
Journal of Systems Architecture 98 (2019) 388–402

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Evaluation framework for energy-aware multiprocessor scheduling in

real-Time systems

Pedro Mejia-Alvarez a , ∗ , David Moncada-Madero

b , Hakan Aydin

c , Arnoldo Diaz-Ramirez d

a Departamento de Computacion, CINVESTAV-IPN, Mexico City, Av. IPN. 2508, Col. Zacatenco, Ciudad de Mexico, 07360 Mexico
b Microsoft, Redmond, Wa., Redmond, WA, USA
c Department of Computer Science, George Mason University, FaixFax Virginia., Fairfax, Virginia, USA
d Instituto Tecnologico de Mexicali, Mexico, Mexicali, Baja California, Mexico

a r t i c l e i n f o

Keywords:

Real-time systems

Energy management

Scheduling

Multicore architectures

a b s t r a c t

Multiprocessor and multicore architectures are fast becoming the platform of choice for deploying workloads, as

they have higher computing capabilities and energy efficiency than traditional architectures. In addition to time

constraints, a number of real-time applications are required to operate in systems working with limited power

supplies, which also imposes tight energy constraints on their execution. Therefore, it is desirable for the system to

minimize its energy consumption while still achieving a satisfactory performance. Several energy-aware schedul-

ing techniques addressing this issue have been proposed over the past few years. Unfortunately, few aspects of

implementation are seldom considered in theoretical work, and only a tiny fraction of these techniques have

been implemented in an actual hardware platform and evaluated by analytical methods. The work presented in

this paper thus attempts to provide a prototyping and evaluation framework in which energy-aware multiproces-

sor scheduling algorithms can translate into full-fledged practical realizations, where their power consumption

profiles can be properly measured.

1

s

i

r

e

a

t

s

r

c

c

r

m

m

a

p

p

a

a

w

t

d

o

p

p

q

p

v

d

p

a

s

t

S

i

q

f

m

e

h

R

A

1

. Introduction

Energy management has become a major design and operational con-

traint for electronic devices working with limited power supplies. This

s especially true for embedded real-time systems, whose performance

equirements are often very high and which usually rely on limited en-

rgy sources such as batteries. Systems that are better at managing avail-

ble energy have a longer lifetime and are more reliable. They also help

o reduce the carbon footprint and lower the power dissipation that re-

ults in heat transfer. Even for systems connected to the power grid,

educing energy consumption provides significant savings in business

osts and alleviates environmental issues.

Over the past two decades, many approaches for managing energy

onsumption (e.g., through processor slowdown or shutdown) in a

eal-time setting have been proposed for the uniprocessor case. As

ultiprocessor platforms have become more commonplace, advance-

ents have been made in scheduling theory for supporting real-time

pplications such that they could benefit from improved multiprocessor

erformance. However, the use of multiple processing units further com-

licates the management of resources, including energy, and energy-

ware real-time multiprocessor scheduling has begun to attract attention
∗ Corresponding author.

E-mail addresses: pmalvarez@cs.cinvestav.mx , pmejia@gdl.cinvestav.mx (

ydin@cs.gmu.edu (H. Aydin), adiaz@itmexicali.edu.mx (A. Diaz-Ramirez).

ttps://doi.org/10.1016/j.sysarc.2019.01.018

eceived 10 October 2018; Received in revised form 13 December 2018; Accepted 2

vailable online 21 March 2019

383-7621/© 2019 Elsevier B.V. All rights reserved.
ithin the real-time research community. Early multiprocessor architec-

ures had processors placed on separate chips, allowing them to indepen-

ently switch their operating frequency. As such, the first works focusing

n energy management for real-time systems running on multiprocessor

latforms considered hardware models in which the processors featured

er-CPU voltage and frequency scaling capabilities [14,35,48] . Subse-

uent generations of multiprocessor systems began packing multiple

rocessing cores onto a single chip, forcing these to share a common

oltage level and run at the same frequency, and research efforts were

evoted to tackling the problem of supporting real-time workloads on

latforms constrained to global frequency scaling [37,46] .

In most cases, the proposed energy-efficient real-time scheduling

lgorithms (for both the uniprocessor and multiprocessor cases) are

tudied using simulations, where the primary objective is to assess

heir performance in terms of schedulability and energy consumption.

imulation based studies are attractive for a number of reasons: insight

nto the working of a fairly complex system can be gained relatively

uickly and cheaply, and it is easy to identify the most influential

actors in the simulation outcome. In the case of energy-aware real-time

ultiprocessor scheduling algorithms, simulations provide a means for

valuating their energy consumption profile without the need to procure
P. Mejia-Alvarez), david_moncada@icloud.com (D. Moncada-Madero),

4 January 2019

https://doi.org/10.1016/j.sysarc.2019.01.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2019.01.018&domain=pdf
mailto:pmalvarez@cs.cinvestav.mx
mailto:pmejia@gdl.cinvestav.mx
mailto:david_moncada@icloud.com
mailto:aydin@cs.gmu.edu
mailto:adiaz@itmexicali.edu.mx
https://doi.org/10.1016/j.sysarc.2019.01.018

P. Mejia-Alvarez, D. Moncada-Madero and H. Aydin et al. Journal of Systems Architecture 98 (2019) 388–402

s

s

a

a

t

t

i

p

T

c

b

c

f

b

s

d

t

t

g

r

t

v

i

d

S

t

k

a

i

d

d

r

2

a

L

f

s

L

c

t

2

t

Fig. 1. Overview of the Linux power management infrastructure.

m

t

p

d

c

F

v

2

a

s

T

p

s

n

b

g

t

e

u

u

t

S

s

–

R

w

M

t

t

c

l

a

a

p

a

a

w

2

a

t
pecialized hardware or measurement instrumentation. Additionally,

imulations allow focusing on the essential aspects of the algorithms by

bstracting away certain details that would complicate the approach,

nd running a multitude of workloads in a fraction of the time required

o run them on real hardware.

Despite extensive study into energy-efficient techniques in the real-

ime literature [4,5] , there seems to be little interest in evaluating them

n an actual Real-Time Operating System (RTOS) running on a real ex-

erimental testbed. Studies based solely on simulations have limitations.

he lack of a standardized simulation environment within the real-time

ommunity has led researchers to develop their own simulators, em-

edding their own set of simplifying assumptions. This makes it diffi-

ult to validate the presented results or to determine the relative per-

ormance of the proposed techniques. In some works, techniques have

een derived that presume hardware models with processors capable of

witching to any frequency within a range. Other works assume power

issipation models, only considering the effect of voltage/frequency on

he platform’s overall energy consumption, and sometimes disregarding

he role of static dissipation entirely. Lastly, little advice is provided re-

arding problems that arise when the techniques are implemented on

eal hardware. Without proper experimental evaluation of the proposed

echniques, real performance risks remain largely unknown.

Specifically, the main contributions of this article are:

• The development of a loosely coupled, generic, reusable component

for conferring real-time scheduling plugins with processor voltage

and frequency scaling capabilities and managing the synchroniza-

tion of processors with respect to the global voltage and frequency

level [4,5] .

• The implementation and empirical comparison of two representa-

tive energy-aware real-time multiprocessor scheduling algorithms

designed for platforms where processors are constrained to a sin-

gle clock domain. Implementation was carried out in LITMUS RT

[9,12] , an actively developed and supported real-time extension for

the Linux kernel.

• A power dissipation measurement methodology for assessing the

practical merits of the implemented algorithms in terms of energy

consumption.

The remaining of this article is organized as follows: Section 2 pro-

ides an overview of the power management subsystems available

n Linux and briefly describes LITMUS RT , as well as the extension

eveloped for enabling predictable processor frequency adjustments;

ection 3 describes LITMUS RT and its extension with a CPUFreq module

o perform frequency adjustments at runtime; Section 4 describes the

ey properties of the energy-aware real-time multiprocessor scheduling

lgorithms evaluated within the framework of the case study presented

n this article; Section 5 presents the methodology followed for con-

ucting the experimental evaluation of the considered algorithms and

iscusses the results. Finally, Section 6 concludes the article with a few

emarks regarding the goals reached.

. Energy management in operating systems

This section provides a comprehensive overview of the power man-

gement infrastructure available within the Linux kernel, which allows

inux to fully exploit the power saving capabilities of the various plat-

orms upon which it runs. Also, the architecture of the real-time exten-

ion for the Linux kernel behind the evaluations presented in this work,

ITMUS RT is described, as well as the design and implementation of the

omponent allowing LITMUS RT scheduling plugins to mesh with part of

he Linux power management infrastructure.

.1. Energy management in Linux

Within the Linux kernel, power management can be divided into

wo broad categories: system power management and device power
389
anagement [34] . System power management is in charge of transi-

ioning the entire system (or parts of it - the processor, for example) into

erformance states or low-power modes, using the CPUFreq and CPUI-

le subsystems, among other measures. Device power management is

oncerned with placing unused system devices into low-power states.

ig. 1 shows an overview of the performance and low-power states pro-

ided by the Linux power management infrastructure.

.2. System power management

System power management involves moving the entire system into

 low-power state, where it consumes a small amount of power while

imultaneously conserving a relatively low response latency to the user.

he system’s power consumption, as well as the overhead incurred in

lacing the system back in the active state, depends on the state of the

ystem. As a general rule, in Dynamic Power Management (DPM) tech-

iques, the deeper the low-power state, the lower the power consumed

y the system, but also, the higher the latency involved [32,42,47] . Re-

ardless of the low-power state the system moves into, the running con-

ext is saved to volatile or non-volatile storage before the system is pow-

red down and subsequently restored when the system is powered back

p, preventing unnecessary shutdown and startup sequences.

The low-power states a system can enter into depend largely on the

nderlying platform and hardware architecture. Despite this, at least

hree states are commonly available: standby, suspend, and hibernate.

tandby halts the processor and moves the devices to a low-power state,

aving moderate power while still retaining a very low response latency

typically less than one second. Suspend (also known as suspend-to-

AM) places all devices in a deeper sleep state, except for main memory,

hich is placed in self-refresh mode so that its contents are not flushed.

ore time is required to return from suspend than from standby, but

he latency still is mildly low at typically few seconds. Hibernate saves

he most power by turning off the entire system after saving its running

ontext to non-volatile storage (usually to disk). It also incurs the worst

atency – around thirty seconds.

The Linux kernel provides two mechanisms as part of its power man-

gement infrastructure which are voltage and frequency scaling (DVFS)

nd processor shutdown (DPM). The use of these two techniques is

ivotal in decreasing the platform’s power and energy consumption

nd limiting its thermal output, as power dissipation produces heat

s a byproduct. DVFS actions are carried out by the CPUFreq module,

hereas DPM transitions are provided by the CPUIdle module.

