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ABSTRACT
There is currently tremendous interest in deploying energy-
harvesting wireless sensor networks. Engineering such sys-
tems requires striking a careful balance between sensing per-
formance and energy management. Our work addresses this
problem through the design and analysis of a harvesting-
aware utility-based sensing rate allocation algorithm. Based
on a network utility formulation, we show that our algorithm
is optimal in terms of assigning rates to individual nodes to
maximize overall utility, while ensuring energy-neutral op-
eration. To our knowledge, our work is the first optimal
solution that maximizes network utility through rate assign-
ments for tree-structured energy harvesting sensor networks.
Our algorithm is fast and efficient with running time O(N3),
where N is the number of nodes. We evaluate the perfor-
mance, scalability, and overhead of our algorithm for various
utility functions and network sizes, underlining its significant
advantages.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed
networks; C.2.2 [Network Protocols]: [Applications]

General Terms
Algorithms, Performance, Experimentation

Keywords
Sensor networks, Energy harvesting, Rate allocation

1. INTRODUCTION
The rapid introduction of new software and hardware func-

tionalities has stimulated the development of complex wire-
less sensor network (WSN) applications. For this new gen-
eration of WSN applications, maximizing the value or utility
of sensed data, as perceived by end-users, is of paramount
importance. For most WSN systems, a major constraint to
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utility maximization is the limited energy availability of sen-
sor nodes. One solution to this problem is to devise energy
harvesting techniques to power sensor nodes at run-time [2,
4, 5]. Since the availability of environmental energy sources
is often limited and highly time-varying, the goal of simple
utility maximization is constrained by the need for manag-
ing unpredictable energy supplies. Our work addresses this
problem by designing and analyzing a WSN-specific, energy-
harvesting aware utility maximization algorithm.

Much previous work in this area assumes that applica-
tion utility increases linearly with the rate at which sensor
nodes sense or collect data [1, 11, 12, 13]; therefore the max-
imization of the network-wide data collection rate leads to
utility maximization. However, for many WSN applications
increasing the level of sensed data reporting only increases
the utility of the application in sub-linear fashion. Consider,
for instance, video or motion sampling as part of an intrusion
detection system. Since humans can only move at a certain
speed, sampling above a specific threshold only marginally
increases the utility of the application. For this reason, our
work models utility as a non-decreasing concave function,
such that its rate of increase (marginal utility) decreases as
the sensing and reporting rate increases [6, 21, 22]. The util-
ity perceived by application end-user is the aggregate utility
achieved jointly by all the nodes in the network.

With energy harvesting equipment such as solar panels
or wind generators, sensor nodes harvest power from envi-
ronmental sources and potentially sustain their operation
perpetually. In [5], the concept of perpetual operation is
formally stated as the energy neutral condition. This means
that sensor nodes must always maintain positive energy stor-
age levels to avoid energy depletion and hence operation in-
terruption. A further complexity arises in multi-hop WSNs,
where nodes must forward data received from other nodes
in addition to their locally generated data. Given limited
energy supplies, control algorithms must balance the local
and external sensing and communication rates. Favoring lo-
cal rates over external rates may result in high local utility,
but low network-wide utility, since the rates of other nodes
are throttled by the high local rate.

To solve the above issues we propose MAX-UTILITY, an
epoch-based rate allocation algorithm. MAX-UTILITY is
designed to maximize total application utility, while regu-
lating nodes energy consumption resulted from sensing and
reporting activities to guarantee energy neutral operation
for every node. In our work, ’rate’ is equated with packet
rate, which is directly tied to sensing rate. An epoch is a
time interval during which the amount of power harvested



remains relatively stable and is reasonably predictable. The
length of an epoch may range from several minutes to a
couple of hours, depending on the energy source type. Our
approach exploits the concavity of the utility function, and
a special property of tree-based networks to allocate rates to
nodes as evenly as possible for achieving utility maximiza-
tion, while maintaining the minimum sensing rate required
by the application and the available energy and data for-
warding capacity of the nodes.
We formally prove the optimality of MAX-UTILITY in

the sense of utility maximization. For a system with N
nodes, our algorithm has a time complexity of O(N3). We
also develop a distributed version of this algorithm for use
in systems without central control points. To the best of
our knowledge, this is the first optimal solution to maximize
general network utility through rate assignments to individ-
ual nodes in tree-structured sensor networks, while guaran-
teeing energy neutrality. A limitation of our approach is
that it applies only to tree-based WSNs. However, since
trees are a common logical routing structure for WSN sys-
tems [1, 3, 8], we believe our algorithm is widely applicable.
While the related studies in [6, 21] target general multi-
hop networks and offer innovative solutions, in general, they
do not guarantee optimality. Finally, using solar harvest-
ing traces obtained over a year-long study in [17], we have
evaluated MAX-UTILITY against an alternative algorithm,
under a variety of experiment settings. Our results show
that MAX-UTILITY delivers superior utility improvement
while ensuring energy neutral operation for all the nodes.

