Journal of Systems Architecture 78 (2017) 68-80

Contents lists available at ScienceDirect ~ EmBEDDED

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Exploiting primary/backup mechanism for energy efficiency in
dependable real-time systems

@ CrossMark

Yifeng Guo?, Dakai Zhu®*, Hakan Aydin® Jian-Jun Han¢, Laurence T. Yang¢

aDepartment of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA

b Department of Computer Science, George Mason University, Fairfax, VA 22030, USA

¢School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
d Department of Computer Science, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada

ARTICLE INFO ABSTRACT

Article history:

Received 17 December 2016
Revised 20 March 2017
Accepted 29 June 2017
Available online 30 June 2017

Primary/Backup has been well studied as an effective fault-tolerance technique. In this paper, with the ob-
jectives of tolerating a single permanent fault and maintaining system reliability with respect to transient
faults, we study dynamic-priority based energy-efficient fault-tolerance scheduling algorithms for periodic
real-time tasks running on multiprocessor systems by exploiting the primary/backup technique while
considering the negative effects of the widely deployed Dynamic Voltage and Frequency Scaling (DVFS) on
transient faults. Specifically, by separating primary and backup tasks on their dedicated processors, we
first devise two schemes based on the idea of Standby-Sparing (SS): For Paired-SS, processors are orga-
nized as groups of two (i.e., pairs) and the existing SS scheme is applied within each pair of processors
after partitioning tasks to the pairs. In Generalized-SS, processors are divided into two groups (of po-
tentially different sizes), which are denoted as primary and secondary processor groups, respectively. The
main (backup) tasks are scheduled on the primary (secondary) processor group under the partitioned-EDF
(partitioned-EDL) with DVFS (DPM) to save energy. Moreover, we propose schemes that allocate primary
and backup tasks in a mixed manner to better utilize system slack on all processors for more energy sav-
ings. On each processor, the Preference-Oriented Earliest Deadline (POED) scheduler is adopted to run pri-
mary tasks at scaled frequencies as soon as possible (ASAP) and backup tasks at the maximum frequency
as late as possible (ALAP) to save energy. Our empirical evaluations show that, for systems with a given
number of processors, there normally exists a configuration for Generalized-SS with different number of
processors in primary and backup groups, which leads to better energy savings when compared to that
of the Paired-SS scheme. Moreover, the POED-based schemes normally have more stable performance and
can achieve better energy savings.

Keywords:

Real-time systems
Multiprocessor
Fault tolerance
Primary/backup
Energy management
DVFS

DPM

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Fault tolerance has been a traditional research topic in real-
time systems as computing devices are subject to different types of
faults at runtime. In general, to tolerate various faults and guaran-
tee that real-time tasks can complete their executions successfully
on time, the existing fault tolerance techniques normally adopt dif-
ferent forms of redundancy. For instance, as a simple and well-
studied approach, hot-standby exploits hardware/modular redun-
dancy and runs two copies of the same task concurrently on two
processors to tolerate a single fault [33]. However, by their very
nature, such redundancy-based fault-tolerance techniques demand

* Corresponding author.
E-mail address: dakai.zhu@utsa.edu (D. Zhu).

http://dx.doi.org/10.1016/j.sysarc.2017.06.008
1383-7621/© 2017 Elsevier B.V. All rights reserved.

more system resources, which can lead to excessive energy con-
sumption (e.g., hot-standby has 100% energy overhead).

On the other hand, with the ever-increasing power density in
modern computing systems, energy has been promoted as a first-
class system resource and energy-aware computing has become an
important research area [24]. As a common energy saving tech-
nique, dynamic power management (DPM) can power down (or turn
off) components when they are not in use. Moreover, as a fine-
grained power management technique, dynamic voltage and fre-
quency scaling (DVFS) can operate computing systems at different
low-performance (and thus low-power) states when the perfor-
mance demand is not at the peak level by simultaneously scaling
down their supply voltage and processing frequency [35].

Although both redundancy-based fault tolerance [6,17] and
DPM/DVFS-based energy management schemes [35,52] have been
independently studied extensively, the co-management of system

http://dx.doi.org/10.1016/j.sysarc.2017.06.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2017.06.008&domain=pdf
mailto:dakai.zhu@utsa.edu
http://dx.doi.org/10.1016/j.sysarc.2017.06.008

Y. Guo et al./Journal of Systems Architecture 78 (2017) 68-80 69

reliability and energy consumption has caught researchers’ atten-
tion only very recently [14,31,38]. Note that, fault tolerance and
energy efficiency are normally conflicting design objectives in com-
puting systems since redundancy generally results in increased en-
ergy consumption [2]. Moreover, recent studies show that DVFS
has a negative effect on system reliability due to significantly in-
creased transient fault rates at low supply voltages [11,15,49]. With
this intriguing interplay between fault tolerance and energy effi-
ciency, it becomes imperative to develop effective techniques that
can address both dimensions while guaranteeing the timeliness of
real-time tasks.

By taking the negative effects of DVFS on transient fault rates
into consideration, a series of reliability-aware power-management
(RAPM) schemes have been studied for various real-time task mod-
els based on the backward recovery technique [13,19,29,34,45-48].
Basically, RAPM exploits system slack (i.e., temporal redundancy) for
both reliability preservation and energy savings. RAPM ensures to
schedule a recovery task before scaling down the processing fre-
quency of any task, using the remaining slack time. By executing
the recovery task at the maximum frequency, RAPM can achieve
a desired system reliability level even if the task with scaled fre-
quency incurs transient faults [29,45,48]. Although RAPM can guar-
antee system reliability with respect to transient faults (which
were shown to be more common [26]), it does not offer provisions
for tolerating permanent faults.

With the objective of tolerating a single permanent fault while
guaranteeing system reliability with respect to transient faults, the
Standby-Sparing (SS) schemes were recently studied for both ape-
riodic [12] and periodic tasks [22,23] running on a dual-processor
system based on the Primary/Backup (PB) fault-tolerance technique.
Essentially, the SS schemes schedule primary and backup tasks sep-
arately on the primary and secondary processors, respectively, to
tolerate one permanent fault. Note that, to improve system effi-
ciency and reduce execution overhead (thus to save energy), the
backup tasks are normally cancelled as soon as their corresponding
primary tasks complete successfully [6] and should be scheduled
as late as possible [38]. Hence, for energy-efficiency (and reliability
preservation), the SS schemes execute primary tasks early at scaled
frequency while backup tasks at the maximum frequency at their
latest times on their dedicated processors, respectively [12,22,23].
Although the SS schemes can effectively tolerate a single perma-
nent fault with some energy savings, the available slack time on
the secondary processor is not efficiently utilized with the adopted
DPM technique.

Instead of dedicating one processor for backup tasks, the pri-
mary and backup tasks can be allocated in a mixed manner on
both processors and all available slack time can be exploited by
the DVFS technique for better energy savings [20]. Here, each pro-
cessor is allocated a mixed set of primary and backup tasks where
primary tasks exploit the slack time and run at a scaled frequency
with DVFS. Moreover, the tasks are scheduled with the preference-
oriented earliest-deadline (POED) scheduler, which can differentiate
them and execute primary tasks as soon as possible (ASAP) while
backup tasks as late as possible (ALAP) [18], for better energy sav-
ings. The same idea of allocating tasks in a mixed manner has
been exploited in the Secondary Execution Time Shifting (SETS) of-
fline scheduling heuristic for saving energy while tolerating faults
for periodic tasks running on multiprocessor systems [38]. How-
ever, the aforementioned studies either focused on dual-processor
systems [12,20,22,23] or did not consider the more effective DVFS
power management technique [38].

To the best of our knowledge, there is no existing work that ad-
dress how to effectively schedule periodic real-time tasks in multi-
processor systems to save energy with both DPM/DVES techniques
while tolerating a single permanent fault and preserving system
reliability with respect to transient faults. By extending our pre-

liminary study [21], we focus on such a problem in this paper and
propose several energy-efficient fault-tolerance (EEFT) schemes. In
particular, the contributions of this work are summarized as fol-
lows:

« First, we study two Standby-Sparing (SS) based EEFT schemes:
Paired-SS organizes processors as groups of two (i.e., pairs) and
adopts the existing SS scheme [12]| for each processor pair;
Generalized-SS divides processors into primary and secondary
processor groups (of potentially different sizes) and then sched-
ules primary (backup) tasks on the primary (secondary) pro-
cessors under the partitioned-EDF (partitioned-EDL) with DVFS
(DPM) to save energy [21];

Second, by allocating primary and backup tasks in a mixed
manner on all processors to better utilize their slack time for
more energy savings, we propose two novel EEFT schemes
based on the POED scheduling algorithm; Here, once primary
tasks are partitioned to all processors (e.g., according to the
Worst-Fit-Decreasing heuristic), backup tasks can be allocated
to processors following either Cyclic or Mixed approach;

Finally, the proposed EEFT schemes are evaluated through ex-
tensive simulations and the results show their effectiveness on
energy savings.

The remainder of this paper is organized as follows.
Section 2 reviews the closely-related work. Section 3 presents
system models and states the assumptions of this work. The
Standby-Sparing based schemes are discussed in Section 4 and
the POED-based schemes are investigated in Section 5. The eval-
uation results are presented and discussed in Section 6 and
Section 7 concludes the paper.

2. Closely related work

Aiming at tolerating a given number of transient faults in a real-
time application, Melhem et al. [31] derived the optimal number
of checkpoints, uniformly or non-uniformly distributed, to achieve
the minimum energy consumption for a duplex system (where two
hardware units are used to run the same software concurrently for
fault detection) with the DVFS power management technique [31].
Assuming that transient faults follow a Poisson distribution with a
constant arrival rate, Zhang et al. studied an adaptive checkpoint-
ing scheme to tolerate a fixed number of transient faults during
the execution of a real-time task [42]. The adaptive checkpointing
scheme was extended to a set of periodic tasks on a single proces-
sor system with the EDF scheduler [44]. In [43], the authors fur-
ther considered the cases where faults may occur within check-
points. Following a similar idea and considering a fixed-priority
RMS algorithm, Wei et al. studied an efficient online scheme to
minimize energy consumption by considering the run-time behav-
iors of tasks and fault occurrences while satisfying tasks’ timing
constraints [39]. In [40], the authors extended the study to multi-
processor real-time systems.

