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Multiprocessor and multicore architectures are fast becoming the platform of choice for deploying workloads, as
they have higher computing capabilities and energy efficiency than traditional architectures. In addition to time
constraints, a number of real-time applications are required to operate in systems working with limited power
supplies, which also imposes tight energy constraints on their execution. Therefore, it is desirable for the system to
minimize its energy consumption while still achieving a satisfactory performance. Several energy-aware schedul-
ing techniques addressing this issue have been proposed over the past few years. Unfortunately, few aspects of
implementation are seldom considered in theoretical work, and only a tiny fraction of these techniques have
been implemented in an actual hardware platform and evaluated by analytical methods. The work presented in
this paper thus attempts to provide a prototyping and evaluation framework in which energy-aware multiproces-
sor scheduling algorithms can translate into full-fledged practical realizations, where their power consumption

profiles can be properly measured.

1. Introduction

Energy management has become a major design and operational con-
straint for electronic devices working with limited power supplies. This
is especially true for embedded real-time systems, whose performance
requirements are often very high and which usually rely on limited en-
ergy sources such as batteries. Systems that are better at managing avail-
able energy have a longer lifetime and are more reliable. They also help
to reduce the carbon footprint and lower the power dissipation that re-
sults in heat transfer. Even for systems connected to the power grid,
reducing energy consumption provides significant savings in business
costs and alleviates environmental issues.

Over the past two decades, many approaches for managing energy
consumption (e.g., through processor slowdown or shutdown) in a
real-time setting have been proposed for the uniprocessor case. As
multiprocessor platforms have become more commonplace, advance-
ments have been made in scheduling theory for supporting real-time
applications such that they could benefit from improved multiprocessor
performance. However, the use of multiple processing units further com-
plicates the management of resources, including energy, and energy-
aware real-time multiprocessor scheduling has begun to attract attention
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within the real-time research community. Early multiprocessor architec-
tures had processors placed on separate chips, allowing them to indepen-
dently switch their operating frequency. As such, the first works focusing
on energy management for real-time systems running on multiprocessor
platforms considered hardware models in which the processors featured
per-CPU voltage and frequency scaling capabilities [14,35,48]. Subse-
quent generations of multiprocessor systems began packing multiple
processing cores onto a single chip, forcing these to share a common
voltage level and run at the same frequency, and research efforts were
devoted to tackling the problem of supporting real-time workloads on
platforms constrained to global frequency scaling [37,46].

In most cases, the proposed energy-efficient real-time scheduling
algorithms (for both the uniprocessor and multiprocessor cases) are
studied using simulations, where the primary objective is to assess
their performance in terms of schedulability and energy consumption.
Simulation based studies are attractive for a number of reasons: insight
into the working of a fairly complex system can be gained relatively
quickly and cheaply, and it is easy to identify the most influential
factors in the simulation outcome. In the case of energy-aware real-time
multiprocessor scheduling algorithms, simulations provide a means for
evaluating their energy consumption profile without the need to procure
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specialized hardware or measurement instrumentation. Additionally,
simulations allow focusing on the essential aspects of the algorithms by
abstracting away certain details that would complicate the approach,
and running a multitude of workloads in a fraction of the time required
to run them on real hardware.

Despite extensive study into energy-efficient techniques in the real-
time literature [4,5], there seems to be little interest in evaluating them
in an actual Real-Time Operating System (RTOS) running on a real ex-
perimental testbed. Studies based solely on simulations have limitations.
The lack of a standardized simulation environment within the real-time
community has led researchers to develop their own simulators, em-
bedding their own set of simplifying assumptions. This makes it diffi-
cult to validate the presented results or to determine the relative per-
formance of the proposed techniques. In some works, techniques have
been derived that presume hardware models with processors capable of
switching to any frequency within a range. Other works assume power
dissipation models, only considering the effect of voltage/frequency on
the platform’s overall energy consumption, and sometimes disregarding
the role of static dissipation entirely. Lastly, little advice is provided re-
garding problems that arise when the techniques are implemented on
real hardware. Without proper experimental evaluation of the proposed
techniques, real performance risks remain largely unknown.

Specifically, the main contributions of this article are:

» The development of a loosely coupled, generic, reusable component
for conferring real-time scheduling plugins with processor voltage
and frequency scaling capabilities and managing the synchroniza-
tion of processors with respect to the global voltage and frequency
level [4,5].

The implementation and empirical comparison of two representa-
tive energy-aware real-time multiprocessor scheduling algorithms
designed for platforms where processors are constrained to a sin-
gle clock domain. Implementation was carried out in LITMUSRT
[9,12], an actively developed and supported real-time extension for
the Linux kernel.

A power dissipation measurement methodology for assessing the
practical merits of the implemented algorithms in terms of energy
consumption.

The remaining of this article is organized as follows: Section 2 pro-
vides an overview of the power management subsystems available
in Linux and briefly describes LITMUSRT, as well as the extension
developed for enabling predictable processor frequency adjustments;
Section 3 describes LITMUSRTand its extension with a CPUFreq module
to perform frequency adjustments at runtime; Section 4 describes the
key properties of the energy-aware real-time multiprocessor scheduling
algorithms evaluated within the framework of the case study presented
in this article; Section 5 presents the methodology followed for con-
ducting the experimental evaluation of the considered algorithms and
discusses the results. Finally, Section 6 concludes the article with a few
remarks regarding the goals reached.

2. Energy management in operating systems

This section provides a comprehensive overview of the power man-
agement infrastructure available within the Linux kernel, which allows
Linux to fully exploit the power saving capabilities of the various plat-
forms upon which it runs. Also, the architecture of the real-time exten-
sion for the Linux kernel behind the evaluations presented in this work,
LITMUSRTis described, as well as the design and implementation of the
component allowing LITMUSRT scheduling plugins to mesh with part of
the Linux power management infrastructure.

2.1. Energy management in Linux

Within the Linux kernel, power management can be divided into
two broad categories: system power management and device power
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Fig. 1. Overview of the Linux power management infrastructure.

management [34]. System power management is in charge of transi-
tioning the entire system (or parts of it - the processor, for example) into
performance states or low-power modes, using the CPUFreq and CPUI-
dle subsystems, among other measures. Device power management is
concerned with placing unused system devices into low-power states.
Fig. 1 shows an overview of the performance and low-power states pro-
vided by the Linux power management infrastructure.

2.2. System power management

System power management involves moving the entire system into
a low-power state, where it consumes a small amount of power while
simultaneously conserving a relatively low response latency to the user.
The system’s power consumption, as well as the overhead incurred in
placing the system back in the active state, depends on the state of the
system. As a general rule, in Dynamic Power Management (DPM) tech-
niques, the deeper the low-power state, the lower the power consumed
by the system, but also, the higher the latency involved [32,42,47]. Re-
gardless of the low-power state the system moves into, the running con-
text is saved to volatile or non-volatile storage before the system is pow-
ered down and subsequently restored when the system is powered back
up, preventing unnecessary shutdown and startup sequences.

The low-power states a system can enter into depend largely on the
underlying platform and hardware architecture. Despite this, at least
three states are commonly available: standby, suspend, and hibernate.
Standby halts the processor and moves the devices to a low-power state,
saving moderate power while still retaining a very low response latency
- typically less than one second. Suspend (also known as suspend-to-
RAM) places all devices in a deeper sleep state, except for main memory,
which is placed in self-refresh mode so that its contents are not flushed.
More time is required to return from suspend than from standby, but
the latency still is mildly low at typically few seconds. Hibernate saves
the most power by turning off the entire system after saving its running
context to non-volatile storage (usually to disk). It also incurs the worst
latency — around thirty seconds.

The Linux kernel provides two mechanisms as part of its power man-
agement infrastructure which are voltage and frequency scaling (DVFS)
and processor shutdown (DPM). The use of these two techniques is
pivotal in decreasing the platform’s power and energy consumption
and limiting its thermal output, as power dissipation produces heat
as a byproduct. DVFS actions are carried out by the CPUFreq module,
whereas DPM transitions are provided by the CPUIdle module.

