
Journal of Systems Architecture 78 (2017) 68–80 

Contents lists available at ScienceDirect 

Journal of Systems Architecture 

journal homepage: www.elsevier.com/locate/sysarc 

Exploiting primary/backup mechanism for energy efficiency in 

dependable real-time systems 

Yifeng Guo 

a , Dakai Zhu 

a , ∗, Hakan Aydin 

b , Jian-Jun Han 

c , Laurence T. Yang 

d 

a Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA 
b Department of Computer Science, George Mason University, Fairfax, VA 22030, USA 
c School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China 
d Department of Computer Science, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada 

a r t i c l e i n f o 

Article history: 

Received 17 December 2016 

Revised 20 March 2017 

Accepted 29 June 2017 

Available online 30 June 2017 

Keywords: 

Real-time systems 

Multiprocessor 

Fault tolerance 

Primary/backup 

Energy management 

DVFS 

DPM 

a b s t r a c t 

Primary/Backup has been well studied as an effective fault-tolerance technique. In this paper, with the ob- 

jectives of tolerating a single permanent fault and maintaining system reliability with respect to transient 

faults, we study dynamic-priority based energy-efficient fault-tolerance scheduling algorithms for periodic 

real-time tasks running on multiprocessor systems by exploiting the primary/backup technique while 

considering the negative effects of the widely deployed Dynamic Voltage and Frequency Scaling (DVFS) on 

transient faults. Specifically, by separating primary and backup tasks on their dedicated processors, we 

first devise two schemes based on the idea of Standby-Sparing (SS) : For Paired-SS , processors are orga- 

nized as groups of two (i.e., pairs) and the existing SS scheme is applied within each pair of processors 

after partitioning tasks to the pairs. In Generalized-SS , processors are divided into two groups (of po- 

tentially different sizes), which are denoted as primary and secondary processor groups, respectively. The 

main (backup) tasks are scheduled on the primary (secondary) processor group under the partitioned-EDF 

( partitioned-EDL ) with DVFS (DPM) to save energy. Moreover, we propose schemes that allocate primary 

and backup tasks in a mixed manner to better utilize system slack on all processors for more energy sav- 

ings. On each processor, the Preference-Oriented Earliest Deadline (POED) scheduler is adopted to run pri- 

mary tasks at scaled frequencies as soon as possible (ASAP) and backup tasks at the maximum frequency 

as late as possible (ALAP) to save energy. Our empirical evaluations show that, for systems with a given 

number of processors, there normally exists a configuration for Generalized-SS with different number of 

processors in primary and backup groups, which leads to better energy savings when compared to that 

of the Paired-SS scheme. Moreover, the POED-based schemes normally have more stable performance and 

can achieve better energy savings. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Fault tolerance has been a traditional research topic in real-

time systems as computing devices are subject to different types of

faults at runtime. In general, to tolerate various faults and guaran-

tee that real-time tasks can complete their executions successfully

on time, the existing fault tolerance techniques normally adopt dif-

ferent forms of redundancy. For instance, as a simple and well-

studied approach, hot-standby exploits hardware/modular redun-

dancy and runs two copies of the same task concurrently on two

processors to tolerate a single fault [33] . However, by their very

nature, such redundancy-based fault-tolerance techniques demand
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ore system resources, which can lead to excessive energy con-

umption (e.g., hot-standby has 100% energy overhead). 

On the other hand, with the ever-increasing power density in

odern computing systems, energy has been promoted as a first-

lass system resource and energy-aware computing has become an

mportant research area [24] . As a common energy saving tech-

ique, dynamic power management (DPM) can power down (or turn

ff) components when they are not in use. Moreover, as a fine-

rained power management technique, dynamic voltage and fre-

uency scaling (DVFS) can operate computing systems at different

ow-performance (and thus low-power) states when the perfor-

ance demand is not at the peak level by simultaneously scaling

own their supply voltage and processing frequency [35] . 

Although both redundancy-based fault tolerance [6,17] and

PM/DVFS-based energy management schemes [35,52] have been

ndependently studied extensively, the co-management of system

http://dx.doi.org/10.1016/j.sysarc.2017.06.008
http://www.ScienceDirect.com
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eliability and energy consumption has caught researchers’ atten-

ion only very recently [14,31,38] . Note that, fault tolerance and

nergy efficiency are normally conflicting design objectives in com-

uting systems since redundancy generally results in increased en-

rgy consumption [2] . Moreover, recent studies show that DVFS

as a negative effect on system reliability due to significantly in-

reased transient fault rates at low supply voltages [11,15,49] . With

his intriguing interplay between fault tolerance and energy effi-

iency, it becomes imperative to develop effective techniques that

an address both dimensions while guaranteeing the timeliness of

eal-time tasks. 

By taking the negative effects of DVFS on transient fault rates

nto consideration, a series of reliability-aware power-management

RAPM) schemes have been studied for various real-time task mod-

ls based on the backward recovery technique [13,19,29,34,45–48] .

asically, RAPM exploits system slack (i.e., temporal redundancy ) for

oth reliability preservation and energy savings. RAPM ensures to

chedule a recovery task before scaling down the processing fre-

uency of any task, using the remaining slack time. By executing

he recovery task at the maximum frequency, RAPM can achieve

 desired system reliability level even if the task with scaled fre-

uency incurs transient faults [29,45,48] . Although RAPM can guar-

ntee system reliability with respect to transient faults (which

ere shown to be more common [26] ), it does not offer provisions

or tolerating permanent faults. 

With the objective of tolerating a single permanent fault while

uaranteeing system reliability with respect to transient faults, the

tandby-Sparing (SS) schemes were recently studied for both ape-

iodic [12] and periodic tasks [22,23] running on a dual-processor

ystem based on the Primary/Backup (PB) fault-tolerance technique.

ssentially, the SS schemes schedule primary and backup tasks sep-

rately on the primary and secondary processors, respectively, to

olerate one permanent fault. Note that, to improve system effi-

iency and reduce execution overhead (thus to save energy), the

ackup tasks are normally cancelled as soon as their corresponding

rimary tasks complete successfully [6] and should be scheduled

s late as possible [38] . Hence, for energy-efficiency (and reliability

reservation), the SS schemes execute primary tasks early at scaled

requency while backup tasks at the maximum frequency at their

atest times on their dedicated processors, respectively [12,22,23] .

lthough the SS schemes can effectively tolerate a single perma-

ent fault with some energy savings, the available slack time on

he secondary processor is not efficiently utilized with the adopted

PM technique. 

Instead of dedicating one processor for backup tasks, the pri-

ary and backup tasks can be allocated in a mixed manner on

oth processors and all available slack time can be exploited by

he DVFS technique for better energy savings [20] . Here, each pro-

essor is allocated a mixed set of primary and backup tasks where

rimary tasks exploit the slack time and run at a scaled frequency

ith DVFS. Moreover, the tasks are scheduled with the preference-

riented earliest-deadline (POED) scheduler, which can differentiate

hem and execute primary tasks as soon as possible (ASAP) while

ackup tasks as late as possible (ALAP) [18] , for better energy sav-

ngs. The same idea of allocating tasks in a mixed manner has

een exploited in the Secondary Execution Time Shifting (SETS) of-

ine scheduling heuristic for saving energy while tolerating faults

or periodic tasks running on multiprocessor systems [38] . How-

ver, the aforementioned studies either focused on dual-processor

ystems [12,20,22,23] or did not consider the more effective DVFS

ower management technique [38] . 