Elnozahy et al. studied an Optimistic-TMR (OTMR) scheme to
reduce the energy consumption in a Triple Modular Redundancy
(TMR) system in [14]. OTMR allows one processing unit to run at
a scaled frequency with DVFS provided that it can catch up and
finish the computation before the deadline if a fault does occur
on other two units. The optimal frequency settings for OTMR was
explored in [50]. For independent service requests, Zhu et al. stud-
ied the optimal redundant configuration for server processors to
tolerate a given number of transient faults [51]. Izosimov et al.
[27] studied an optimization problem for mapping a set of tasks
with reliability constraints, timing constraints and precedence rela-
tions to processors for determining the appropriate fault tolerance
policy (re-execution or replication) for the tasks [27].

70 Y. Guo et al./Journal of Systems Architecture 78 (2017) 68-80

However, despite the effectiveness of DVFS on reducing energy
consumption, recent studies showed that it has a negative effect
on system reliability due to the significantly increased transient
fault rates at low supply voltages [15]. In particular, an exponential
fault rate model with scaled voltage was proposed in [49]. Tak-
ing such negative effects of DVFS into consideration, Zhu studied
a Reliability-Aware Power Management (RAPM) scheme that sched-
ule a recovery task before exploiting the remaining slack time to
scale down the execution of the primary task [47]. Here, to pre-
serve system reliability with respect to transient faults, the recov-
ery task is executed at the maximum frequency only if transient
faults cause an error during the primary task’s execution. Later, the
RAPM scheme was extended for periodic real-time tasks [48].

To address the conservativeness of RAPM that schedules an in-
dividual recovery task for each task running at scaled frequency,
Zhao et al. [46] studied the Shared-Recovery (SHR) technique [46],
where several scaled tasks can share a recovery task to leave
more slack for DVFS and save more energy. To achieve an arbi-
trary system-level target reliability, SHR has been further extended
to the generalized shared recovery (GSHR) where a small number
of recovery tasks are shared by all the tasks [45]. A similar study
was also reported recently in [29]. Global scheduling based RAPM
schemes for both independent [34] and dependent [19] real-time
tasks running on multiprocessor systems were studied as well.

Moreover, based on the exponential fault rate model developed
in [49], Ejlali et al. [13] studied a number of schemes that combine
the information about hardware resources and temporal redun-
dancy to save energy and to preserve system reliability [13]. Con-
sidering dependent tasks represented by directed acyclic graphs
(DAGs), Pop et al. proposed a novel framework by studying the
energy and reliability trade-offs for distributed heterogeneous em-
bedded systems [32]. By employing a feedback controller to track
the overall miss ratio of tasks in soft real-time systems, Sridha-
ran et al. [36] proposed a reliability-aware energy management al-
gorithm to minimize the system energy consumption while still
preserving the overall system reliability. Dabiri et al. [10] studied
the problem of assigning frequency and supply voltage to tasks for
energy minimization subject to reliability as well as timing con-
straints [10]. For a real-time application running a dual-processor
system, Aminzadeh and Ejlali [2] performed a comparative study
of different DVFS and DPM schemes to tolerate a given number of
transient faults [2]. Although the above work can preserve system
reliability with respect to transient faults, there is no provision for
permanent faults.

Based on the primary/backup technique, Bertossi et al. [6] stud-
ied several fixed-priority RMS scheduling algorithms for periodic
real-time tasks to tolerate a given number of permanent faults [6],
where the goal is to improve system resource utilization through
backup deallocation. In [5], the authors further proposed the backup
phasing delay technique to reduce the overlapped executions be-
tween the primary and backup tasks. However, these work did not
consider energy management. Based on the EDF scheduling, Unsal
et al. studied an offline Secondary Execution Time Shifting (SETS)
heuristic for a set of independent periodic real-time tasks running
on multiprocessor systems [38]. Here, to obtain an energy-efficient
static schedule within the least common multiple (LCM) of tasks’
periods, SETS iteratively delays the release time of backup tasks
to reduce the overlapped executions with their corresponding pri-
mary tasks and thus to reduce system energy consumption, but
without exploiting the more effective DVFS technique.

To tolerate a single permanent fault while taking transient
faults into consideration, Ejlali et al. [12] investigated a Standby-
Sparing (SS) scheme to save energy for dependent and aperiodic
real-time tasks running on a dual-processor system [12]. SS exe-
cutes primary tasks with DVFS on one processor (denoted as the
primary processor) at their earliest times while backup tasks with

DPM on another (spare) processor at their latest times to reduce
their overlapped executions and thus to save more energy. The
work was extended later with a light-weight feedback system for
better energy savings [37]. With the same idea of separating tasks
on the two processors, Haque et al. extended standby-sparing to a
more practical periodic task model based on the earliest deadline
schedulers [22], where primary and backup tasks are scheduled ac-
cording to EDF with DVFS and EDL [8] with DPM on their ded-
icated processors, respectively, to save energy. The fixed-priority
based standby-sparing scheme was further studied in [23]. More
recently, for multicore systems with energy harvesting, Xiang and
Pasricha [41] proposed a hybrid design-time/run-time framework
for resource allocation that takes into consideration of variations
in solar radiance and execution time, transient faults, and perma-
nent faults due to aging effects [41].

Observing the inefficient usage of slack time with DPM on the
spare processor, we proposed to schedule a mixed set of primary
and backup copies of different tasks on both processors [20]. Based
on the Preference-Oriented Earliest Deadline (POED) scheduling algo-
rithm [18], all available slack time on both processors can be uti-
lized to scale down primary tasks with DVFS for better energy sav-
ings.

In this paper, we focus on the problem of how to effec-
tively schedule periodic real-time tasks on a multiprocessor sys-
tem to save energy with both DPM/DVES techniques while toler-
ating a single permanent fault and preserving system reliability
with respect to transient faults, which is different from all existing
work. Specifically, we generalize Standby-Sparing and POED-based
schemes to the settings with multiprocessor systems.

3. Preliminaries and system models
3.1. System, task and power models

We consider a homogeneous m-processor shared-memory sys-
tem. As power management features are common in modern pro-
cessors [1,9], we assume that all processors adopted in the sys-
tem have the dynamic voltage and frequency scaling (DVFS) ca-
pability, which allows them to operate at one of L discrete fre-
quency (and voltage) levels (F; <E < ... < F). We consider nor-
malized frequencies and assume that the maximum frequency is

FmaX —F =1.0.
The system has a set of n periodic real-time tasks I' =
{1y, ..., T,}, where each task T; is represented as a tuple (c; p;).

Here ¢; is T;’s worst-case execution time (WCET) under the maxi-
mum available processor frequency F™ and, p; is its period. The
tasks are assumed to have implicit deadlines. That is, the jth task
instance (or job) of T;, denoted as T; ;, arrives at time (j—1)- p;
and needs to complete its execution by its deadline at j - p;. Note
that, a task has only one active task instance at any time. Hence,
when there is no ambiguity, we use T; to represent both the task
and its current task instance. The utilization of a task T; is defined
as u; = I% The system utilization of a given task set is further de-
fined as the summation of all tasks’ utilization: U(T") = > r..r ;.
The tasks are assumed to be independent and share no resource
other than the processors. Moreover, we do not consider the effects
of memory access on tasks’ execution time, which is assumed to
scale linearly with the operation frequency of its processor. That is,
if task T;'s processor operates at frequency Fj, the WCET of T; will
be ﬁ—”{ It is possible to model the memory effects with a frequency-

independent portion in the execution time [3]. However, it is be-
yond the scope of this paper and exploring this direction will be
left for our future work.

With the shrinking technology size, the static and leakage
power increases in a faster pace when compared to that of dy-
namic power [28]. Hence, it becomes more important to manage

Y. Guo et al./Journal of Systems Architecture 78 (2017) 68-80 71

power consumption at the system-level with all power consum-
ing components being considered [3,25]. Although more precise
power models at micro-architecture level have been studied [2,30],
we adopt in this work a simple system-level power model to sim-
plify the analysis and discussions, which has also been widely ex-
ploited in recent studies [29,34,48]. Specifically, for a system with
m processors (that operate at fi,..., fm, respectively), its power
consumption can be expressed as:

m
P(fi,.... fm) =P+ > 1i(Pa + Ces - f) (1)
i=1

where Ps stands for system static power, which can be removed
only by powering off the whole system. However, due to the pro-
hibitive overhead of turning off and on the system [14] in peri-
odic real-time execution settings, we assume that the system is in
on state at all times and that Ps is always consumed. That is, we
will focus on the energy consumption related to the system active
power, which is given by the second item in the above equation.

On each processor, if it is actively executing tasks, two com-
ponents of active power are consumed: the frequency-independent
active power Pj,4 (which is assumed to be the same for all proces-
sors) and the frequency-dependent active power (which depends
on the system-dependent constants C, and k, as well as the pro-
cessor’s frequency f;). That is, if the ith processor is active, we have
h; = 1. Otherwise, if there is no ready task on the ith processor, it
can switch to the sleep state through the dynamic power manage-
ment (DPM) and does not consume any active power (i.e., ii; = 0).

Considering the fact that modern processors can switch to sleep
states in a few cycles [1,9], we assume that the time overhead for
a processor to enter/exit its sleep state is negligible. Moreover, to
simplify the discussion, the overhead for frequency (and voltage)
changes under DVFS is also assumed to be included into tasks’
WCETs or can be incorporated with the slack reservation mecha-
nism [48].

From the above system-level power model, an energy-efficient

frequency, Fee = ¥/ & fﬁ'}({ 7y can be derived, below which DVFS con-
e

sumes more energy to execute a task [34]. In what follows, we
assume that all available frequency levels are energy-efficient and
hence, Fee < F; holds.

