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ABSTRACT

There is currently tremendous interest in deploying energy-
harvesting wireless sensor networks. Engineering such sys-
tems requires striking a careful balance between sensing per-
formance and energy management. Our work addresses this
problem through the design and analysis of a harvesting-
aware utility-based sensing rate allocation algorithm. Based
on a network utility formulation, we show that our algorithm
is optimal in terms of assigning rates to individual nodes to
maximize overall utility, while ensuring energy-neutral op-
eration. To our knowledge, our work is the first optimal
solution that maximizes network utility through rate assign-
ments for tree-structured energy harvesting sensor networks.
Our algorithm is fast and efficient with running time O(N?),
where N is the number of nodes. We evaluate the perfor-
mance, scalability, and overhead of our algorithm for various
utility functions and network sizes, underlining its significant
advantages.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design|: Distributed
networks; C.2.2 [Network Protocols]: [Applications]

General Terms

Algorithms, Performance, Experimentation

Keywords
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1. INTRODUCTION

The rapid introduction of new software and hardware func-
tionalities has stimulated the development of complex wire-
less sensor network (WSN) applications. For this new gen-
eration of WSN applications, maximizing the value or utility
of sensed data, as perceived by end-users, is of paramount
importance. For most WSN systems, a major constraint to
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utility maximization is the limited energy availability of sen-
sor nodes. One solution to this problem is to devise energy
harvesting techniques to power sensor nodes at run-time [2,
4, 5]. Since the availability of environmental energy sources
is often limited and highly time-varying, the goal of simple
utility maximization is constrained by the need for manag-
ing unpredictable energy supplies. Our work addresses this
problem by designing and analyzing a WSN-specific, energy-
harvesting aware utility maximization algorithm.

Much previous work in this area assumes that applica-
tion utility increases linearly with the rate at which sensor
nodes sense or collect data [1, 11, 12, 13]; therefore the max-
imization of the network-wide data collection rate leads to
utility maximization. However, for many WSN applications
increasing the level of sensed data reporting only increases
the utility of the application in sub-linear fashion. Consider,
for instance, video or motion sampling as part of an intrusion
detection system. Since humans can only move at a certain
speed, sampling above a specific threshold only marginally
increases the utility of the application. For this reason, our
work models utility as a non-decreasing concave function,
such that its rate of increase (marginal utility) decreases as
the sensing and reporting rate increases [6, 21, 22]. The util-
ity perceived by application end-user is the aggregate utility
achieved jointly by all the nodes in the network.

With energy harvesting equipment such as solar panels
or wind generators, sensor nodes harvest power from envi-
ronmental sources and potentially sustain their operation
perpetually. In [5], the concept of perpetual operation is
formally stated as the energy neutral condition. This means
that sensor nodes must always maintain positive energy stor-
age levels to avoid energy depletion and hence operation in-
terruption. A further complexity arises in multi-hop WSNs;
where nodes must forward data received from other nodes
in addition to their locally generated data. Given limited
energy supplies, control algorithms must balance the local
and external sensing and communication rates. Favoring lo-
cal rates over external rates may result in high local utility,
but low network-wide utility, since the rates of other nodes
are throttled by the high local rate.

To solve the above issues we propose MAX-UTILITY, an
epoch-based rate allocation algorithm. MAX-UTILITY is
designed to maximize total application utility, while regu-
lating nodes energy consumption resulted from sensing and
reporting activities to guarantee energy neutral operation
for every node. In our work, ’'rate’ is equated with packet
rate, which is directly tied to sensing rate. An epoch is a
time interval during which the amount of power harvested



remains relatively stable and is reasonably predictable. The
length of an epoch may range from several minutes to a
couple of hours, depending on the energy source type. Our
approach exploits the concavity of the utility function, and
a special property of tree-based networks to allocate rates to
nodes as evenly as possible for achieving utility maximiza-
tion, while maintaining the minimum sensing rate required
by the application and the available energy and data for-
warding capacity of the nodes.

We formally prove the optimality of MAX-UTILITY in
the sense of utility maximization. For a system with N
nodes, our algorithm has a time complexity of O(N?). We
also develop a distributed version of this algorithm for use
in systems without central control points. To the best of
our knowledge, this is the first optimal solution to maximize
general network utility through rate assignments to individ-
ual nodes in tree-structured sensor networks, while guaran-
teeing energy neutrality. A limitation of our approach is
that it applies only to tree-based WSNs. However, since
trees are a common logical routing structure for WSN sys-
tems [1, 3, 8], we believe our algorithm is widely applicable.
While the related studies in [6, 21] target general multi-
hop networks and offer innovative solutions, in general, they
do not guarantee optimality. Finally, using solar harvest-
ing traces obtained over a year-long study in [17], we have
evaluated MAX-UTILITY against an alternative algorithm,
under a variety of experiment settings. Our results show
that MAX-UTILITY delivers superior utility improvement
while ensuring energy neutral operation for all the nodes.

2. BACKGROUND AND RELATED WORK

Rate allocation for wireless sensor networks has been ex-
plored in [1, 6, 12, 13, 22]. In [1], the authors propose to
maximize lexicographic rate assignments to sensor nodes.
The rate assignment problem is formulated as linear opti-
mization problem, and solved optimally by centralized and
distributed algorithms. [12] proposes a rate control approach
for a single energy harvesting node to achieve a series of ob-
jectives including the maximization of average sensing rate
over time. These objectives are formulated as optimization
problems and solved using multi-parametric control algo-
rithms. [13, 14] propose a flow control algorithm for energy
harvesting WSNs. [14] proposes an energy budgeting al-
gorithm that defines the amount of energy a node can use
for each epoch. The derived energy budget assignment is
optimal in the sense that the variance of energy assigned
across epochs is minimized. Using this formulation the flow
control algorithm in [13] maximizes the amount of data col-
lected over the network, given that no node consumes more
energy than the assigned budget.