2.2.1. The CPUFreq subsystem

The CPUFreq subsystem [21] enables scaling processor frequencies
at runtime within the Linux kernel. CPUFreq has been available since
the 2.6.0 Linux kernel version. CPUFreq is composed mainly of a set of
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defined governors and low-level drivers, as shown in Fig. 2. The subsys-
tem complies with the ACPI standard [25], offering an interface to con-
trol processor performance states, or P-States (sometimes also called Op-
erating Performance Points, or OPP). These power management states
are specified by ACPI and translate into voltage and operating frequency
pairs. P-States are numbered according to their associated speed and
power levels; higher P-States represent slower processor speeds and
lower power consumption. For example, a P3 state demands less power
and runs more slowly than a P1 state. The number of available P-States
is processor-dependent.

In addition to P-States, the ACPI specification also defines C-States
for processor power management when the system idles. C-States of-
fer an idle processor the ability to turn off unused components to save
power, such as stopping the processor clock and bypassing hardware
interrupts. As with P-States, the number and attributes of C-States are
specific to the processor. Fully operational processors run in the CO state.
At higher C-States, the processor moves to deeper sleep states, and more
components are shut down.

CPUFreq governors implement a particular policy for controlling how
the processor frequency and voltage levels are scaled. These are de-
signed with different goals in mind: some governors deliberately switch
to low frequencies in systems with low energy budgets (such as laptops
running on battery power). Others governors focus on short bursts of
high processor utilization. It follows that selecting the most adequate
governor is highly dependent on how the system is optimized, whether
it be for power, for performance, or some other type of hybrid or pre-
dictive approach. The CPUFreq subsystem has four default governors':

» The performance governor. This governor statically sets the pro-
cessor speed to the highest available frequency. As such, it is most
useful when the platform is required to operate at peak performance.
Also, transition latency times are nonexistent, since the switching
occurs only once. As a disadvantage, running at top speed for long
periods quickly leads to overheating.

1 CPUFreq actually has five default governors, the fifth of these being the
userspace governor. Here the authors focus only on governors that perform fre-
quency adjustments.
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» The powersave governor. Similar to the performance governor,
with the difference that this governor sets the processor speed to
the lowest available frequency instead. This results in a great deal
of power savings at the expense of a increased execution times. Nev-
ertheless, using this governor might extend the application comple-
tion times beyond energy efficiency, as running the application for
a longer time while consuming less power might lead to more en-
ergy consumption than doing so at faster rates. For example, when
the energy-efficient frequency [3] is higher than the system’s lowest
frequency level.”

The ondemand governor. Introduced in the 2.6.10 Linux kernel
version, this governor is one of the first attempts to integrate dy-
namic frequency scaling with processor utilization tracking. The on-
demand governor automatically selects the highest available fre-
quency when the average processor load rises above a predefined
threshold. Average load estimation is triggered by the task sched-
uler. The governor tracks changes in load when a certain period has
elapsed and sets the frequency accordingly.

When the average processor utilization rises above the threshold
specified by the user, the ondemand governor increases the fre-
quency to the maximum allowable value. If the average processor
utilization falls below a second lower bound, the governor decreases
the frequency in steps, setting the processor to run at the next lowest
frequency. The governor stops decreasing the frequency when it hits
the minimum allowable value. At predefined intervals, the current
processor utilization is queried and the same procedure is applied
to dynamically adjust the frequency. The governor can optionally
reject the utilization contributed by niced processes?; any processes
that run with a positive nice value will not be accounted for when
determining the current processor utilization. In addition, the on-
demand governor considers a tunable parameter that modifies its
behavior to save more power by reducing the target frequency by a
specified percentage.

The conservative governor. Similar to the ondemand governor,
the conservative governor also works by dynamically adjusting

.

2 Within the Linux kernel task scheduler, processes with large nice values have

lower priorities.
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frequencies based on average processor utilization. The difference
between the two is that the latter increases and decreases processor
speed more gradually, resulting in a more finely tuned frequency
adjustment. The governor was introduced in the 2.6.12 Linux kernel
version.

Unlike the ondemand governor, the conservative governor always
adjusts the frequency up or down in steps. If the average processor
utilization rises above a user-defined threshold, the governor steps
up the processor speed to the next highest frequency below or equal
to the maximum value. Correspondingly, the governor steps down
the frequency when the average utilization falls below a second, also
user-defined threshold. After each predefined interval, the current
processor utilization is checked and the procedure is repeated. The
utilization contribution of processes with a positive nice value can
optionally be ignored when computing overall processor utilization
(as in the ondemand governor). Therefore, niced processes will not
cause the processor frequency to increase.

Although some CPUFreq governors rely on information provided by
the task scheduler, the modular and autonomous design of governors
makes it challenging to merge the power management policies they en-
force into the task scheduler. The desire to infuse the task scheduler
with processor power management capabilities, particularly processor
frequency scaling, has been present for some time within the Linux com-
munity [11]. Indeed, some initial efforts have been made to more closely
link the scheduler to the processor’s power management infrastructure,
paving the way for a more complete solution. For example, a patch in-
troducing a new CPUFreq governor, labeled schedutil® by Wysocki, has
recently been merged into the mainline 4.7 Linux kernel release. The
schedutil governor benefits from a callback function that the scheduler
uses whenever it computes its new load average based on the currently
scheduled tasks. This simple scheme makes for a much more precise
frequency adjustment.

2.2.2. The CPUIdle subsystem

When older systems became idle, a low-priority “idle” task running
a busy-wait loop was scheduled until some other task requested ser-
vice [15]. If the system ran a light workload with many idle periods,
busy-waiting resulted in CPU cycles being burned and power being
drained without any useful work being performed. This situation mo-
tivated hardware architects to equip next-generation platforms with a
variety of low-power and idle states to switch to when there are no
jobs. These low-power states (previously mentioned in this section as
C-States) vary in their associated power consumption and entry-exit la-
tency.

Within the Linux kernel, the CPUIdle subsystem [38] was developed
for handling low-power states. Much like the CPUFreq module, CPUIdle
offers a generic, hardware independent interface to handle the different
processor idle states, and installs a layer of abstraction between policies
and hardware drivers. Policies, as with CPUFreq, are enforced by gover-
nors. Governors implement the algorithm in charge of selecting the most
appropriate idle state for a particular situation. For instance, a system
running a performance-sensitive application (such as video playback)
might not be able to afford staying idle for too long; in this case, the
CPUIdle governor should select a low-latency idle state.

2.3. Device power management

Device power management [34] is the other component of the Linux
kernel power management infrastructure. It is concerned with putting
peripheral devices into low-power modes at runtime or when the system
itself engages in low-power mode. Borrowing from the ACPI specifica-
tion, device power management defines low-power states for peripherals

3 See https://patchwork.kernel.org/patch/8477261.
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as D-States (ranging from DO to D3) as well as a mechanism for control-
ling those states. Each D-State involves a tradeoff between the amount
of power consumed by the device and how functional it is. As with P-
and C-States, higher D-States represent lower power consumption but
more device context lost. All devices implicitly support DO (when the
device is fully powered) and D3 (when the device is off) states; D1 and
D2 are optional.

Device power management is made possible by a new driver model
introduced in the 2.5 Linux kernel version. This new model allows the
system’s power management infrastructure to interface with all avail-
able device drivers, regardless of which bus or physical device the driver
controls. In addition, the model establishes parent-child relationships
between system devices to help sort out power transition sequencing
issues that arise when one driver depends on another. That is, before
powering down a certain device (parent), the system must first power
down its dependents (children).

3. Incorporating energy management features in LITMUSRT

This section provides a brief description of LITMUSRT, a real-time
extension for the Linux kernel, which significantly simplifies the im-
plementation of real-time multiprocessor scheduling policies in the
form of plugins, offers a programming library for developing custom
real-time applications, and provides a kernel overhead measurement
toolkit. Then, the development carried out to facilitate the integration
of LITMUSRT and the Linux CPUFreq module is described, which per-
mits the implemented multiprocessor scheduling plugins to perform fre-
quency adjustments at runtime.