To the best of our knowledge, there is no existing work that ad-

ress how to effectively schedule periodic real-time tasks in multi-

rocessor systems to save energy with both DPM/DVFS techniques

hile tolerating a single permanent fault and preserving system

eliability with respect to transient faults. By extending our pre-
iminary study [21] , we focus on such a problem in this paper and

ropose several energy-efficient fault-tolerance (EEFT) schemes. In

articular, the contributions of this work are summarized as fol-

ows: 

• First, we study two Standby-Sparing (SS) based EEFT schemes:

Paired-SS organizes processors as groups of two (i.e., pairs ) and

adopts the existing SS scheme [12] for each processor pair;

Generalized-SS divides processors into primary and secondary

processor groups (of potentially different sizes) and then sched-

ules primary (backup) tasks on the primary (secondary) pro-

cessors under the partitioned-EDF ( partitioned-EDL ) with DVFS

(DPM) to save energy [21] ; 

• Second, by allocating primary and backup tasks in a mixed

manner on all processors to better utilize their slack time for

more energy savings, we propose two novel EEFT schemes

based on the POED scheduling algorithm; Here, once primary

tasks are partitioned to all processors (e.g., according to the

Worst-Fit-Decreasing heuristic), backup tasks can be allocated

to processors following either Cyclic or Mixed approach; 

• Finally, the proposed EEFT schemes are evaluated through ex-

tensive simulations and the results show their effectiveness on

energy savings. 

The remainder of this paper is organized as follows.

ection 2 reviews the closely-related work. Section 3 presents

ystem models and states the assumptions of this work. The

tandby-Sparing based schemes are discussed in Section 4 and

he POED-based schemes are investigated in Section 5 . The eval-

ation results are presented and discussed in Section 6 and

ection 7 concludes the paper. 

. Closely related work 

Aiming at tolerating a given number of transient faults in a real-

ime application, Melhem et al. [31] derived the optimal number

f checkpoints, uniformly or non-uniformly distributed, to achieve

he minimum energy consumption for a duplex system (where two

ardware units are used to run the same software concurrently for

ault detection) with the DVFS power management technique [31] .

ssuming that transient faults follow a Poisson distribution with a

onstant arrival rate, Zhang et al. studied an adaptive checkpoint-

ng scheme to tolerate a fixed number of transient faults during

he execution of a real-time task [42] . The adaptive checkpointing

cheme was extended to a set of periodic tasks on a single proces-

or system with the EDF scheduler [44] . In [43] , the authors fur-

her considered the cases where faults may occur within check-

oints. Following a similar idea and considering a fixed-priority

MS algorithm, Wei et al. studied an efficient online scheme to

inimize energy consumption by considering the run-time behav-

ors of tasks and fault occurrences while satisfying tasks’ timing

onstraints [39] . In [40] , the authors extended the study to multi-

rocessor real-time systems. 

Elnozahy et al. studied an Optimistic-TMR (OTMR) scheme to

educe the energy consumption in a Triple Modular Redundancy

TMR) system in [14] . OTMR allows one processing unit to run at

 scaled frequency with DVFS provided that it can catch up and

nish the computation before the deadline if a fault does occur

n other two units. The optimal frequency settings for OTMR was

xplored in [50] . For independent service requests, Zhu et al. stud-

ed the optimal redundant configuration for server processors to

olerate a given number of transient faults [51] . Izosimov et al.

27] studied an optimization problem for mapping a set of tasks

ith reliability constraints, timing constraints and precedence rela-

ions to processors for determining the appropriate fault tolerance

olicy (re-execution or replication) for the tasks [27] . 
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However, despite the effectiveness of DVFS on reducing energy

consumption, recent studies showed that it has a negative effect

on system reliability due to the significantly increased transient

fault rates at low supply voltages [15] . In particular, an exponential

fault rate model with scaled voltage was proposed in [49] . Tak-

ing such negative effects of DVFS into consideration, Zhu studied

a Reliability-Aware Power Management (RAPM) scheme that sched-

ule a recovery task before exploiting the remaining slack time to

scale down the execution of the primary task [47] . Here, to pre-

serve system reliability with respect to transient faults, the recov-

ery task is executed at the maximum frequency only if transient

faults cause an error during the primary task’s execution. Later, the

RAPM scheme was extended for periodic real-time tasks [48] . 

To address the conservativeness of RAPM that schedules an in-

dividual recovery task for each task running at scaled frequency,

Zhao et al. [46] studied the Shared-Recovery (SHR) technique [46] ,

where several scaled tasks can share a recovery task to leave

more slack for DVFS and save more energy. To achieve an arbi-

trary system-level target reliability, SHR has been further extended

to the generalized shared recovery (GSHR) where a small number

of recovery tasks are shared by all the tasks [45] . A similar study

was also reported recently in [29] . Global scheduling based RAPM

schemes for both independent [34] and dependent [19] real-time

tasks running on multiprocessor systems were studied as well. 

Moreover, based on the exponential fault rate model developed

in [49] , Ejlali et al. [13] studied a number of schemes that combine

the information about hardware resources and temporal redun-

dancy to save energy and to preserve system reliability [13] . Con-

sidering dependent tasks represented by directed acyclic graphs

(DAGs), Pop et al. proposed a novel framework by studying the

energy and reliability trade-offs for distributed heterogeneous em-

bedded systems [32] . By employing a feedback controller to track

the overall miss ratio of tasks in soft real-time systems, Sridha-

ran et al. [36] proposed a reliability-aware energy management al-

gorithm to minimize the system energy consumption while still

preserving the overall system reliability. Dabiri et al. [10] studied

the problem of assigning frequency and supply voltage to tasks for

energy minimization subject to reliability as well as timing con-

straints [10] . For a real-time application running a dual-processor

system, Aminzadeh and Ejlali [2] performed a comparative study

of different DVFS and DPM schemes to tolerate a given number of

transient faults [2] . Although the above work can preserve system

reliability with respect to transient faults, there is no provision for

permanent faults. 

Based on the primary/backup technique, Bertossi et al. [6] stud-

ied several fixed-priority RMS scheduling algorithms for periodic

real-time tasks to tolerate a given number of permanent faults [6] ,

where the goal is to improve system resource utilization through

backup deallocation . In [5] , the authors further proposed the backup

phasing delay technique to reduce the overlapped executions be-

tween the primary and backup tasks. However, these work did not

consider energy management. Based on the EDF scheduling, Unsal

et al. studied an offline Secondary Execution Time Shifting (SETS)

heuristic for a set of independent periodic real-time tasks running

on multiprocessor systems [38] . Here, to obtain an energy-efficient

static schedule within the least common multiple (LCM) of tasks’

periods, SETS iteratively delays the release time of backup tasks

to reduce the overlapped executions with their corresponding pri-

mary tasks and thus to reduce system energy consumption, but

without exploiting the more effective DVFS technique. 

To tolerate a single permanent fault while taking transient

faults into consideration, Ejlali et al. [12] investigated a Standby-

Sparing (SS) scheme to save energy for dependent and aperiodic

real-time tasks running on a dual-processor system [12] . SS exe-

cutes primary tasks with DVFS on one processor (denoted as the

primary processor) at their earliest times while backup tasks with
PM on another ( spare ) processor at their latest times to reduce

heir overlapped executions and thus to save more energy. The

ork was extended later with a light-weight feedback system for

etter energy savings [37] . With the same idea of separating tasks

n the two processors, Haque et al. extended standby-sparing to a

ore practical periodic task model based on the earliest deadline

chedulers [22] , where primary and backup tasks are scheduled ac-

ording to EDF with DVFS and EDL [8] with DPM on their ded-

cated processors, respectively, to save energy. The fixed-priority

ased standby-sparing scheme was further studied in [23] . More

ecently, for multicore systems with energy harvesting, Xiang and

asricha [41] proposed a hybrid design-time/run-time framework

or resource allocation that takes into consideration of variations

n solar radiance and execution time, transient faults, and perma-

ent faults due to aging effects [41] . 