An implicit assumption in [1, 12, 13] is that the system
utility increases linearly with the rate of nodes. However,
for many applications the increase of utility slows down as
rate increases (the diminishing returns principle). Using this
observation, [6, 21, 22] model system utility as a concave
and non-decreasing function of rate, and propose primal-
dual based algorithms to maximize utility over the entire
network. Among these works, [6] is the most related one to
ours that target utility maximization for energy harvesting
WSNs. However, [6, 21, 22] all assume specific utility func-
tions that are continuously differentiable, which may limit
their application for a more general class of functions. More-
over, their proposed solutions are not optimal, and can incur

high control overhead and unpredictable running time, thus
potentially limiting their practical implementation within
resource-constrained WSN systems.

Research presented in [7, 15] formulate the Network Util-
ity Maximization (NUM) problem for Internet congestion
control. Primal-dual based algorithms are proposed to solve
the problem. The issue we target shares the same structure
with the NUM problem, but is for a WSN environment. The
utility maximization problem has been also extensively stud-
ied for real-time embedded systems. [18] addresses utility
maximization for energy-constrained systems that execute
periodic real time tasks. The objective is to maximize the
total utility obtained from execution of these tasks, while
satisfying the deadlines of all the tasks, the tight system
energy budget and the minimum system performance re-
quirement. In [19], the authors extend the approach in [18]
for solar-powered embedded systems. However, [19] only
considers two different epochs in each day. [9, 10] address
a similar problem as [19] but with a more complex system
model. They assume a highly dynamic energy harvesting
model, and assume that WSN applications have multiple
discrete service and performance levels, and each has dif-
ferent utility values and energy demands. The problem is
then to decide when to select which service level to run in
order to maximize the total utility, without over-using the
available energy. Finally, in [23], we propose energy man-
agement approach for maximizing the energy storage level
of nodes in energy harvesting WSNs. The approach utilizes
two energy saving techniques, dynamic voltage scaling and
dynamic modulation scaling.

3. SYSTEM ARCHITECTURE

3.1 Environmental energy harvesting model

We assume each sensor node consists of an energy har-
vester head, and several energy consuming hardware units,
including a CPU, a wireless transceiver, and required sensor
suites. The harvester head is energy source-specific, such as
a solar panel or wind generator. The energy storage unit,
such as a rechargeable battery or super-capacitor, has a max-
imum energy capacity of I'"** joules. This unit receives
power from the energy harvester, and delivers power to the
sensor node. We take the commonly used approach that the
amount of harvested power is uncontrollable, but reason-
ably predictable, based on the source type and harvesting
history [5, 6, 12]. To capture the time-varying nature of
environmental energy, time is divided into epochs of length
S. Harvested power is modeled as an epoch-varying func-
tion denoted by P}, where k is the epoch number. P} re-
mains within each epoch k, but changes for different epochs.
The time unit used for harvesting prediction is therefore one
epoch. The prediction horizon, H is an interval containing
a number of epochs during which harvesting predictions can
be reasonably made. The length of H may vary depending
on the type of environmental sources and prediction tech-
niques used. Our approach does not depend on the length
of H, and requires harvesting prediction for only the coming
epoch.

3.2 Network and application model

We consider general WSN applications that periodically
collect data from NN sensor nodes populated over the target
environment. The nodes are organized into a data collec-



tion tree using any tree construction protocol, such as the
Collection Tree Protocol (CTP) [3]. A sensor node is de-
noted as V;, and the base station is denoted as BS. Within
a tree-based routing structure, at any time each node V; is
connected to BS by a single path p; consisting of zero or
more intermediate nodes. We use the notation V; € p; to
indicate that V; resides on a given path p;.

A node Vj senses the environment and sends the resulting
data in packets towards BS along the path p;, at rate r;.
These packets are referred as internal packets. Each node V;
may also forward external packets at a certain rate. These
are received from the set of descendant nodes {V;}, where V;
resides on Vj’s path to BS, i.e. V; € p;. Therefore the total
outbound traffic at V; equals r; + r;. We refer to r;
as Vi’s internal packet rate, and >
packet rate.

Sensor nodes produce utility by sensing and reporting data
to BS. Therefore we define the utility accrued by any node
V; as a function of its packet rate r;, U(r;). U is a positive,
non-decreasing and concave function. Then we define the
aggregate utility U’ accrued jointly by all N nodes in the
network as:

J:Vi€pj

itViep; T3 A8 its external

Ut = Z U(ri) (1)

Our energy model assumes, without loss of generality, that
sensing and processing energy costs are fixed, relatively neg-
ligible and can be ignored. We therefore consider the radio
transceiver as the main sink for energy consumption. Packet
routing results in two types of energy consuming activities,
packet transmission and reception. We denote the energy
spent on transmitting an internal or external packet as e'®,
where e'® can be measured in advance. Packet reception also
consumes energy. Our architecture assumes that reception
energy is controlled by the MAC layer, using techniques such
as TDMA or duty-cycled LPL approaches such as B-MAC
[16]. Therefore we model per-epoch reception energy as a
constant E™ which is dependent on the epoch length. We
can calculate, at each node V;, the total energy consumed
E¥ by handling internal and external packets in an epoch of
length S as:

Ef=e™ . (ri+ Z r;)- S+ E™ (2)

J:Vi€pj

We also assume that each node V; has a pre-assigned per-
epoch energy budget B;. Such energy budgets can be pro-
duced by algorithms such as [9, 13, 14], based on the pre-
dictions of harvested energy for any of the epochs in the
horizon. Further, related work such as [5, 6] require that a
sensor node can consume no more than the amount of energy
harvested in any epoch. For these models a node’s allocated
energy budget in any epoch is set to the amount of energy
it can harvest. Any of these energy budgeting algorithms
guarantees the energy-neutral operation across all epochs.

4. THE MAXIMAL UTILITY RATE ALLO-
CATION PROBLEM

In this section, we define our rate allocation problem for
energy harvesting WSN systems. Our objective is to max-
imize the network utility U** (Eq. (1)), given the limited
energy harvesting ability of nodes. We achieve this goal by

adjusting packet rate r;. Since the harvested power changes
from epoch to epoch, the rates of nodes need to be re-
adjusted in every epoch. We formulate this objective as an
optimization problem called Network Utility Maximization
with Energy Harvesting (NUM-EH) as:

Maz U™ (3)
s.t. vVi,
E; < B (4)

min

Ty >

ri + Z T < Rfap
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The optimal solution to the above problem consists of the
rates for all N nodes, i.e. {r1,...,rn} that maximizes U"*".
The constraint (4) enforces that the energy consumption Ef
of any node V; must be smaller than the assigned energy
budget B; in an epoch. The constraint (5) enforces that
the rate of any node must be higher than the minimum
required value 7™, in order to maintain the basic service
level at individual nodes. Finally, to avoid packet congestion
the total packet rate at any Vi, i.e. r; + Zj:wepj r; must
be smaller than V;’s packet forwarding capacity denoted by
R;P.