3.2. Fault and recovery models

During the operation of a real-time system, different faults may
occur due to hardware failure, software errors or electromagnetic
interference. While transient faults can be tolerated with temporal
redundancy, permanent faults can only be tolerated through modu-
lar/hardware redundancy. With the scaled technology size [15] and
widely-adopted DVFS technique, modern computing devices are
more susceptible to transient faults [11]. In particular, as supply
voltage is reduced with DVFS to save energy, the rate of tran-
sient faults may increase exponentially [49]. Moreover, although
the occurrence of permanent faults is very rare, a comprehensive
framework should have provisions for both transient and perma-
nent faults in a safety-critical multiprocessor real-time system.

With the objective of tolerating both transient and permanent
faults, we adopt the Primary/Backup (PB) fault-tolerance technique
in this work. That is, for each task T;, there is a periodic backup
task B;. To distinguish between them, we occasionally use the term
primary (or main) task to refer to T;. To ensure that there is a
proper backup for every task instance of T;, we assume that B; has
the same timing parameters' (i.e., ¢; and p;) as T;. Hence, in addi-

T Note that, as long as B;'s WCET is no more than that of T; (i.e., B; can be either
a reduced version or the replication of T;), the proposed schemes can guarantee
system reliability with respect to transient faults [12,29,48].

tion to the original primary task set I', we have a set I'B of backup
tasks that have to be properly scheduled.

As in most existing fault tolerance work, we assume that fault
detection mechanisms are available in the system and the detec-
tion overhead has been incorporated into the WCETs of tasks [2].
Specifically, the soft errors caused by transient faults are detected
at the end of a task’s execution through the sanity (or consistency)
checks (e.g., parity or signature checks) [33]. For permanent faults,
we assume the failure-stop model and a faulty processor can be
detected by other working ones at the earliest completion time of
a task [33].

Problem description: On a multiprocessor system where both
DVES and DPM techniques are available for energy management,
how one should efficiently schedule the main and backup tasks to
maximize the energy savings under the constraints of (a) tolerating
a single permanent fault; and (b) preserving system reliability with
respect to transient faults (in the absence of permanent faults).

The backup tasks adopted in this work have dual purposes.
First, with one backup for each main task, the system is inher-
ently robust to a single permanent fault provided that the main
and backup copies of the same task are scheduled on different pro-
cessors [6]. The second objective of having backup tasks is, in the
absence of permanent faults, to preserve system reliability? with
respect to transient faults when the execution of primary tasks
is scaled down with DVFS to save energy. Therefore, by consid-
ering the negative effects of DVFS on transient fault rates [49],
backup tasks are assumed to be executed at the maximum fre-
quency [12,48].

4. Standby-Sparing for multiprocessor
4.1. An example with a three-processor system

When there are more (i.e. > 2) processors in a system, a nat-
ural question to ask would be: “how to configure such processors
for better energy efficiency?” We can either have additional primary
processors to execute main tasks at further reduced frequencies or
have more secondary processors to further delay the execution of
backup tasks. Clearly, this is not a trivial problem considering the
intriguing interplay between the scaled frequency of main tasks
and the amount of overlapped execution with their backup tasks.

Before presenting the solution for the general problem for mul-
tiprocessor systems, we first investigate the simple case of a three-
processor system. Here, we have two options for the configuration
of the processors: (a) one primary and two secondary processors
(denoted as “X1Y2"); and (b) two primary and one secondary pro-
cessor (denoted as “X2Y1").

A motivational example: Consider a task set with three peri-
odic real-time tasks I' = {T; (1, 5), T, (2, 6), T3(4, 15)}. We can eas-
ily find that the system utilization is U = 0.8 and the least common
multiple (LCM) of tasks’ periods is LCM = 30. Suppose that the pro-
cessors have four discrete (normalized) frequency levels {0.4, 0.6,
0.8, 1.0}.

Fig. 1(a) first shows the tasks’ schedule on a dual-processor
system with the Standby-Sparing technique within LCM [22]. The
primary processor executes the main tasks under Earliest Dead-
line First (EDF) at a scaled frequency of 0.8 while the secondary
processor schedules the backup tasks with Earliest Deadline Lat-
est (EDL) [8] policy for energy savings. By assuming P,,4 = 0.01,
Ces =1 and k=3 in the power model, we can find the active en-
ergy consumption within LCM is Egs_gpyy = 27.2 when all tasks take
their WCETs and there is no fault at run-time. The executions of

2 Higher levels of system reliability can be achieved with additional replicated
copies of tasks [29,45]. However, exploring this direction is beyond the scope of
this paper and will be investigated in our future work.

72 Y. Guo et al./Journal of Systems Architecture 78 (2017) 68-80

LT T YT, T It InT, T, T, T VT, LCM
PL| T, T, ‘ Tyl T2 T, ‘ T, TI,S‘ T, ‘ T T4 h‘s T4 ‘ Tis T, | Ts| Ts| Ts M

T, T,T,!2 375 T szs 25 875 T, 1125 ¥T, 13.75 VT‘IT3 1625 175 \T, YT205 2175 T, YT, 2625 2775
P2

01 2 3 4 5 6 7 8 9 10 11 12 13"4 15 16°¥17 18 19 20 21 22 23 24 25 26 277738 29 30

a. The schedule of the tasks under the Standby-Sparing on a dual-processor system with primary frequency at 0.8 [22];

TLT T YT, T I ItT, Rt T, YT, LM
PI| Tj, T, ‘ T,| T ‘ T, T,| Ts T, ‘ Ts ‘ T4 hz T Tis T, Ts| Tis| Ts TsN

T, 1% 375 v'[zﬁ 25 875 11.25 sz 13.75 1625 175 YT, 205 2175 T, 2625 2775
& o =

T Ty Ty T, VT‘[T3 16.25 *Tl YT
. I M w I o w D

0 1 2 3 4 5 6 7 8 9 10 11 12 13%P4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

b. The schedule of the tasks for the case of one primary processor (frequency at 0.8) with two secondary processors;

T, T, T, T, T, LCM
Pl T, T, ‘ T ‘ T4 ‘ Ts ‘

T, T, T, T, T,T, T, T,
P2 T, T, T, T, Tis T ‘ T, Tis ‘ T, Tie

T T,T, 167 T sz 6.67 T 11L67YT, T, T, 1667 YT, T 2167 YT, VT, 26.67
P3

0 1 2 3 4 5 6 7 8 9 10 Il 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

c. The schedule of the tasks for the case of two primary processors (frequencies at 0.4 and 0.6) with one secondary processor;

Fig. 1. A set of three tasks T(1, 5), To(2, 6) and T3(4, 15) running on a three-processor system.

most backup tasks are cancelled, which are marked with an ‘X’ in
the figure.

For the X1Y2 configuration of a three-processor system, where
the extra processor is used as an additional secondary, the sched-
ule of tasks is shown in Fig. 1(b) The primary processor Py still
runs at the frequency 0.8 to execute the main tasks. However,
backup tasks can be re-allocated, where backup task B, is allo-
cated to processor P, and B; and Bs; to processor Ps, to further
delay and reduce their overlapped executions. It turns out that, al-
though the overlapped executions can be reduced slightly, the ad-
ditional energy consumption from the frequency-independent ac-
tive power (i.e., P,4) of the extra processor overshadows such ben-
efits and leads to the total active energy consumption of Exjy; =
27.45, which is slightly more than that of the traditional Standby-
Sparing scheme for the dual-processor system.

However, when the extra processor is utilized as an additional
primary processor, Fig. 1c shows the schedule with the X2Y1 con-
figuration. Here, the main task T, is allocated to processor P; and
other two tasks (T; and T3) to P,, which can run at the scaled fre-
quencies of 0.4 and 0.6, respectively. The total active energy con-
sumption under this configuration can be found as Expy; = 23.37.
Compared to that of the dual-processor system with the traditional
Standby-Sparing scheme, this gives a 14% improvement.

4.2. Standby-Sparing based schemes

From the above example, we can see that different config-
urations of primary and secondary processors can have impor-
tant effects on the energy efficiency of a multiprocessor system.
Following the principles and extending the ideas of the tradi-
tional Standby-Sparing scheme [22], we propose in what follows
the Paired Standby-Sparing (Section 4.2.1) and Generalized Standby-
Sparing (Section 4.2.2) schemes for periodic real-time tasks run-
ning on multiprocessor systems.

4.2.1. Paired Standby-Sparing (P-SS)

Considering the fact that the traditional Standby-Sparing
scheme was designed for dual-processor systems, a simple and
straightforward approach is to first organize the processors in a
system as groups of two (i.e., pairs). Then, the existing Standby-
Sparing scheme can be applied directly to each pair of processors
after partitioning (main and backup) tasks to the processor pairs
appropriately, which is thus named as the Paired Standby-Sparing
(P-SS) scheme.

From the results in [22], we know that different system uti-
lizations of tasks have a great impact on the energy efficiency of
a dual-processor system under the Standby-Sparing scheme. The
reason is that, both the scaled frequency for the main tasks on the
primary processor and the delayed execution of backup tasks on
the secondary processor depend heavily on system loads. When
the system utilization of a given task set is high, the Standby-
Sparing scheme could perform quite poorly due to higher execu-
tion frequency for main tasks and the increased amount of over-
lapped execution between the main and backup tasks. On the
other hand, once the scaled execution frequency of the main tasks
reduces to the minimum (available) energy-efficient frequency, ad-
ditional energy savings are rather limited with further reduced sys-
tem loads [22].

Therefore, the key factor for the energy efficiency of a multipro-
cessor system under P-SS will be the mapping of tasks to processor
pairs. However, it is well-known that the problem of finding a fea-
sible mapping of a given set of periodic real-time tasks in a mul-
tiprocessor system is NP-hard. Therefore, finding the optimal map-
ping of (main and backup) tasks among the processor pairs in P-SS
to minimize the system energy consumption is NP-hard as well.
Note that, without the consideration of fault tolerance, a balanced
workload distribution has been shown to have the best energy ef-
ficiency for tasks running on a multiprocessor system [4]. Hence,
following this intuition and considering its inherent ability to ob-
tain a load-balanced mapping, we adopt the Worst-Fit Decreasing
(WFD) heuristic in P-SS when mapping (main and backup) tasks to
the processor pairs.