.2.1. The CPUFreq subsystem

The CPUFreq subsystem [21] enables scaling processor frequencies

t runtime within the Linux kernel. CPUFreq has been available since

he 2.6.0 Linux kernel version. CPUFreq is composed mainly of a set of

P. Mejia-Alvarez, D. Moncada-Madero and H. Aydin et al. Journal of Systems Architecture 98 (2019) 388–402

Fig. 2. The CPUFreq subsystem architecture.

d

t

t

e

a

p

p

l

a

i

f

f

p

i

s

A

c

t

s

t

r

h

g

i

d

u

q

efined governors and low-level drivers, as shown in Fig. 2 . The subsys-

em complies with the ACPI standard [25] , offering an interface to con-

rol processor performance states, or P-States (sometimes also called Op-

rating Performance Points, or OPP). These power management states

re specified by ACPI and translate into voltage and operating frequency

airs. P-States are numbered according to their associated speed and

ower levels; higher P-States represent slower processor speeds and

ower power consumption. For example, a P3 state demands less power

nd runs more slowly than a P1 state. The number of available P-States

s processor-dependent.

In addition to P-States, the ACPI specification also defines C-States

or processor power management when the system idles. C-States of-

er an idle processor the ability to turn off unused components to save

ower, such as stopping the processor clock and bypassing hardware

nterrupts. As with P-States, the number and attributes of C-States are

pecific to the processor. Fully operational processors run in the C0 state.

t higher C-States, the processor moves to deeper sleep states, and more

omponents are shut down.

CPUFreq governors implement a particular policy for controlling how

he processor frequency and voltage levels are scaled. These are de-

igned with different goals in mind: some governors deliberately switch

o low frequencies in systems with low energy budgets (such as laptops

unning on battery power). Others governors focus on short bursts of

igh processor utilization. It follows that selecting the most adequate

overnor is highly dependent on how the system is optimized, whether

t be for power, for performance, or some other type of hybrid or pre-

ictive approach. The CPUFreq subsystem has four default governors 1 :

• The performance governor. This governor statically sets the pro-

cessor speed to the highest available frequency. As such, it is most

useful when the platform is required to operate at peak performance.

Also, transition latency times are nonexistent, since the switching

occurs only once. As a disadvantage, running at top speed for long

periods quickly leads to overheating.
1 CPUFreq actually has five default governors, the fifth of these being the

serspace governor. Here the authors focus only on governors that perform fre-

uency adjustments.

l

390
• The powersave governor. Similar to the performance governor,

with the difference that this governor sets the processor speed to

the lowest available frequency instead. This results in a great deal

of power savings at the expense of a increased execution times. Nev-

ertheless, using this governor might extend the application comple-

tion times beyond energy efficiency, as running the application for

a longer time while consuming less power might lead to more en-

ergy consumption than doing so at faster rates. For example, when

the energy-efficient frequency [3] is higher than the system’s lowest

frequency level. ”

• The ondemand governor. Introduced in the 2.6.10 Linux kernel

version, this governor is one of the first attempts to integrate dy-

namic frequency scaling with processor utilization tracking. The on-

demand governor automatically selects the highest available fre-

quency when the average processor load rises above a predefined

threshold. Average load estimation is triggered by the task sched-

uler. The governor tracks changes in load when a certain period has

elapsed and sets the frequency accordingly.

When the average processor utilization rises above the threshold

specified by the user, the ondemand governor increases the fre-

quency to the maximum allowable value. If the average processor

utilization falls below a second lower bound, the governor decreases

the frequency in steps, setting the processor to run at the next lowest

frequency. The governor stops decreasing the frequency when it hits

the minimum allowable value. At predefined intervals, the current

processor utilization is queried and the same procedure is applied

to dynamically adjust the frequency. The governor can optionally

reject the utilization contributed by niced processes 2 ; any processes

that run with a positive nice value will not be accounted for when

determining the current processor utilization. In addition, the on-

demand governor considers a tunable parameter that modifies its

behavior to save more power by reducing the target frequency by a

specified percentage.

• The conservative governor. Similar to the ondemand governor,

the conservative governor also works by dynamically adjusting
2 Within the Linux kernel task scheduler, processes with large nice values have

ower priorities.

P. Mejia-Alvarez, D. Moncada-Madero and H. Aydin et al. Journal of Systems Architecture 98 (2019) 388–402

t

m

f

w

f

m

l

p

t

r

s

u

s

f

2

a

v

b

d

t

v

j

C

t

f

o

p

a

n

a

r

m

C

2

k

p

i

t

a

l

o

a

m

d

D

i

s

a

c

b

i

p

d

3

e

p

f

r

t

o

m

q

3

t

s

w

C

e

s

L

a

A

o

t

r

h

3

p

i

a

L

c

c

s

c

s

s

i

s

frequencies based on average processor utilization. The difference

between the two is that the latter increases and decreases processor

speed more gradually, resulting in a more finely tuned frequency

adjustment. The governor was introduced in the 2.6.12 Linux kernel

version.

Unlike the ondemand governor, the conservative governor always

adjusts the frequency up or down in steps. If the average processor

utilization rises above a user-defined threshold, the governor steps

up the processor speed to the next highest frequency below or equal

to the maximum value. Correspondingly, the governor steps down

the frequency when the average utilization falls below a second, also

user-defined threshold. After each predefined interval, the current

processor utilization is checked and the procedure is repeated. The

utilization contribution of processes with a positive nice value can

optionally be ignored when computing overall processor utilization

(as in the ondemand governor). Therefore, niced processes will not

cause the processor frequency to increase.

Although some CPUFreq governors rely on information provided by

he task scheduler, the modular and autonomous design of governors

akes it challenging to merge the power management policies they en-

orce into the task scheduler. The desire to infuse the task scheduler

ith processor power management capabilities, particularly processor

requency scaling, has been present for some time within the Linux com-

unity [11] . Indeed, some initial efforts have been made to more closely

ink the scheduler to the processor’s power management infrastructure,

aving the way for a more complete solution. For example, a patch in-

roducing a new CPUFreq governor, labeled schedutil 3 by Wysocki, has

ecently been merged into the mainline 4.7 Linux kernel release. The

chedutil governor benefits from a callback function that the scheduler

ses whenever it computes its new load average based on the currently

cheduled tasks. This simple scheme makes for a much more precise

requency adjustment.

.2.2. The CPUIdle subsystem

When older systems became idle, a low-priority “idle ” task running

 busy-wait loop was scheduled until some other task requested ser-

ice [15] . If the system ran a light workload with many idle periods,

usy-waiting resulted in CPU cycles being burned and power being

rained without any useful work being performed. This situation mo-

ivated hardware architects to equip next-generation platforms with a

ariety of low-power and idle states to switch to when there are no

obs. These low-power states (previously mentioned in this section as

-States) vary in their associated power consumption and entry-exit la-

ency.

Within the Linux kernel, the CPUIdle subsystem [38] was developed

or handling low-power states. Much like the CPUFreq module, CPUIdle

ffers a generic, hardware independent interface to handle the different

rocessor idle states, and installs a layer of abstraction between policies

nd hardware drivers. Policies, as with CPUFreq, are enforced by gover-

ors. Governors implement the algorithm in charge of selecting the most

ppropriate idle state for a particular situation. For instance, a system

unning a performance-sensitive application (such as video playback)

ight not be able to afford staying idle for too long; in this case, the

PUIdle governor should select a low-latency idle state.

.3. Device power management

Device power management [34] is the other component of the Linux

ernel power management infrastructure. It is concerned with putting

eripheral devices into low-power modes at runtime or when the system

tself engages in low-power mode. Borrowing from the ACPI specifica-

ion, device power management defines low-power states for peripherals
3 See https://patchwork.kernel.org/patch/8477261 . h

391
s D-States (ranging from D0 to D3) as well as a mechanism for control-

ing those states. Each D-State involves a tradeoff between the amount

f power consumed by the device and how functional it is. As with P-

nd C-States, higher D-States represent lower power consumption but

ore device context lost. All devices implicitly support D0 (when the

evice is fully powered) and D3 (when the device is off) states; D1 and

2 are optional.

Device power management is made possible by a new driver model

ntroduced in the 2.5 Linux kernel version. This new model allows the

ystem’s power management infrastructure to interface with all avail-

ble device drivers, regardless of which bus or physical device the driver

ontrols. In addition, the model establishes parent-child relationships

etween system devices to help sort out power transition sequencing

ssues that arise when one driver depends on another. That is, before

owering down a certain device (parent), the system must first power

own its dependents (children).

. Incorporating energy management features in LITMUS RT

This section provides a brief description of LITMUS RT , a real-time

xtension for the Linux kernel, which significantly simplifies the im-

lementation of real-time multiprocessor scheduling policies in the

orm of plugins, offers a programming library for developing custom

eal-time applications, and provides a kernel overhead measurement

oolkit. Then, the development carried out to facilitate the integration

f LITMUS RT and the Linux CPUFreq module is described, which per-

its the implemented multiprocessor scheduling plugins to perform fre-

uency adjustments at runtime.

.1. LITMUS RT

LITMUS RT [9,12] is a real-time extension for the Linux kernel

hat aims to provide a useful experimental platform for applied re-

earch into real-time systems assuming realistic conditions. LITMUS RT

as conceived within the real-time systems group of the UNC at

hapel Hill in 2006, and has been actively maintained and developed

ver since (as of 2018). Its main focus is on real-time multiproces-

or scheduling and synchronization algorithms. The current version of

ITMUS RT (2017.1) is built on top of the 4.9.30 Linux kernel release

nd supports Intel’s 32-bit and 64-bit ×86 architectures, as well as the

RMv6 architecture. LITMUS RT has been embraced in a vast number

f works [7,8,10,22,23,27] researching numerous topics including real-

ime scheduling on GPUs, mixed-criticality real-time systems, adaptive

eal-time tasks, real-time scheduling with semi-partitioned reservations,

ierarchical processor affinities, and many others. 4

.1.1. Core infrastructure

The LITMUS RT architecture follows a modular pattern that decou-

les the development of scheduling policies (i.e., plugins) from changes

ntroduced into the Linux kernel code. This additional code, as well

s some reusable components and shared functionality, constitute the

ITMUS RT core infrastructure.