3.1. LITMUSRT

LITMUSRT [9,12] is a real-time extension for the Linux kernel
that aims to provide a useful experimental platform for applied re-
search into real-time systems assuming realistic conditions. LITMUSRT
was conceived within the real-time systems group of the UNC at
Chapel Hill in 2006, and has been actively maintained and developed
ever since (as of 2018). Its main focus is on real-time multiproces-
sor scheduling and synchronization algorithms. The current version of
LITMUSRT (2017.1) is built on top of the 4.9.30 Linux kernel release
and supports Intel’s 32-bit and 64-bit x 86 architectures, as well as the
ARMV6 architecture. LITMUSRT has been embraced in a vast number
of works [7,8,10,22,23,27] researching numerous topics including real-
time scheduling on GPUs, mixed-criticality real-time systems, adaptive
real-time tasks, real-time scheduling with semi-partitioned reservations,
hierarchical processor affinities, and many others.*

3.1.1. Core infrastructure

The LITMUSRT architecture follows a modular pattern that decou-
ples the development of scheduling policies (i.e., plugins) from changes
introduced into the Linux kernel code. This additional code, as well
as some reusable components and shared functionality, constitute the
LITMUSRT core infrastructure.

The LITMUSRT core infrastructure installs an additional scheduling
class in the Linux scheduling hierarchy on top of every other scheduling
class (i.e., on top of Linux’s SCHED_FIFO and SCHED_RR real-time
scheduling classes, and the SCHED_NORMAL timesharing scheduling
class), allowing LITMUSRT to override Linux’s normal scheduling deci-
sions. However, unlike regular Linux scheduling classes, the LITMUSRT
scheduling class does not actually implement any particular schedul-
ing policy, delegating all scheduling decisions to the currently active
scheduling plugin instead.

4 Please refer to https://wiki.litmus-rt.org/litmus/Publications for a compre-
hensive list of publications that use LITMUSRT as base RTOS.
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A LITMUSRT task (i.e., a task conforming to the sporadic real-time
task model enforced by LITMUSRT) that is eligible for execution is al-
ways scheduled over any regular Linux task. When a LITMUSRT task is
released, it continues to run until it is blocked or preempted by another
LITMUSRT task of higher priority. Regular Linux tasks are treated as best-
effort tasks with statically low priority. If a LITMUSRT task is runnable,
no regular Linux task can run until the former becomes unrunnable.
When there are no LITMUSRT tasks, the OS continues scheduling every
other task as usual, which allows the system to act as a normal Linux
distribution in the absence of real-time tasks.

The LITMUSRT core infrastructure also provides reusable ready and
release queues for managing the admitted real-time tasks. The ready
queue implements the mechanism to order ready jobs, whereas the re-
lease queue implements the mechanism to queue jobs for future time-
based releases. The ready queue is implemented as a binomial heap
[45], a tree-like data structure that supports the merging of two heaps
in O(logn) time. The release queue is implemented such that the worst-
case overhead for releasing multiple jobs simultaneously (e.g., on a hy-
perperiod boundary) is minimized. The release queue abstraction maps
time instants to heaps, and queues release jobs into the heap that corre-
sponds to their release time. When it is time for the jobs to be released,
the release queue simply merges the release heap with the ready heap.
Both queues are abstracted in the form of a reusable component known
as real-time domain. Depending on the scheduling policy, real-time do-
mains are private or shared. For example, a partitioned policy (where
each processor has its own ready and release queues) compels each pro-
cessor to hold its own exclusive real-time domain, whereas in a global
policy, a single real-time domain instance is shared between all proces-
sors.

3.1.2. Scheduling plugins

In LITMUSRT, the actual scheduling decisions are taken by scheduling
plugins, entities living in kernelspace with access to the LITMUSRT core
infrastructure. The modular design of LITMUSRT allows rapid prototyp-
ing of new scheduling policies without exposure to the full complexity of
the Linux kernel. LITMUSRT is equipped with a few stock scheduling plu-
gins to implement particular multiprocessor scheduling policies, includ-
ing partitioned EDF (P-EDF), partitioned RM (known within LITMUSRT
as partitioned fixed-priority, or P-FP), global EDF (G-EDF), and clustered
EDF (C-EDF).

The LITMUSRT scheduling class invokes the active plugin when a
scheduling decision must be made, e.g., when a job is released or a task
must be rescheduled. Before launching any real-time task, however, the
user must select one of the included plugins by means of the setsched
utility (the default scheduling plugin simply defers all scheduling deci-
sions to Linux’s SCHED_NORMAL scheduling class). Once a LITMUSRT
scheduling plugin has been selected, the user can launch individual
sporadic real-time tasks using the rtspin or rt_launch utilities
or prepare a sporadic real-time task to be released at the firing of
a signal (with the release_ts utility). When released, the task
is scheduled following the selected multiprocessor scheduling policy
until the experiment is completed. The active scheduling plugin can
be switched at runtime by activating another of the included plug-
ins. However, plugin switching can only occur in the absence of real-
time tasks (i.e., before a task is configured, or after its execution is
complete).

Developing scheduling plugins in LITMUSRT is akin to a certain
extent. LITMUSRT offers a plugin interface consisting of several object-
oriented methods that can be grouped by functionality. Some of these
methods handle events that correspond to scheduling points in the
scheduling theory, such as job release, preemption, completion, etc.
Other methods relate to initialization, bookkeeping, and cleanup
activities. To modify the behavior of a scheduling plugin in the occur-
rence of certain event, the developer must insert the desired behavior
within the method responsible for handling such event. To include
a new, custom-made scheduling plugin in a particular LITMUSRT
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kernel release, the plugin must be compiled and linked along with the
kernel®

3.2. Extending LITMUSRT with support for DVFS

Despite being feature-rich, the main LITMUSRT kernel distribution
does not yet include (to the best of the author’s knowledge) any means
to control the performance states offered by the Linux power manage-
ment infrastructure. This opens up an interesting line of research from
which real-time application developers and researchers alike can ben-
efit. In particular, an experimental platform based on an open source
OS such as Linux, with the capacity to regulate its own energy con-
sumption while supporting workloads with stringent timing constraints,
would allow researchers to validate their proposals and evaluate their
performance on real hardware quickly and cheaply.

Working with LITMUSRT as base RTOS allows reusing several com-
ponents from its existing code base, which already implements many
of the features required for this research. In addition, contrary to other
patch-based real-time extensions for the Linux kernel, such as [2,18] -
whose rare adoption by real-time research groups looking for a plat-
form to evaluate their developments has led maintainers to withdraw
their support - LITMUSRT is actively maintained and updated, offering
the ability to continue extending this line of research with further de-
velopments while knowing that support is readily available.

The focus in this research is on the implementation and evaluation
of energy-efficient multiprocessor real-time schedulers with global DVFS
capabilities. Indeed, schedulers with these characteristics are known to
be effective at lowering the platform’s energy demand [5]. A recurrent
pattern in real-time scheduling algorithms exploiting processor slow-
down is to compute the lowest speed that still guarantees the fulfillment
of timing constraints and then adjust the frequency to the computed
value at specific points in the schedule, at job release or completion, for
example.

3.2.1. Design

As discussed above, the CPUFreq infrastructure requires the client to
invoke their interface to switch a frequency from a context where both
blocking and hardware interrupts are enabled. Unfortunately, when
LITMUSRT scheduling plugins carry out their scheduling decisions (for
job release, preemption, and completion), the kernel is executing code
paths that are particularly sensitive to performance with hardware inter-
rupts disabled. This is contrary to the goal of allowing the implemented
real-time multiprocessor scheduling plugins to perform frequency scal-
ing actions directly from the scheduling decision handler. However, the
problem can be avoided altogether through a simple scheme.