Y. Guo et al./Journal of Systems Architecture 78 (2017) 68-80 73

Note that, to apply the traditional Standby-Sparing within each
processor pair, the main and backup of the same task (e.g., T; and
B;) have to be mapped to the same pair of processors. Therefore, in
P-SS, we can first map the main tasks in I" to the processor pairs
according to the WFD heuristic. That is, each processor pair will
be allocated a subset I'q of the main tasks, where 1 <q < [T] as
there are at most | 5] processor pairs for a system with m pro-
cessors. Then, for each backup task B;, it will be allocated to the
processor pair that contains the corresponding main task T;,

With the Standby-Sparing scheme being adopted within each
processor pair, the main and backup tasks are scheduled under
EDF and EDL on the primary and secondary processors, respec-
tively [22]. Recall that backup tasks have the same timing param-
eters (i.e., utilizations) as their main tasks. Therefore, the resulting
WEFD mapping {I'q} (and corresponding {Fg}) is feasible if there
are UTg) <1 (1=<q=[%]).

Once the feasible WFD mapping is obtained, the processor pairs
under P-SS will operate independently. Although each processor
pair acting as a Standby-Sparing system can tolerate one perma-
nent fault [22], it is possible for multiple permanent faults hit
both processors in one pair. Hence, with each task having one
backup, P-SS can only tolerate a single permanent fault in the
worst case scenario. However, once the processor affected by per-
manent fault(s) is identified, additional permanent faults could be
tolerated by re-configuring the remaining (m — 1) processors and
re-map the tasks.

4.2.2. Generalized Standby-Sparing (G-SS)

From the example system with three processors (Section 4.1),
we have seen that having two primary processors to execute the
main tasks while sharing one secondary processor among the
backup tasks can lead to better energy efficiency. Following this
principle and generalizing the idea of Standby-Sparing, we propose
the Generalized Standby-Sparing (G-SS) scheme, which organizes the
m processors of the system into two groups: the primary group
of X processors and the secondary group of Y processors, where
m =X +Y. Then, the main and backup tasks are separately sched-
uled on the processors in the primary and secondary groups, re-
spectively.

Considering the fact that the EDF/EDL schedulers are exploited
in the P-SS scheme and the simplicity of partitioned schedul-
ing, we adopt the partitioned-EDF and partitioned-EDL for G-SS
to schedule the main and backup tasks, respectively. Hence, for a
given (X, Y)-configuration of the processors, Algorithm 1 summa-
rizes the major steps of G-SS.

Algorithm 1 G-SS for a given (X, Y)-configuration.

1: Input: task sets I and I'?; X and Y(=m - X);

: OQutput: Scaled frequencies for primary processors and EDL
schedules for secondary processors;

3: Find the (X,Y) WFD partitions of I" and I'B:

4 TI(X) ={I'y,--- . Tx} and TIB(Y) ={I'8, ... T}

5:if (Vi,U(T') <1 and Vj, U(Ff) < 1) then

6: [/Suppose the first X processors are primary processors

7

8

9

N

for (each primary processor Py: x =1 — X) do
fx=min{E|F, >U(x),i=1,...,L};

. end for
10: for (each secondary processor Py: y=1—Y) do
11: Generate the offline EDL schedule for tasks in FJ‘f ;
122 end for
13: end if

First, the main and backup tasks are partitioned among the X
primary and Y secondary processors, respectively (lines 3 and 4).
Again, to obtain the mappings with balanced-workload for better

energy savings, the WFD heuristic is adopted [4]. Then, the schedu-
labilities of the resulting WFD mappings for both the main and
backup tasks under the EDF and EDL schedulers on the primary
and secondary processors, respectively, are examined (line 5).

If any processor is overloaded with the resulting mappings IT(X)
and TT1B(Y), we say that the (X, Y)-configuration is not feasible. Oth-
erwise, to save energy, the scaled frequency for each primary pro-
cessor to execute its main tasks is determined (lines 7 and 8); in
addition, assuming that backup tasks run at the maximum fre-
quency, the EDL schedule for each secondary processor is gener-
ated offline (lines 10 and 11).

Since all backup tasks run on processors that are different from
their corresponding main tasks, G-SS is able to tolerate a single
permanent fault. Moreover, the system reliability with respect to
transient faults can also be preserved since all backup tasks are
assumed to run at FM3_ Note that, as in the traditional Standby-
Sparing scheme [22], if a main (or backup) task completes suc-
cessfully on one processor at runtime, the related processor will
be notified to cancel the execution of the corresponding backup
(or main) task for energy savings.

It is clear that different configurations of the processors in G-SS
have a great impact on the energy efficiency of a multiprocessor
system. For the special case with the same number of primary and
secondary processors (i.e.,, X = Y), we can find that G-SS will be ef-
fectively reduced to P-SS since they adopt the same WFD mapping
heuristic and the backup tasks have the same timing parameters
as their corresponding main tasks. However, for the configurations
that have different numbers of primary and secondary processors
(i.e., X #Y), it is very likely that the backup tasks will be mapped
to different secondary processors in G-SS even if their main tasks
are mapped to the same primary processor. Due to such implica-
tions, it is quite difficult to identify the overlapped execution re-
gions between the main and backup tasks in the EDF and EDL
schedules on different processors, which makes it almost impos-
sible to find the optimal configuration of processors for G-SS to
minimize energy consumption analytically.

Energy-efficient configuration: For a given task set I' running
on a m-processor system, the major steps for an iterative algo-
rithm to find out the energy-efficient processor configuration for
G-SS to minimize the system energy consumption are shown in
Algorithm 2. Note that, with the system utilization of U(I") for a
task set I', the minimum number of required primary processors
for the tasks to be schedulable under partitioned-EDF can be ob-
tained as X™iM = [U(I")]. X™" also gives the minimum number of
required secondary processors. Thus, the maximum number of pri-
mary processors can be found as XM = m — X™Min (Jine 3).

Algorithm 2 Find the energy-efficient configuration for G-SS.

1: Input: task sets I" and I'B; m (number of processors);

: Output: the energy-efficient processor configuration (i.e., X°P)
for G-SS to minimize energy consumption;

3. xmin _ [UT)]; XmaX = m 7xmin;

4; EMin — oo; XOPt — _1; /[initialization

5: for (X = Xmin _, xmaxy do

6: Y =m-X; [[number of secondary processors

7

8

9

N

if (I" is schedulable under G-SS with X/Y) then
Get Eg_gs(X,Y) from emulation in LCM;
if (Emin > E- o(X,Y)) then

10: Xort =X;
11: end if

122 end if

13: end for

For each possible (X, Y)-configuration of the processors, the
schedulability of the given task set I' under G-SS can be checked

74 Y. Guo et al./Journal of Systems Architecture 78 (2017) 68-80

T, ILCM
{1, T} : ;
l l T ‘ T, ‘ T, [T, N
{Bl B} 1 B, 2
0 25 4 5 7 9 10

a. Schedule for the Standby-Sparing scheme [22]
T, ILCM

{TI’BZ}” - B, = %
>< LTI | [L)
I
T,,B e 1 o
(B,) (1. B - . -

0 4 5 9 10

b. Schedule for mixed allocations of Primary/Backup

Fig. 2. An example of two tasks T; = (1,5) and T, = (2,10) running on a dual-
processor system.

using Algorithm 1 (lines 5-7). If " is schedulable, the system en-
ergy consumption under G-SS can be obtained from the emulated
execution of the tasks within LCM (line 8). During such emulations,
we assume that tasks take their WCETs and no fault occurs. Finally,
searching through all feasible configurations of the processors, the
most energy-efficient (X°P!, Y°P!)-configuration with the lowest sys-
tem energy consumption can be found out (lines 9 and 10). As
shown in Section 6.1, such a configuration for G-SS normally has
more primary processors and can lead to better energy efficiency
when compared to that of the P-SS scheme.

5. Mixing primary/backup tasks

The separation of main and backup tasks on their dedicated
processors simplifies the scheduling algorithm on each processor
for the SS-based schemes. However, since backup tasks need to run
at the maximum frequency for reliability preservation, the avail-
able slack time on secondary processors can only be used to idle
processors with the DPM technique to save energy. As illustrated
in the following example of a dual-processor system, better energy
savings can be obtained if the main and backup tasks are allocated
in a mixed manner on both processors [20], which can more effi-
ciently utilize all available slack time with the DVFS technique.

5.1. Inefficient slack usage in Standby-Sparing

Consider a dual-processor system with two periodic tasks T; =
(1,5) and T, = (2, 10). The schedule within the LCM of tasks’ peri-
ods under the Standby-Sparing scheme is shown in Fig. 2(a) Here,
the main tasks T; and T, are executed at the scaled frequency of
0.4 on the primary processor under EDF, while the backup tasks B,
and B, are scheduled on the secondary processor under EDL [22].
Clearly, as B; and B, are required to run at the maximum fre-
quency for reliability preservation, the slack time on the secondary
processor can only be exploited by DPM to idle the processor.

However, it is well-known that slack time can be more effi-
ciently utilized by the DVFS technique [35,52]. Therefore, instead
of dedicating one processor for backup tasks, we can allocate the
main and backup tasks to both processors in a mixed manner as
shown in Fig. 2b. Here, T; and B, are allocated to the first proces-
sor while T, and B; to the second processor. Hence, each processor
can utilize its slack time for its main task. It turns out that, with
DVFS, both T; and T, can be executed at the scaled frequency of
0.25.

Suppose that tasks take their WCETs and no fault occurs dur-
ing tasks’ executions. When tasks are executed according to the
schedule within the LCM as shown in Fig. 2(b), most executions
of backup tasks will be cancelled (marked with 'X’). Hence, when
compared to the case of the Standby-Sparing schedule in Fig. 2(a),
about 20% more energy savings can be obtained under the new
scheme with mixed allocations of main and backup tasks on both
processors.

