-priority scheduling. First, as a variation of

udsley’s optimal priority assignment, we studied a preference pri-

rity assignment (PPA) algorithm that favors ALAP tasks for lower

riorities. Then, a non-work-conserving preference-oriented fixed-

riority (POFP) scheduling algorithm is proposed that exploits the

ual-queue technique to address the late execution requirements

f ALAP tasks. Runtime techniques based on slack management

ith dummy and wrapper tasks are also investigated with the ob-

ective of further improving tasks’ execution preferences. 

The proposed techniques and schemes are evaluated through

xtensive simulations. The results show that, although both PPA

nd the dual-queue POFP scheduler are quite effective, the non-

ork-conserving POFP scheduler plays a dominant role in address-

ng tasks’ execution preferences. In particular, for ALAP tasks, the

erformance can be improved up to two magnitudes when com-

ared to the classical RMS scheduler, which is preference-oblivious.

he wrapper-task based runtime technique can slightly improve
iority scheduling for periodic real-time tasks, Journal of Systems 
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asks’ performance, while the dummy task can have negative im-

acts due to reduced promotion times of ALAP tasks. 

In our future work, we will investigate better evaluation met-

ics that can incorporate all execution segments of task in-

tances for perference-oriented executions. Moreover, we will

tudy preference-oriented scheduling algorithms for multiproces-

or real-time systems. 
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