We observe that NUM-EH is a concave maximization
problem with three linear constraints. This is seen from
Eq. (2), where Ef is a linear function of r; and the set of
external rates {r;}. We notice that this problem is a spe-
cial case of the well-known network utilization maximization
problem [6, 7, 15] which can be solved using primal-dual
based algorithms. However, such algorithms are typically
too computationally expensive for resource-constrained sen-
sor nodes. We instead propose a polynomial-time algorithm
to solve the problem optimally and cost-effectively.

S. RATE ALLOCATION ALGORITHM

In this section, we propose the algorithm MAX-UTILITY
that optimally solves problem NUM-EH. MAX-UTILITY
is applicable to arbitrary utility functions that are concave
and non-decreasing. We first propose a centralized version
of this algorithm that can be run on a base station. We
then show how to implement MAX-UTILITY in a fully dis-
tributed fashion so resource-constrained sensor nodes can
collaboratively produce optimal rate assignments.

First, we show that the constraint (4) and (6) can be com-
bined into one single constraint as follows. Substituting the
equality (2) into constraint (4) gives:

Ef =€ (ri+ Y 1;)-S+E"<B; (7)
J:Vi€py
yielding:
B, — E™
ri + Z Tjﬁiem.s (8)
Jj:Vi€pj

The right-hand side of the above inequality, Ziz s

7"t
etz. g
a constant as B;, E™, " and S are all known constants.

This can be combined with constraint (6) into one single
constraint, r; + r; < CAPACITY; where:

J:Vi€py

(9)

CAPACITY; = Min {Rf‘”’, %}
e



We refer to CAPACITY; as the rate capacity of node V;.
We can re-write problem NUM-EH concisely as:

N
Max Ut :ZU(”)
i=1

st.  YVirg >r™n (10)
VWi, ri+ > 1 <CAPACITY:  (11)
J:Vi€p;

We refer to constraint (10) as the min-rate constraint, and
constraint (11) as the capacity constraint.

5.1 The centralized version

Now we present the centralized version of algorithm MAX-
UTILITY. Before the algorithm starts, B:S collects two pieces
of information from each node. The first is the rate capacity
CAPACITY;, computed locally by each node using Eq. (9).
The second is the node id of parent of each node, and the BS
uses the parenthood relation of nodes to derive the structure
of the existing data collection tree. MAX-UTILITY allo-
cates rates as evenly as possible to nodes, while also satis-
fying constraints (10-11). Given an arbitrary concave, non-
decreasing functions U, this will maximize network utility
U'*. This property is formally given later in Proposition
1. MAX-UTILITY runs in multiple iterations, and assigns
rates to a subset of nodes in each iteration. The iteration
ends when rates are assigned to all N nodes.

CAPli] The remaining rate capacity of node
Vi
unassigned|i] The set of unassigned nodes in V;’s
subtree 7;

|unassigned|i]|
ASSIGNED_SET

The size of unassigned]i]
The set of assigned nodes

R[] The rate assignment derived by
MAX-UTILITY

reld] The maximum common rate for
nodes in unassigned|i|

Va The node with the least r.[] among

all the unassigned nodes

Table 1: List of notations

The algorithm has two lists of inputs and one output. The
first input list contains N rate capacities CAPACITY;, one
for each node V;. The second list contains N vectors, one for
each V;. Denote the subtree rooted at node V; by 7. The
vector of each V; contains all the nodes in the subtree 7;
rooted at V;. This vector is derived based on the previously
discovered tree structure. For notational simplicity we re-use
7; to represent this vector. The output is the rate assignment
vector derived by MAX-UTILITY, denoted by R]].

MAX-UTILITY uses one global variable and three per-
node variables that are updated from iteration to iteration.
The global variable ASSIGNED_SET is a set containing
all the nodes in the network that have been assigned rates so
far. As will be seen later, in each iteration MAX-UTILITY
adds at least one node to ASSIGNED_SET. The algo-
rithm terminates when all N nodes are in ASSIGNED_SET.
Next we declare three per-node variables. First, C AP[i] is

the remaining capacity of node V;, initialized to CAPACITY;.

Second, unassigned][i] is a subset of 7; containing any nodes

in 7; that have not yet been assigned rates. unassigned]i]
includes V; itself, and is initialized to 7;. Finally, r.[i] is the
maximum common rate for nodes in unassigned[i]. Table
1 summarizes these notations. This construction is illus-
trated in Fig. 1. In the 1°* iteration, when none of nodes in
subtree 77 rooted at Vz have been assigned, unassigned[7]
contains all four nodes in 77, {V1, V2, Vs, V7 }. The last vari-
able 7.[i] is the maximum common rate that can be assigned
to the nodes in unassigned[i]. rc[i] is computed by divid-
ing V;’s remaining rate capacity CAP[i| by |unassigned|]|
which is the number of nodes in unassigned[i], i.e. r.[i] =

CAP[i] For example, in the 1°¢ iteration, 7.[7] =

|lunassigned[i]|
CAPACITY7 _ 16 _ 4
|lunassigned(7]| — 4 T *°

Algorithm 1 MAX-UTILITY
1: - Input: {CAPACITY;} and {r;}; Output: R[]
2: - Initialization: ASSIGNED_SET = 0,
VVi, CAP[i| = CAPACITY;,unassigned[i]| = T;

3: for each node V; in the network do

4:  If CAP[i] < ™" . |unassigned[i]|, then return ()

5: end for

6: while |[ASSIGNED_SET| < N do

7. for any node V; ¢ ASSIGNED_SET do

8: rc[i] = CAP[i]/|unassigned]i]|

9: end for

10:  Find out V,, which has the least r.[i] among any V; ¢

ASSIGNED_SET

11:  for any node V; € unassigned[u] do

12: Set R[i] = r.[u], and add V; to ASSIGNED_SET
13:  end for

14:  for any node V; € ASSIGNED_SET do

15: if Vi, € unassigned|[i], i.e. V; is V,,’s ancestor then
16: CAP[i]| = CAP[i] — rclu] - |lunassigned(ul|