However, we should point out that it is not trivial to obtain
such a schedule as in Fig. 2(b), which is neither an EDF nor EDL
schedule. From the figure, we can see that, to obtain more en-
ergy savings, the main tasks on each processor are executed at
their earliest times while the backup tasks are delayed as much
as possible (without causing any deadline miss). To efficiently gen-
erate such schedules, in what follows, we first review the basic
ideas of the preference-oriented earliest deadline (POED) scheduling
algorithm [18], which forms the foundation of the novel energy-
efficient fault-tolerance schemes with mixed allocations of main
and backup tasks.

5.1.1. A preference-oriented scheduling algorithm

Basically, POED is a dynamic-priority based scheduler for peri-
odic real-time tasks running on a single processor system. How-
ever, as opposed to the conventional earliest-deadline schedulers,
such as EDF and EDL [8] (which treat all tasks uniformly and
schedule them at their earliest and latest times, respectively),
POED can distinguish different execution preferences of tasks,
which can be either as soon as possible (ASAP) or as late as possible
(ALAP) [18].

To incorporate such execution preferences of tasks, POED fol-
lows two principles when making scheduling decisions [18]. First,
even if an ASAP task has a later deadline than that of an ALAP
task, the ASAP task should be executed before the ALAP task if it
is possible to do so without causing any deadline miss. Second,
the execution of ALAP tasks should be delayed as much as possi-
ble given that it does not cause any deadline miss for both current
and future tasks.

Given these two principles, at any scheduling event (such as
the arrival or completion of a task, or a timer interrupt), the ba-
sic steps of the POED scheduler can be summarized as follows. For
cases where the ready task with the highest priority (i.e., earliest
deadline) has ASAP preference, POED will execute the task nor-
mally as in EDF. However, in case an ALAP task has the earliest
deadline, POED will focus on a look-ahead interval from the invoca-
tion time to the earliest deadline of an ASAP task. All (current and
future arrival) tasks within this interval will be considered to see
whether it is safe to delay the ALAP task’s execution and if yes, for
how long can it be delayed. We have shown that POED can guar-
antee to meet all tasks’ deadlines when scheduling them according
to their preferences. In particular, we have the following theorem
regarding to the schedulability of a task set under POED. Interested
readers can refer to [18] for the detailed analysis.

Theorem 1 (POED Schedulability [18]). For a set " of periodic tasks
with either ASAP or ALAP preferences, no task will miss its deadline
under POED if U(T") < 1.

Therefore, with the POED scheduler, the main tasks (i.e., T; and
T,) in the above example will have ASAP preference while the
backup tasks (i.e., By and B;) have ALAP preference on their re-
spective processors. Moreover, when the scaled frequency for the
main tasks is 0.25, the inflated system utilization is exactly 1 on
both processors. Hence, from Theorem 1, the mixed sets of main
and backup tasks on both processors can be successfully scheduled
under POED, which results in the schedule as shown in Fig. 2(b).

Y. Guo et al./Journal of Systems Architecture 78 (2017) 68-80 75

5.2. POED-based EEFT schemes

There are two reasons for the significant energy savings when a
mixed set of main and backup tasks are allocated to each proces-
sor and scheduled under POED. First, the slack time on all proces-
sors can be efficiently exploited by their main tasks with the DVFS
technique. Second, with the POED scheduler, most executions of
backup tasks can be effectively cancelled at runtime as such exe-
cutions are delayed as much as possible while the corresponding
main tasks are executed (on another processor) at their earliest
times. By generalizing these ideas, the major steps of the POED-
based energy-efficient fault-tolerance (EEFT) schemes for multipro-
cessor systems can be summarized in Algorithm 3.

Algorithm 3 Major steps of POED-based EEFT schemes.

: Input: task sets I and I'B; number of processors m;
: Step 1: Allocate main tasks in I' to m processors;
Suppose the WFD partition is IT = {I"y, ..., 'm};
: Step 2: Allocate backup tasks in I'B to all processors;
Suppose backup partition is T18 = {T'B, ..., TE};
: Step 3: Calculate scaled frequencies for main tasks;
for (i:1— m)do
i = min{F|F >

® NI RN

uy _ .
1—U(l"15)’x - Ly:

9: Assign f; to the main tasks in T'j;

10: Assign fM3 — F to the backup tasks in Ff;
11: Step 4: Execute tasks on each processor under POED;
12: for (i:1— m) do

13: Assign ASAP preference to main tasks in I'j;
14: Assign ALAP preference to backup tasks in F,.B ;
15: Execute I'; and I'} on P; under POED;

The first step is to allocate main tasks in I (line 2). Without the
need to dedicate processors for backup tasks, all processors in the
system are accessible to the main tasks. Again, we assume that the
WEFD heuristic is adopted to balance the workload of main tasks
among the processors (line 3).

After that, the second step is to allocate the backup tasks in
I'B to all processors (lines 4 and 5). Recall that, to tolerate a sin-
gle permanent fault, a main task T; and its backup task B; have to
be allocated to different processors [33]. Following this principle,
we consider in this work two approaches when allocating backup
tasks.

Cyclic backup allocation: First, considering that the WFD par-
tition obtained in the first step has relatively balanced workload of
main tasks among the processors, a simple approach is the Cyclic
Allocation of the backup tasks. That is, for the main tasks allocated
to processor P;, the corresponding backup tasks will be mapped to
the next neighbor processor P;,; and so on (i=1,...,m—1). For
the main tasks on the last processor Pp, their backup tasks are al-
located to the first processor P;, forming a cyclic chain allocation
of backup tasks (and the scheme is denoted as POED-Cyclic).

The cyclic allocation is easy to implement and can simplify the
communication among processors at runtime when no permanent
fault occurs. Here, the backup task of a main task can always be
found on its next neighbor processor and vice versa. However, once
a processor fails, the recovery steps can be quite complicated to re-
establish such a cyclic allocation of backup tasks, which may re-
quire all tasks to be re-mapped among the remaining processors
and have a rather long recovery window.

Mixed backup allocation: To avoid such cyclic dependency be-
tween processors, the second approach is to scatter backup tasks
among all processors. Specifically, by considering one processor P;
(i=1,..., m) at a time, the corresponding backup tasks of its main
tasks are allocated to all other processors. Again, for the purpose of

load-balancing, the WFD mapping heuristic is adopted. At the end,
each processor will be allocated a completely mixed set of main
and backup tasks and thus the scheme is denoted as POED-Mix.

After backup tasks are allocated, each processor P; will have
a subset I'; of main tasks and a subset 1“15 of backup tasks. Sup-
pose that, for every processor, its allocated main and backup tasks
are schedulable under POED. That is, we have U(T;) +U(Ff’) <1
(i=1,...,m). As the third step, the spare capacity (i.e., static slack)
in the amount of (1 —-U(T;) — U(Ff)) on each processor P; is ex-
ploited and the scaled frequency for the main tasks on that pro-
cessor is calculated accordingly (lines 7 and 8). Then, the scaled
frequency and the maximum frequency are assigned to the main
and backup tasks, respectively (lines 9 and 10).

As mentioned previously, to cancel as much execution of
backup tasks as possible at runtime, they should be delayed to
the maximum extent and are given the ALAP preference while the
main tasks have the ASAP preference on each processor (lines 13
and 14). Moreover, the inflated system utilization on each proces-
sor, which takes the scaled frequencies of main tasks into con-
sideration, is ensured to be no more than 1. Therefore, after fre-
quency assignment for the (main and backup) tasks, they are guar-
anteed to be schedulable on each processor under POED (from
Theorem 1). Hence, the last step is to execute the tasks on each
processor under POED, which is actually the online phase of the
POED-based schemes (line 15).

Since backup tasks run at the maximum frequency, the system
reliability with respect to transient faults can be preserved (in the
absence of permanent faults). Moreover, as both the POED-Cyclic
and POED-Mix schemes schedule any main task and its backup
task on different processors, they guarantee to tolerate a single
permanent fault on any processor at runtime.

6. Evaluations and discussions

In this section, we evaluate the performance of the proposed
SS-based and POED-based EEFT schemes for multiprocessor sys-
tems through extensive simulations. For such purposes, we devel-
oped a discrete event simulator using C++. From our previous stud-
ies [20,22], it has been shown that the Standby-Sparing and the
POED-based schemes can preserve system reliability with respect
to transient faults by enforcing backup tasks run at the maximum
frequency in addition to the guarantees of tolerating a single per-
manent fault. Since the schemes studied in this paper follow the
same design principle for fault tolerance, the reliability goals (in
terms of tolerating both permanent and transient faults) can be
ensured as well.

Therefore, in what follows, we focus on evaluating the energy
efficiency of the proposed schemes only. Specifically, we show their
normalized energy consumption, where the one under the basic P-
SS with DPM only (i.e., both primary and secondary processors op-
erate at the maximum frequency to execute tasks and sleep when
idle) is used as the baseline.

Considering the fact that most modern processors have a few
frequency levels [1,9], we assume that there are seven frequency
levels, which are normalized as {0.4, 0.5, 0.6, 0, 7, 0.8, 0.9, 1.0} in
the evaluations. Moreover, for the parameters in the power model,
we assume that Ppg = 0.01, Go;f =1 and k =3, where similar pa-
rameters have been used in previous studies [22,52]. Moreover, we
consider a system with up to 16 processors.

The utilizations of tasks are generated according to the UUni-
Fast scheme proposed in [7], where the average task utilization is
set as u® =0.1 and u®® = 0.05, respectively. For each task set,
we generate enough number of tasks so that the system utilization
reaches a given target value. That is, for a given system utilization
U, the average number of tasks in a set will be % The periods
of tasks are uniformly distributed in the range of [10, 100] and the

76 Y. Guo et al./Journal of Systems Architecture 78 (2017) 68-80

0.75

07
0.65 - S
06 | : .
0.55 - .
05 | £ .
0.45 | IS —

0.4 ¥ g ® L L

2 4 6 8 10 12 14
Secondary CPU num

normalized energy consumption
%

a. System utilization U = 3.0;
0.9 T T T T T
0185 B LLINY <IN} x T

0.75

0.65 | N -
0.6 X N B

0.55 ' .
2 4 6 8 10 12 14

Secondary CPU num

normalized energy consumption

c. System utilization U = 5.0;

0.85 T T T T T

08 [688 - o
0.75 : _
0.7 |
0.65 N _
0.6 . e
0.55 | % N .
05 e -

045 | | | | |
2 4 6 8 10 12 14

Secondary CPU num

normalized energy consumption

b. System utilization U = 4.0;

s 09 , , . | |
s x

g P-SS —+— h

E 085 G-SS = ke - : i
g :

8 ;

S o8 ; i
9 -

(0] ..