The LITMUS RT core infrastructure installs an additional scheduling

lass in the Linux scheduling hierarchy on top of every other scheduling

lass (i.e., on top of Linux’s SCHED_FIFO and SCHED_RR real-time

cheduling classes, and the SCHED_NORMAL timesharing scheduling

lass), allowing LITMUS RT to override Linux’s normal scheduling deci-

ions. However, unlike regular Linux scheduling classes, the LITMUS RT

cheduling class does not actually implement any particular schedul-

ng policy, delegating all scheduling decisions to the currently active

cheduling plugin instead.
4 Please refer to https://wiki.litmus-rt.org/litmus/Publications for a compre-

ensive list of publications that use LITMUS RT as base RTOS.

https://patchwork.kernel.org/patch/8477261
https://wiki.litmus-rt.org/litmus/Publications

P. Mejia-Alvarez, D. Moncada-Madero and H. Aydin et al. Journal of Systems Architecture 98 (2019) 388–402

t

w

r

L

e

n

W

o

d

r

q

l

b

[

i

c

p

t

s

t

B

a

m

e

c

p

s

3

p

i

i

t

g

i

a

E

s

m

u

u

s

s

s

o

a

i

u

b

i

t

c

e

o

m

s

O

a

r

w

a

k

k

3

d

t

m

w

e

O

s

w

p

p

o

p

w

f

t

t

v

o

c

b

p

d

o

v

e

3

i

b

L

j

p

r

r

i

p

t

a

s

m

t

t

r

t

a

a

r

q

c

p

5 Providing detailed instructions for developing new plugins is beyond the

scope of this work. Please refer to http://www.litmus-rt.org/create_plugin/

create_plugin.html for a step-by-step guide to implementing a new LITMUS RT

scheduling plugin from scratch.
A LITMUS RT task (i.e., a task conforming to the sporadic real-time

ask model enforced by LITMUS RT) that is eligible for execution is al-

ays scheduled over any regular Linux task. When a LITMUS RT task is

eleased, it continues to run until it is blocked or preempted by another

ITMUS RT task of higher priority. Regular Linux tasks are treated as best-

ffort tasks with statically low priority. If a LITMUS RT task is runnable,

o regular Linux task can run until the former becomes unrunnable.

hen there are no LITMUS RT tasks, the OS continues scheduling every

ther task as usual, which allows the system to act as a normal Linux

istribution in the absence of real-time tasks.

The LITMUS RT core infrastructure also provides reusable ready and

elease queues for managing the admitted real-time tasks. The ready

ueue implements the mechanism to order ready jobs, whereas the re-

ease queue implements the mechanism to queue jobs for future time-

ased releases. The ready queue is implemented as a binomial heap

45] , a tree-like data structure that supports the merging of two heaps

n O (log n) time. The release queue is implemented such that the worst-

ase overhead for releasing multiple jobs simultaneously (e.g., on a hy-

erperiod boundary) is minimized. The release queue abstraction maps

ime instants to heaps, and queues release jobs into the heap that corre-

ponds to their release time. When it is time for the jobs to be released,

he release queue simply merges the release heap with the ready heap.

oth queues are abstracted in the form of a reusable component known

s real-time domain . Depending on the scheduling policy, real-time do-

ains are private or shared. For example, a partitioned policy (where

ach processor has its own ready and release queues) compels each pro-

essor to hold its own exclusive real-time domain, whereas in a global

olicy, a single real-time domain instance is shared between all proces-

ors.

.1.2. Scheduling plugins

In LITMUS RT , the actual scheduling decisions are taken by scheduling

lugins , entities living in kernelspace with access to the LITMUS RT core

nfrastructure. The modular design of LITMUS RT allows rapid prototyp-

ng of new scheduling policies without exposure to the full complexity of

he Linux kernel. LITMUS RT is equipped with a few stock scheduling plu-

ins to implement particular multiprocessor scheduling policies, includ-

ng partitioned EDF (P-EDF), partitioned RM (known within LITMUS RT

s partitioned fixed-priority , or P-FP), global EDF (G-EDF), and clustered

DF (C-EDF).

The LITMUS RT scheduling class invokes the active plugin when a

cheduling decision must be made, e.g., when a job is released or a task

ust be rescheduled. Before launching any real-time task, however, the

ser must select one of the included plugins by means of the setsched
tility (the default scheduling plugin simply defers all scheduling deci-

ions to Linux’s SCHED_NORMAL scheduling class). Once a LITMUS RT

cheduling plugin has been selected, the user can launch individual

poradic real-time tasks using the rtspin or rt_launch utilities

r prepare a sporadic real-time task to be released at the firing of

 signal (with the release_ts utility). When released, the task

s scheduled following the selected multiprocessor scheduling policy

ntil the experiment is completed. The active scheduling plugin can

e switched at runtime by activating another of the included plug-

ns. However, plugin switching can only occur in the absence of real-

ime tasks (i.e., before a task is configured, or after its execution is

omplete).

Developing scheduling plugins in LITMUS RT is akin to a certain

xtent. LITMUS RT offers a plugin interface consisting of several object-

riented methods that can be grouped by functionality. Some of these

ethods handle events that correspond to scheduling points in the

cheduling theory, such as job release, preemption, completion, etc .

ther methods relate to initialization, bookkeeping, and cleanup

ctivities. To modify the behavior of a scheduling plugin in the occur-

ence of certain event, the developer must insert the desired behavior

ithin the method responsible for handling such event. To include

 new, custom-made scheduling plugin in a particular LITMUS RT
392
ernel release, the plugin must be compiled and linked along with the

ernel 5

.2. Extending LITMUS RT with support for DVFS

Despite being feature-rich, the main LITMUS RT kernel distribution

oes not yet include (to the best of the author’s knowledge) any means

o control the performance states offered by the Linux power manage-

ent infrastructure. This opens up an interesting line of research from

hich real-time application developers and researchers alike can ben-

fit. In particular, an experimental platform based on an open source

S such as Linux, with the capacity to regulate its own energy con-

umption while supporting workloads with stringent timing constraints,

ould allow researchers to validate their proposals and evaluate their

erformance on real hardware quickly and cheaply.

Working with LITMUS RT as base RTOS allows reusing several com-

onents from its existing code base, which already implements many

f the features required for this research. In addition, contrary to other

atch-based real-time extensions for the Linux kernel, such as [2,18] -

hose rare adoption by real-time research groups looking for a plat-

orm to evaluate their developments has led maintainers to withdraw

heir support - LITMUS RT is actively maintained and updated, offering

he ability to continue extending this line of research with further de-

elopments while knowing that support is readily available.

The focus in this research is on the implementation and evaluation

f energy-efficient multiprocessor real-time schedulers with global DVFS

apabilities. Indeed, schedulers with these characteristics are known to

e effective at lowering the platform’s energy demand [5] . A recurrent

attern in real-time scheduling algorithms exploiting processor slow-

own is to compute the lowest speed that still guarantees the fulfillment

f timing constraints and then adjust the frequency to the computed

alue at specific points in the schedule, at job release or completion, for

xample.

.2.1. Design

As discussed above, the CPUFreq infrastructure requires the client to

nvoke their interface to switch a frequency from a context where both

locking and hardware interrupts are enabled. Unfortunately, when

ITMUS RT scheduling plugins carry out their scheduling decisions (for

ob release, preemption, and completion), the kernel is executing code

aths that are particularly sensitive to performance with hardware inter-

upts disabled. This is contrary to the goal of allowing the implemented

eal-time multiprocessor scheduling plugins to perform frequency scal-

ng actions directly from the scheduling decision handler. However, the

roblem can be avoided altogether through a simple scheme.

The approach here presented is similar in nature to the dedicated in-

errupt handling [9] (sometimes referred to as interrupt shielding) scheme

lready implemented in LITMUS RT in which a single processor is re-

erved as the system processor and becomes solely responsible for system

anagement tasks, including device and timer interrupt handling. For

he purposes of energy management, the system processor is designated

o receive requests and subsequently perform frequency adjustments at

untime. The remaining application processors (which also encompasses

he systems processor) on the platform perform scheduling decisions

nd submit frequency adjustments to the processor designated to this

ctivity.

Since application processors carry out job scheduling, they have di-

ect access to the effective processor requirement (utilization) being re-

uested by the workload. This information is important to accurately

ompute the frequency level needed to preserve the feasibility of all

rocessors (processor feasibility is guaranteed as long as its operating

http://www.litmus-rt.org/create_plugin/create_plugin.html

P. Mejia-Alvarez, D. Moncada-Madero and H. Aydin et al. Journal of Systems Architecture 98 (2019) 388–402

Fig. 3. High-level overview of frequency scaling in LITMUS RT .

f

c

p

b

a

t

T

c

t

m

r

f

q

t

fl

s

r

p

c

a

e

t

t

a

v

a

a

j

f

r

a

o

w

t

f

s

p

b

i

s

W

t

s

3

s

t

p

s

p

c

s

t

c

p

i

f

p

c

s

f

p

f

a

f

C

i

(

C

t

m

4

a

s
requency is no smaller than its total utilization). Application processors

onvey their load value to the systems processor by means of a message

assing mechanism, where messages are attended to on a first-in first-out

asis. Fig. 3 shows a conceptual overview of the framework, considering

 quad-core multiprocessor platform.

The systems processor itself delegates the actual frequency switching

o a kernel-level event handler specifically maintained for this purpose.

he handler is implemented as a kthread 6 scheduled in the systems pro-

essor. The handler operates by constantly switching between the ac-

ive and inactive states. When a processor requests a frequency adjust-

ent, the handler is activated and forwards the application processor’s

equest to switch the frequency to the CPUFreq driver in use. When the

requency switching is complete, the handler checks if any other fre-

uency adjustment is in place. If so, it begins a new transaction with

he CPUFreq driver; if not, it returns to the inactive state. This work-

ow enables the interface between scheduling plugins and the CPUFreq

ubsystem, as the delegate (the dedicated kernel thread) carries out the

equested frequency switching on behalf of the requesting application

rocessors from process context.

The event handler arranges frequency scaling requests when they oc-

ur concurrently on different application processors. Specifically, when

ny two processors attempt to readjust the frequency to different lev-

ls at almost the same time (since it is impossible for the two events

o occur at exactly the same time, given the limited resolution of OSes

ime tracking mechanisms), the handler serializes the requests by en-

cting the first to arrive and queueing the second to arrive. To allow

oltage and frequency levels on the platform to stabilize following an

djustment, a minimum period of 200 microseconds (or the minimum

llowed by the CPUFreq driver in use) is enforced between any two ad-

ustments. When this period elapses, the handler evaluates if another

requency adjustment is in place, for instance, if the scheduled task set

equires the platform to speed up to meet timing constraints.
6 Kernel threads [31] (often referred to as kernel daemons , or simply kthreads)

re standard processes provided by the Linux kernel useful for carrying out some

perations in the background. They are standard processes living in kernel space,

ith the main difference between these and regular processes being that kernel

hreads do not have an address space. The Linux kernel employs kernel threads

or various purposes, ranging from data synchronization of RAM to helping the

cheduler to distribute processes among CPUs to managing deferred actions.

a

s

s

s

e

i

o

n

c

393
The solution presented draws inspiration from the scheduler design

ioneered in [13] , in which coordination between processors is managed

y a designated moderator, and from the CPUFreq governor described

n [11] , which manages to integrate more closely with the Linux task

cheduler by offering a set of callbacks that the scheduler can invoke.

hile conceptually simple, this new element installed between the sys-

ems processor and the application processors allows arming LITMUS RT

cheduling plugins with CPUFreq governor-like capabilities.