17: end if

18: if Vi, € unassigned]i] then

19: for any node V; € unassigned|u] do
20: Remove V; from unassigned][i].
21: end for
22: end if
23:  end for
24: end while
25: return R[]

MAX-UTILITY, shown in Algorithm 1, is specified as fol-
lows. Line 2 initializes ASSIGNED_SET to §, CAP]i] to
CAPACITY;, and unassigned[i] to 7;. In lines 3-5, for any
node V; we check whether it has sufficient capacity to sus-
tain the minimum required rate r™" for all the nodes in its
subtree 7;. If there exists a node with insufficient capacity,
then we know there is no feasible rate assignment that can
satisfy the min-rate constraint and capacity constraint (at
V;) at the same time. At this point MAX-UTILITY termi-
nates immediately with empty R[]. Line 6 starts the rate
assignment loop which will terminate when all N nodes are
assigned. In lines 7-9, for any node V; € ASSIGNED_SET,
we compute the maximum common rate r.[i] that can be as-
signed to the nodes in unassigned|i] (line 8). In line 10, we
find the node V, which has the least r.[i{] among any V; ¢
ASSIGNED_SET. Then for any nodes in unassigned|u],
MAX-UTILITY assigns rc[u] to them and adds them to
ASSIGNED_SET (line 11-13).
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Figure 1: Example Data Collection Tree

Next, lines 14-23 update C APJi], and unassigned[i] for
any nodes without an assigned rate. Specifically, since any
node V; where V,, € unassigned[i] are ancestors of V, and
need to forward packets received from the nodes in
unassigned[u], we need to subtract r.[u] - lunassigned[u]]
(i.e. the total traffic that V; received from V,,) from their
CAPJi] values (line 15-17). For any other nodes that are
not ancestors of V,, their CAPJi] values remain the same.
Moreover, any nodes V; € unassign[u] with newly assigned
rates must be removed from the unassigned[i] sets of any
node V; that is an ancestors of V,, i.e. Vi, € unassigned|i]
(line 18-22). The rate assignment process from line 7 to 23
continues until all N nodes are assigned.

As can be seen, in each iteration, MAX-UTILITY picks a
V. which has the least common rate 7.[i] among any unas-
signed node V;, and assigns r.[u] uniformly to any nodes
in unassignedfu], then produces a pruned tree by remov-
ing any newly assigned nodes. We refer to the node with
the least common rate r.[i] among any nodes in a tree (or
pruned tree) as the critical node of the tree. Note that in
any iteration, the selected V;, is the critical node in the tree
(pruned tree). The concept of critical node plays an impor-
tant role in our optimality proof.

Steps of MAX-UTILITY are illustrated through an exam-
ple. In Fig. 1, before the 1°" iteration starts, r.[6] = % = 3.5,

2

re[7) =2 =4, 78] = 2, r[9] = £ = 6.5. Line 10 picks

Vs as Vi, and line 12 assigns R[3] = R[4] = R[§] = 2
and adds Vi, V4, Vs to ASSIGNED_SET. Since this as-
signment does not affect any other nodes, lines 14-23 are
not executed. In the 2"? iteration, Vg is picked as Vi, so
MAX-UTILITY assigns R[1] = R[6] = 3.5, and updates
CAP[7) =16 — 7 =09, and unassigned[7] = {Va, Vz}. V1,V
are added to ASSIGNED_SET. In the 3" iteration, V7
is picked as Vi as 1.[7] = 9/2 = 4.5 < r.[9] = 6.5. MAX-
UTILITY assigns ]N%[Q} = Rm = 4.5, marks Vs, V7 assigned
and makes no update. In the~4th iteration, Vy is picked as
Vi, MAX-UTILITY assigns R[5] = R[9] = 6.5, and adds
Vs, Vo to ASSIGNED_SET. Since all the nodes are now in
ASSIGNED_SET, the algorithm terminates and returns
R[] = {3.5,4.5,10/3,10/3,6.5,3.5,4.5,10/3,6.5}.

5.2 Optimality of algorithm MAX-UTILITY
In Eq. (1), the network utility U is defined as the ag-

gregate utility accrued jointly by all the nodes, Zivzl U(ri).
Since U(r;) is concave, U*" can be maximized by assigning

packet rates to nodes as evenly as possible, while satisfying
the min-rate, and capacity constraints at any nodes. This
observation is supported by the following proposition, which
can be proved based on the properties of concave functions:

PrOPOSITION 1. Given n non-negative real numbers
{ri,...,rn} where 37 r; < W (W is any non-negative
constant), > U(r:) (U is a concave, non-decreasing func-
tion of r) is mazimized when r1 =12 = ... =1, = W/n.

Now we prove that the rate assignment R[] derived by
Algorithm MAX-UTILITY maximizes U, while satisfying
constraints (10-11). For the sake of contradiction, we assume
that R[] is not optimal, and that there exists an optimal
assignment R*[] which differs from R[]. The network utility
resulting from R*[] is denoted by U'"*. We will show that
R*[] # R[] contradicts the optimality of R*[], hence proving
that R*[i] = R[i] must hold for every node V; in the network.
We first propose Lemma 1, which is proved in the Appendix.

LEMMA 1. Given an arbitrary tree-based network, the op-
timal rate assignment R*[] must assign equal rates to all
nodes in unassigned|u], where V,, is the critical node of the
tree.

Lemma 1 implies that R*[] must assign a common rate
denoted as R*[u] to all the nodes in unassigned[u]. We now
present Lemma 2, which shows that R*[u] must be equal to
rc[u], i.e. the maximum common rate that can be assigned
to nodes in unassigned|u].

LEMMA 2. Given an arbitrary tree-based metwork where
V. is the critical node in the tree, the optimal rate assign-
ment R*[] must assign a common rate r.[u] to any nodes
in unassigned(u], regardless of the rates assigned to other
nodes in the tree.