S 075} ‘—"—': 1
2 N

N :

= 07f . |
£

g 065 | | | | |

2 4 6 8 10 12 14
Secondary CPU num

d. System utilization U = 6.0;

Fig. 3. The effects of XY-configuration in G-SS for a 16-CPU system under different loads; u®¢ = 0.1.

WCET of a task is set according to its utilization and period. Each
data point in the figures corresponds to the average result of 100
task sets.

6.1. Energy-Efficiency of G-SS vs. P-SS

First, we illustrate the variations in energy consumption under
different configurations of primary and secondary processors in the
G-SS scheme for a 16-processor system and compare them against
that of the P-SS scheme. Here, we assume that all tasks run at
their statically assigned frequencies and take their WCETs at run-
time. Note that, due to independent scheduling of tasks’ main and
backup copies under EDF and EDL, respectively, it is possible for
a task’s backup copy finishes earlier than its main copy in the SS
scheme [22]. Moreover, it is assumed that no fault occurs during
the execution of tasks and backup (main) copies of tasks are can-
celled under both schemes once their corresponding main (backup)
copies complete successfully.

For a 16-processor system, the upper-bound of the total main
task system utilization schedulable under the proposed schemes
would be 8 (since the same processor capacity should be re-
served for backup tasks). For the cases of system utilization U =
3.0,4.0,5.0 and 6.0, Fig. 3 shows the results for the G-SS scheme
with varying numbers (Y) of secondary processors as well as that
of the P-SS scheme for comparison. Here, the average task utiliza-
tion is set as u®¢ =0.1.

Not surprisingly, for different processor configurations (i.e., as
the number of secondary processors varies) in the G-SS scheme,
the system energy efficiency can have rather large differences

(from 30% to 45%). As illustrated in the example in Section 4.1,
for a given system utilization, the configuration of processors that
can lead to the best system energy efficiency normally has more
primary processors (i.e., smaller values of Y). On the other hand,
since the backup copies of tasks have to be executed at the maxi-
mum frequency for reliability preservation [22], the spare capacity
on secondary processors is normally wasted, which leads to infe-
rior performance for G-SS when more processors are used as sec-
ondaries.

From the results, we can also see that, with a judicious selec-
tion of the processor configurations (i.e., the values of X and Y),
G-SS can outperform P-SS with up to 7% more energy savings. In
the remaining evaluations, for any given task set, we assume that
the G-SS scheme always adopts the most energy-efficient processor
configuration.

6.2. Performance without slack reclamation

Next, we evaluate the schemes that do not consider online slack
reclamation (which will be evaluated in the next section). In ad-
dition to the proposed SS- and POED-based schemes where the
scaled frequencies are statically determined, for comparison, we
implemented a modified SETS scheme [38], which considers only
DPM and runs all tasks at the maximum frequency. SETS saves
energy by delaying the executions of backup tasks through itera-
tively calculated latest scheduling times of those tasks in the EDF
schedule [38]. Here, both cyclic and mixed mappings are consid-
ered, which are denoted as SETS-Cyclic and SETS-Mix, respectively.

Y. Guo et al./Journal of Systems Architecture 78 (2017) 68-80 77

0.9 |- SETS-CYCLIC .

c
S
B
£
>
2
8 SETS-MIX =p:=
> 08} P-SS —#— .
g G-SS - O -
c 0.7 FPOED-CYCLIC ::-::-
3 POED-MIX @
@ 0.6 i
T \\““‘N“.
£ 05 R R
2 04
1 1.5 2 25 3

system utilization (U)

a. u™ =0.1

< 1.1 T T T
9
E’ 1 L ----------- e e e O e -l
@ 0.9 [SETS-CYCLIC s
5 SETS-MIX = 3t=:
° 08 P-SS —wu— 1
S 7L G-SS - O -
© ' [POED-CYCLIC -
& 06} POED-MIX @ -
3 -9
ﬁ o5+ gL -]
£ 0.4T* -
e 03 1 1 1
1 1.5 2 2.5 3
system utilization (U)
b. u*’ = 0.05

Fig. 4. Performance of the offline schemes in a 8-CPU system.

The results are shown in Fig. 4, where tasks are assumed to
take their WCETs and no fault occurs during the execution. Note
that, SETS needs to consider all task instances within the LCM of
tasks’ periods. To obtain the results in reasonable time, we con-
sider a 8-processor system and limit the LCM of task sets to be
12,000. Here, without considering the more effective DVFS tech-
nique, we can see that the SETS schemes perform almost the same
as the basic P-SS scheme, which deploys only DPM as well. How-
ever, by exploiting the DVFS technique, the SS- and POED-based
schemes can obtain significantly more energy savings than SETS
schemes.

The results also show that, compared to P-SS, G-SS with the
most energy-efficient configuration can always perform better un-
der different system utilizations. However, the performance differ-
ence between P-SS and G-SS diminishes at very low or high sys-
tem utilizations. The reason is that, at low system utilizations (i.e.,
U < 1), all main tasks can be executed at 0.4 (the lowest avail-
able frequency) while most backup tasks can be cancelled under
both schemes. At high system utilizations (e.g., U = 3.0), there is
only one feasible configuration (i.e., X = 4) for the G-SS scheme,
which makes G-SS to act exactly the same as P-SS due to the same
WEFD heuristic adopted when partitioning main and backup copies
of tasks.

For the POED-based schemes, POED-Cyclic and POED-Mix have
very close performance on energy savings even though they have
different backup partitions. However, in most cases, POED-based
schemes can outperform P-SS and G-SS with up to 20% more en-
ergy savings. The reason is that, with mixed allocation of main and
backup tasks on the processors, POED-based schemes can better
utilize the available slack to slow down main tasks and reduce the
overlapped execution with their corresponding backup tasks.

When u?€ = 0.1 (i.e., relatively large tasks), Fig. 4(a) shows that
POED-based scheme may perform worse compared to that of the
SS-based schemes when system utilization is very low (U < 1.5).
This comes from the fewer number of available tasks, which cause
unbalanced partitions of tasks among the processors under the
POED-based schemes. For smaller tasks (i.e., u®® =0.05) where
there are more tasks for the same system utilization, Fig. 4(b)
shows that the POED-based schemes perform no worse than the
SS-based schemes.

6.3. Performance with online slack reclamation

It is well-known that real-time tasks normally take only a small
fraction of their WCETs at runtime [16]. In addition, most backup
tasks will be cancelled at runtime as faults are rare events. Hence,
significant amount of dynamic slack can be expected, which should

be exploited to further scale down main tasks for more energy sav-
ings.

In this section, by varying the ratio of average over worst
case execution times of tasks, we further evaluate the perfor-
mance of the SS-based and POED-based schemes with an on-
line power management scheme based on the wrapper-task tech-
nique [48]. For comparison, we also implemented both ASSPT and
CSSPT techniques [22] for the P-SS scheme, which are denoted as
“P-SS-ASSPT” and “P-SS-CSSPT”, respectively. For the online scheme
based on wrapper-tasks, it can be applied to the primary proces-
sors under both P-SS and G-SS, which are denoted as “P-SS-Wrap”
and “G-SS-Wrap”, respectively. The POED-based schemes enhanced
with the online wrapper-tasks based technique are further denoted
as “POED-C-Wrap” and “POED-M-Wrap”, respectively.

Here, we consider 16 processors and set u%¢ =0.1. To emu-
late the dynamic execution behaviors of tasks, we use a system
wide average-to-worst case execution time ratio «. For each task
T;, its average-to-worst case execution time ratio «; is generated
randomly around «. Then, at run-time, the actual execution time
for each instance of task T; is randomly generated around «; - ¢,
where ¢; is task T;’s WCET. Essentially, « indicates the amount of
dynamic slack that will be available at runtime where lower values
indicate more slack.

Fig. 5 show the performance of the schemes with varying «
(average-to-worst case execution times of tasks) under various uti-
lizations (i.e., U =3.0,4.0,5.0 and 6.0, respectively). Again, when
the system utilization is low (i.e., U = 3.0), the main tasks can be
executed at the lowest frequency of 0.4 and most backup tasks are
cancelled, which leads to very close (within 6% difference) normal-
ized energy consumption for P-SS and G-SS with different online
techniques.

For cases with o =1, there is no dynamic slack at run-time.
However, due to the limitation of discrete frequencies, there will
be some spare capacity on each primary processor, which can be
exploited by the wrapper-task based schemes and some additional
energy savings can be obtained when compared to that of AS-
SPT and CSSPT. Therefore, with the limited benefits of online tech-
niques with o« =1, G-SS outperforms P-SS slightly, which is con-
sistent with the results in the last section.

When the system utilization gets higher (i.e.,, U =4.0,5.0 and
U = 6.0), we can see that the ASSPT technique can cause dramatic
performance degradation for P-SS as the dynamic load of tasks
increases (i.e., with higher values of «). The results are in line
with what have been reported in [22]. The reason comes from
the aggressive slack usage under the ASSPT technique, which ex-
ecutes the main tasks at very low frequency at the beginning of

78 Y. Guo et al./Journal of Systems Architecture 78 (2017) 68-80

S 0.6 T T T

£ SS CSSPT

s 056 F P-SS-Wrap -]
c 054 G-SS-Wrap e =
S os2 L POED-C-Wrap - == % |
3) POED-M-Wrap i=r =i
5 0.5 ‘,j.. -
c §\()‘ E
[0} 048 - N .

E 0.46 |-

= 044 -

E 042

e 1

c

0.4
0.2 0.3 04 05 06 0.7 08 09 1
dynamic load

a. system utilization U = 3.0;

1 T T T T
SS ASSPT —t—
09 P-SS-CSSPT
P-SS-Wrap »-
G-SS-Wrap

0.8 "pPOED-C-Wrap »
07 POED-M-Wrap i=+w=i

06 |
f'. “'“Mw‘-“ f:.T..; """""" 5?‘;‘.“2,«*-'""?