.2.2. Implementation

Implementation for the systems processor side of the workflow de-

cribed above is abstracted in a single reusable component attached

o the LITMUS RT core infrastructure. The component contains a sim-

le API to LITMUS RT scheduling plugin running on application proces-

ors, which is used to perform various operations. The component im-

lements four main operations, which are intended to be used in specific

ontexts:

• rt_dvfs_init() , which instantiates and initializes the kernel-

level event handler at system boot time;

• rt_dvfs_update_cpu_load() , through which application

processors communicate changes in their processor load (arising, for

instance, from workload variability) to the systems processor;

• rt_dvfs_issue_freq_update() , through which application

processors request frequency adjustments to the systems processor;

and

• rt_dvfs_exit() , which disposes of the kernel thread and carries

out cleanup actions when the system is shut down.

The event handler implements the main logic behind frequency

witching by means of the rt_dvfs_task_func() function, al-

hough this procedure is not part of the API. Instead of sending a spe-

ific frequency level when requesting a frequency update, application

rocessors pass their actual processor load to the event handler, which

n return computes the most appropriate frequency level for the plat-

orm (e.g., the frequency level, which preserves the feasibility of the

rocessor with the highest load). The event handler has exclusive ac-

ess to a few pieces of code that define the state of the system with re-

pect to operational frequency. For instance, the event handler retrieves

requency values from a lookup table, mapping operating frequency to

rocessor load. It also keeps track of the platform’s current operational

requency to avoid unnecessary frequency transitions when the current

nd the target frequency levels coincide, as well as the time of the last

requency transition in order to determine if enough time has elapsed.

ommunication between application processors and the event handler

mplementing frequency scaling is established through a first-in first-out

FIFO) buffer, which is protected from concurrent writes by a set of per-

PU locks. Each message passed to the systems processor (i.e., written

o the FIFO buffer) includes the requester’s ID and the time that the

essage was sent.

. Case study: energy-aware multiprocessor scheduling

lgorithms

This and subsequent sections report on a case study that demon-

trates how the energy management framework presented in Sections 2

nd 3 can be applied to the evaluation of energy-aware multiprocessor

cheduling algorithms. This section is devoted to describing the energy-

aving mechanisms employed by algorithms EDF (k) and CVFS, which

erve as the objects under study.

The strategy followed by these algorithms is to select the lowest op-

rating frequency at which tasks can be executed without risking miss-

ng their deadlines. As mentioned previously, reducing the platform’s

perating frequency (and its corresponding supply voltage) yields a sig-

ificant reduction in its energy consumption, while simultaneously in-

reasing the execution of tasks. Thus, the operating frequency must be

P. Mejia-Alvarez, D. Moncada-Madero and H. Aydin et al. Journal of Systems Architecture 98 (2019) 388–402

c

l

c

p

t

(

w

t

s

e

4

d

p

b

I

[

t

a

e

a

[

a

t

h

(

t

p

a

E

(

𝑘

p

i

{

A

o

𝑠

s

m

4

a

o

q

w

t

q

u

c

t

Fig. 4. A job executing in p contiguous chunks of execution.

c

s

g

c

f

q

t

C

o

r

i

s

s

t

t

i

E

t

e

p

r

o

f

f

t

c

i

a

r

t

l

f

p

s

b

f

4

arefully selected in order to avoid prolonging tasks beyond their dead-

ines.

We emphasize that our objective in this paper is not undertaking a

omprehensive experimental valuation of existing energy-aware multi-

rocessor scheduling algorithms – there is a large number of represen-

ative algorithms that have been surveyed in recent research articles

e.g., [5]). We put our efforts in implementing at the Litmus kernel two

ell-known algorithms EDF (k) and CVFS as a proof of concept for the

estbed that we developed. We hope that our testbed will form a ba-

is for the kernel-level evaluation and implementation of many other

nergy-aware multiprocessing scheduling algorithms.

.1. EDF (k)

EDF (k) [26] is a priority-driven multiprocessor scheduling algorithm

esigned to overcome inherent limitations of G-EDF scheduling. EDF (k)

erforms better than EDF in that it can schedule all task sets schedulable

y EDF, in addition to some other task sets that EDF may fail to schedule.

t was first proposed by Goossens et al. [26] and later revisited by Nlis

36] , the latter having developed an offline technique for determining

he lowest processor frequency at which the workload can be executed

cross all processors without compromising feasibility.

The idea behind EDF (k) is to isolate high- and low-demand tasks from

ach other, as their interaction leads to losses in performance for EDF in

 multiprocessor setting, a situation informally known as the Dhall effect

20] . EDF (k) splits the set of tasks into k subsets, 1 ≤ k ≤ m , of “privileged ”

nd non-privileged tasks. Priorities (privileges) are assigned according

o task utilization; the (𝑘 − 1) highest-utilization tasks are assigned the

ighest priorities (and are, therefore, privileged), whereas the remaining

 𝑛 − 𝑘 + 1) tasks are assigned regular EDF priorities. Privileged tasks are

hen dispatched to their own dedicated processor, devoting (𝑚 − 𝑘 + 1)
rocessors to non-privileged tasks.

Task sets composed of a mix of relatively few high-utilization tasks

nd many low-utilization tasks are somewhat more easily supported by

DF (k) . In the worst case, however, EDF (k) either degenerates into G-EDF

when 𝑘 = 1) or acts as a rather unbalanced instance of P-EDF (when

 = 𝑚, which implies that (𝑚 − 1) processors are occupied by a single

rivileged task and one processor is left for the remaining tasks).

Suppose that tasks in a sporadic real-time task set 𝜏 are indexed non-

ncreasingly by utilization (i.e., for all 𝑖, 1 ≤ 𝑖 < 𝑛, 𝑢 𝑖 ≥ 𝑢 𝑖 +1). Let 𝜏(𝑘) =
 𝜏𝑘 , 𝜏𝑘 +1 , … , 𝜏𝑛 } denote 𝜏 without the (𝑘 − 1) highest-utilization tasks.

ccording to the procedure devised in [36] , 𝜏 is schedulable by EDF (k)

n an m -processor platform running at normalized speed s 7 if

 ≥ max
{

𝑢 1 , 𝑢 𝑘 +

𝑈 (𝜏(𝑘 +1))
𝑚 − 𝑘 + 1

}

(1)

The lowest value for s can be identified iteratively by finding the

mallest value from all those computed by Eq. (1) for k between 1 and

 . Hence, the procedure’s time complexity is O (m).

.2. CVFS

The Coordinated Voltage and Frequency Scaling (CVFS) [19] energy-

ware multiprocessor scheduling algorithm is optimized for platforms

n which processors share the same supply voltage and operating fre-

uency. It explicitly addresses the single clock domain restriction to

hich processing cores within a single chip are constrained by setting

he operating frequency of the entire platform to the highest level re-

uested from among all cores. Furthermore, the algorithm benefits from

nder-utilization of the platform, in the form of both unused processor

apacity and idle periods resulting from early task completions.
7 The normalized speed s is defined as the ratio of the current frequency to

he maximum frequency.

s

t

394
For a multiprocessor platform with global DVFS capabilities, CVFS

onsistently sets the shared operating speed s to the maximum proces-

or share requested from all active processing units. Specifically, for a

iven sporadic real-time task set 𝜏 = { 𝜏1 , 𝜏2 , … , 𝜏𝑛 } partitioned across a

omputing platform 𝜋 = { 𝜋1 , 𝜋2 , … , 𝜋𝑚 } , let 𝜓 i denote the subset of tasks

rom 𝜏 allocated to processor 𝜋i . Let the processor utilization (load) re-

uested for processor 𝜋i by 𝜓 i be given by 𝑈 𝑖 =

∑
𝜏𝑗 ∈𝜓 𝑖 𝑢 𝑗 . Assuming

he EDF scheduling scheme, which is optimal for the uniprocessor case,

VFS preserves the feasibility of all active processing units by setting the

perating frequency of the platform to 𝑓 = max { 𝑈 𝑖 } ⋅ 𝑓 max , which can be

egarded as a static frequency selection, in the sense that the frequency

s adjusted according to the worst-case computation requirement of the

upported task set.

CVFS further benefits from the observation that jobs of tasks in a

poradic real-time task set usually use much less than their worst-case

ime allotment at runtime. To exploit this situation, CVFS builds upon

he well-known cycle-conserving EDF (cc-EDF) [40] algorithm, adapting

t to multiprocessor environments with global DVFS capabilities. Like cc-

DF, CVFS enforces several runtime energy management rules for main-

aining an accurate utilization estimation and reducing the frequency

ven further:

• In order to avoid compromising workload feasibility when a job 𝜏𝑘
𝑗

is released, a conservative assumption is made by resetting the uti-

lization due to 𝜏𝑘
𝑗

to its worst-case, that is
𝐶 𝑗

𝑇 𝑗
.

• When a job 𝜏𝑘
𝑗

is complete, the actual amount of processor cycles cc j
consumed by the job is compared to its worst-case specification. Any

unused cycles allocated to 𝜏𝑘
𝑗

are reclaimed by setting their utiliza-

tions to
𝑐𝑐 𝑗

𝑇 𝑗
.

At any of these two scheduling events, the global frequency of the

latform is readjusted according to the updated processor utilization

equirements.

CVFS is further driven by the fact that some processing cores will

perate at a higher frequency than that required to guarantee workload

easibility, since all cores are constrained to the same global operating

requency level. CVFS exploits this fact through a runtime optimization

o refine the load estimation. The working principle is as follows: a job

ompleting a certain amount of work at a high frequency during a predefined

nterval can be seen as equivalent to completing a smaller amount of work

t a lower frequency in the same amount of time . In other words, CVFS

egards the completion of a job on a core whose utilization is smaller

han the largest job on the platform as an early completion, which allows

owering the core’s effective utilization and (conceivably) the platform’s

requency.

Specifically, suppose that a job 𝜏𝑘
𝑗

allocated to core 𝜋i executes in

 contiguous chunks { 𝑒 1 , 𝑒 2 , … , 𝑒 𝑝 } . Let at x be the amount of time con-

umed by 𝜏𝑘
𝑗

during chunk e x (see Fig. 4). The total workload executed c j

y 𝜏𝑘
𝑗

is computed as 𝑐 𝑗 =

∑𝑝

𝑘 =1 (𝑎𝑡 𝑥 ⋅ 𝑈 𝑖) . This simple optimization allows

or a more precise load estimation at job completions.