The proof of Lemma 2 can be found in the Appendix.
Since VV; € wunassignedlu], R[i] = rc[u] holds (line 12),
Lemma 2 implies that YVi € unassignedfu], R*[i] = R][i]
must hold. In other words R][] derived by MAX-UTILITY
is optimal for any nodes in unassigned(u], where V,, is the
critical node. Since assigning R*[u] = r.[u] to any node
Vi € unassigned[u] is optimal regardless of what rates are
assigned to the rest of nodes, we can focus on finding the
optimal rate assignment for a partial tree formed by disre-
garding any nodes in unassignedfu] (i.e. removing nodes in
unassigned[u] from unassigned[i] of any ancestors of V,,),
and setting CAP[i] = CAP[i] — rc[u] - |lunassigned|u]| for
any node V; that is an ancestor of V,,. Note that the partial
tree generated in this way contains exactly the set of nodes
remaining unassigned at the beginning of the 2"? iteration
of MAX-UTILITY. Also each node in the partial tree must
have the same C' AP[i] and unassigned|[i] as they have in the
2" jteration of MAX-UTILITY. Since Lemma 2 applies to
an arbitrary tree, it holds for this partial tree as well. In
other words, R*[] must assign a common rate r.[u] to any

nodes V; € unassigned[u/], where V,; is the critical node of
the partial tree.

Since the structure and capacity of the partial tree is the
same as the updated tree in the 2"? iteration, the critical
node V, must be exactly the V;, picked by MAX-UTILITY
in the 2" iteration. Thus MAX-UTILITY must also as-
sign re[u ] to any V; € unassigned[u,]. Therefore, VV; €



Since VV; €
unassigned[u/}, R*[i] =r. [u/] holds as implied by Lemma 2,
we have VV; € unassigned[u/}, R[i] = R*[{] must hold. That
is, f%[] is optimal for any nodes in unassigned[ul]. Again, we

unassigned[u’}, R[i] = rc[u/] must hold.

may disregard any nodes in unassigned[u/] and focus on the
new partial tree formed in this way. The new partial tree
has the same structure and capacities as the updated tree in
the 3" iteration of MAX-UTILITY. As we iteratively prune
the tree (partial tree) and apply Lemma 2 to the generated
partial trees until all the nodes are pruned except the root
BS, we have proved that the R[] derived by MAX-UTILITY
is completely identical to R*[], and therefore Ris optimal
for the entire original tree.

Complexity analysis:

We show that for NV nodes, the centralized MAX-UTILITY
runs in O(N?) time. We first focus on one iteration of the
while-loop from lines 6-24. The for-loop from lines 7 to 9 has
complexity O(N), since there are O(N) unassigned nodes
in each iteration. The selection of V,, in line 10 has com-
plexity O(N) as this is equivalent to finding the minimum
element among O(N) rc[i] values. The rate assignment to
nodes in unassigned|u] in lines 11-13 has complexity O(N)
as well, since the size of unassigned[u] is O(N). The for-
loop from lines 14 to 23 has complexity of O(N?). In each
loop, we need to update C AP[i] and unassigned]i] for O(N)
unassigned nodes V;. Updating C APJi] for each V; takes
O(1) time (line 16), while updating each unassigned|i] take
O(N) time as it requires removal of O(N) nodes (lines 19-
21). Thus, the entire for-loop completes in O(N?) time as
there are O(N) nodes V; ¢ ASSIGNED_SET. Therefore,
each iteration of MAX-UTILITY completes in O(N?) time.

Next the number of iterations of MAX-UTILITY is given
by O(N), as the set ASSIGNED_SET is initially empty
and each iteration adds at least one mnode to
ASSIGNED_SET. Therefore, the total complexity of MAX-
UTILITY is O(N?®). For practical purposes we expect that
the number of iterations will be small. This is because
the nodes that are close to the root have more descendent
nodes, hence much larger unassigned[i| than the nodes in
the lower levels of the tree. Therefore the high level nodes
usually have small r.[i] values and are more likely to be
picked as V. Since once these nodes are picked as V,,, all
nodes in their unassigned[i] sets are assigned and added to
ASSIGNED_SET at once in one iteration, the set
ASSIGNED_SET will grow rapidly and the expected num-
ber of iterations of MAX-UTILITY should be small. We will
justify this assertion through simulation analysis.

5.3 The distributed version

We now present the distributed version of MAX-UTILITY,
referred as MAX-UTILITY-D. We decompose and distribute
the computations in Algorithm 1 to every node in the net-
work. The purpose of MAX-UTILITY-D is to support sys-
tems that do not possess or make use of a single resource-rich
central control point. MAX-UTILITY-D only requires a sin-
gle coordinator node such as a routing tree root. The tree
root can be any node in the network. The root does not
perform computations but only disseminates the minimum
common rate 7.[u] to all other nodes.

MAX-UTILITY-D is specified as follows. Initially, each
node individually computes its rate capacity CAPACITY;
using Eq. (9). Then MAX-UTILITY-D starts an initializa-

tion stage during which all the nodes send an empty control
packet to the root. If a node V; receives a control packet
from another node V}, then V; knows Vj resides in its subtree
7;. By the end of the initialization stage, each node knows
its subtree 7, and hence the initial unassigned[i]. Using
CAPACITY; and |unassigned|[i]|, Vi computes the common
rate 7.[i] that can be assigned to nodes in unassigned|i].

Each iteration of MAX-UTILITY-D consists of two stages.
The first stage determines the minimum common rate r.[u]
and the critical node V,, in the tree by requiring all the nodes
forward their 7.[i] values to the root. In the second stage, the
root disseminates r.[u] across the network, and all nodes in
unassign|u] receive and use r.[u] as their packet rate. In the
first stage, each leaf node in the tree V; sends its computed
rc[i] towards the root. V;’s parent Vj receives rc[i], compares
reli] to re[j] of itself, and forwards the larger of the two up-
wards. V; also temporarily stores any received r[i]. This
process proceeds over the entire tree in bottom-up fashion,
and finally the root discovers the minimum common rate
rc[u] in the tree. Then in the second stage the root dissemi-
nates rc[u] across the tree. When a node receives r.[u] from
the root, it compares r.[u] to its local r. to identify whether
it is the critical node. If it is not the critical node, then it
compares r[u] to each of the previously stored r. values of
its descendent nodes to find out who is the critical node. In
this way the critical node V,, identifies itself, and commands
all unassigned nodes in unassigned[u] to use r.[u] as their
rates for the coming epoch. This rate assignment command
can be piggybacked in the packet for disseminating r.[u].