0.2 03 04 05 06 0.7 08 09 1
dynamic load

0.5

normalized energy consumption

c. system utilization U = 5.0;

s 09 I
= 085 SS ASSPT —

g 99T pss.cssPT

5 08 P-SS-Wrap »

c 075) G-SS-Wrap e

8 o |POED-C-Wrap

3 ' POED M- Wrap iy

5 0.65 -

$ 06

3 055 F r
N &
g oo -

5 0. 45 F\‘-m‘zg-.,w ,,*.,._\’.._.m- T

02 0.3 04 05 06 0.7 0.8 0.9
dynamic load

b. system utilization U = 4.0;

T T T
SS ASSPT —
1 - P-SS-CSSPT
P-SS-Wrap »-
G-SS-Wrap
POED-C-Wrap #-
0.8 FPOED-M-Wrap i=v:=i

09

normalized energy consumption

02 03 04 05 06 07 08 09 1
dynamic load

d. system utilization U = 6.0;

Fig. 5. Performance of both SS-based and POED-based schemes with online slack reclamation under different system loads.

the schedule. Such scaled executions force remaining main tasks
to run at much higher frequencies and cause more overlapped ex-
ecutions with their backup tasks on the secondary processors.

To address the above mentioned problem, based on the static
and dynamic loads of tasks, the CSSPT scheme statically deter-
mines a lower bound for the scaled frequency for executing tasks’
main copies when reclaiming slack at run-time [22]. With such a
scaled frequency bound, CSSPT can effectively prevent the aggres-
sive usage of slack time in the early part of the schedule. There-
fore, when compared to ASSPT, P-SS performs much better with
the CSSPT online technique, especially for tasks with higher dy-
namic loads.

For the wrapper-task based online technique, we can see that
its performance is pretty stable under different dynamic loads of
tasks. Although it performs (slightly) worse than that of ASSPT
and CSSPT for the P-SS scheme at low dynamic loads (ie. o <
0.5), its performance is very close to that of CSSPT at higher dy-
namic loads of tasks. However, different from CSSPT, the wrapper-
task based online technique does not requires the pre-knowledge
of tasks’ average-case workloads.

Moreover, as a generic online technique, wrapper-tasks can also
be applied to the primary processors in the G-SS scheme, which
is shown to have a stable performance as well. Although the per-
formance gain of applying the wrapper-task technique on G-SS is
rather limited (within 5%) when compared to that of P-SS, we can
see that G-SS-Wrap always performs better than that of P-SS-CSSPT
at higher dynamic loads of tasks.

With the POED-schemes, when the utilization is low, the main
tasks can be executed at the lowest frequency 0.4 and most backup

tasks can be cancelled. However, as before, due to the unbalanced
workload distribution at very low system utilization (e.g., U = 3.0),
POED-based schemes can have slightly inferior performance com-
pared to SS-based schemes.

Moreover, as system utilization increases (i.e., for the cases of
U =4.0,5.0 and U =6.0), both POED-Cyclic and POED-Mix with
wrapper-task based online technique can achieve much better and
more stable energy savings comparing with the SS-based schemes.
Again, this comes from the fact that with more workload in the
system, both POED-based schemes can utilize the available sys-
tem resource (CPU time) more efficiently. Specifically, by mixing
the main and backup tasks on all processors, with the wrapper-
task based online technique, all available (static and dynamic) slack
time can be exploited to slow down the execution of main tasks
and/or delay the execution of backup tasks, which results in much
reduced overlapped executions (thus less energy consumption).

7. Conclusions

In this paper, we study energy-efficient fault-tolerance (EEFT)
schemes for periodic tasks running on multiprocessor systems with
the objectives of tolerating a single permanent fault while pre-
serving system reliability with respect to transient faults. Based
on the idea of Standby-Sparing (SS) technique, we first propose
both Paired-SS and Generalized-SS schemes. Then, based on the
preference-oriented earliest deadline (POED) scheduler, we study
two POED-based schemes (i.e., POED-Cyclic and POED-Mix). The
simulation results show that, for systems with a given number of
processors, there normally exists a processor configuration where

Y. Guo et al./Journal of Systems Architecture 78 (2017) 68-80 79

the Generalized-SS scheme can have better energy savings com-
pared to that of the Paired-SS scheme. Both SS- and POED-based
schemes can obtain better energy savings compared the existing
SETS scheme. Moreover, the POED-based schemes generally outper-
form the SS-based schemes in terms of energy savings, especially
for systems with modest to high system loads.

References

[1] AMD, Amd opteron quad-core processors, 2009, http://www.amd.com/us/
products/embedded/processors/.

[2] S. Aminzadeh, A. Ejlali, A comparative study of system-level energy manage-
ment methods for fault-tolerant hard real-time systems, IEEE Trans. Comput.
60 (September(9)) (2011) 1288-1299.

[3] H. Aydin, V. Devadas, D. Zhu, System-level energy management for periodic re-
al-time tasks, in: Proceedings of The 27th IEEE Real-Time Systems Symposium
(RTSS), 2006, pp. 313-322.

[4] H. Aydin, Q. Yang, Energy-aware partitioning for multiprocessor real-time
systems, Proceedings of the Parallel and Distributed Processing Symposium
(IPDPS), 2003. April.

[5] A.A. Bertossi, L.V. Mancini, A. Menapace, Scheduling hard-real-time tasks with
backup phasing delay, Proceedings of the IEEE International Symposium on
Distributed Simulation and Real-Time Applications, 2006.

[6] A.A. Bertossi, L.V. Mancini, F. Rossini, Fault-tolerant rate-monotonic first-fit
scheduling in hard-real-time systems, IEEE Trans. Parallel Distrib. Syst0 10 (9)
(1999) 934-945.

[7] E. Bini, G.C. Buttazzo, Biasing effects in schedulability measures, Proceedings
of the Euromicro Conference on Real-Time Systems, 2004.

[8] H. Chetto, M. Chetto, Some results of the earliest deadline scheduling algo-
rithm, IEEE Trans. Softw. Eng. 15 (1989) 1261-1269.

[9] Intel Corp., Intel embedded quad-core xeon, 2009, http://www.intel.com/
products/embedded/processors.htm.

[10] F. Dabiri, N. Amini, M. Rofouei, M. Sarrafzadeh, Reliability-aware optimization
for DVS-enabled real-time embedded systems, in: Proceedings of the Interna-
tional Symposium on Quality Electronic Design, 2008, pp. 780-783.

[11] V. Degalahal, L. Li, V. Narayanan, M. Kandemir, M. Irwin, Soft errors issues in
low-power caches, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13 (Octo-
ber(10)) (2005) 1157-1166.

[12] A. Ejlali, B.M. Al-Hashimi, P. Eles, A standby-sparing technique with low ener-
gy-overhead for fault-tolerant hard real-time systems, in: Proceedings of the
[EEE/ACM International Conference on Hardware/Software Codesign and Sys-
tem Synthesis, 2009, pp. 193-202.

[13] A. Ejlali, M.T. Schmitz, B.M. Al-Hashimi, S.G. Miremadi, P. Rosinger, Energy effi-
cient seu-tolerance in DVS-enabled real-time systems through information re-
dundancy, in: Proceedings of the Interantional Symposium on Low Power and
Electronics and Design, 2005, pp. 281-286.

[14] E.M. Elnozahy, R. Melhem, D. Mossé, Energy-efficient duplex and TMR real-
time systems, in: Procedings of The 23rd IEEE Real-Time Systems Symposium
(RTSS), 2002, pp. 256-265.

[15] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N.S. Kim, K. Flautner,
Razor: circuit-level correction of timing errors for low-power operation, IEEE
Micro 24 (6) (2004) 10-20.

[16] R. Ernst, W. Ye, Embedded program timing analysis based on path clustering
and architecture classification, in: Proceedings of The International Conference
on Computer-Aided Design (ICCAD), 1997, pp. 598-604.

[17] S. Ghosh, R. Melhem, D. Mossé, Fault-tolerance through scheduling of aperi-
odic tasks in hard real-time multiprocessor systems, Parallel Distrib. Syst. IEEE
Trans. 8 (March(3)) (1997) 272-284.

[18] Y. Guo, H. Su, D. Zhu, H. Aydin, Preference-oriented real-time scheduling and
its application in fault-tolerant systems, J. Syst. Archit. 61 (2) (2015) 127-139.

[19] Y. Guo, D. Zhu, H. Aydin, Reliability-aware power management for parallel re-
al-time applications with precedence constraints, in: Proceedings of the Inter-
national Green Computing Conference (IGCC), 2011, pp. 1-8. July

[20] Y. Guo, D. Zhu, H. Aydin, Efficient power management schemes for dual-pro-
cessor fault-tolerant systems, Proceedings of the First Workshop on Highly-Re-
liable Power-Efficient Embedded Designs (HARSH), in conjunction with HPCA,
2013. Feb.

[21] Y. Guo, D. Zhu, H. Aydin, Generalized standby-sparing techniques for energy-
efficient fault tolerance in multiprocessor real-time systems, in: Proceedings
of the IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2013. August

[22] M.A. Haque, H. Aydin, D. Zhu, Energy-aware standby-sparing technique for pe-
riodic real-time applications, in: Proceedings of the IEEE International Confer-
ence on Computer Design (ICCD), 2011.

[23] M.A. Haque, H. Aydin, D. Zhu, Energy management of standby-sparing systems
for fixed-priority real-time workloads, in: Proceedings Of the Second Interna-
tional Green Computing Conference (IGCC), 2013. June

[24] International technology roadmap for semiconductors, 2008, S. R. Corporation.
http://public.itrs.net.

[25] S. Irani, S. Shukla, R. Gupta, Algorithms for power savings, in: Proceedings of
the 14th Annual ACM-SIAM symposium on Discrete algorithms (SODA), 2003,
pp. 37-46.