.3. Implementation issues

Implementing the EDF (k) energy-aware scheduling policy is not as

imple as it seems. EDF (k) might group processors into m different pat-

erns, one for each value that k can take. However, it is not obvious at

P. Mejia-Alvarez, D. Moncada-Madero and H. Aydin et al. Journal of Systems Architecture 98 (2019) 388–402

fi

t

s

c

t

c

a

p

T

v

i

o

t

s

p

s

n

t

s

a

i

t

o

o

u

f

a

a

c

f

a

5

a

t

r

t

T

t

i

h

s

5

i

L

X

w

2

i

o

i

t

l

u

i

m

i

q

t

l

5

e

b

w

n

s

t

e

a

b

a

t

d

t

t

r

s

o

b

r

p

u

s

r

t

r

n

w

i

b

b

j

t

t

w

w
rst how to do this in practice. The clustering approach implemented by

he LITMUS RT stock clustered EDF (C-EDF) scheduling plugin was cho-

en here. However, as opposed to C-EDF, which groups processors into

lusters of the same size around the different cache levels offered by

he hardware 8 , the EDF (k) scheduling plugin assembles processors into

lusters of different sizes, as required by the algorithm (Section 4.1). To

ccomplish this, the clustering functionality for EDF (k) was linked to the

rocedure for clustering processors already implemented in LITMUS RT .

he user writes the desired clustering option (e.g., 𝑘 = 1 , 𝑘 = 2 , etc.) to a
irtual file in the /proc file system. When the EDF (k) scheduling plugin

s activated, it dynamically determines which processors to group based

n the selected configuration. The frequency of the platform is then set

o that computed by Eq. (1) .

The CVFS algorithm was implemented in LITMUS RT by building a

cheduling plugin similar to the LITMUS RT stock partitioned EDF (P-EDF)

lugin. Notably, the P-EDF and CVFS plugins differ in how they manage

cheduling decisions at runtime. The CVFS plugin can accomodate the

ecessary operating frequency adjustments at job release and comple-

ion using the energy management infrastructure described in Section 2 .

Concurrent frequency adjustment requests are particularly trouble-

ome. Since CVFS is a partitioned scheduler, different processors might

ttempt to adjust the frequency to different levels at the same time. For

nstance, two processors might attempt to both increase and decrease

he frequency. In order to coordinate the frequency adjustment actions

ccurring concurrently on different processors, the CVFS plugin relies

n the synchronization procedure enforced by the infrastructure, where

pdates are attended to in first-in first-out order (Section 3). When two

requency adjustment requests arrive, the first is enacted immediately

nd the second is queued. Once the minimum period between any two

djustments has elapsed, the second request is enacted if it is in ac-

ordance to the CVFS energy management policy (i.e., if the requested

requency level is enough to guarantee the feasibility of the workload),

nd discarded otherwise.

. Experimental evaluation of energy-aware multiprocessor

lgorithms

This section presents and discusses the results of the measurements

aken of the implemented energy-aware multiprocessor scheduling algo-

ithms (EDF (k) and CVFS), with the goal of unveiling their performance

rend in terms of energy consumption when running on real hardware.

o accomplish this, the implementation makes explicit use of the infras-

ructure presented in Section 2 . The methodology followed for carry-

ng out the evaluation is described, which includes a description of the

ardware platform underlying the experiments, the benchmark used for

tressing the schedulers, and the instrumentation equipment employed.

.1. Platform

The prototypes for the schedulers considered for the case study were

mplemented in LITMUS RT version 2017.1, which is based on the 4.9

inux kernel release. The system ran the Ubuntu 16.04 LTS “Xenial

erus ” Linux distribution.

Power dissipation measurements described in the following sections

ere taken on an Intel Core i7-2600 9 SandyBridge system. The i7-

600 is a quad-core 64-bit Chip Multiprocessor (CMP). The four process-

ng cores in the chip run at a nominal frequency of 3.4 GHz, and always

perate at the same speed (i.e., the four cores belong to the same voltage

sland).
8 Under the C-EDF scheduling plugin, the user clusters processors based on

he cache topology of the platform, for instance around the L1, L2, etc. cache

evels. This makes the grouping of cores dependent on the architecture of the

nderlying hardware.
9 See https://ark.intel.com/products/52213/ .

p

c

r

f

395
The i7-2600 supports Enhanced Intel SpeedStep Technology, Intel’s

mplementation of dynamic processor frequency scaling that defines

ultiple voltage and frequency operating points (referred to as P-States

n Section 2). The i7-2600 clock can oscillate at fourteen different fre-

uencies, from 2.1 to 3.4 GHz in steps of 100 MHz. At lower speeds,

he processor consumes less power, but the workload execution time is

onger.

.2. Workload

In order to assess the performance of the implemented real-time

nergy-aware multiprocessor scheduling algorithms, an appropriate

enchmark for exercising the aspects of the system of greatest interest

as needed. Previous research efforts [4,40,43] focusing on DVFS tech-

iques for managing the processor’s energy consumption in a real-time

etting have mostly studied the effect of their proposals on the execu-

ion of a CPU-bound workload, and therefore so does this work. The

ffectiveness of the implemented real-time multiprocessor scheduling

lgorithms on a memory bound 10 workload is deferred for future work.

The userspace interface available within LITMUS RT was employed to

uild a suitable benchmark. The interface comprises the liblitmus library

nd accompanying tools to facilitate the writing of custom real-time

asks. The liblitmus library contains all the required system calls and

efinitions to interact with the kernel services that LITMUS RT provides

o real-time tasks (recall from Section 2 that in LITMUS RT a real-time

ask is one that has been admitted to the LITMUS RT scheduling class).

A few steps are required to convert a regular task into a LITMUS RT

eal-time task. All modifications to the target task must be done in its

ource code. Before declaring the actual activity that will be carried

ut, a few lines of code must be devoted to establishing the interaction

etween the task and the LITMUS RT kernel by means of the userspace

eal-time interface. Most of the functions used for this purpose are sim-

ly system calls provided by LITMUS RT . In particular, converting a reg-

lar task into a real-time task requires the use of the following set of

ystem calls:

(i) init_rt_task_param() , which initializes the interface;

(ii) set_rt_task_param() , which sets the real-time parameters

for each job that the target task will produce, including period,

deadline, and execution budget;

(iii) task_mode() , which “transitions ” the target task to real-time

mode; and

(iv) wait_for_ts_release() , which blocks the task (whose

status by now is real-time) until signaled from userspace to begin

execution.

After performing the series of steps outlined above, the task is now

eady to be launched when signaled by the rt_launch utility. When

his happens, the real-time task begins execution. Within LITMUS RT ,

eal-time jobs are more of an accounting abstraction to keep track of the

umber of times that the real-time task has executed its main job loop,

hich are all the relevant instructions accomplished by the task; a “job ”

s therefore a single round of execution of all instructions within the

oundaries of the task’s main loop. Periodic execution of jobs is achieved

y calling the sleep_next_period() function at the end of each

ob. This function triggers the kernelspace mechanism for moving the

ask from the ready to the release queue. Subsequently, a high-resolution

imer is set to fire at the release time for the next job of the task, at

hich time LITMUS RT will move it back to the ready queue and the task

ill again be eligible for execution. Fig. 5 shows a code template for
10 The authors are aware of previous studies exploring the problem of ensuring

erformance while decreasing power consumption (e.g., [33]) considering both

ache sensitive and memory bound workloads. These studies focus mostly on non-

eal-time computing contexts. However, their methodologies could serve as base

or future evaluations in a real-time setting.

https://ark.intel.com/products/52213/

P. Mejia-Alvarez, D. Moncada-Madero and H. Aydin et al. Journal of Systems Architecture 98 (2019) 388–402

Fig. 5. Real-time task boilerplate code.

d

t

r

f

c

l

[

s

t

m

n

p

t

w

5

o

t

F

u

eveloping periodic real-time tasks, which demonstrates the use of all

he functions mentioned above.

The benchmark prepared for exercising the platform attempts to

eplicate the use of a real-world CPU-intensive workload. The reasons

or this are twofold: first, CPU-bound workloads are more sensitive to

hanges on the platform’s operating frequency (the aspect to be ana-

yzed), as these have a direct dependency on the processor’s clock rate

1,6,28] , and are more likely to bring about the processor’s power con-

umption trend. Second, embedded real-time multiprocessor systems are

ypically host to compute-intensive tasks such as high-definition multi-

edia playback, digital signal processing, and object and pattern recog-

ition [29] . As such, compute-intensive workloads are a natural starting

oint for testing resource optimization approaches targeting the real-

ime domain.

With this in mind, the benchmark designed for the purposes of this

ork consists of the following two components:
396
• A subroutine for computing an LUP decomposition for a reasonably

large system of linear equations [16] , whit the aim of representing a

subset of the operations commonly performed in machine learning,

data analysis, and computer vision applications.

• A subroutine for producing the discrete Fourier transform of a se-

quence of values by means of an iterative Fast Fourier Transform

(FFT) algorithm [16,41] , whit the aim of representing data filtering

and signal processing applications.

.3. Methodology

In what follows, the steps taken to build the experiments (based

n the workload presented in the previous section) and measuring

he power consumption of our experimental platform are described.

ig. 6 presents an illustration of the different stages involved in the eval-

ation.
Fig. 6. Flowchart illustrating the followed

steps in the evaluation.

P. Mejia-Alvarez, D. Moncada-Madero and H. Aydin et al. Journal of Systems Architecture 98 (2019) 388–402

Fig. 7. Pseudocode for generating experiments.

5

c

q

i

w

s

i

s

n

n

p

t

t

u

t

r

s

1

s

h

e

i

m

p

p

u

p

l

s

r

m

w

c

W

s

F

t

b

t

a

d

m

i

n

s

p

o

a

r

p

a

s

o

s

c

2

s

m

5

fi

n

d

s

d

t

s

i

b

c

p

a

H

s

p

i

m

s

t

c

s

t

o

t

p

p

m

p

s

l
.4. Experiments

The experimental evaluation targeted four different scheduling poli-

ies: LITMUS RT ’s stock partitioned EDF (P-EDF), EDF (k) (without fre-

uency scaling), CVFS, and EDF (k) . The first two carried out the schedul-

ng of tasks while running at full speed, whereas the other two did so

hile applying their respective energy management actions. The two

chedulers not implementing any particular energy management policy

n our evaluation are included mainly for comparison purposes.

In the context of energy-efficient scheduling algorithms for real-time

ystems, power consumption and processor utilization are easily recog-

ized as being correlated to one another, as a lower processor utilization

aturally leads to long slack periods arising from the spare processor ca-

acity, which the algorithm is likely to exploit in some way to decrease

he platform’s power consumption [29] . To align with previous studies,

he experiments carried out in this study likewise considered processor

tilization as the primary parameter for revealing the performance of

he tested scheduling algorithms in terms of energy consumption. The

ole of the size of the sporadic real-time task sets used for exercising the

chedulers is yet to be determined.