The approach here presented is similar in nature to the dedicated in-
terrupt handling [9] (sometimes referred to as interrupt shielding) scheme
already implemented in LITMUSRT in which a single processor is re-
served as the system processor and becomes solely responsible for system
management tasks, including device and timer interrupt handling. For
the purposes of energy management, the system processor is designated
to receive requests and subsequently perform frequency adjustments at
runtime. The remaining application processors (which also encompasses
the systems processor) on the platform perform scheduling decisions
and submit frequency adjustments to the processor designated to this
activity.

Since application processors carry out job scheduling, they have di-
rect access to the effective processor requirement (utilization) being re-
quested by the workload. This information is important to accurately
compute the frequency level needed to preserve the feasibility of all
processors (processor feasibility is guaranteed as long as its operating

5 Providing detailed instructions for developing new plugins is beyond the
scope of this work. Please refer to http://www.litmus-rt.org/create_plugin/
create_plugin.html for a step-by-step guide to implementing a new LITMUSRT
scheduling plugin from scratch.
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frequency is no smaller than its total utilization). Application processors
convey their load value to the systems processor by means of a message
passing mechanism, where messages are attended to on a first-in first-out
basis. Fig. 3 shows a conceptual overview of the framework, considering
a quad-core multiprocessor platform.

The systems processor itself delegates the actual frequency switching
to a kernel-level event handler specifically maintained for this purpose.
The handler is implemented as a kthread® scheduled in the systems pro-
cessor. The handler operates by constantly switching between the ac-
tive and inactive states. When a processor requests a frequency adjust-
ment, the handler is activated and forwards the application processor’s
request to switch the frequency to the CPUFreq driver in use. When the
frequency switching is complete, the handler checks if any other fre-
quency adjustment is in place. If so, it begins a new transaction with
the CPUFreq driver; if not, it returns to the inactive state. This work-
flow enables the interface between scheduling plugins and the CPUFreq
subsystem, as the delegate (the dedicated kernel thread) carries out the
requested frequency switching on behalf of the requesting application
processors from process context.

The event handler arranges frequency scaling requests when they oc-
cur concurrently on different application processors. Specifically, when
any two processors attempt to readjust the frequency to different lev-
els at almost the same time (since it is impossible for the two events
to occur at exactly the same time, given the limited resolution of OSes
time tracking mechanisms), the handler serializes the requests by en-
acting the first to arrive and queueing the second to arrive. To allow
voltage and frequency levels on the platform to stabilize following an
adjustment, a minimum period of 200 microseconds (or the minimum
allowed by the CPUFreq driver in use) is enforced between any two ad-
justments. When this period elapses, the handler evaluates if another
frequency adjustment is in place, for instance, if the scheduled task set
requires the platform to speed up to meet timing constraints.

6 Kernel threads [31] (often referred to as kernel daemons, or simply kthreads)
are standard processes provided by the Linux kernel useful for carrying out some
operations in the background. They are standard processes living in kernel space,
with the main difference between these and regular processes being that kernel
threads do not have an address space. The Linux kernel employs kernel threads
for various purposes, ranging from data synchronization of RAM to helping the
scheduler to distribute processes among CPUs to managing deferred actions.
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The solution presented draws inspiration from the scheduler design
pioneered in [13], in which coordination between processors is managed
by a designated moderator, and from the CPUFreq governor described
in [11], which manages to integrate more closely with the Linux task
scheduler by offering a set of callbacks that the scheduler can invoke.
While conceptually simple, this new element installed between the sys-
tems processor and the application processors allows arming LITMUSRT
scheduling plugins with CPUFreq governor-like capabilities.

3.2.2. Implementation

Implementation for the systems processor side of the workflow de-
scribed above is abstracted in a single reusable component attached
to the LITMUSRT core infrastructure. The component contains a sim-
ple API to LITMUSRT scheduling plugin running on application proces-
sors, which is used to perform various operations. The component im-
plements four main operations, which are intended to be used in specific
contexts:

rt_dvfs_init (), which instantiates and initializes the kernel-
level event handler at system boot time;
rt_dvfs_update_cpu_load(), through which application
processors communicate changes in their processor load (arising, for
instance, from workload variability) to the systems processor;
rt_dvfs_issue_freq_update (), through which application
processors request frequency adjustments to the systems processor;
and

rt_dvfs_exit (), which disposes of the kernel thread and carries
out cleanup actions when the system is shut down.

The event handler implements the main logic behind frequency
switching by means of the rt_dvfs_task_func() function, al-
though this procedure is not part of the API. Instead of sending a spe-
cific frequency level when requesting a frequency update, application
processors pass their actual processor load to the event handler, which
in return computes the most appropriate frequency level for the plat-
form (e.g., the frequency level, which preserves the feasibility of the
processor with the highest load). The event handler has exclusive ac-
cess to a few pieces of code that define the state of the system with re-
spect to operational frequency. For instance, the event handler retrieves
frequency values from a lookup table, mapping operating frequency to
processor load. It also keeps track of the platform’s current operational
frequency to avoid unnecessary frequency transitions when the current
and the target frequency levels coincide, as well as the time of the last
frequency transition in order to determine if enough time has elapsed.
Communication between application processors and the event handler
implementing frequency scaling is established through a first-in first-out
(FIFO) buffer, which is protected from concurrent writes by a set of per-
CPU locks. Each message passed to the systems processor (i.e., written
to the FIFO buffer) includes the requester’s ID and the time that the
message was sent.

4. Case study: energy-aware multiprocessor scheduling
algorithms

This and subsequent sections report on a case study that demon-
strates how the energy management framework presented in Sections 2
and 3 can be applied to the evaluation of energy-aware multiprocessor
scheduling algorithms. This section is devoted to describing the energy-
saving mechanisms employed by algorithms EDF®) and CVFS, which
serve as the objects under study.

The strategy followed by these algorithms is to select the lowest op-
erating frequency at which tasks can be executed without risking miss-
ing their deadlines. As mentioned previously, reducing the platform’s
operating frequency (and its corresponding supply voltage) yields a sig-
nificant reduction in its energy consumption, while simultaneously in-
creasing the execution of tasks. Thus, the operating frequency must be
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carefully selected in order to avoid prolonging tasks beyond their dead-
lines.

We emphasize that our objective in this paper is not undertaking a
comprehensive experimental valuation of existing energy-aware multi-
processor scheduling algorithms - there is a large number of represen-
tative algorithms that have been surveyed in recent research articles
(e.g., [5]). We put our efforts in implementing at the Litmus kernel two
well-known algorithms EDF®) and CVFS as a proof of concept for the
testbed that we developed. We hope that our testbed will form a ba-
sis for the kernel-level evaluation and implementation of many other
energy-aware multiprocessing scheduling algorithms.

4.1. EDF®

EDF® [26] is a priority-driven multiprocessor scheduling algorithm
designed to overcome inherent limitations of G-EDF scheduling. EDF®
performs better than EDF in that it can schedule all task sets schedulable
by EDF, in addition to some other task sets that EDF may fail to schedule.
It was first proposed by Goossens et al. [26] and later revisited by Nlis
[36], the latter having developed an offline technique for determining
the lowest processor frequency at which the workload can be executed
across all processors without compromising feasibility.

The idea behind EDF® is to isolate high- and low-demand tasks from
each other, as their interaction leads to losses in performance for EDF in
a multiprocessor setting, a situation informally known as the Dhall effect
[20]. EDF® splits the set of tasks into k subsets, 1 <k <m, of “privileged”
and non-privileged tasks. Priorities (privileges) are assigned according
to task utilization; the (k — 1) highest-utilization tasks are assigned the
highest priorities (and are, therefore, privileged), whereas the remaining
(n— k + 1) tasks are assigned regular EDF priorities. Privileged tasks are
then dispatched to their own dedicated processor, devoting (m — k + 1)
processors to non-privileged tasks.

Task sets composed of a mix of relatively few high-utilization tasks
and many low-utilization tasks are somewhat more easily supported by
EDF®. In the worst case, however, EDF® either degenerates into G-EDF
(when k = 1) or acts as a rather unbalanced instance of P-EDF (when
k = m, which implies that (m — 1) processors are occupied by a single
privileged task and one processor is left for the remaining tasks).