[26] RXK. lyer, DJ. Rossetti, M.C. Hsueh, Measurement and modeling of computer
reliability as affected by system activity, ACM Trans. Comput. Syst. 4 (3) (1986)
214-237. August

[27] V. Izosimov, P. Pop, P. Eles, Z. Peng, Design optimization of time-and cost-con-
strained fault-tolerant distributed embedded systems, in: Proceedings of De-
sign, Automation and Test in Europe, 2005, pp. 864-869.

[28] N.-S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J.-S. Hu, M.-]. Irwin,
M. Kandemir, V. Narayanan, Leakage current: Moore’s law meets static power,
Computer 36 (December(12)) (2003) 68-75.

[29] Z. Li, L. Wang, S. Li, S. Ren, G. Quan, Reliability guaranteed energy-aware
frame-based task set execution strategy for hard real-time systems,]. Softw.
Syst. (2013).

[30] W. Liao, L. He, K.M. Lepak, Temperature and supply voltage aware performance
and power modeling at microarchitecture level, IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 24 (7) (2005) 1042-1053.

[31] R. Melhem, D. Mossé, E.M. Elnozahy, The interplay of power management
and fault recovery in real-time systems, IEEE Trans. Comput. 53 (2) (2004)
217-231.

[32] P. Pop, K.H. Poulsen, V. Izosimov, P. Eles, Scheduling and voltage scaling for en-
ergy/reliability trade-offs in fault-tolerant time-triggered embedded systems,
Proceedings of the IEEE/ACM Interantional Conference on Hardware/software
codesign and System Synthesis, 2007.

[33] D.K. Pradhan (Ed.), Fault-tolerant Computer System Sesign, Prentice-Hall, Inc,
Upper Saddle River, NJ, USA, 1996.

[34] X. Qi, D. Zhu, H. Aydin, Global scheduling based reliability-aware power man-
agement for multiprocessor real-time systems, Real-Time Syst. 47 (2) (2011)
109-142.

[35] M.T. Schmitz, B.M. Al-Hashimi, P. Eles, System-Level Design Techniques for En-
ergy-Efficient Embedded Systems, Kluwer Academic Publishers, Norwell, MA,
USA, 2004.

[36] R. Sridharan, N. Gupta, R. Mahapatra, Feedback-controlled reliability-aware
power management for real-time embedded systems, in: Proceedings of the
Design Automation Conference, 2008, pp. 185-190.

[37] M.-K. Tavana, M. Salehi, A. Ejlali, Feedback-based energy management in a
standby-sparing scheme for hard real-time systems, Proceedings of the IEEE
Real-Time Systems Symposium, 2011.

[38] O.S. Unsal, I. Koren, C.M. Krishna, Towards energy-aware software-based fault
tolerance in real-time systems, in: Proceedings of the Interantional Symposium
on Low Power Electronics and Design, 2002, pp. 124-129.

[39] T. Wei, P. Mishra, K. Wu, H. Liang, Online task-scheduling for fault-tolerant
low-energy real-time systems, in: Proceedings of IEEE/ACM International Con-
ference on Computer-Aided Design, 2006, pp. 522-527.

[40] T. Wei, P. Mishra, K. Wu, H. Liang, Fixed-priority allocation and scheduling for
energy-efficient fault tolerance in hard real-time multiprocessor systems, IEEE
Trans. Parallel Distrib.Syst. (TPDS) 19 (2008) 1511-1526.

[41] Y. Xiang, S. Pasricha, Soft and hard reliability-aware scheduling for multi-
core embedded systems with energy harvesting, IEEE Trans. Multi-Scale Com-
put.Syst. 1 (October(4)) (2015) 220-235.

[42] Y. Zhang, K. Chakrabarty, Energy-aware adaptive checkpointing in embedded
real-time systems, in: Proceedings of Design, Automation and Test in Europe
(DATE), 2003, pp. 918-923.

[43] Y. Zhang, K. Chakrabarty, Task feasibility analysis and dynamic voltage scal-
ing in fault-tolerant real-time embedded systems, in: Proceedings of Design,
Automation and Test in Europe Conference(DATE), 2004, pp. 1170-1175.

[44] Y. Zhang, K. Chakrabarty, V. Swaminathan, Energy-aware fault tolerance in
fixed-priority real-time embedded systems, in: Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2003.

[45] B. Zhao, H. Aydin, D. Zhu, Energy management under general task-level reli-
ability constraints, in: Proceedings of the 18th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2012, pp. 285-294. Apr.

[46] B. Zhao, H. Aydin, D. Zhu, Shared recovery for energy efficiency and reliabil-
ity enhancements in real-time applications with precedence constraints, ACM
Trans. Design Autom. Electron. Syst. (TODAES) 18 (2-23) (2013).

[47] D. Zhu, Reliability-aware dynamic energy management in dependable embed-
ded real-time systems, ACM Trans. Embedded Comput. Syst. 10 (2) (2010)
26.1-26.27.

[48] D. Zhu, H. Aydin, Reliability-aware energy management for periodic real-time
tasks, IEEE Trans. Comput. 58 (10) (2009) 1382-1397.

[49] D. Zhu, R. Melhem, D. Mossé, The effects of energy management on reliability
in real-time embedded systems, in: Proceedings of the International Confer-
ence on Computer Aidded Design, 2004, pp. 35-40.

[50] D. Zhu, R. Melhem, D. Mossé, E.M. Elnozahy, Analysis of an energy efficient
optimistic tmr scheme, in: Proceedings of the 10th Interantional Conference
on Parallel and Distributed Systems, 2004.

[51] D. Zhu, D. Mossé, R. Melhem, Energy efficient redundant configurations for re-
al-time parallel reliable servers, J. Real-Time Syst. 41 (April(3)) (2009) 195-221.

[52] S. Zhuravlev,].-C. Saez, S. Blagodurov, A. Fedorova, M. Prieto, Survey of en-
ergy-cognizant scheduling techniques, IEEE Trans. Parallel Distrib. Syst. 24 (7)
(2013) 1447-1464.

http://www.amd.com/us/products/embedded/processors/
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0004
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0004
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0004
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0004
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0005
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0005
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0005
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0005
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0007
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0007
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0007
http://www.intel.com/products/embedded/processors.htm
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0008
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0008
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0008
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0008
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0008
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0009
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0009
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0009
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0009
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0009
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0009
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0010
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0010
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0010
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0010
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0014
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0014
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0014
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0018
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0018
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0018
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0018
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0018
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0019
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0019
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0019
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0019
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0019
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0020
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0020
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0020
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0020
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0021
http://public.itrs.net
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0026
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0026
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0026
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0026
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0026
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0026
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0027
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0027
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0027
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0027
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0028
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0028
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0028
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0028
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0029
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0029
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0029
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0029
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0029
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0030
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0031
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0031
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0031
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0031
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0032
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0032
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0032
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0032
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0033
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0033
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0033
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0033
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0034
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0034
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0034
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0034
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0035
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0035
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0035
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0035
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0036
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0036
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0036
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0036
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0036
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0037
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0037
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0037
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0037
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0037
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0038
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0038
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0038
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0039
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0039
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0039
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0040
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0040
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0040
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0041
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0041
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0041
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0041
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0042
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0042
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0042
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0042
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0042
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0043
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0043
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0043
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0043
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0044
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0044
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0045
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0045
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0045
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0046
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0046
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0046
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0046
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0047
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0047
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0047
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0047
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0047
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0048
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0048
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0048
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0048
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0049
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0049
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0049
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0049
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0049
http://refhub.elsevier.com/S1383-7621(16)30262-4/sbref0049

80 Y. Guo et al./Journal of Systems Architecture 78 (2017) 68-80

Yifeng Guo obtained the Ph.D. degree from the Department of Computer Science at the University of Texas at San Antonio in 2013. His research
interests include real-time systems, multiprocessor and parallel systems, power management and fault tolerance.

Dakai Zhu received the Ph.D. degree in Computer Science from the University of Pittsburgh in 2004. He is currently a Professor in the Department
of Computer Science at the University of Texas at San Antonio. His research is in the general area of real-time systems. He has served on technical
program committees for several major real-time conferences (e.g., RTSS, RTAS and RTCSA). He was a recipient of the US National Science Foundation
(NSF) Faculty Early Career Development (CAREER) Award in 2010. He is a member of the ACM and IEEE.

Hakan Aydin received the Ph.D. degree in computer science from the University of Pittsburgh in 2001. He is currently an associate professor in the
Computer Science Department at George Mason University. He was a recipient of the US National Science Foundation (NSF) Faculty Early Career

Development (CAREER) Award in 2006. His research interests include real-time systems, low-power computing, and fault tolerance. He is a member
of the IEEE.

Jian-Jun Han received the Ph.D. degree in computer science and engineering from Huazhong University of Science and Technology (HUST) in 2005.
He is now an Associate Professor at the School of Computer Science and Technology in HUST. He worked at the University of California, Irvine as
a visiting scholar between 2008 and 2009, and at the Seoul National University between 2009 and 2010. His research interests include real-time
system and parallel computing. He is currently a member of IEEE and ACM.

Laurence T. Yang is with the Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada and holds adjunct position
at Huazhong University of Science and Technology, China. His research interests include high performance computing and networking, embedded

systems, ubiquitous/pervasive computing, and intelligence. His research is supported by National Sciences and Engineering Research Council, Canada
and Canada Foundation for Innovation.

	Exploiting primary/backup mechanism for energy efficiency in dependable real-time systems
	1 Introduction
	2 Closely related work
	3 Preliminaries and system models
	3.1 System, task and power models
	3.2 Fault and recovery models

	4 Standby-Sparing for multiprocessor
	4.1 An example with a three-processor system
	4.2 Standby-Sparing based schemes
	4.2.1 Paired Standby-Sparing (P-SS)
	4.2.2 Generalized Standby-Sparing (G-SS)

	5 Mixing primary/backup tasks
	5.1 Inefficient slack usage in Standby-Sparing
	5.1.1 A preference-oriented scheduling algorithm

	5.2 POED-based EEFT schemes

	6 Evaluations and discussions
	6.1 Energy-Efficiency of G-SS vs. P-SS
	6.2 Performance without slack reclamation
	6.3 Performance with online slack reclamation

	7 Conclusions
	 References