Workloads with total number of tasks ranging from n ∈ {6 m, 8 m,

0 m, 12 m}, where 𝑚 = 4 were considered. It was decided to execute

ets with a large number of tasks so that the implemented algorithms

ad a better chance of success when partitioning the workload [10] . For

ach number of tasks n , sporadic real-time task sets with total normal-

zed utilization U across 𝑈 ∈ {20% , 30% , … , 80%} were considered. Nor-

alized utilization refers to the mean processor share requested to each

rocessor on the platform, i.e, to the quantity
𝑈 𝑡𝑜𝑡

𝑚
. For each n and U

air, ten random task sets were generated (for a total of 280 task sets)

sing the task set generator from Emberson et al. [24] . The generator

roduces task sets with a given number of tasks, whose cumulative uti-

ization adds up to a given utilization value. Each generated task is as-

igned a uniformly distributed utilization u i and a period T i chosen at

andom from the set {10, 20, 25, 40, 50, 100, 125, 200, 500, 1000} (in

illiseconds), which are comparable to those found in actual real-time

orkloads [29] . The worst-case execution requirement for each task is

omputed as 𝐶 𝑖 = 𝑢 𝑖 ⋅ 𝑇 𝑖 . All tasks were assumed to execute up to their

CET.

Energy-aware multiprocessor approaches based on partitioned

cheduling generally perform better when the workload is split evenly.

or partitioned schedulers, the generated task sets were divided using

he worst-fit decreasing (WFD) [30] heuristic, which is known to generate

etter balanced partitions. A task set was deemed valid if WFD was able

o partition the set successfully. Invalid task sets were simply discarded

nd new ones were generated until the target 280 task sets were pro-

uced. For EDF (k) schedulers, a task set was considered valid if EDF (k)

anaged to cluster the tasks in the set following the procedure outlined

n Section 4 . Fig. 7 summarizes the experiment generation procedure.

As opposed to the other scheduling policies, CVFS operates by dy-

amically reclaiming unused processor capacity in the form of dynamic

lack , which stems from tasks finishing their execution earlier than ex-
 c

397
ected. In order to capture the impact of dynamic workload variability

n the performance of CVFS, 3 more sets of task systems were gener-

ted (with 280 task systems each) specifically for CVFS, in which tasks

andomly underrun their WCET by a factor of 10%, 20%, and 30%. The

artitioning of these sets was carried out in the same manner.

Each generated experiment was post-processed and translated into

n executable shell script containing the specification of the task set, the

cheduling plugin that handled the task set at runtime, and the duration

f the experiment. Each task was mapped to one of the two CPU inten-

ive workloads described in Section 5.2 , which were developed specifi-

ally for the purposes of experimentation. Each task set was traced for

0 s. In total, 1960 sporadic real-time task sets were executed and mea-

ured over more than 20 h of continuous real-time execution and power

easurement.

.5. Instrumentation

Measuring the exact power usage of a processor is notoriously dif-

cult. Modern processors use hundreds of pins and multiple intercon-

ect layers for power and ground lines [39] . These lines are further

istributed within the chip between the many processor components,

ome of which have uneven power requirements. Therefore, accurately

etermining the processor’s power consumption under full considera-

ion of its internal architectural traits would require the use of highly

pecialized and expensive equipment. Instead, a much simpler approach

s followed that allows approximating the actual numbers for the power

eing drawn at a reasonable cost.

To characterize the processor’s power consumption, the electrical

urrent passing through it must first be determined. One way to accom-

lish this is to intercept the line delivering power to the chip and insert

 measurement device to monitor the current flowing through this line.

owever, the current can rise to levels that are unbearable for the mea-

urement instrument during instances when the processor is running at

eak performance, resulting in incorrect readings or even damage to the

nstrument. An alternative, safer solution involves inserting a shunt (a

anganin resistor of accurately known resistance) between the proces-

or and its power supply. The voltage drop across a shunt is proportional

o the current flowing through it. Given a shunt’s resistance, it is easy to

ompute the value of the current passing through the circuit where the

hunt is installed on using Ohm’s law. The placement of a shunt resis-

or has an almost negligible effect on the circuit, as the shunt normally

ffers very small electrical resistance. Once the current passing through

he processor has been determined, its power draw is also easily com-

uted as the product of the current and the voltage being fed to the

rocessor.

The above described method was chosen because it has the prag-

atic benefit of being clean, simple, and accurate enough for most pur-

oses. The voltage drop was measured across a low-resistance shunt re-

istor installed in series between the processor and the power delivery

ine coming from the power supply. Shunts were rated by maximum

urrent and voltage drop at that current. The voltage drop of the shunt

P. Mejia-Alvarez, D. Moncada-Madero and H. Aydin et al. Journal of Systems Architecture 98 (2019) 388–402

Fig. 8. Physical setup for measuring power consumption.

Fig. 9. Power measurements for different utilization levels.

e

o

t

c

o

G

i

p

s

s

d

s

s

c

𝑉

i

c

𝑃

t

i

s

c

f

t

r

s

s

r

d

c

d

r

e

b

t

t

i

a

d

p

s

𝐸

F

e

m

5

p

e

t

t
mployed was 75 mV at a maximum current of 50 A. The resistance

ffered by the shunt was therefore 1.5 m Ω. The motherboard holding

he i7-2600 chip, an Asus P8H67-M EVO

11 , used an eight-pin EATX12V

onnection to deliver power to the processor. The connection consisted

f four DC +12V wires and four ground wires coming from a Corsair

S700 power supply. 12 To improve the accuracy of the voltage read-

ngs, the shunt was inserted as close to the ground leg of the circuit as

ossible [17] . Fig. 8 shows the physical interconnection of the power

upply, processor, and shunt device.

Let V dd , V CPU , and V shunt denote the voltage delivered by the power

upply, the voltage drop at the CPU, and the voltage drop at the shunt

evice, respectively (Fig. 8). R denotes the resistance offered by the

hunt, and I is the current flowing through the circuit. The power dis-

ipation of the CPU can be equated to the product of its voltage and

urrent consumption, 𝑃 CPU = V CPU · I . Based on basic circuit theory,

 CPU = 𝑉 𝑑𝑑 − 𝑉 𝑠ℎ𝑢𝑛𝑡 . The value of the current being drawn can be approx-

mated to 𝐼 =

𝑉 𝑠ℎ𝑢𝑛𝑡

𝑅
. These two equations allow expressing the power

onsumption for the CPU as a function of the shunt’s voltage drop:

 CPU = 𝑉 CPU ⋅ 𝐼 = (𝑉 𝑑𝑑 − 𝑉 𝑠ℎ𝑢𝑛𝑡)
(

𝑉 𝑠ℎ𝑢𝑛𝑡

𝑅

)

(2)

A Keysight 34411A 6 1/2-digit multimeter [44] was used to measure

he voltage drop across the installed shunt resistor (Fig. 8). The 34411A
11 See https://www.asus.com/Motherboards/P8H67M-EVO .
12 See http://www.corsair.com/en-us/gs700w .

d

a

i

398
s a high-performance Digital Multimeter (DMM) capable of taking mea-

urements over a fixed period without user intervention. The instrument

an be connected to a computer by means of the USB, LAN, or GPIB inter-

ace. The multimeter can be triggered by software and has the capacity

o store the acquired data in its internal non-volatile memory for later

etrieval. Readings were automated by means of a dedicated script con-

isting mostly of commands that conform to the SCPI 13 standard. The

cript was deployed prior to the execution of each experiment, and was

esponsible for configuring the instrument, triggering the acquisition of

ata, and retrieving the collected measurement samples.

The experiments were performed while measuring the actual power

onsumption of the test bench, following the measurement procedure

escribed above. Each experiment lasted for 20 s, during which voltage

eadings were collected at a rate of 1,000 readings per second. The en-

rgy consumption of a running sporadic real-time task set was computed

y approximating the integral of the power consumed over time using

he Riemann sum. Specifically, let E CPU denote the energy consumed by

he processor over a period of time T , and x i be the set of voltage read-

ngs recorded by the multimeter. Any two consecutive voltage readings

re separated from each other by a (1
1000) th of a second. Eq. (2) allows

etermining the power consumed by the processor across 𝑇 = 20 , by

lugging to it each collected voltage reading. Hence, by the Riemann

um,

 CPU = ∫
𝑇

0
𝑃 CPU ⋅ 𝑑𝑡 ≈

1
1000

⋅
𝑛 ∑
𝑖 =1

(𝑉 𝑑𝑑 − 𝑥 𝑖)
(𝑥 𝑖
𝑅

)
(3)

The energy consumption numbers reported in Fig. 10 through

ig. 12 reflect the average of ten measurements (see Section 5.4). For all

xperiments, more than 450 MB of trace data were recorded containing

ore than 50,000,000 measurement samples.

.6. Measurements and observations

Once the entire experimental flow was set up and deployed, it was

ossible to acquire meaningful measurement data to evaluate the overall

nergy consumption resulting from the execution of sporadic real-time

ask sets under different energy-aware policies.

Given the short separation allowed by the measurement device be-

ween any two consecutive readings, it was possible to capture very
13 The Standard Commands for Programmable Instruments (SCPI) specification

efines the syntax rules and conventions used in controlling programmable test

nd measurement devices. The 34411A complies with SCPI, which allows the

nstrument to be programmed using simple, generic commands.

https://www.asus.com/Motherboards/P8H67M-EVO
http://www.corsair.com/en-us/gs700w

P. Mejia-Alvarez, D. Moncada-Madero and H. Aydin et al. Journal of Systems Architecture 98 (2019) 388–402

Fig. 10. Energy measurements for CVFS while scheduling sporadic real-time task sets with a number of tasks (a) 𝑛 = 6 m = 24 (b) 𝑛 = 8 m = 32 .

s

u

t

l

u

T

b

d

w

u

m

t

q

i

g

t

i

l

s

s

p

i

u

i

o

s

s

r

t

q

t

P

v

F

e

d

i

o

5

n

c

d

c

p

f

c

C

b

𝑛

t

w

l

5

e

b

m

i

u

l

l

a

p

p

o

s

t

a

T

n

s

g

E

(

u

w

t

E

14 It would be interesting to determine if this claim holds for extremely large

task counts.
15 Notice, however, that this situation is not exclusive to the energy-efficient

schedulers. The same holds for the schedulers not implementing any particular

energy saving measure (Fig. 10 through Fig. 12).
light variations in power consumption, which aids in gaining a deeper

nderstanding of the implemented scheduler’s runtime behavior. An in-

eresting pattern was noted when the computing platform was underuti-

ized. The power measurements for sporadic task sets whose normalized

tilization is markedly low exhibit a bimodally distributed arrangement.

his situation might be explained by the likelihood of sudden short

ursts of activity being interspersed with long periods of idleness. The

istribution of the data might reflect the platform’s power consumption

hen alternating between the active and idle states. As the processor

tilization increases, the power dissipation begins to display a more fa-

iliar normal distribution pattern. This phenomenon might represent

he scheduler’s tendency to consistently select a specific operating fre-

uency level to execute the workload. When the processing requirement

ncreases, the schedulers opt for the lowest operating frequency that still

uarantees meeting all timing requirements. Consequently, the execu-

ion of the workload is extended and slack times are shortened, resulting

n a more regular power consumption at a constant operating frequency

evel.