Suppose that tasks in a sporadic real-time task set = are indexed non-
increasingly by utilization (i.e., for all i, 1 <i < n,u; > u;,). Let z® =
{Ts Tyqts .- » 7, ) denote 7 without the (k — 1) highest-utilization tasks.
According to the procedure devised in [36], 7 is schedulable by EDF®)
on an m-processor platform running at normalized speed s’ if

j

The lowest value for s can be identified iteratively by finding the
smallest value from all those computed by Eq. (1) for k between 1 and
m. Hence, the procedure’s time complexity is O(m).

U(T(k+l>)

m—k+1 M

s Zmax{ul,uk +

4.2. CVFS

The Coordinated Voltage and Frequency Scaling (CVFS) [19] energy-
aware multiprocessor scheduling algorithm is optimized for platforms
on which processors share the same supply voltage and operating fre-
quency. It explicitly addresses the single clock domain restriction to
which processing cores within a single chip are constrained by setting
the operating frequency of the entire platform to the highest level re-
quested from among all cores. Furthermore, the algorithm benefits from
under-utilization of the platform, in the form of both unused processor
capacity and idle periods resulting from early task completions.

7 The normalized speed s is defined as the ratio of the current frequency to
the maximum frequency.
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Fig. 4. A job executing in p contiguous chunks of execution.

For a multiprocessor platform with global DVFS capabilities, CVFS
consistently sets the shared operating speed s to the maximum proces-
sor share requested from all active processing units. Specifically, for a
given sporadic real-time task set r = {7, 7,, ..., 7,} partitioned across a
computing platform = = {x, 7, ..., 7, }, let y; denote the subset of tasks
from ¢ allocated to processor r;. Let the processor utilization (load) re-
quested for processor z; by y; be given by U, = Zr,éw,- u;. Assuming
the EDF scheduling scheme, which is optimal for the uniprocessor case,
CVEFS preserves the feasibility of all active processing units by setting the
operating frequency of the platform to f = max{U;} - f.x» Which can be
regarded as a static frequency selection, in the sense that the frequency
is adjusted according to the worst-case computation requirement of the
supported task set.

CVFS further benefits from the observation that jobs of tasks in a
sporadic real-time task set usually use much less than their worst-case
time allotment at runtime. To exploit this situation, CVFS builds upon
the well-known cycle-conserving EDF (cc-EDF) [40] algorithm, adapting
it to multiprocessor environments with global DVFS capabilities. Like cc-
EDF, CVFS enforces several runtime energy management rules for main-
taining an accurate utilization estimation and reducing the frequency
even further:

« In order to avoid compromising workload feasibility when a job -rj’.‘
is released, a conservative assumption is made by resetting the uti-

. P .G
lization due to 7; to its worst-case, that is ot
J

* When a job rj’.‘ is complete, the actual amount of processor cycles cc;

consumed by the job is compared to its worst-case specification. Any
unused cycles allocated to rj’.‘ are reclaimed by setting their utiliza-
cc

il

7, .

tions to

At any of these two scheduling events, the global frequency of the
platform is readjusted according to the updated processor utilization
requirements.

CVFS is further driven by the fact that some processing cores will
operate at a higher frequency than that required to guarantee workload
feasibility, since all cores are constrained to the same global operating
frequency level. CVFS exploits this fact through a runtime optimization
to refine the load estimation. The working principle is as follows: a job
completing a certain amount of work at a high frequency during a predefined
interval can be seen as equivalent to completing a smaller amount of work
at a lower frequency in the same amount of time. In other words, CVFS
regards the completion of a job on a core whose utilization is smaller
than the largest job on the platform as an early completion, which allows
lowering the core’s effective utilization and (conceivably) the platform’s
frequency.

Specifically, suppose that a job rj’,‘ allocated to core x; executes in
p contiguous chunks {e;, e,, ... ,e,}. Let at, be the amount of time con-
sumed by TI’.‘ during chunk e, (see Fig. 4). The total workload executed ¢;
by rJ’.‘ is computed as ¢; = Ll (at, - U;). This simple optimization allows
for a more precise load estimation at job completions.

4.3. Implementation issues

Implementing the EDF®) energy-aware scheduling policy is not as
simple as it seems. EDF®) might group processors into m different pat-
terns, one for each value that k can take. However, it is not obvious at
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first how to do this in practice. The clustering approach implemented by
the LITMUSRT stock clustered EDF (C-EDF) scheduling plugin was cho-
sen here. However, as opposed to C-EDF, which groups processors into
clusters of the same size around the different cache levels offered by
the hardware®, the EDF®) scheduling plugin assembles processors into
clusters of different sizes, as required by the algorithm (Section 4.1). To
accomplish this, the clustering functionality for EDF® was linked to the
procedure for clustering processors already implemented in LITMUSRT.
The user writes the desired clustering option (e.g., k = 1, k = 2, etc.) to a
virtual file in the /proc file system. When the EDF® scheduling plugin
is activated, it dynamically determines which processors to group based
on the selected configuration. The frequency of the platform is then set
to that computed by Eq. (1).

The CVFS algorithm was implemented in LITMUSRT by building a
scheduling plugin similar to the LITMUSRT stock partitioned EDF (P-EDF)
plugin. Notably, the P-EDF and CVFS plugins differ in how they manage
scheduling decisions at runtime. The CVFS plugin can accomodate the
necessary operating frequency adjustments at job release and comple-
tion using the energy management infrastructure described in Section 2.

Concurrent frequency adjustment requests are particularly trouble-
some. Since CVFS is a partitioned scheduler, different processors might
attempt to adjust the frequency to different levels at the same time. For
instance, two processors might attempt to both increase and decrease
the frequency. In order to coordinate the frequency adjustment actions
occurring concurrently on different processors, the CVFS plugin relies
on the synchronization procedure enforced by the infrastructure, where
updates are attended to in first-in first-out order (Section 3). When two
frequency adjustment requests arrive, the first is enacted immediately
and the second is queued. Once the minimum period between any two
adjustments has elapsed, the second request is enacted if it is in ac-
cordance to the CVFS energy management policy (i.e., if the requested
frequency level is enough to guarantee the feasibility of the workload),
and discarded otherwise.

5. Experimental evaluation of energy-aware multiprocessor
algorithms

This section presents and discusses the results of the measurements
taken of the implemented energy-aware multiprocessor scheduling algo-
rithms (EDF® and CVFS), with the goal of unveiling their performance
trend in terms of energy consumption when running on real hardware.
To accomplish this, the implementation makes explicit use of the infras-
tructure presented in Section 2. The methodology followed for carry-
ing out the evaluation is described, which includes a description of the
hardware platform underlying the experiments, the benchmark used for
stressing the schedulers, and the instrumentation equipment employed.

5.1. Platform

The prototypes for the schedulers considered for the case study were
implemented in LITMUSRT version 2017.1, which is based on the 4.9
Linux kernel release. The system ran the Ubuntu 16.04 LTS “Xenial
Xerus” Linux distribution.

Power dissipation measurements described in the following sections
were taken on an Intel Core i7-2600° SandyBridge system. The i7-
2600 is a quad-core 64-bit Chip Multiprocessor (CMP). The four process-
ing cores in the chip run at a nominal frequency of 3.4 GHz, and always
operate at the same speed (i.e., the four cores belong to the same voltage
island).

8 Under the C-EDF scheduling plugin, the user clusters processors based on
the cache topology of the platform, for instance around the L1, L2, etc. cache
levels. This makes the grouping of cores dependent on the architecture of the
underlying hardware.

9 See https://ark.intel.com/products/52213/.
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The i7-2600 supports Enhanced Intel SpeedStep Technology, Intel’s
implementation of dynamic processor frequency scaling that defines
multiple voltage and frequency operating points (referred to as P-States
in Section 2). The i7-2600 clock can oscillate at fourteen different fre-
quencies, from 2.1 to 3.4 GHz in steps of 100 MHz. At lower speeds,
the processor consumes less power, but the workload execution time is
longer.