Observing the inefficient usage of slack time with DPM on the

pare processor, we proposed to schedule a mixed set of primary

nd backup copies of different tasks on both processors [20] . Based

n the Preference-Oriented Earliest Deadline (POED) scheduling algo-

ithm [18] , all available slack time on both processors can be uti-

ized to scale down primary tasks with DVFS for better energy sav-

ngs. 

In this paper, we focus on the problem of how to effec-

ively schedule periodic real-time tasks on a multiprocessor sys-

em to save energy with both DPM/DVFS techniques while toler-

ting a single permanent fault and preserving system reliability

ith respect to transient faults, which is different from all existing

ork. Specifically, we generalize Standby-Sparing and POED-based

chemes to the settings with multiprocessor systems. 

. Preliminaries and system models 

.1. System, task and power models 

We consider a homogeneous m -processor shared-memory sys-

em. As power management features are common in modern pro-

essors [1,9] , we assume that all processors adopted in the sys-

em have the dynamic voltage and frequency scaling (DVFS) ca-

ability, which allows them to operate at one of L discrete fre-

uency (and voltage) levels ( F 1 < F 2 < . . . < F L ). We consider nor-

alized frequencies and assume that the maximum frequency is

 

max = F L = 1 . 0 . 

The system has a set of n periodic real-time tasks � =
 T 1 , . . . , T n } , where each task T i is represented as a tuple ( c i , p i ).

ere c i is T i ’s worst-case execution time (WCET) under the maxi-

um available processor frequency F max and, p i is its period. The

asks are assumed to have implicit deadlines. That is, the j th task

nstance (or job ) of T i , denoted as T i, j , arrives at time ( j − 1) · p i
nd needs to complete its execution by its deadline at j · p i . Note

hat, a task has only one active task instance at any time. Hence,

hen there is no ambiguity, we use T i to represent both the task

nd its current task instance. The utilization of a task T i is defined

s u i = 

c i 
p i 

. The system utilization of a given task set is further de-

ned as the summation of all tasks’ utilization: U(�) = 

∑ 

T i ∈ � u i . 

The tasks are assumed to be independent and share no resource

ther than the processors. Moreover, we do not consider the effects

f memory access on tasks’ execution time, which is assumed to

cale linearly with the operation frequency of its processor. That is,

f task T i ’s processor operates at frequency F k , the WCET of T i will

e 
c i 
F k 

. It is possible to model the memory effects with a frequency-

ndependent portion in the execution time [3] . However, it is be-

ond the scope of this paper and exploring this direction will be

eft for our future work. 

With the shrinking technology size, the static and leakage

ower increases in a faster pace when compared to that of dy-

amic power [28] . Hence, it becomes more important to manage
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ower consumption at the system-level with all power consum-

ng components being considered [3,25] . Although more precise

ower models at micro-architecture level have been studied [2,30] ,

e adopt in this work a simple system-level power model to sim-

lify the analysis and discussions, which has also been widely ex-

loited in recent studies [29,34,48] . Specifically, for a system with

 processors (that operate at f 1 , . . . , f m 

, respectively), its power

onsumption can be expressed as: 

 ( f 1 , . . . , f m 

) = P s + 

m ∑ 

i =1 

h̄ i (P ind + C e f · f k i ) (1) 

here P s stands for system static power, which can be removed

nly by powering off the whole system. However, due to the pro-

ibitive overhead of turning off and on the system [14] in peri-

dic real-time execution settings, we assume that the system is in

n state at all times and that P s is always consumed. That is, we

ill focus on the energy consumption related to the system active

ower, which is given by the second item in the above equation. 

On each processor, if it is actively executing tasks, two com-

onents of active power are consumed: the frequency-independent

ctive power P ind (which is assumed to be the same for all proces-

ors) and the frequency-dependent active power (which depends

n the system-dependent constants C ef and k , as well as the pro-

essor’s frequency f i ). That is, if the i th processor is active, we have

h̄ i = 1 . Otherwise, if there is no ready task on the i th processor, it

an switch to the sleep state through the dynamic power manage-

ent (DPM) and does not consume any active power (i.e., h̄ i = 0 ). 

Considering the fact that modern processors can switch to sleep

tates in a few cycles [1,9] , we assume that the time overhead for

 processor to enter/exit its sleep state is negligible. Moreover, to

implify the discussion, the overhead for frequency (and voltage)

hanges under DVFS is also assumed to be included into tasks’

CETs or can be incorporated with the slack reservation mecha-

ism [48] . 

From the above system-level power model, an energy-efficient

requency, F ee = 

k 

√ 

P ind 
C e f ·(k −1) 

, can be derived, below which DVFS con-

umes more energy to execute a task [34] . In what follows, we

ssume that all available frequency levels are energy-efficient and

ence, F ee ≤ F 1 holds. 

.2. Fault and recovery models 

During the operation of a real-time system, different faults may

ccur due to hardware failure, software errors or electromagnetic

nterference. While transient faults can be tolerated with temporal

edundancy, permanent faults can only be tolerated through modu-

ar/hardware redundancy. With the scaled technology size [15] and

idely-adopted DVFS technique, modern computing devices are

ore susceptible to transient faults [11] . In particular, as supply

oltage is reduced with DVFS to save energy, the rate of tran-

ient faults may increase exponentially [49] . Moreover, although

he occurrence of permanent faults is very rare, a comprehensive

ramework should have provisions for both transient and perma-

ent faults in a safety-critical multiprocessor real-time system. 

With the objective of tolerating both transient and permanent

aults, we adopt the Primary/Backup (PB) fault-tolerance technique

n this work. That is, for each task T i , there is a periodic backup

ask B i . To distinguish between them, we occasionally use the term

rimary (or main ) task to refer to T i . To ensure that there is a

roper backup for every task instance of T i , we assume that B i has

he same timing parameters 1 (i.e., c and p ) as T . Hence, in addi-
i i i 

1 Note that, as long as B i ’s WCET is no more than that of T i (i.e., B i can be either 

 reduced version or the replication of T i ), the proposed schemes can guarantee 

ystem reliability with respect to transient faults [12,29,48] . 

c

t

ion to the original primary task set �, we have a set �B of backup

asks that have to be properly scheduled. 

As in most existing fault tolerance work, we assume that fault

etection mechanisms are available in the system and the detec-

ion overhead has been incorporated into the WCETs of tasks [2] .

pecifically, the soft errors caused by transient faults are detected

t the end of a task’s execution through the sanity (or consistency )

hecks (e.g., parity or signature checks) [33] . For permanent faults,

e assume the failure-stop model and a faulty processor can be

etected by other working ones at the earliest completion time of

 task [33] . 

Problem description: On a multiprocessor system where both

VFS and DPM techniques are available for energy management,

ow one should efficiently schedule the main and backup tasks to

aximize the energy savings under the constraints of (a) tolerating

 single permanent fault; and (b) preserving system reliability with

espect to transient faults (in the absence of permanent faults). 

The backup tasks adopted in this work have dual purposes.

irst, with one backup for each main task, the system is inher-

ntly robust to a single permanent fault provided that the main

nd backup copies of the same task are scheduled on different pro-

essors [6] . The second objective of having backup tasks is, in the

bsence of permanent faults, to preserve system reliability 2 with

espect to transient faults when the execution of primary tasks

s scaled down with DVFS to save energy. Therefore, by consid-

ring the negative effects of DVFS on transient fault rates [49] ,

ackup tasks are assumed to be executed at the maximum fre-

uency [12,48] . 