Fig. 9 illustrates the effect described above, showing the power mea-

urement distribution for task sets of varying normalized utilization

cheduled under CVFS. In the figure, the blue histogram represents the

ower measurements distribution for a task set with a 20% total normal-

zed utilization, whereas the red histogram represents that of an 80%

tilization task set.

The power consumption trends of both CVFS and EDF (k) (described

n Section 4) were profiled while scheduling sporadic real-time task sets

f increasing worst-case processor utilization. Both algorithms were de-

igned for multiprocessor platforms where all processing units are con-

trained to operate at the same voltage and frequency level. The algo-

ithms differ, however, in the power saving measures they take to lower

he platform’s overall energy consumption. EDF (k) relies on a static fre-

uency selection, while CVFS benefits from tasks finishing their execu-

ion earlier than expected. The actual processor power dissipation for

-EDF and EDF (k) (running at full speed) were also measured to pro-

ide a baseline for their energy-efficient counterparts. Fig. 10 through

ig. 12 present the performance of the schedulers with respect to en-

rgy consumption. In the figures for CVFS, “underrun ” relates to the

eviation of the actual execution time of tasks from its worst-case. For

nstance, a task with a underrun value of 10% is likely to run for 90%

f its WCET.

.6.1. Observation 1

CVFS dominates P-EDF in terms of energy consumption in all tested sce-

arios, and even more so when the actual case execution time of tasks de-

lines. When the overall processing requirement is low, both schemes

isplay similar energy consumption trends. As processor utilization in-
399
reases, the effectiveness of CVFS’s energy saving features becomes ap-

arent. The gap between CVFS and P-EDF gradually widens as the plat-

orm becomes more occupied, achieving an ≈18% reduction in power

onsumption at a normalized utilization value of 80%. Interestingly,

VFS performance remains the same even with an increasing num-

er of tasks. In fact, the energy consumption of a task set comprising

 = 6 m = 24 real-time tasks scheduled under CVFS is nearly identical to

hat of a task set comprising twice as many tasks (Figs. 10 (a) and 11 (b)),

hich indicates that energy is much more dependent on processor uti-

ization than on the size 14 of the task set.

.6.2. Observation 2

EDF (k) is unattractive for supporting high-utilization task sets from the

nergy consumption perspective. Fig. 12 shows the performance of EDF (k) ,

oth when performing a static frequency selection and running at the

aximum allowable frequency. The first notable effect is the decreas-

ng gains in terms of energy consumption at high normalized processor

tilization values. When the processor share requested by the task set is

ow, EDF (k) performance is comparable to that of CVFS, mainly due to

ong periods of idleness taking place (Figs. 10 (a) and 12). Tasks with

 low processor utilization demand require either a very short com-

utation time or have a very long activation rate, which provides the

latform with ample space to remain idle. Thus, independently of the

perating frequency, the processors remain idle for longer periods, con-

uming much less energy 15 As the processor utilization rises, however,

he effectiveness of EDF (k) in terms of energy consumption decreases,

pproaching that of its equivalent executing the workload at full speed.

his calls into question the viability of a static frequency selection tech-

ique when supporting sporadic real-time task set with a high proces-

or utilization requirement on a multiprocessor platform constrained to

lobal DVFS.

Fig. 13 summarizes the relative energy efficiency for CVFS and

DF (k) when scheduling compute-intensive benchmarks with varying

high) normalized processor utilization. The numbers shown in the fig-

re were computed by normalizing the performance of each scheduler

ith respect to their baseline schemes that execute tasks at f max at all

imes. It can be seen from the figure that the relative performance of

DF (k) declines as normalized processor utilization approaches 80%,

P. Mejia-Alvarez, D. Moncada-Madero and H. Aydin et al. Journal of Systems Architecture 98 (2019) 388–402

Fig. 11. Energy measurements for CVFS while scheduling sporadic real-time task sets with a number of tasks (a) 𝑛 = 10 m = 40 (b) 𝑛 = 12 m = 48 .

Fig. 12. Energy measurements for EDF (k) while scheduling task sets with vary-

ing numbers of tasks n ∈ {6 m, 8 m, 10 m, 12 m}, with 𝑚 = 4 .

w

e

5

a

p

a

i

r

d

i

i

h

l

n

m

t

e

n

E

i

c

(

5

s

l

h

C

r

f

c
hereas CVFS (assuming no underrun) manages to reduce the platform’s

nergy consumption by more than 6% at 80% of utilization.

.6.3. Measuring overheads

When the infrastructure described in Section 2 is employed to en-

ct frequency adjustments at runtime, some extra overhead is to be ex-

ected. Compared to a scheduling policy unaware of the system’s power
400
nd energy consumption, an energy-efficient policy will most assuredly

ncur additional overheads (for updating the platform’s current load,

equesting a frequency adjustment, etc.) when making energy saving

ecisions at runtime. To quantify the impact of such system overheads

n a practical setting, additional workloads were run under CVFS and

ts baseline (P-EDF) on the quad-core platform while recording over-

ead samples. The low-level latency following a task release was se-

ected as representative of the event-scheduling category, where dy-

amic frequency adjustment actions take place. A task set generation

ethodology similar to that described in Section 5.4 was followed. 150

ask sets were generated using the task set generator from Emberson

t al., each with a total utilization of either 75%, 80%, or 85%, and a

umber of tasks ranging from 𝑛 = 4 m = 16 to 10 m = 40 in steps of 2 m.

ach task set was guaranteed to be feasible under partitioned schedul-

ng and executed under both schedulers for 60 s. Overhead samples were

ollected using LITMUS RT ’s Feather-Trace low-overhead tracing toolkit

 Section 2).

.6.4. Observation 3

Runtime overheads incurred when making frequency adjustment deci-

ions are relatively small in absolute terms . Fig. 14 illustrates the task re-

ease overhead data observed by Feather-Trace, which measures over-

eads in terms of CPU cycles. On the experimental platform (where the

PU cycles counter runs at the platform’s nominal frequency), 1 μs cor-

esponds roughly to 3400 cycles. In the figure, the y -axis denotes the

raction of all overhead data that measured at most the quantity of pro-

essor cycles marked on the x -axis. For instance, it can be seen from the
Fig. 13. Energy efficiency of CVFS and EDF (k)

relative to their baselines.

P. Mejia-Alvarez, D. Moncada-Madero and H. Aydin et al. Journal of Systems Architecture 98 (2019) 388–402

Fig. 14. Overhead incurred at task release under P-EDF and

CVFS.

fi

t

h

l

i

o

t

r

o

t

s

S

b

i

6

f

p

e

h

t

b

a

e

r

c

(

m

s

i

c

s

h

j

c

A

E

r

S

t

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
gure that 90% of the overhead samples measured for P-EDF were fewer

han 5000 cycles ≈1.47 μs. As expected, CVFS does incur higher over-

eads because of the latency involved in selecting the next frequency

evel and synchronizing the decision with respect to every other process-

ng core on the platform (recall that the experimental testbed is based

n a CMP featuring a global voltage and frequency level). However,

he difference between both policies in terms of runtime overheads is

elatively small, within the range of a few microseconds (90% of the

verheads for CVFS measured at most 10,000 cycles ≈2.94 μs). Even in

he presence of additional overheads, these experiments with CVFS re-

ulted in no observable instability with respect to timing requirements.

till, this exchange between performance and energy consumption must

e validated by taking the characteristics of the supported application

nto account.

. Conclusion

The recent availability of such open, feature-complete frameworks

or supporting real-time workloads on multiprocessor and multicore

latforms such as LITMUS RT has made it possible to implement and

valuate real-time scheduling algorithms found in the literature on real

ardware platforms. Moreover, the integration of these frameworks with

he hardware and software support for energy management provided

y most modern platforms makes it more feasible to implement energy-

ware real-time multiprocessor scheduling algorithms with reasonable

ffort.

In this work, we have provided a means for achieving progress in this

egard. Our implementation effort and measurement methodology was

rucial in conducting a case study that presented the real performance

for our particular experimental setup) of two energy-aware real-time

ultiprocessor scheduling algorithms found in the literature. The re-

ults obtained in our study indicate that voltage/frequency scaling is

ndeed an effective means for achieving energy savings in multipro-

essor settings where all processing units are constrained to run at a

ingle global speed. In addition, the comparatively low runtime over-

eads introduced by dynamically performing operating frequency ad-

ustments further confirms the practicality of the technique, even in

ontexts where stringent timing constraints must be preserved.

cknowledgments

The authors would like to thank to Project FOMIX CONACyT-

stado de Jalisco CIIoT (JAL-2015-03), for proving the funds for this

esearch.

upplementary material

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.sysarc.2019.01.018 .
401
eferences

[1] I. Ahmad , S. Ranka , Handbook of Energy-Aware and Green Computing, Chapman &

Hall/CRC, 2012 .

[2] M. Asberg , T. Nolte , S. Kato , Exsched: an external cpu scheduler framework for re-

al-time systems, in: Proceedings of the 18th IEEE International Conference on Em-

bedded and Real-Time Computing Systems and Applications, 2012 .

[3] H. Aydin , V. Devadas , D. Zhu , System-level energy management for periodic re-

al-time tasks, in: Proceedings of the 27th IEEE Real-Time Systems Symposium

(RTSS’06), Rio de Janeiro, Brazil, 2006 .

[4] H. Aydin, R. Melhem, D. Mosse, P. Mejia-Alvarez, Power-aware scheduling for peri-

odic real-time tasks 53 (5) (2004) 584–600, doi: 10.1109/TC.2004.1275298 .

[5] M. Bambagini, M. Marinoni, H. Aydin, G. Buttazzo, Energy-aware scheduling for

real-time systems: a survey 15 (1) (2016), doi: 10.1145/2808231 .

[6] M. Benson , The Art of Software Thermal Management for Embedded Systems,

Springer-Verlag New York, 2014 .

[7] A. Block , W. Kelley , Implementing adaptive clustered scheduling in LITMUS-RT,

in: Proceedings of the 11th Annual Workshop on Operating Systems Platforms for

Embedded Real-Time applications, 2015 .

[8] V. Bonifaci , B. Brandenburg , G. D’Angelo , A. Marchetti-Spaccamela , Multiprocessor

real-time scheduling with hierarchical processor affinities, in: Proceedings of the

28th Euromicro Conference on Real-Time Systems, 2016 .

[9] B. Brandenburg , Scheduling and Locking in Multiprocessor Real-Time Operating Sys-

tems. Ph.D. thesis, 2011 .

10] B.B. Brandenburg , M. Gl , Global scheduling not required: Simple, near-optimal mul-

tiprocessor real-time scheduling with semi-partitioned reservations, in: Proceedings

of the 37th IEEE Real-Time Systems Symposium, 2016 .

11] N. Brown, Improvements in CPU frequency management, https://lwn.net/

Articles/682391/ , April 6, 2016.