5.2. Workload

In order to assess the performance of the implemented real-time
energy-aware multiprocessor scheduling algorithms, an appropriate
benchmark for exercising the aspects of the system of greatest interest
was needed. Previous research efforts [4,40,43] focusing on DVFS tech-
niques for managing the processor’s energy consumption in a real-time
setting have mostly studied the effect of their proposals on the execu-
tion of a CPU-bound workload, and therefore so does this work. The
effectiveness of the implemented real-time multiprocessor scheduling
algorithms on a memory bound'® workload is deferred for future work.

The userspace interface available within LITMUSRTwas employed to
build a suitable benchmark. The interface comprises the liblitmus library
and accompanying tools to facilitate the writing of custom real-time
tasks. The liblitmus library contains all the required system calls and
definitions to interact with the kernel services that LITMUSRT provides
to real-time tasks (recall from Section 2 that in LITMUSET a real-time
task is one that has been admitted to the LITMUSRT scheduling class).

A few steps are required to convert a regular task into a LITMUSRT
real-time task. All modifications to the target task must be done in its
source code. Before declaring the actual activity that will be carried
out, a few lines of code must be devoted to establishing the interaction
between the task and the LITMUSRT kernel by means of the userspace
real-time interface. Most of the functions used for this purpose are sim-
ply system calls provided by LITMUSRT. In particular, converting a reg-
ular task into a real-time task requires the use of the following set of
system calls:

(i) init_rt_task_param(), which initializes the interface;

(i) set _rt_task_param(), which sets the real-time parameters
for each job that the target task will produce, including period,
deadline, and execution budget;

(iii) task_mode (), which “transitions” the target task to real-time
mode; and

(iv) wait_for_ts_release(), which blocks the task (whose
status by now is real-time) until signaled from userspace to begin
execution.

After performing the series of steps outlined above, the task is now
ready to be launched when signaled by the rt_launch utility. When
this happens, the real-time task begins execution. Within LITMUSRT,
real-time jobs are more of an accounting abstraction to keep track of the
number of times that the real-time task has executed its main job loop,
which are all the relevant instructions accomplished by the task; a “job”
is therefore a single round of execution of all instructions within the
boundaries of the task’s main loop. Periodic execution of jobs is achieved
by calling the sleep_next_period() function at the end of each
job. This function triggers the kernelspace mechanism for moving the
task from the ready to the release queue. Subsequently, a high-resolution
timer is set to fire at the release time for the next job of the task, at
which time LITMUSRT will move it back to the ready queue and the task
will again be eligible for execution. Fig. 5 shows a code template for

10 The authors are aware of previous studies exploring the problem of ensuring
performance while decreasing power consumption (e.g., [33]) considering both
cache sensitive and memory bound workloads. These studies focus mostly on non-
real-time computing contexts. However, their methodologies could serve as base
for future evaluations in a real-time setting.
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int main()

{
struct rt_task param;
const int num_invocations

19;
init_rt_task_param(&param); I/
set_rt_task_param(gettid(), &param); //
init_litmus(); /!
task_mode(LITMUS_RT_TASK); /7
wait_for_ts_release();

for (int 1 = @; i < num_invocations; i++) {

/* Real-time computation goes here. */

sleep_next_period();

task_mode (BACKGROUND_TASK) ;

return @;

developing periodic real-time tasks, which demonstrates the use of all
the functions mentioned above.

The benchmark prepared for exercising the platform attempts to
replicate the use of a real-world CPU-intensive workload. The reasons
for this are twofold: first, CPU-bound workloads are more sensitive to
changes on the platform’s operating frequency (the aspect to be ana-
lyzed), as these have a direct dependency on the processor’s clock rate
[1,6,28], and are more likely to bring about the processor’s power con-
sumption trend. Second, embedded real-time multiprocessor systems are
typically host to compute-intensive tasks such as high-definition multi-
media playback, digital signal processing, and object and pattern recog-
nition [29]. As such, compute-intensive workloads are a natural starting
point for testing resource optimization approaches targeting the real-
time domain.

With this in mind, the benchmark designed for the purposes of this
work consists of the following two components:
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Fig. 5. Real-time task boilerplate code.

Notify the kernel about the task.

Set up task parameters.

Initialize the interface with the kernel.
Transition into real-time mode.

// Wait for a release signal.

// Wait for the next invocation.

// Transition back into background mode.

* A subroutine for computing an LUP decomposition for a reasonably
large system of linear equations [16], whit the aim of representing a
subset of the operations commonly performed in machine learning,
data analysis, and computer vision applications.

* A subroutine for producing the discrete Fourier transform of a se-
quence of values by means of an iterative Fast Fourier Transform
(FFT) algorithm [16,41], whit the aim of representing data filtering
and signal processing applications.

5.3. Methodology

In what follows, the steps taken to build the experiments (based
on the workload presented in the previous section) and measuring
the power consumption of our experimental platform are described.
Fig. 6 presents an illustration of the different stages involved in the eval-
uation.

Workload Experiments Platform Fig. 6. Flowchart illustrating the followed
(Section 5.2) (Section 5.3.1) (Section 5.1) steps in the evaluation.
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generate_experiments()
set' «— @:
for each n € {6m, 8m, 10m, 12m}
for each U € {20%, 30%, . ..,80%}:
for count «— 1,2, ...,10:
set valid «—_L
While not valid:

1
2
3
4
5
6
7
8 set T « generate_taskset(n, U)
9

10 return I’

5.4. Experiments

The experimental evaluation targeted four different scheduling poli-
cies: LITMUSRT’s stock partitioned EDF (P-EDF), EDF®) (without fre-
quency scaling), CVFS, and EDF®. The first two carried out the schedul-
ing of tasks while running at full speed, whereas the other two did so
while applying their respective energy management actions. The two
schedulers not implementing any particular energy management policy
in our evaluation are included mainly for comparison purposes.

In the context of energy-efficient scheduling algorithms for real-time
systems, power consumption and processor utilization are easily recog-
nized as being correlated to one another, as a lower processor utilization
naturally leads to long slack periods arising from the spare processor ca-
pacity, which the algorithm is likely to exploit in some way to decrease
the platform’s power consumption [29]. To align with previous studies,
the experiments carried out in this study likewise considered processor
utilization as the primary parameter for revealing the performance of
the tested scheduling algorithms in terms of energy consumption. The
role of the size of the sporadic real-time task sets used for exercising the
schedulers is yet to be determined.

Workloads with total number of tasks ranging from ne{6m,8m,
10m, 12m}, where m = 4 were considered. It was decided to execute
sets with a large number of tasks so that the implemented algorithms
had a better chance of success when partitioning the workload [10]. For
each number of tasks n, sporadic real-time task sets with total normal-
ized utilization U across U € {20%,30%, ...,80%} were considered. Nor-
malized utilization refers to the mean processor share requested to each
processor on the platform, i.e, to the quantity % For each n and U
pair, ten random task sets were generated (for a total of 280 task sets)
using the task set generator from Emberson et al. [24]. The generator
produces task sets with a given number of tasks, whose cumulative uti-
lization adds up to a given utilization value. Each generated task is as-
signed a uniformly distributed utilization u; and a period T; chosen at
random from the set {10, 20, 25, 40, 50, 100, 125, 200, 500, 1000} (in
milliseconds), which are comparable to those found in actual real-time
workloads [29]. The worst-case execution requirement for each task is
computed as C; = u; - T;. All tasks were assumed to execute up to their
WCET.

Energy-aware multiprocessor approaches based on partitioned
scheduling generally perform better when the workload is split evenly.
For partitioned schedulers, the generated task sets were divided using
the worst-fit decreasing (WFD) [30] heuristic, which is known to generate
better balanced partitions. A task set was deemed valid if WFD was able
to partition the set successfully. Invalid task sets were simply discarded
and new ones were generated until the target 280 task sets were pro-
duced. For EDF® schedulers, a task set was considered valid if EDF®
managed to cluster the tasks in the set following the procedure outlined
in Section 4. Fig. 7 summarizes the experiment generation procedure.