. Standby-Sparing for multiprocessor 

.1. An example with a three-processor system 

When there are more (i.e. > 2) processors in a system, a nat-

ral question to ask would be: “how to configure such processors

or better energy efficiency?” We can either have additional primary

rocessors to execute main tasks at further reduced frequencies or

ave more secondary processors to further delay the execution of

ackup tasks. Clearly, this is not a trivial problem considering the

ntriguing interplay between the scaled frequency of main tasks

nd the amount of overlapped execution with their backup tasks. 

Before presenting the solution for the general problem for mul-

iprocessor systems, we first investigate the simple case of a three-

rocessor system. Here, we have two options for the configuration

f the processors: (a) one primary and two secondary processors

denoted as “X1Y2”); and (b) two primary and one secondary pro-

essor (denoted as “X2Y1”). 

A motivational example: Consider a task set with three peri-

dic real-time tasks � = { T 1 (1 , 5) , T 2 (2 , 6) , T 3 (4, 15)}. We can eas-

ly find that the system utilization is U = 0 . 8 and the least common

ultiple (LCM) of tasks’ periods is LCM = 30 . Suppose that the pro-

essors have four discrete (normalized) frequency levels {0.4, 0.6,

.8, 1.0}. 

Fig. 1 (a) first shows the tasks’ schedule on a dual-processor

ystem with the Standby-Sparing technique within LCM [22] . The

rimary processor executes the main tasks under Earliest Dead-

ine First (EDF) at a scaled frequency of 0.8 while the secondary

rocessor schedules the backup tasks with Earliest Deadline Lat-

st (EDL) [8] policy for energy savings. By assuming P ind = 0 . 01 ,

 e f = 1 and k = 3 in the power model, we can find the active en-

rgy consumption within LCM is E SS−SPM 

= 27 . 2 when all tasks take

heir WCETs and there is no fault at run-time. The executions of
2 Higher levels of system reliability can be achieved with additional replicated 

opies of tasks [29,45] . However, exploring this direction is beyond the scope of 

his paper and will be investigated in our future work. 
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Fig. 1. A set of three tasks T 1 (1, 5), T 2 (2, 6) and T 3 (4, 15) running on a three-processor system. 
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most backup tasks are cancelled, which are marked with an ‘X’ in

the figure. 

For the X1Y2 configuration of a three-processor system, where

the extra processor is used as an additional secondary, the sched-

ule of tasks is shown in Fig. 1 (b) The primary processor P 1 still

runs at the frequency 0.8 to execute the main tasks. However,

backup tasks can be re-allocated, where backup task B 2 is allo-

cated to processor P 2 and B 1 and B 3 to processor P 3 , to further

delay and reduce their overlapped executions. It turns out that, al-

though the overlapped executions can be reduced slightly, the ad-

ditional energy consumption from the frequency-independent ac-

tive power (i.e., P ind ) of the extra processor overshadows such ben-

efits and leads to the total active energy consumption of E X1 Y 2 =
27 . 45 , which is slightly more than that of the traditional Standby-

Sparing scheme for the dual-processor system. 

However, when the extra processor is utilized as an additional

primary processor, Fig. 1 c shows the schedule with the X2Y1 con-

figuration. Here, the main task T 2 is allocated to processor P 1 and

other two tasks ( T 1 and T 3 ) to P 2 , which can run at the scaled fre-

quencies of 0.4 and 0.6, respectively. The total active energy con-

sumption under this configuration can be found as E X2 Y 1 = 23 . 37 .

Compared to that of the dual-processor system with the traditional

Standby-Sparing scheme, this gives a 14% improvement. 

4.2. Standby-Sparing based schemes 

From the above example, we can see that different config-

urations of primary and secondary processors can have impor-

tant effects on the energy efficiency of a multiprocessor system.

Following the principles and extending the ideas of the tradi-

tional Standby-Sparing scheme [22] , we propose in what follows

the Paired Standby-Sparing ( Section 4.2.1 ) and Generalized Standby-

Sparing ( Section 4.2.2 ) schemes for periodic real-time tasks run-

ning on multiprocessor systems. 
.2.1. Paired Standby-Sparing (P-SS) 

Considering the fact that the traditional Standby-Sparing

cheme was designed for dual-processor systems, a simple and

traightforward approach is to first organize the processors in a

ystem as groups of two (i.e., pairs ). Then, the existing Standby-

paring scheme can be applied directly to each pair of processors

fter partitioning (main and backup) tasks to the processor pairs

ppropriately, which is thus named as the Paired Standby-Sparing

P-SS) scheme. 

From the results in [22] , we know that different system uti-

izations of tasks have a great impact on the energy efficiency of

 dual-processor system under the Standby-Sparing scheme. The

eason is that, both the scaled frequency for the main tasks on the

rimary processor and the delayed execution of backup tasks on

he secondary processor depend heavily on system loads. When

he system utilization of a given task set is high, the Standby-

paring scheme could perform quite poorly due to higher execu-

ion frequency for main tasks and the increased amount of over-

apped execution between the main and backup tasks. On the

ther hand, once the scaled execution frequency of the main tasks

educes to the minimum (available) energy-efficient frequency, ad-

itional energy savings are rather limited with further reduced sys-

em loads [22] . 

Therefore, the key factor for the energy efficiency of a multipro-

essor system under P-SS will be the mapping of tasks to processor

airs. However, it is well-known that the problem of finding a fea-

ible mapping of a given set of periodic real-time tasks in a mul-

iprocessor system is NP-hard. Therefore, finding the optimal map-

ing of (main and backup) tasks among the processor pairs in P-SS

o minimize the system energy consumption is NP-hard as well.

ote that, without the consideration of fault tolerance, a balanced

orkload distribution has been shown to have the best energy ef-

ciency for tasks running on a multiprocessor system [4] . Hence,

ollowing this intuition and considering its inherent ability to ob-

ain a load-balanced mapping, we adopt the Worst-Fit Decreasing

WFD) heuristic in P-SS when mapping (main and backup) tasks to

he processor pairs. 
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Note that, to apply the traditional Standby-Sparing within each

rocessor pair, the main and backup of the same task (e.g., T i and

 i ) have to be mapped to the same pair of processors. Therefore, in

-SS, we can first map the main tasks in � to the processor pairs

ccording to the WFD heuristic. That is, each processor pair will

e allocated a subset �q of the main tasks, where 1 ≤ q ≤ � m 

2 � as

here are at most � m 

2 � processor pairs for a system with m pro-

essors. Then, for each backup task B i , it will be allocated to the

rocessor pair that contains the corresponding main task T i , 

With the Standby-Sparing scheme being adopted within each

rocessor pair, the main and backup tasks are scheduled under

DF and EDL on the primary and secondary processors, respec-

ively [22] . Recall that backup tasks have the same timing param-

ters (i.e., utilizations) as their main tasks. Therefore, the resulting

FD mapping { �q } (and corresponding { �B 
q } ) is feasible if there

re U ( �q ) ≤ 1 ( 1 ≤ q ≤ � m 

2 � ). 
Once the feasible WFD mapping is obtained, the processor pairs

nder P-SS will operate independently. Although each processor

air acting as a Standby-Sparing system can tolerate one perma-

ent fault [22] , it is possible for multiple permanent faults hit

oth processors in one pair. Hence, with each task having one

ackup, P-SS can only tolerate a single permanent fault in the

orst case scenario. However, once the processor affected by per-

anent fault(s) is identified, additional permanent faults could be

olerated by re-configuring the remaining ( m − 1 ) processors and

e-map the tasks. 