12] J. Calandrino , H. Leontyev , A. Block , U. Devi , J. Anderson , LITMUS-RT: a testbed

for empirically comparing real-time multiprocessor schedulers, in: Proceedings of

the 27th IEEE Real-Time Systems Symposium, 2006 .

13] F. Cerqueira , M. Vanga , B.B. Brandenburg , Scaling global scheduling with message

passing, in: Proceedings of the 20th IEEE Real-Time and Embedded Technology and

Applications Symposium, 2014 .

14] J.-J. Chen , H.-R. Hsu , T.-W. Kuo , Leakage-aware energy-efficient scheduling of re-

al-time tasks in multiprocessor systems, in: Proceedings of the 12th IEEE Real-Time

and Embedded Technology and Applications Symposium, 2006 .

15] J. Corbet, The cpuidle subsystem, https://lwn.net/Articles/384146/ , April 26, 2010.

16] T.H. Cormen , C.E. Leiserson , R.L. Rivest , C. Stein , Introduction to Algorithms, The

MIT Press, 2009 .

17] N.I. Corporation, Current measurements: how-to guide, http://www.ni.com .

18] M. Dellinger , P. Garyali , B. Ravindran , ChronOS Linux: a best-effort real-time mul-

tiprocessor Linux kernel, in: Proceedings of the 48th ACM/EDAC/IEEE Design and

Automation Conference, 2011 .

19] V. Devadas , H. Aydin , Coordinated power management of periodic real-time tasks

on chip multiprocessors, in: Proceedings of the International Green Computing Con-

ference, 2010 .

20] S.K. Dhall, C.L. Liu, On a real-time scheduling problem 26 (1) (1978) 127–140,

doi: 10.1287/opre.26.1.127 .

21] L.K. Documentation, CPU frequency and voltage scaling code in the Linux(TM) ker-

nel, https://www.kernel.org/doc/Documentation/cpu-freq/core.tx .

22] G.A. Elliot, J.H. Anderson, Globally scheduled real-time multiprocessor systems with

GPUs 48 (1) (2011) 34–74, doi: 10.1007/s11241-011-9140-y .

23] G.A. Elliot , B.C. Ward , J.H. Anderson , GPUSync: a framework for real-time GPU

management, in: Proceedings of the 34th IEEE Real-Time Systems Symposium, 2013 .

24] P. Emberson , R. Stafford , R.I. Davis , Techniques for the synthesis of multiprocessor

tasksets, in: Proceedings of the 1st International Workshop on Analysis Tools and

Methodologies for Embedded and Real-Time Systems, 2010 .

25] U.E.F.I. Forum, Unified Extensible Firmware Interface Forum. Acpi specification,

http://uefi.org/specifications .

26] J. Goossens, S. Funk, S. Baruah, Priority-driven scheduling of periodic task systems

on multiprocessors 25 (2–3) (2003) 187–205, doi: 10.1023/A:1025120124771 .

https://doi.org/10.1016/j.sysarc.2019.01.018
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0003
https://doi.org/10.1109/TC.2004.1275298
https://doi.org/10.1145/2808231
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0010
https://lwn.net/Articles/682391/
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0013
https://lwn.net/Articles/384146/
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0014
http://www.ni.com
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0016
https://doi.org/10.1287/opre.26.1.127
https://www.kernel.org/doc/Documentation/cpu-freq/core.tx
https://doi.org/10.1007/s11241-011-9140-y
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0020
http://uefi.org/specifications
https://doi.org/10.1023/A:1025120124771

P. Mejia-Alvarez, D. Moncada-Madero and H. Aydin et al. Journal of Systems Architecture 98 (2019) 388–402

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

27] J.L. Herman , C.J. Kenna , M.S. Mollison , J.H. Anderson , D.M. Johnson , RTOS support

for multicore mixed-criticality systems, in: Proceedings of the 18th IEEE Real-Time

and Embedded Technology and Applications Symposium, 2012 .

28] C.-M. Kyung , S. Yoo , Energy-Aware System Design, Springer Netherlands, 2011 .

29] I. Lee , J.Y.-T. Leung , S.H. Son , Handbook of Real-Time and Embedded Systems,

Chapman and Hall/CRC, 2008 .

30] J.M. Lopez , M. Garcia , J.L. Diaz , D.F. Garcia , Worst-case utilization bound for EDF

scheduling on real-time multiprocessor systems, in: Proceedings of the 12th Euromi-

cro Conference on Real-Time Systems, 2000 .

31] R. Love , Linux Kernel Development, Pearson Education, 2010 .

32] B. Luca , A. Bogliolo , G.D. Micheli , A survey of design techniques for system-level

dynamic power management 8 (3) (2000) 299–316 .

33] A. Mazouz, A. Laurent, B. Pradelle, W. Jalby, Evaluation of cpu frequency transition

latency 29 (3–4) (2014) 187–195, doi: 10.1007/s00450-013-0240-x .

34] P. Mochel , Linux kernel power management, in: Proceedings of the Linux Sympo-

sium, 2003 .

35] G.A. Moreno , D. de Niz , An optimal real-time voltage and frequency scaling for

uniform multiprocessors, in: Proceedings of the 18th IEEE International Conference

on Embedded and Real-Time Computing Systems and Applications, 2012 .

36] V. Nlis , Energy-Aware Real-Time Scheduling in Embedded Multiprocessor Systems.

Ph.D. thesis, 2011 .

37] S. Pagani , J.-J. Chen , Energy efficiency analysis for the single frequency approxi-

mation (SDA) scheme, in: Proceedings of the 19th IEEE International Conference on

Embedded and Real-Time Computing Systems and Applications, 2013 .

38] V. Pallipadi , A. Belay , cpuidle-do nothing, efficiently, in: Proceedings of the Linux

Symposium, 2007 .

39] D.A. Patterson , J.L. Hennessy , Computer Architecture: A Quantitative Approach,

Morgan Kaufmann, 2012 .

40] P. Pillai , K.G. Shin , Real-time dynamic voltage scaling for low-power embedded op-

erating systems, in: Proceedings of the 8th ACM Symposium on Operating System

Principles, 2001 .

41] K.R. Rao , D.N. Kim , J.J. Hwang , Fast Fourier Transform: Algorithms And Applica-

tions, Springer Netherlands, 2010 .

42] I. Sandy , S. Shukla , R. Gupta , Online strategies for dynamic power management in

systems with multiple power-saving states 2 (3) (2003) 325–346 .

43] Y. Shin , K. Choi , Power conscious fixed priority scheduling for hard real-time sys-

tems, in: Proceedings of the 36th Annual ACM/IEEE Design Automation Conference,

1999 .

44] K. Technologies, 34411a digital multimeter, 6 1/2 digit overview and features,

https://www.keysight.com/en/pd-692679-pn-34411A .

45] J. Vuillemin, A data structure for manipulating priority queues 21 (4) (1978) 309–

315, doi: 10.1145/359460.359478 .

46] C.-Y. Yang , J.-J. Chen , T.-W. Kuo , An approximation algorithm for energy-efficient

scheduling on a chip multiprocessor, in: Proceedings of the Conference on Design

and Automation and Test in Europe, 2005 .

47] R. Zhiyuan , B.H. Krogh , R. Marculescu , Hierarchical adaptive dynamic power man-

agement 54 (4) (2005) 409–420 .

48] D. Zhu, R. Melhem, B. Childers, Scheduling with dynamic voltage/speed adjustment

using slack reclamation in multi-processor real-time systems 14 (7) (2003) 686–700,

doi: 10.1109/TPDS.2003.1214320 .
402
Pedro Mejia-Alvarez received the B.S. degree in computer

systems from ITESM, Queretaro, Mexico, in 1985, and the

Ph.D. degree in informatics from the Polytechnic University

of Madrid, Spain, in 1995. He has been Professor for the com-

puter science department at Cinvestav-IPN, since 1997. His

main research interests are mobile computing, real-time sys-

tems scheduling, adaptive fault tolerance, and software engi-

neering.

David Moncada-Madero received the MsC. degree in com-

puter science from CINVESTAV-Guadalajara. He is currently

a Software Engineer at Microsoft in Redmond Wa, USA. His

research interests include real-time systems, mobile and wear-

able computing.

Hakan Aydin received the Ph.D. degree in computer science

from the University of Pittsburgh in 2001. He is currently an

associate professor in the Computer Science Department at

George Mason University. He was a recipient of the US Na-

tional Science Foundation (NSF) Faculty Early Career Devel-

opment (CAREER) Award in 2006. His research interests in-

clude real-time systems, low-power computing, and fault tol-

erance. He is a member of the IEEE.

Arnoldo Díaz-Ramirez is a research professor in the depart-

ment of Computer Systems at Tecnologico Nacional de Mex-

ico/Instituto Tecnologico de Mexicali. He received the BS de-

gree in computer sciences from Cetys University, Mexicali,

Mexico, and the Masters degree in computer sciences from the

same university. He received the Ph.D. degree in computer sci-

ences from Universitat Politecnica de Valencia, Spain, in 2006.

His research interests include real-time systems, Internet of

Things, wireless sensor networks, and ubiquiotous computing.

He is member of the IEEE Computer Society.

http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0027
https://doi.org/10.1007/s00450-013-0240-x
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0031
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0031
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0033
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0033
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0033
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0034
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0034
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0034
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0035
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0035
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0035
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0037
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0037
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0037
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0037
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0038
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0038
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0038
https://www.keysight.com/en/pd-692679-pn-34411A
https://doi.org/10.1145/359460.359478
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0040
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0040
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0040
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0040
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0041
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0041
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0041
http://refhub.elsevier.com/S1383-7621(18)30501-0/sbref0041
https://doi.org/10.1109/TPDS.2003.1214320

	Evaluation framework for energy-aware multiprocessor scheduling in real-Time systems
	1 Introduction
	2 Energy management in operating systems
	2.1 Energy management in Linux
	2.2 System power management
	2.2.1 The CPUFreq subsystem
	2.2.2 The CPUIdle subsystem

	2.3 Device power management

	3 Incorporating energy management features in LITMUSRT
	3.1 LITMUSRT
	3.1.1 Core infrastructure
	3.1.2 Scheduling plugins

	3.2 Extending LITMUSRT with support for DVFS
	3.2.1 Design
	3.2.2 Implementation

	4 Case study: energy-aware multiprocessor scheduling algorithms
	4.1 EDF(k)
	4.2 CVFS
	4.3 Implementation issues

	5 Experimental evaluation of energy-aware multiprocessor algorithms
	5.1 Platform
	5.2 Workload
	5.3 Methodology
	5.4 Experiments
	5.5 Instrumentation
	5.6 Measurements and observations
	5.6.1 Observation 1
	5.6.2 Observation 2
	5.6.3 Measuring overheads
	5.6.4 Observation 3

	6 Conclusion
	Acknowledgments
	Supplementary material
	References