As opposed to the other scheduling policies, CVFS operates by dy-
namically reclaiming unused processor capacity in the form of dynamic
slack, which stems from tasks finishing their execution earlier than ex-
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Fig. 7. Pseudocode for generating experiments.

set valid < determine if the task set is valid

pected. In order to capture the impact of dynamic workload variability
on the performance of CVFS, 3 more sets of task systems were gener-
ated (with 280 task systems each) specifically for CVFS, in which tasks
randomly underrun their WCET by a factor of 10%, 20%, and 30%. The
partitioning of these sets was carried out in the same manner.

Each generated experiment was post-processed and translated into
an executable shell script containing the specification of the task set, the
scheduling plugin that handled the task set at runtime, and the duration
of the experiment. Each task was mapped to one of the two CPU inten-
sive workloads described in Section 5.2, which were developed specifi-
cally for the purposes of experimentation. Each task set was traced for
20 s. In total, 1960 sporadic real-time task sets were executed and mea-
sured over more than 20 h of continuous real-time execution and power
measurement.

5.5. Instrumentation

Measuring the exact power usage of a processor is notoriously dif-
ficult. Modern processors use hundreds of pins and multiple intercon-
nect layers for power and ground lines [39]. These lines are further
distributed within the chip between the many processor components,
some of which have uneven power requirements. Therefore, accurately
determining the processor’s power consumption under full considera-
tion of its internal architectural traits would require the use of highly
specialized and expensive equipment. Instead, a much simpler approach
is followed that allows approximating the actual numbers for the power
being drawn at a reasonable cost.

To characterize the processor’s power consumption, the electrical
current passing through it must first be determined. One way to accom-
plish this is to intercept the line delivering power to the chip and insert
a measurement device to monitor the current flowing through this line.
However, the current can rise to levels that are unbearable for the mea-
surement instrument during instances when the processor is running at
peak performance, resulting in incorrect readings or even damage to the
instrument. An alternative, safer solution involves inserting a shunt (a
manganin resistor of accurately known resistance) between the proces-
sor and its power supply. The voltage drop across a shunt is proportional
to the current flowing through it. Given a shunt’s resistance, it is easy to
compute the value of the current passing through the circuit where the
shunt is installed on using Ohm’s law. The placement of a shunt resis-
tor has an almost negligible effect on the circuit, as the shunt normally
offers very small electrical resistance. Once the current passing through
the processor has been determined, its power draw is also easily com-
puted as the product of the current and the voltage being fed to the
Pprocessor.

The above described method was chosen because it has the prag-
matic benefit of being clean, simple, and accurate enough for most pur-
poses. The voltage drop was measured across a low-resistance shunt re-
sistor installed in series between the processor and the power delivery
line coming from the power supply. Shunts were rated by maximum
current and voltage drop at that current. The voltage drop of the shunt
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Fig. 8. Physical setup for measuring power consumption.
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Fig. 9. Power measurements for different utilization levels.

employed was 75 mV at a maximum current of 50 A. The resistance
offered by the shunt was therefore 1.5mQ. The motherboard holding
the i7-2600 chip, an Asus P8H67-M EVO'!, used an eight-pin EATX12V
connection to deliver power to the processor. The connection consisted
of four DC +12V wires and four ground wires coming from a Corsair
GS700 power supply.'? To improve the accuracy of the voltage read-
ings, the shunt was inserted as close to the ground leg of the circuit as
possible [17]. Fig. 8 shows the physical interconnection of the power
supply, processor, and shunt device.

Let Vg4, Vepy, and Vg, denote the voltage delivered by the power
supply, the voltage drop at the CPU, and the voltage drop at the shunt
device, respectively (Fig. 8). R denotes the resistance offered by the
shunt, and I is the current flowing through the circuit. The power dis-
sipation of the CPU can be equated to the product of its voltage and
current consumption, Pepy = Vepy -l Based on basic circuit theory,
Vepu = Vaa — Vipune- The value of the current being drawn can be approx-
imated to I = 22t These two equations allow expressing the power
consumption for the CPU as a function of the shunt’s voltage drop:

o)

shunt
A Keysight 34411A 6 1/2-digit multimeter [44] was used to measure

2
R )
the voltage drop across the installed shunt resistor (Fig. 8). The 34411A

Pepy =Vepy - L = Vg — V:hunr)<

11 See https://www.asus.com/Motherboards/P8H67M-EVO.
12 See http://www.corsair.com/en-us/gs700w.
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is a high-performance Digital Multimeter (DMM) capable of taking mea-
surements over a fixed period without user intervention. The instrument
can be connected to a computer by means of the USB, LAN, or GPIB inter-
face. The multimeter can be triggered by software and has the capacity
to store the acquired data in its internal non-volatile memory for later
retrieval. Readings were automated by means of a dedicated script con-
sisting mostly of commands that conform to the SCPI'® standard. The
script was deployed prior to the execution of each experiment, and was
responsible for configuring the instrument, triggering the acquisition of
data, and retrieving the collected measurement samples.

The experiments were performed while measuring the actual power
consumption of the test bench, following the measurement procedure
described above. Each experiment lasted for 20 s, during which voltage
readings were collected at a rate of 1,000 readings per second. The en-
ergy consumption of a running sporadic real-time task set was computed
by approximating the integral of the power consumed over time using
the Riemann sum. Specifically, let Ecpy; denote the energy consumed by
the processor over a period of time T, and x; be the set of voltage read-
ings recorded by the multimeter. Any two consecutive voltage readings
are separated from each other by a (Tloo)th of a second. Eq. (2) allows
determining the power consumed by the processor across T' = 20, by
plugging to it each collected voltage reading. Hence, by the Riemann
sum,

T n

1 Xi

Ecpu= | Pepy-di % —— - V—.(—> 3
cPU /0 cPU 1000 gl,( 1 =X\ R 3
The energy consumption numbers reported in Fig. 10 through
Fig. 12 reflect the average of ten measurements (see Section 5.4). For all
experiments, more than 450 MB of trace data were recorded containing

more than 50,000,000 measurement samples.

5.6. Measurements and observations

Once the entire experimental flow was set up and deployed, it was
possible to acquire meaningful measurement data to evaluate the overall
energy consumption resulting from the execution of sporadic real-time
task sets under different energy-aware policies.

Given the short separation allowed by the measurement device be-
tween any two consecutive readings, it was possible to capture very

13 The Standard Commands for Programmable Instruments (SCPI) specification
defines the syntax rules and conventions used in controlling programmable test
and measurement devices. The 34411A complies with SCPI, which allows the
instrument to be programmed using simple, generic commands.
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slight variations in power consumption, which aids in gaining a deeper
understanding of the implemented scheduler’s runtime behavior. An in-
teresting pattern was noted when the computing platform was underuti-
lized. The power measurements for sporadic task sets whose normalized
utilization is markedly low exhibit a bimodally distributed arrangement.
This situation might be explained by the likelihood of sudden short
bursts of activity being interspersed with long periods of idleness. The
distribution of the data might reflect the platform’s power consumption
when alternating between the active and idle states. As the processor
utilization increases, the power dissipation begins to display a more fa-
miliar normal distribution pattern. This phenomenon might represent
the scheduler’s tendency to consistently select a specific operating fre-
quency level to execute the workload. When the processing requirement
increases, the schedulers opt for the lowest operating frequency that still
guarantees meeting all timing requirements. Consequently, the execu-
tion of the workload is extended and slack times are shortened, resulting
in a more regular power consumption at a constant operating frequency
level.

Fig. 9 illustrates the effect described above, showing the power mea-
surement distribution for task sets of varying normalized utilization
scheduled under CVFS. In the figure, the blue histogram represents the
power measurements distribution for a task set with a 20% total normal-
ized utilization, whereas the red histogram represents that of an 80%
utilization task set.