.2.2. Generalized Standby-Sparing (G-SS) 

From the example system with three processors ( Section 4.1 ),

e have seen that having two primary processors to execute the

ain tasks while sharing one secondary processor among the

ackup tasks can lead to better energy efficiency. Following this

rinciple and generalizing the idea of Standby-Sparing, we propose

he Generalized Standby-Sparing (G-SS) scheme, which organizes the

 processors of the system into two groups: the primary group

f X processors and the secondary group of Y processors, where

 = X + Y . Then, the main and backup tasks are separately sched-

led on the processors in the primary and secondary groups, re-

pectively. 

Considering the fact that the EDF/EDL schedulers are exploited

n the P-SS scheme and the simplicity of partitioned schedul-

ng, we adopt the partitioned-EDF and partitioned-EDL for G-SS

o schedule the main and backup tasks, respectively. Hence, for a

iven ( X, Y )-configuration of the processors, Algorithm 1 summa-

izes the major steps of G-SS. 

lgorithm 1 G-SS for a given ( X, Y )-configuration. 

1: Input: task sets � and �B ; X and Y (= m − X ) ; 

2: Output: Scaled frequencies for primary processors and EDL

schedules for secondary processors; 

3: Find the ( X, Y ) WFD partitions of � and �B : 

4: �(X ) = { �1 , · · · , �X } and �B (Y ) = { �B 
1 
, · · · , �B 

Y 
} ; 

5: if ( ∀ i, U(�i ) ≤ 1 and ∀ j, U(�B 
j 
) ≤ 1 ) then 

6: //Suppose the first X processors are primary processors 

7: for (each primary processor P x : x = 1 → X) do 

8: f x = min { F i | F i ≥ U(�x ) , i = 1 , . . . , L } ; 
9: end for 

10: for (each secondary processor P y : y = 1 → Y ) do 

11: Generate the offline EDL schedule for tasks in �B 
y ; 

12: end for 

13: end if 

First, the main and backup tasks are partitioned among the X

rimary and Y secondary processors, respectively (lines 3 and 4).

gain, to obtain the mappings with balanced-workload for better
nergy savings, the WFD heuristic is adopted [4] . Then, the schedu-

abilities of the resulting WFD mappings for both the main and

ackup tasks under the EDF and EDL schedulers on the primary

nd secondary processors, respectively, are examined (line 5). 

If any processor is overloaded with the resulting mappings �( X )

nd �B ( Y ), we say that the ( X, Y )-configuration is not feasible . Oth-

rwise, to save energy, the scaled frequency for each primary pro-

essor to execute its main tasks is determined (lines 7 and 8); in

ddition, assuming that backup tasks run at the maximum fre-

uency, the EDL schedule for each secondary processor is gener-

ted offline (lines 10 and 11). 

Since all backup tasks run on processors that are different from

heir corresponding main tasks, G-SS is able to tolerate a single

ermanent fault. Moreover, the system reliability with respect to

ransient faults can also be preserved since all backup tasks are

ssumed to run at F max . Note that, as in the traditional Standby-

paring scheme [22] , if a main (or backup) task completes suc-

essfully on one processor at runtime, the related processor will

e notified to cancel the execution of the corresponding backup

or main) task for energy savings. 

It is clear that different configurations of the processors in G-SS

ave a great impact on the energy efficiency of a multiprocessor

ystem. For the special case with the same number of primary and

econdary processors (i.e., X = Y ), we can find that G-SS will be ef-

ectively reduced to P-SS since they adopt the same WFD mapping

euristic and the backup tasks have the same timing parameters

s their corresponding main tasks. However, for the configurations

hat have different numbers of primary and secondary processors

i.e., X 
 = Y ), it is very likely that the backup tasks will be mapped

o different secondary processors in G-SS even if their main tasks

re mapped to the same primary processor. Due to such implica-

ions, it is quite difficult to identify the overlapped execution re-

ions between the main and backup tasks in the EDF and EDL

chedules on different processors, which makes it almost impos-

ible to find the optimal configuration of processors for G-SS to

inimize energy consumption analytically. 

Energy-efficient configuration: For a given task set � running

n a m -processor system, the major steps for an iterative algo-

ithm to find out the energy-efficient processor configuration for

-SS to minimize the system energy consumption are shown in

lgorithm 2 . Note that, with the system utilization of U ( �) for a

ask set �, the minimum number of required primary processors

or the tasks to be schedulable under partitioned-EDF can be ob-

ained as X min = � U(�) � . X min also gives the minimum number of

equired secondary processors. Thus, the maximum number of pri-

ary processors can be found as X max = m − X min (line 3). 

lgorithm 2 Find the energy-efficient configuration for G-SS. 

1: Input: task sets � and �B ; m (number of processors); 

2: Output: the energy-efficient processor configuration (i.e., X opt )

for G-SS to minimize energy consumption; 

3: X min = � U(�) � ; X max = m − X min ; 

4: E min = ∞ ; X opt = −1 ; //initialization 

5: for ( X = X min → X max ) do 

6: Y = m − X; //number of secondary processors 

7: if ( � is schedulable under G-SS with X/Y ) then 

8: Get E G −SS (X, Y ) from emulation in LCM; 

9: if ( E min > E G −SS (X, Y ) ) then 

10: X opt = X; 

11: end if 

12: end if 

13: end for 

For each possible ( X, Y )-configuration of the processors, the

chedulability of the given task set � under G-SS can be checked



74 Y. Guo et al. / Journal of Systems Architecture 78 (2017) 68–80 

Fig. 2. An example of two tasks T 1 = (1 , 5) and T 2 = (2 , 10) running on a dual- 

processor system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

s  

o  

c  

a  

s  

p

 

s  

s  

e  

t  

a  

e  

i  

a  

e  

a

5

 

o  

e  

s  

s  

P  

w  

(

 

l  

e  

t  

i  

t  

b  

a

 

t  

s  

c  

d  

m  

d  

t  

f  

w  

h  

a  

t  

r  

r

T  

w  

u

 

T  

b  

s  

m  

b  

a  

u

using Algorithm 1 (lines 5–7). If � is schedulable, the system en-

ergy consumption under G-SS can be obtained from the emulated

execution of the tasks within LCM (line 8). During such emulations,

we assume that tasks take their WCETs and no fault occurs. Finally,

searching through all feasible configurations of the processors, the

most energy-efficient ( X 

opt , Y opt )-configuration with the lowest sys-

tem energy consumption can be found out (lines 9 and 10). As

shown in Section 6.1 , such a configuration for G-SS normally has

more primary processors and can lead to better energy efficiency

when compared to that of the P-SS scheme. 

5. Mixing primary/backup tasks 

The separation of main and backup tasks on their dedicated

processors simplifies the scheduling algorithm on each processor

for the SS-based schemes. However, since backup tasks need to run

at the maximum frequency for reliability preservation, the avail-

able slack time on secondary processors can only be used to idle

processors with the DPM technique to save energy. As illustrated

in the following example of a dual-processor system, better energy

savings can be obtained if the main and backup tasks are allocated

in a mixed manner on both processors [20] , which can more effi-

ciently utilize all available slack time with the DVFS technique. 

5.1. Inefficient slack usage in Standby-Sparing 

Consider a dual-processor system with two periodic tasks T 1 =
(1 , 5) and T 2 = (2 , 10) . The schedule within the LCM of tasks’ peri-

ods under the Standby-Sparing scheme is shown in Fig. 2 (a) Here,

the main tasks T 1 and T 2 are executed at the scaled frequency of

0.4 on the primary processor under EDF, while the backup tasks B 1 
and B 2 are scheduled on the secondary processor under EDL [22] .