After the dissemination of r.[u] completes, all the nodes
has learned the identity of the critical node V,,, either by
comparing r.[u] to its own or stored r. values, or from the
rate assignment command issued by V,. Finally, we need
to update CAP[i] and unassigned[i] of the nodes remaining
unassigned. If a node V; is an ancestor of V,,, it has to update
CAP[i]| = CAPJi] — rcfu] - |lunassigned|u]| and then remove
all nodes in unassigned[u] from unassigned[i]. At the end
of the iteration, each node discards the temporarily stored
information and continues to the next iteration. In the next
iteration, only the nodes remaining unassigned participate.
The rate assignment iteration continues until all the nodes
are assigned.

Complexity analysis:

In MAX-UTILITY-D, the tree root only disseminates r.[u].
Each non-root node requires O(N') comparisons in each iter-
ation. This is because each non-root node compares its own
re to O(N) r. values received from its descendent nodes (the
1% stage), and compares 7.[u] disseminated by the root to
its own 7. and O(N) temporarily stored r.. Further, up-
dating C AP[i] and unassigned[i] takes O(N) time for each
node as described in the complexity analysis of centralized
MAX-UTILITY.

Now we analyze the message complexity of the algorithm.
The initialization stage requires one round of network-wide
data collection. In each iteration, the determination of r.[u]
requires all the nodes to report their r.[i] values, thus in-
curring another round of data collection. The root then
announces rc[u] to all the nodes, incurring one round of
network-wide data dissemination. In each data collection
and dissemination round, each node sends exactly one packet.
Given O(N) iterations, MAX-UTILITY-D needs O(N)
rounds of network-wide data collection and dissemination.
Finally, as mentioned in the analysis of the centralized MAX-



UTILITY, the expected number of iterations is much lower
than IV in practice.

6. PERFORMANCE EVALUATION

Though we have formally proved the optimality of MAX-
UTILITY, we have conducted a series of simulation exper-
iments to evaluate its performance gain and overhead. We
compare our algorithm against an alternative heuristic, called
Random Rate Augmentation (RRA). The specification of
RRA is given in the Appendix. By design, the rate assign-
ment derived by RRA is also feasible in term of satisfying
constraint (10-11). Although RRA is not optimal, it achieves
reasonably high utility values as it maximizes total packet
rate (flow) over the tree. Other algorithms, such as the one
proposed in [6] are not directly comparable to ours, since
their application and network model are different.

We compare the two rate allocation algorithms under var-
ious experiment settings that consider different energy bud-
geting schemes, utility functions, and network sizes. With-
out loss of generality, we consider solar-powered sensor net-
works in our simulation. The solar power harvesting profile
is obtained from the Hamburg University of Technology [17].
We set the length of horizon to one day (24 hours) which is
further divided into 96 epochs each with length of 15 min-
utes. We assume two energy budgeting schemes, denoted
as Strictly Energy Neutral (SEN) and Maximum Uniform
Budget (MUB). The SEN scheme assigns the exact amount
of harvested energy as the energy budget for any epoch. For
the evening epochs with extremely low harvested energy,
SEN assigns a minimum energy budget equaling 5J to main-
tain the minimum rate r™". The MUB scheme computes
the maximum uniform energy budget across all 96 epochs
while satisfying the min-rate and capacity constraints, and
assigns this budget to every epochs. The MUB scheme uses
the algorithm proposed in [9]. Note that the energy bud-
get varies across epochs if SEN scheme is used, while the
budget remains constant if MUB scheme is used. We are
interested in evaluating how different budgeting schemes
affect the network utility. This helps system designers in
choosing the right energy budgeting scheme for their appli-
cations. We consider three different concave utility func-
tions: log(100r + 1) (denoted as LOG), v/100r (SQR) and
log[v/1000r + 1] (denoted as composite utility or CPST).
We use the coefficients 100 and 1000 with r because r is
commonly small. Finally, we repeat our simulation in six
networks of different size, containing 25, 36, 64, 100, 169,
225 nodes respectively. We examine the accrued utilities,
and the algorithm overhead as the network grows.

The sensor nodes are organized into a collection tree using
the CTP protocol. The energy consumption for transmitting
a packet is randomly selected from the range (0.05 — 0.1)J.
This range is obtained based on the measurements in [20].
The energy storage device has capacity of 1000J. The initial
energy level in the horizon is set to 500J. The minimum rate

min

r is set to 0.01, i.e. 1 packet per 100 seconds.

6.1 Simulation results

We evaluated algorithm MAX-UTILITY and RRA in
TOSSIM/TinyOS. We present our evaluation results along
four dimensions: accrued network utility U***; rate (r;) dis-
tribution among nodes; energy level variation across epochs
of two selected nodes; algorithm running time and control
overhead. We calculate the energy level 'y, of a node at the
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Figure 2: Solar energy harvested throughout a day.

end of the k'™ epoch using the formulas below:
Iy = Min{I"" + Pl'. § — B, T™*"}
Tx = Min{Ty_1 + P - S — Ef,T7"}

I ig the initial energy level. ™4 is the energy capacity.
Recall that P} is the harvested power, S is the epoch length,
and Ej is the energy consumed in epoch k (Eq. (2)). T'k—1
is the ending energy level in the previous epoch k — 1, which
is also the starting energy level in epoch k. P - S gives the
energy harvested in epoch k.

In Fig. 2, we show the solar energy trace, along with
the energy budget assignments derived by SEN and MUB
schemes. As seen from the figure, the amount of solar en-
ergy reaches its peak in the afternoon due to high sunlight
intensity. The line representing the energy budget assign-
ment derived by SEN overlaps the line representing the solar
energy in noon and afternoon. This is because SEN assigns
the amount of harvested energy as the energy budget for any
epochs, except for the evening epochs in which the harvested
energy is less than 5J. Finally, MUB assigns the highest uni-
form budget (around 11J) for any epochs.