The power consumption trends of both CVFS and EDF® (described
in Section 4) were profiled while scheduling sporadic real-time task sets
of increasing worst-case processor utilization. Both algorithms were de-
signed for multiprocessor platforms where all processing units are con-
strained to operate at the same voltage and frequency level. The algo-
rithms differ, however, in the power saving measures they take to lower
the platform’s overall energy consumption. EDF®) relies on a static fre-
quency selection, while CVFS benefits from tasks finishing their execu-
tion earlier than expected. The actual processor power dissipation for
P-EDF and EDF® (running at full speed) were also measured to pro-
vide a baseline for their energy-efficient counterparts. Fig. 10 through
Fig. 12 present the performance of the schedulers with respect to en-
ergy consumption. In the figures for CVFS, “underrun” relates to the
deviation of the actual execution time of tasks from its worst-case. For
instance, a task with a underrun value of 10% is likely to run for 90%
of its WCET.

5.6.1. Observation 1

CVFS dominates P-EDF in terms of energy consumption in all tested sce-
narios, and even more so when the actual case execution time of tasks de-
clines. When the overall processing requirement is low, both schemes
display similar energy consumption trends. As processor utilization in-
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10. Energy measurements for CVFS while scheduling sporadic real-time task sets with a number of tasks (a) n = 6m =24 (b) n = 8 m = 32.

creases, the effectiveness of CVFS’s energy saving features becomes ap-
parent. The gap between CVFS and P-EDF gradually widens as the plat-
form becomes more occupied, achieving an ~18% reduction in power
consumption at a normalized utilization value of 80%. Interestingly,
CVFS performance remains the same even with an increasing num-
ber of tasks. In fact, the energy consumption of a task set comprising
n = 6m = 24 real-time tasks scheduled under CVFS is nearly identical to
that of a task set comprising twice as many tasks (Figs. 10(a) and 11(b)),
which indicates that energy is much more dependent on processor uti-
lization than on the size!* of the task set.

5.6.2. Observation 2

EDF® is unattractive for supporting high-utilization task sets from the
energy consumption perspective. Fig. 12 shows the performance of EDF®,
both when performing a static frequency selection and running at the
maximum allowable frequency. The first notable effect is the decreas-
ing gains in terms of energy consumption at high normalized processor
utilization values. When the processor share requested by the task set is
low, EDF® performance is comparable to that of CVFS, mainly due to
long periods of idleness taking place (Figs. 10 (a) and 12). Tasks with
a low processor utilization demand require either a very short com-
putation time or have a very long activation rate, which provides the
platform with ample space to remain idle. Thus, independently of the
operating frequency, the processors remain idle for longer periods, con-
suming much less energy'® As the processor utilization rises, however,
the effectiveness of EDF® in terms of energy consumption decreases,
approaching that of its equivalent executing the workload at full speed.
This calls into question the viability of a static frequency selection tech-
nique when supporting sporadic real-time task set with a high proces-
sor utilization requirement on a multiprocessor platform constrained to
global DVFS.

Fig. 13 summarizes the relative energy efficiency for CVFS and
EDF® when scheduling compute-intensive benchmarks with varying
(high) normalized processor utilization. The numbers shown in the fig-
ure were computed by normalizing the performance of each scheduler
with respect to their baseline schemes that execute tasks at f;;,, at all
times. It can be seen from the figure that the relative performance of
EDF® declines as normalized processor utilization approaches 80%,

14 1t would be interesting to determine if this claim holds for extremely large
task counts.

15 Notice, however, that this situation is not exclusive to the energy-efficient
schedulers. The same holds for the schedulers not implementing any particular
energy saving measure (Fig. 10 through Fig. 12).
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Fig. 11. Energy measurements for CVFS while scheduling sporadic real-time task sets with a number of tasks (a) n = 10m =40 (b) n = 12m = 48.
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Fig. 12. Energy measurements for EDF®) while scheduling task sets with vary-
ing numbers of tasks n€ {6 m, 8m, 10m, 12m}, with m = 4.

whereas CVFS (assuming no underrun) manages to reduce the platform’s
energy consumption by more than 6% at 80% of utilization.

5.6.3. Measuring overheads

When the infrastructure described in Section 2 is employed to en-
act frequency adjustments at runtime, some extra overhead is to be ex-
pected. Compared to a scheduling policy unaware of the system’s power
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and energy consumption, an energy-efficient policy will most assuredly
incur additional overheads (for updating the platform’s current load,
requesting a frequency adjustment, etc.) when making energy saving
decisions at runtime. To quantify the impact of such system overheads
in a practical setting, additional workloads were run under CVFS and
its baseline (P-EDF) on the quad-core platform while recording over-
head samples. The low-level latency following a task release was se-
lected as representative of the event-scheduling category, where dy-
namic frequency adjustment actions take place. A task set generation
methodology similar to that described in Section 5.4 was followed. 150
task sets were generated using the task set generator from Emberson
et al., each with a total utilization of either 75%, 80%, or 85%, and a
number of tasks ranging from n = 4m = 16 to 10m = 40 in steps of 2m.
Each task set was guaranteed to be feasible under partitioned schedul-
ing and executed under both schedulers for 60 s. Overhead samples were
collected using LITMUSRT’s Feather-Trace low-overhead tracing toolkit
(Section 2).

5.6.4. Observation 3

Runtime overheads incurred when making frequency adjustment deci-
sions are relatively small in absolute terms. Fig. 14 illustrates the task re-
lease overhead data observed by Feather-Trace, which measures over-
heads in terms of CPU cycles. On the experimental platform (where the
CPU cycles counter runs at the platform’s nominal frequency), 1 us cor-
responds roughly to 3400 cycles. In the figure, the y-axis denotes the
fraction of all overhead data that measured at most the quantity of pro-
cessor cycles marked on the x-axis. For instance, it can be seen from the

Fig. 13. Energy efficiency of CVFS and EDF®
relative to their baselines.

17.30

80



P. Mejia-Alvarez, D. Moncada-Madero and H. Aydin et al.

Journal of Systems Architecture 98 (2019) 388-402

Fig. 14. Overhead incurred at task release under P-EDF and
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figure that 90% of the overhead samples measured for P-EDF were fewer References
than 5000 cycles ~1.47 ps. As expected, CVFS does incur higher over-
heads because of the latency involved in selecting the next frequency [1] I. Ahmad, S. Ranka, Handbook of Energy-Aware and Green Computing, Chapman &

level and synchronizing the decision with respect to every other process-
ing core on the platform (recall that the experimental testbed is based
on a CMP featuring a global voltage and frequency level). However,
the difference between both policies in terms of runtime overheads is
relatively small, within the range of a few microseconds (90% of the
overheads for CVFS measured at most 10,000 cycles ~2.94 us). Even in
the presence of additional overheads, these experiments with CVFS re-
sulted in no observable instability with respect to timing requirements.
Still, this exchange between performance and energy consumption must
be validated by taking the characteristics of the supported application
into account.

6. Conclusion

The recent availability of such open, feature-complete frameworks
for supporting real-time workloads on multiprocessor and multicore
platforms such as LITMUSRT has made it possible to implement and
evaluate real-time scheduling algorithms found in the literature on real
hardware platforms. Moreover, the integration of these frameworks with
the hardware and software support for energy management provided
by most modern platforms makes it more feasible to implement energy-
aware real-time multiprocessor scheduling algorithms with reasonable
effort.

In this work, we have provided a means for achieving progress in this
regard. Our implementation effort and measurement methodology was
crucial in conducting a case study that presented the real performance
(for our particular experimental setup) of two energy-aware real-time
multiprocessor scheduling algorithms found in the literature. The re-
sults obtained in our study indicate that voltage/frequency scaling is
indeed an effective means for achieving energy savings in multipro-
cessor settings where all processing units are constrained to run at a
single global speed. In addition, the comparatively low runtime over-
heads introduced by dynamically performing operating frequency ad-
justments further confirms the practicality of the technique, even in
contexts where stringent timing constraints must be preserved.
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