Clearly, as B 1 and B 2 are required to run at the maximum fre-

quency for reliability preservation, the slack time on the secondary

processor can only be exploited by DPM to idle the processor. 

However, it is well-known that slack time can be more effi-

ciently utilized by the DVFS technique [35,52] . Therefore, instead

of dedicating one processor for backup tasks, we can allocate the

main and backup tasks to both processors in a mixed manner as

shown in Fig. 2 b. Here, T 1 and B 2 are allocated to the first proces-

sor while T 2 and B 1 to the second processor. Hence, each processor

can utilize its slack time for its main task. It turns out that, with

DVFS, both T 1 and T 2 can be executed at the scaled frequency of

0.25. 
Suppose that tasks take their WCETs and no fault occurs dur-

ng tasks’ executions. When tasks are executed according to the

chedule within the LCM as shown in Fig. 2 (b), most executions

f backup tasks will be cancelled (marked with ’X’). Hence, when

ompared to the case of the Standby-Sparing schedule in Fig. 2 (a),

bout 20% more energy savings can be obtained under the new

cheme with mixed allocations of main and backup tasks on both

rocessors. 

However, we should point out that it is not trivial to obtain

uch a schedule as in Fig. 2 (b), which is neither an EDF nor EDL

chedule. From the figure, we can see that, to obtain more en-

rgy savings, the main tasks on each processor are executed at

heir earliest times while the backup tasks are delayed as much

s possible (without causing any deadline miss). To efficiently gen-

rate such schedules, in what follows, we first review the basic

deas of the preference-oriented earliest deadline (POED) scheduling

lgorithm [18] , which forms the foundation of the novel energy-

fficient fault-tolerance schemes with mixed allocations of main

nd backup tasks. 

.1.1. A preference-oriented scheduling algorithm 

Basically, POED is a dynamic-priority based scheduler for peri-

dic real-time tasks running on a single processor system. How-

ver, as opposed to the conventional earliest-deadline schedulers,

uch as EDF and EDL [8] (which treat all tasks uniformly and

chedule them at their earliest and latest times, respectively),

OED can distinguish different execution preferences of tasks,

hich can be either as soon as possible (ASAP) or as late as possible

ALAP) [18] . 

To incorporate such execution preferences of tasks, POED fol-

ows two principles when making scheduling decisions [18] . First,

ven if an ASAP task has a later deadline than that of an ALAP

ask, the ASAP task should be executed before the ALAP task if it

s possible to do so without causing any deadline miss. Second,

he execution of ALAP tasks should be delayed as much as possi-

le given that it does not cause any deadline miss for both current

nd future tasks. 

Given these two principles, at any scheduling event (such as

he arrival or completion of a task, or a timer interrupt), the ba-

ic steps of the POED scheduler can be summarized as follows. For

ases where the ready task with the highest priority (i.e., earliest

eadline) has ASAP preference, POED will execute the task nor-

ally as in EDF. However, in case an ALAP task has the earliest

eadline, POED will focus on a look-ahead interval from the invoca-

ion time to the earliest deadline of an ASAP task. All (current and

uture arrival) tasks within this interval will be considered to see

hether it is safe to delay the ALAP task’s execution and if yes, for

ow long can it be delayed. We have shown that POED can guar-

ntee to meet all tasks’ deadlines when scheduling them according

o their preferences. In particular, we have the following theorem

egarding to the schedulability of a task set under POED. Interested

eaders can refer to [18] for the detailed analysis. 

heorem 1 (POED Schedulability [18] ) . For a set � of periodic tasks

ith either ASAP or ALAP preferences, no task will miss its deadline

nder POED if U ( �) ≤ 1 . 

Therefore, with the POED scheduler, the main tasks (i.e., T 1 and

 2 ) in the above example will have ASAP preference while the

ackup tasks (i.e., B 1 and B 2 ) have ALAP preference on their re-

pective processors. Moreover, when the scaled frequency for the

ain tasks is 0.25, the inflated system utilization is exactly 1 on

oth processors. Hence, from Theorem 1 , the mixed sets of main

nd backup tasks on both processors can be successfully scheduled

nder POED, which results in the schedule as shown in Fig. 2 (b). 
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.2. POED-based EEFT schemes 

There are two reasons for the significant energy savings when a

ixed set of main and backup tasks are allocated to each proces-

or and scheduled under POED. First, the slack time on all proces-

ors can be efficiently exploited by their main tasks with the DVFS

echnique. Second, with the POED scheduler, most executions of

ackup tasks can be effectively cancelled at runtime as such exe-

utions are delayed as much as possible while the corresponding

ain tasks are executed (on another processor) at their earliest

imes. By generalizing these ideas, the major steps of the POED-

ased energy-efficient fault-tolerance (EEFT) schemes for multipro-

essor systems can be summarized in Algorithm 3 . 

lgorithm 3 Major steps of POED-based EEFT schemes. 

1: Input: task sets � and �B ; number of processors m ; 

2: Step 1: Allocate main tasks in � to m processors; 

3: Suppose the WFD partition is � = { �1 , . . . , �m 

} ; 
4: Step 2: Allocate backup tasks in �B to all processors; 

5: Suppose backup partition is �B = { �B 
1 
, . . . , �B 

m 

} ; 
6: Step 3: Calculate scaled frequencies for main tasks; 

7: for ( i : 1 → m ) do 

8: f i = min { F x | F x ≥ U(�i ) 

1 −U(�B 
i 
) 
, x = 1 , . . . , L } ; 

9: Assign f i to the main tasks in �i ; 

10: Assign f max = F L to the backup tasks in �B 
i 

; 

11: Step 4: Execute tasks on each processor under POED; 

12: for ( i : 1 → m ) do 

13: Assign ASAP preference to main tasks in �i ; 

14: Assign ALAP preference to backup tasks in �B 
i 

; 

15: Execute �i and �B 
i 

on P i under POED; 

The first step is to allocate main tasks in � (line 2). Without the

eed to dedicate processors for backup tasks, all processors in the

ystem are accessible to the main tasks. Again, we assume that the

FD heuristic is adopted to balance the workload of main tasks

mong the processors (line 3). 

After that, the second step is to allocate the backup tasks in
B to all processors (lines 4 and 5). Recall that, to tolerate a sin-

le permanent fault, a main task T i and its backup task B i have to

e allocated to different processors [33] . Following this principle,

e consider in this work two approaches when allocating backup

asks. 

Cyclic backup allocation: First, considering that the WFD par-

ition obtained in the first step has relatively balanced workload of

ain tasks among the processors, a simple approach is the Cyclic

llocation of the backup tasks. That is, for the main tasks allocated

o processor P i , the corresponding backup tasks will be mapped to

he next neighbor processor P i +1 and so on ( i = 1 , . . . , m − 1 ). For

he main tasks on the last processor P m 

, their backup tasks are al-

ocated to the first processor P 1 , forming a cyclic chain allocation

f backup tasks (and the scheme is denoted as POED-Cyclic ). 

The cyclic allocation is easy to implement and can simplify the

ommunication among processors at runtime when no permanent

ault occurs. Here, the backup task of a main task can always be

ound on its next neighbor processor and vice versa. However, once

 processor fails, the recovery steps can be quite complicated to re-

stablish such a cyclic allocation of backup tasks, which may re-

uire all tasks to be re-mapped among the remaining processors

nd have a rather long recovery window. 

Mixed backup allocation: To avoid such cyclic dependency be-

ween processors, the second approach is to scatter backup tasks

mong all processors. Specifically, by considering one processor P i 

 i = 1 , . . . , m ) at a time, the corresponding backup tasks of its main

asks are allocated to all other processors. Again, for the purpose of
oad-balancing, the WFD mapping heuristic is adopted. At the end,

ach processor will be allocated a completely mixed set of main

nd backup tasks and thus the scheme is denoted as POED-Mix . 