6.2 Network utility

In Fig. 3 and 4, we compare the utility accrued by MAX-
UTILITY and RRA algorithm. We show the results for the
100-node network. In each figure we plot the utility values
in all 96 epochs, for all three utility functions. In each figure,
we plot six utility lines, one for each combination of the three
utility functions and two rate allocation algorithms.

Fig. 3 assumes SEN energy budgeting scheme. Since SEN
scheme assigns the harvested energy as the energy budget,
we observe that the variations in accrued utility indicate
similar pattern as the harvested energy (Fig. 2). Specif-
ically the utility reaches its peak in the afternoon since
high solar energy availability leads to high rate capacity
CAPACITY; at any nodes. For any utility functions, MAX-
UTILITY (OPT) achieves significantly higher utility than
RRA. Specifically for SQR, the utility value increases above
500 in the afternoon if MAX-UTILITY is used. However, if
RRA is used, the utility accrued never increases above 300.
For the rest of the day, MAX-UTILITY achieves utility fig-
ures that are mostly above 200, while RRA achieves utility
figures that are around 100.

In Fig. 4, we repeat the simulation for MUB energy bud-
geting. Because the MUB scheme is used, the energy budget
B is uniform across different epochs, thus yielding constant
rate capacities at nodes and much more stable utility per-
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Figure 3: Utility accrued by max-utility (opt) and rra,
with different utility functions, SEN budgeting.
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Figure 4: Utility accrued by max-utility (opt) and rra,
with different utility functions, MUB budgeting.

formance in all six lines. Again, MAX-UTILITY achieves
much higher utility than RRA. For SQR, the utilities ac-
crued by MAX-UTILITY remain around 350 throughout
the day, while the one for RRA remains around 150. As
seen from Fig. 3 and 4, we observe that the MUB scheme
maintains stable and high utility at any time and is hence
suitable for the applications which desire utility stabiliza-
tion. On the other hand, SEN energy allocation achieves
very high utility when harvesting ability is high and is suit-
able for the applications where maximum utility is sought.

6.3 Rate assignment and energy storage level

In this section, we show the resulting rate assignment and
energy storage levels of the two algorithms. First, we plot
in Fig. 5 the distribution of rates of all the nodes in the 100
nodes network at midnight, while using the SEN scheme and
the CPST utility function. From the figure, we observe that
MAX-UTILITY tends to distribute rates more evenly across
nodes than RRA. The rate assignment by MAX-UTILITY
has standard deviation of 0.1268, while for RRA the devia-
tion equals 0.1936. In Fig. 6(a-b) we plot the energy levels
of a heavily-loaded node and a lightly-loaded node in 96
epochs. The heavily-loaded node is high in the tree, thus
has higher workload and energy demand and lower energy
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Figure 5: Distribution of rate (times/seconds) of all the
nodes at midnight by (a) MAX-UTILITY; (b) RRA.
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Figure 6: Variation of Energy levels over 96 epochs of
(a) a lightly-loaded node; (b) a heavily-loaded node.

level. As seen from the figure, the energy neutral condition
is maintained for both nodes at all times.
6.4 The impact of network size

Now we study the impact of network size on performance
and overhead of MAX-UTILITY. In Fig. 7, we increase
the size of the network from 25 nodes to 225 nodes, and
plot the utility accrued by MAX-UTILITY. This simulation
assumes SEN energy budgeting and LOG utility. We ob-
serve from the plot that the utility grows steadily as the
network grows from 25 nodes to 169 nodes. As computed,
the average utility is 78.10 for 25 nodes network, 109.34 for
36-nodes network, 142.84 for 64-nodes network, 203.79 for
100-nodes network, 396.54 for 169-nodes network, respec-
tively. However, as the network size increases to 225, the
utility increases to only 403.48. In other words the utility
growth almost stops. This is because that, although there
are potentially more utility contributors in the 225-nodes
network, the achievable utility is constrained by the nodes
that are close to the tree root, since the rate capacity of
these nodes does not change with the network size. System
designers must be aware of this phenomenon while choosing
the network size and routing patterns.

We measure the actual running time of MAX-UTILITY in
terms of the number of iterations shown in Table 2. Again,
we assume 6 network sizes. As seen from the table, the
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Figure 7: Total utility accrued by MAX-UTILITY in
networks of different size

number of iterations does not increase with the network
size. On the contrary, we observe that the 25-node net-
work requires the largest number of iterations, 9.97, while
the 64-nodes network requires the smallest number of iter-
ations, 6.99. Based on the tree structure we observe that
the number of iterations depends heavily on the number of
children the tree root has. As mentioned in 5.2, the children
of the root have large group of descendent nodes, hence are
more likely to be picked as the critical node V,,. Once they
become V,,, all their descendent nodes are added to the set
ASSIGNED_SET in one iteration. This leads to the rapid
growth of ASSIGNED_SET.

Finally, we count the average number of control packets
sent by a node in each invocation of the distributed MAX-
UTILITY to be 27.32 in 100-nodes network. If the node
operates at rate r; = 1 packet per second then 900 data
packets will be sent in an epoch. The packet overhead is then
27.32/900 =~ 3%. This indicates that the MAX-UTILITY-D
is an entirely feasible alternative to MAX-UTILITY.

Num. of nodes 25 36 64 100 | 169 | 225

Num. of iterations | 9.97 | 7.99 | 6.99 | 7.99 | 8.99 | 8.99

Table 2: The number of iterations of MAX-UTILITY
as a function of network size

7. CONCLUSIONS

This paper addressed a utility maximization problem for
energy harvesting sensor networks. Utility is defined as con-
cave and non-decreasing function of nodes sensing rate. We
proposed MAX-UTILITY, a rate allocation algorithm to
maximize the total utility achieved jointly by all the nodes,
while ensuring energy neutrality for any nodes. We formally
proved the optimality of the algorithm, and indicated that
the algorithm can derive optimal rate assignment in O(N?)
time where N is the network size. Finally, extensive simula-
tion results demonstrate its superior performance.
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APPENDIX

Proof of Lemma 1:

For the purpose of contradiction, we assume that, in R*[],
nodes in unassigned[u] are assigned unequal rates {u1,...,
munassigned[u“}. However, as shown by Proposition 1 if
this assumption holds we can always further increase U ">
by equalizing {1, ..., ljunassignea[u]]} tO & common rate

s, 1 M1t Flunassigned]u]]
R [u}i \unassignedt[?u]\
ity of R*[]. Therefore, equal rate assignment to nodes in
unassigned[u] is a necessary condition for the optimality of
R*[].
We still need to show such rate equalization does not vi-
olate the min-rate and capacity constraints (Eq. (10-11)).
This is justified as follow. First, the min-rate constraint is
not violated, because the new common rate R*[u] must be
larger than the minimum of {y1, ..., tjunassignedfu]| }>, Which

is in turn larger than ™" (due to the feasibility of R*[]).
The rate capacity constraint is also satisfied. This is be-
cause V, is the critical node with the least common rate
r. among any nodes in the tree. Thus, rc[u] cannot be
larger than 7.[i] of any node V; in unassigned[u]. Fur-
ther, R*[u] < r.[u] must hold, since if R*[u] > r.[u] we
have R*[u] - |[unassigned(u]| > rc[u] - lunassigned[u]|, which
gives pi1 + . .. 4 fjunassignedfu)| > CAP[u]. This implies that
R*[] violates the capacity constraint which contradicts the
feasibility of R*[]. Since R*[u] < rc[u], and rc[u] < rc[i],
VV; € unassigned[u] we know the common rate R*[u] can-
not be larger than the maximally allowed common rate r.[i]
of any node V; in unassigned[u], hence cannot violate the
capacity constraint at these nodes. Finally, the capacity vi-
olation cannot happen to any nodes outside unassigned|u]
since the total packet flow at V,, does not change after the
rate equalization. Therefore, we have proved that in R*[],
any nodes in unassigned[u] must use a common rate.

Proof of Lemma 2:

In Lemma 1, we have shown that in R*[] all nodes in
unassigned[u] must be assigned a common rate R*[u], where
V. is the critical node in the tree. Now we show that this
common rate R*[u] must be equal to r.[u] in order for R*|]

___CAP[W] __ Notice
|lunassigned[u]| *

that nodes in unassigned[u] cannot be assigned a common
rate R*[u] that is higher than r.[u] as this will exceed V,,’s
capacity, so R*[u] > rc[u] cannot hold. Therefore we assume
R*[u] < rc[u]. We show this assumption cannot hold either,
and thereby R*[u] = r.[u] must hold.

If R*[u] < rc[u] holds, we assert that the rate capacity of
V4 is not fully utilized. This is because R*[u] < r.[u] means

. This contradicts the optimal-

to be optimal. Recall that r.[u] =

R™[u] - lunassigned|u]| < rclu] - |lunassigned|u]| = C AP|u]

Since the left-hand side of the above inequality gives the
total packet rate at V,, if R*[u] is assigned to every nodes in
unassigned[u], this inequality implies V,,’s capacity C AP][i]
is under-utilized.

Given that V,’s capacity is under-utilized, we make an-
other assertion that there exists a node Vi, an ancestor of
Vi, that must have its rate capacity fully utilized. This is
because if all the ancestors of V,, are also under-utilized,
then we can further increase U°** by increasing R*[u] by
an amount of €/|unassigned[u]|, where € > 0 is the strictly
positive, minimum un-utilized capacity among any ancestors
of V4. This contradicts the optimality of R*[]. If there are
multiple such Vi nodes, we consider the one that is in the
lowest level of the tree.

Given the existence of Vi, we assert that in R*[] there
must exist a node V; € 7, and V; € unassigned[u] which
has rate R*[j] > R"[u]. (Recall that 7y is the subtree rooted
at V4.) This is because if no node in 74 has rate higher
than R*[u], then the total packet rate at V must be strictly
smaller than R*[u] - |7%| (|7%| is the number of nodes in 7% ),
and in turn no larger than r.[k] - |7| = CAP[k], i.e. Vi’s
capacity. R*[u]|1| < rc[k]-|7%| holds because R*[u] < rc[u]
is assumed, and r.[u] < r.[k] since V,, has the least r. among
any nodes in the tree. This implies the capacity of Vi is
under-utilized which contradicts our previous assertion that
Vi is fully utilized. Thus we justify the existence of such Vj.

Next, given R*[j] > R*[u], we know that the marginal
utility of the concave utility function U at point R*[j] is
lower than that at R*[u]. Therefore we can further increase

Ut** by decreasing R*[j] by a strictly positive amount ¢,
and increasing R*[u] for each node in unassigned[u] by the
Tamassignedray)> 8 long as R*[j] > R*[u] holds. In
other words, we can always increase U'°"* by reducing the
difference between R*[j] and R*[u]. This rate adjustment

cannot violate the min-rate constraint as R*[u] > ™. The
capacity constraint is also not violated, as the decrease of
R*[j] does not increase the total packet rate at any nodes.

amount of

by lunass:m will not exceed the

The increase of R*[u]
capacities of any V,’s ancestors inside 7k, as long as € is
no larger than the minimum unused capacity of any ances-
tors of V,, in 7. This is because Vj is the lowest ancestor
of V,, whose capacity is fully utilized, hence any ancestors
of V., inside 71 (i.e. below Vi) must have positive unused
capacity. Further, the total packet rate at any V,’s ances-
tors outside 7, does not change after the rate adjustment,
so their capacity constraints cannot be violated either.

Therefore, the feasible increase of U'** contradicts the
optimality of R*[], hence justifying that R*[u] < r.[u] cannot
hold, and R*[u] = rc[u] must hold in order for R*[] to be
optimal. Therefore we have proved Lemma 2.

Specification of the RRA algorithm

The RRA algorithm initially allocates 7™ to every node,
and updates the remaining capacity of nodes accordingly. If
this violates the capacity constraints at some nodes, then
we know there exists no feasible assignments for the given
network. Otherwise, we start from that assignment and pro-
gressively improve U'" by augmenting the rates of nodes
with unused capacity. Specifically, based on the initial as-
signment, RRA randomly selects a node V; with positive
remaining capacity, and determines the maximum possible
rate increment which V; and its ancestors can afford. Then
RRA adds up this increment to V;’s current rate, and ze-
ros out its remaining capacity. RRA updates the remaining
capacity of other nodes accordingly. This is the end of one
round of augmentation. We then continue augmenting other
nodes until no node has remaining capacity. The resulting
rates of nodes is the final utility achieved by RRA.