After backup tasks are allocated, each processor P i will have

 subset �i of main tasks and a subset �B 
i 

of backup tasks. Sup-

ose that, for every processor, its allocated main and backup tasks

re schedulable under POED. That is, we have U(�i ) + U(�B 
i 
) ≤ 1

 i = 1 , . . . , m ). As the third step, the spare capacity (i.e., static slack )

n the amount of ( 1 − U(�i ) − U(�B 
i 
) ) on each processor P i is ex-

loited and the scaled frequency for the main tasks on that pro-

essor is calculated accordingly (lines 7 and 8). Then, the scaled

requency and the maximum frequency are assigned to the main

nd backup tasks, respectively (lines 9 and 10). 

As mentioned previously, to cancel as much execution of

ackup tasks as possible at runtime, they should be delayed to

he maximum extent and are given the ALAP preference while the

ain tasks have the ASAP preference on each processor (lines 13

nd 14). Moreover, the inflated system utilization on each proces-

or, which takes the scaled frequencies of main tasks into con-

ideration, is ensured to be no more than 1. Therefore, after fre-

uency assignment for the (main and backup) tasks, they are guar-

nteed to be schedulable on each processor under POED (from

heorem 1 ). Hence, the last step is to execute the tasks on each

rocessor under POED, which is actually the online phase of the

OED-based schemes (line 15). 

Since backup tasks run at the maximum frequency, the system

eliability with respect to transient faults can be preserved (in the

bsence of permanent faults). Moreover, as both the POED-Cyclic

nd POED-Mix schemes schedule any main task and its backup

ask on different processors, they guarantee to tolerate a single

ermanent fault on any processor at runtime. 

. Evaluations and discussions 

In this section, we evaluate the performance of the proposed

S-based and POED-based EEFT schemes for multiprocessor sys-

ems through extensive simulations. For such purposes, we devel-

ped a discrete event simulator using C++. From our previous stud-

es [20,22] , it has been shown that the Standby-Sparing and the

OED-based schemes can preserve system reliability with respect

o transient faults by enforcing backup tasks run at the maximum

requency in addition to the guarantees of tolerating a single per-

anent fault. Since the schemes studied in this paper follow the

ame design principle for fault tolerance, the reliability goals (in

erms of tolerating both permanent and transient faults) can be

nsured as well. 

Therefore, in what follows, we focus on evaluating the energy

fficiency of the proposed schemes only. Specifically, we show their

ormalized energy consumption, where the one under the basic P-

S with DPM only (i.e., both primary and secondary processors op-

rate at the maximum frequency to execute tasks and sleep when

dle) is used as the baseline. 

Considering the fact that most modern processors have a few

requency levels [1,9] , we assume that there are seven frequency

evels, which are normalized as {0.4, 0.5, 0.6, 0, 7, 0.8, 0.9, 1.0} in

he evaluations. Moreover, for the parameters in the power model,

e assume that P ind = 0 . 01 , C e f = 1 and k = 3 , where similar pa-

ameters have been used in previous studies [22,52] . Moreover, we

onsider a system with up to 16 processors. 

The utilizations of tasks are generated according to the UUni-

ast scheme proposed in [7] , where the average task utilization is

et as u a v e = 0 . 1 and u a v e = 0 . 05 , respectively. For each task set,

e generate enough number of tasks so that the system utilization

eaches a given target value. That is, for a given system utilization

 , the average number of tasks in a set will be U 
u a v e . The periods

f tasks are uniformly distributed in the range of [10, 100] and the
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Fig. 3. The effects of XY-configuration in G-SS for a 16-CPU system under different loads; u a v e = 0 . 1 . 
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WCET of a task is set according to its utilization and period. Each

data point in the figures corresponds to the average result of 100

task sets. 

6.1. Energy-Efficiency of G-SS vs. P-SS 

First, we illustrate the variations in energy consumption under

different configurations of primary and secondary processors in the

G-SS scheme for a 16-processor system and compare them against

that of the P-SS scheme. Here, we assume that all tasks run at

their statically assigned frequencies and take their WCETs at run-

time. Note that, due to independent scheduling of tasks’ main and

backup copies under EDF and EDL, respectively, it is possible for

a task’s backup copy finishes earlier than its main copy in the SS

scheme [22] . Moreover, it is assumed that no fault occurs during

the execution of tasks and backup (main) copies of tasks are can-

celled under both schemes once their corresponding main (backup)

copies complete successfully. 

For a 16-processor system, the upper-bound of the total main

task system utilization schedulable under the proposed schemes

would be 8 (since the same processor capacity should be re-

served for backup tasks). For the cases of system utilization U =
3 . 0 , 4 . 0 , 5 . 0 and 6.0, Fig. 3 shows the results for the G-SS scheme

with varying numbers ( Y ) of secondary processors as well as that

of the P-SS scheme for comparison. Here, the average task utiliza-

tion is set as u a v e = 0 . 1 . 

Not surprisingly, for different processor configurations (i.e., as

the number of secondary processors varies) in the G-SS scheme,

the system energy efficiency can have rather large differences
from 30% to 45%). As illustrated in the example in Section 4.1 ,

or a given system utilization, the configuration of processors that

an lead to the best system energy efficiency normally has more

rimary processors (i.e., smaller values of Y ). On the other hand,

ince the backup copies of tasks have to be executed at the maxi-

um frequency for reliability preservation [22] , the spare capacity

n secondary processors is normally wasted, which leads to infe-

ior performance for G-SS when more processors are used as sec-

ndaries. 

From the results, we can also see that, with a judicious selec-

ion of the processor configurations (i.e., the values of X and Y ),

-SS can outperform P-SS with up to 7% more energy savings. In

he remaining evaluations, for any given task set, we assume that

he G-SS scheme always adopts the most energy-efficient processor

onfiguration. 

.2. Performance without slack reclamation 

Next, we evaluate the schemes that do not consider online slack

eclamation (which will be evaluated in the next section). In ad-

ition to the proposed SS- and POED-based schemes where the

caled frequencies are statically determined, for comparison, we

mplemented a modified SETS scheme [38] , which considers only

PM and runs all tasks at the maximum frequency. SETS saves

nergy by delaying the executions of backup tasks through itera-

ively calculated latest scheduling times of those tasks in the EDF

chedule [38] . Here, both cyclic and mixed mappings are consid-

red, which are denoted as SETS-Cyclic and SETS-Mix , respectively. 
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Fig. 4. Performance of the offline schemes in a 8-CPU system. 
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The results are shown in Fig. 4 , where tasks are assumed to

ake their WCETs and no fault occurs during the execution. Note

hat, SETS needs to consider all task instances within the LCM of

asks’ periods. To obtain the results in reasonable time, we con-

ider a 8-processor system and limit the LCM of task sets to be

2,0 0 0. Here, without considering the more effective DVFS tech-

ique, we can see that the SETS schemes perform almost the same

s the basic P-SS scheme, which deploys only DPM as well. How-

ver, by exploiting the DVFS technique, the SS- and POED-based

chemes can obtain significantly more energy savings than SETS

chemes. 

The results also show that, compared to P-SS, G-SS with the

ost energy-efficient configuration can always perform better un-

er different system utilizations. However, the performance differ-

nce between P-SS and G-SS diminishes at very low or high sys-

em utilizations. The reason is that, at low system utilizations (i.e.,

 ≤ 1), all main tasks can be executed at 0.4 (the lowest avail-

ble frequency) while most backup tasks can be cancelled under

oth schemes. At high system utilizations (e.g., U = 3 . 0 ), there is

nly one feasible configuration (i.e., X = 4 ) for the G-SS scheme,

hich makes G-SS to act exactly the same as P-SS due to the same

FD heuristic adopted when partitioning main and backup copies

f tasks. 

For the POED-based schemes, POED-Cyclic and POED-Mix have

ery close performance on energy savings even though they have

ifferent backup partitions. However, in most cases, POED-based

chemes can outperform P-SS and G-SS with up to 20% more en-

rgy savings. The reason is that, with mixed allocation of main and

ackup tasks on the processors, POED-based schemes can better

tilize the available slack to slow down main tasks and reduce the

verlapped execution with their corresponding backup tasks. 

When u a v e = 0 . 1 (i.e., relatively large tasks), Fig. 4 (a) shows that

OED-based scheme may perform worse compared to that of the

S-based schemes when system utilization is very low ( U ≤ 1.5).

his comes from the fewer number of available tasks, which cause

nbalanced partitions of tasks among the processors under the

OED-based schemes. For smaller tasks (i.e., u a v e = 0 . 05 ) where

here are more tasks for the same system utilization, Fig. 4 (b)

hows that the POED-based schemes perform no worse than the

S-based schemes. 

.3. Performance with online slack reclamation 

It is well-known that real-time tasks normally take only a small

raction of their WCETs at runtime [16] . In addition, most backup

asks will be cancelled at runtime as faults are rare events. Hence,

ignificant amount of dynamic slack can be expected, which should
e exploited to further scale down main tasks for more energy sav-

ngs. 

In this section, by varying the ratio of average over worst

ase execution times of tasks, we further evaluate the perfor-

ance of the SS-based and POED-based schemes with an on-

ine power management scheme based on the wrapper-task tech-

ique [48] . For comparison, we also implemented both ASSPT and

SSPT techniques [22] for the P-SS scheme, which are denoted as

P-SS-ASSPT” and “P-SS-CSSPT”, respectively. For the online scheme

ased on wrapper-tasks, it can be applied to the primary proces-

ors under both P-SS and G-SS, which are denoted as “P-SS-Wrap”

nd “G-SS-Wrap”, respectively. The POED-based schemes enhanced

ith the online wrapper-tasks based technique are further denoted

s “POED-C-Wrap” and “POED-M-Wrap”, respectively. 

Here, we consider 16 processors and set u a v e = 0 . 1 . To emu-

ate the dynamic execution behaviors of tasks, we use a system

ide average-to-worst case execution time ratio α. For each task

 i , its average-to-worst case execution time ratio αi is generated

andomly around α. Then, at run-time, the actual execution time

or each instance of task T i is randomly generated around αi · c i ,

here c i is task T i ’s WCET. Essentially, α indicates the amount of

ynamic slack that will be available at runtime where lower values

ndicate more slack. 

Fig. 5 show the performance of the schemes with varying α
average-to-worst case execution times of tasks) under various uti-

izations (i.e., U = 3 . 0 , 4 . 0 , 5 . 0 and 6.0, respectively). Again, when

he system utilization is low (i.e., U = 3 . 0 ), the main tasks can be

xecuted at the lowest frequency of 0.4 and most backup tasks are

ancelled, which leads to very close (within 6% difference) normal-

zed energy consumption for P-SS and G-SS with different online

echniques. 

For cases with α = 1 , there is no dynamic slack at run-time.

owever, due to the limitation of discrete frequencies, there will

e some spare capacity on each primary processor, which can be

xploited by the wrapper-task based schemes and some additional

nergy savings can be obtained when compared to that of AS-

PT and CSSPT. Therefore, with the limited benefits of online tech-

iques with α = 1 , G-SS outperforms P-SS slightly, which is con-

istent with the results in the last section. 

When the system utilization gets higher (i.e., U = 4 . 0 , 5 . 0 and

 = 6 . 0 ), we can see that the ASSPT technique can cause dramatic

erformance degradation for P-SS as the dynamic load of tasks

ncreases (i.e., with higher values of α). The results are in line

ith what have been reported in [22] . The reason comes from

he aggressive slack usage under the ASSPT technique, which ex-

cutes the main tasks at very low frequency at the beginning of
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Fig. 5. Performance of both SS-based and POED-based schemes with online slack reclamation under different system loads. 
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the schedule. Such scaled executions force remaining main tasks

to run at much higher frequencies and cause more overlapped ex-

ecutions with their backup tasks on the secondary processors. 

To address the above mentioned problem, based on the static

and dynamic loads of tasks, the CSSPT scheme statically deter-

mines a lower bound for the scaled frequency for executing tasks’

main copies when reclaiming slack at run-time [22] . With such a

scaled frequency bound, CSSPT can effectively prevent the aggres-

sive usage of slack time in the early part of the schedule. There-

fore, when compared to ASSPT, P-SS performs much better with

the CSSPT online technique, especially for tasks with higher dy-

namic loads. 

For the wrapper-task based online technique, we can see that

its performance is pretty stable under different dynamic loads of

tasks. Although it performs (slightly) worse than that of ASSPT

and CSSPT for the P-SS scheme at low dynamic loads (i.e., α ≤
0.5), its performance is very close to that of CSSPT at higher dy-

namic loads of tasks. However, different from CSSPT, the wrapper-

task based online technique does not requires the pre-knowledge

of tasks’ average-case workloads. 

Moreover, as a generic online technique, wrapper-tasks can also

be applied to the primary processors in the G-SS scheme, which

is shown to have a stable performance as well. Although the per-

formance gain of applying the wrapper-task technique on G-SS is

rather limited (within 5%) when compared to that of P-SS, we can

see that G-SS-Wrap always performs better than that of P-SS-CSSPT

at higher dynamic loads of tasks. 

With the POED-schemes, when the utilization is low, the main

tasks can be executed at the lowest frequency 0.4 and most backup

p  
asks can be cancelled. However, as before, due to the unbalanced

orkload distribution at very low system utilization (e.g., U = 3 . 0 ),

OED-based schemes can have slightly inferior performance com-

ared to SS-based schemes. 

Moreover, as system utilization increases (i.e., for the cases of

 = 4 . 0 , 5 . 0 and U = 6 . 0 ), both POED-Cyclic and POED-Mix with

rapper-task based online technique can achieve much better and

ore stable energy savings comparing with the SS-based schemes.

gain, this comes from the fact that with more workload in the

ystem, both POED-based schemes can utilize the available sys-

em resource (CPU time) more efficiently. Specifically, by mixing

he main and backup tasks on all processors, with the wrapper-

ask based online technique, all available (static and dynamic) slack

ime can be exploited to slow down the execution of main tasks

nd/or delay the execution of backup tasks, which results in much

educed overlapped executions (thus less energy consumption). 

. Conclusions 

In this paper, we study energy-efficient fault-tolerance (EEFT)

chemes for periodic tasks running on multiprocessor systems with

he objectives of tolerating a single permanent fault while pre-

erving system reliability with respect to transient faults. Based

n the idea of Standby-Sparing (SS) technique, we first propose

oth Paired-SS and Generalized-SS schemes. Then, based on the

reference-oriented earliest deadline (POED) scheduler, we study

wo POED-based schemes (i.e., POED-Cyclic and POED-Mix ). The

imulation results show that, for systems with a given number of

rocessors, there normally exists a processor configuration where
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he Generalized-SS scheme can have better energy savings com-

ared to that of the Paired-SS scheme. Both SS- and POED-based

chemes can obtain better energy savings compared the existing

ETS scheme. Moreover, the POED-based schemes generally outper-

orm the SS-based schemes in terms of energy savings, especially

or systems with modest to high system loads. 
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