2. BACKGROUND AND RELATED WORK
Rate allocation for wireless sensor networks has been ex-

plored in [1, 6, 12, 13, 22]. In [1], the authors propose to
maximize lexicographic rate assignments to sensor nodes.
The rate assignment problem is formulated as linear opti-
mization problem, and solved optimally by centralized and
distributed algorithms. [12] proposes a rate control approach
for a single energy harvesting node to achieve a series of ob-
jectives including the maximization of average sensing rate
over time. These objectives are formulated as optimization
problems and solved using multi-parametric control algo-
rithms. [13, 14] propose a flow control algorithm for energy
harvesting WSNs. [14] proposes an energy budgeting al-
gorithm that defines the amount of energy a node can use
for each epoch. The derived energy budget assignment is
optimal in the sense that the variance of energy assigned
across epochs is minimized. Using this formulation the flow
control algorithm in [13] maximizes the amount of data col-
lected over the network, given that no node consumes more
energy than the assigned budget.
An implicit assumption in [1, 12, 13] is that the system

utility increases linearly with the rate of nodes. However,
for many applications the increase of utility slows down as
rate increases (the diminishing returns principle). Using this
observation, [6, 21, 22] model system utility as a concave
and non-decreasing function of rate, and propose primal-
dual based algorithms to maximize utility over the entire
network. Among these works, [6] is the most related one to
ours that target utility maximization for energy harvesting
WSNs. However, [6, 21, 22] all assume specific utility func-
tions that are continuously differentiable, which may limit
their application for a more general class of functions. More-
over, their proposed solutions are not optimal, and can incur

high control overhead and unpredictable running time, thus
potentially limiting their practical implementation within
resource-constrained WSN systems.

Research presented in [7, 15] formulate the Network Util-
ity Maximization (NUM) problem for Internet congestion
control. Primal-dual based algorithms are proposed to solve
the problem. The issue we target shares the same structure
with the NUM problem, but is for a WSN environment. The
utility maximization problem has been also extensively stud-
ied for real-time embedded systems. [18] addresses utility
maximization for energy-constrained systems that execute
periodic real time tasks. The objective is to maximize the
total utility obtained from execution of these tasks, while
satisfying the deadlines of all the tasks, the tight system
energy budget and the minimum system performance re-
quirement. In [19], the authors extend the approach in [18]
for solar-powered embedded systems. However, [19] only
considers two different epochs in each day. [9, 10] address
a similar problem as [19] but with a more complex system
model. They assume a highly dynamic energy harvesting
model, and assume that WSN applications have multiple
discrete service and performance levels, and each has dif-
ferent utility values and energy demands. The problem is
then to decide when to select which service level to run in
order to maximize the total utility, without over-using the
available energy. Finally, in [23], we propose energy man-
agement approach for maximizing the energy storage level
of nodes in energy harvesting WSNs. The approach utilizes
two energy saving techniques, dynamic voltage scaling and
dynamic modulation scaling.

3. SYSTEM ARCHITECTURE

3.1 Environmental energy harvesting model
We assume each sensor node consists of an energy har-

vester head, and several energy consuming hardware units,
including a CPU, a wireless transceiver, and required sensor
suites. The harvester head is energy source-specific, such as
a solar panel or wind generator. The energy storage unit,
such as a rechargeable battery or super-capacitor, has a max-
imum energy capacity of Γmax joules. This unit receives
power from the energy harvester, and delivers power to the
sensor node. We take the commonly used approach that the
amount of harvested power is uncontrollable, but reason-
ably predictable, based on the source type and harvesting
history [5, 6, 12]. To capture the time-varying nature of
environmental energy, time is divided into epochs of length
S. Harvested power is modeled as an epoch-varying func-
tion denoted by Ph

k , where k is the epoch number. Ph
k re-

mains within each epoch k, but changes for different epochs.
The time unit used for harvesting prediction is therefore one
epoch. The prediction horizon, H is an interval containing
a number of epochs during which harvesting predictions can
be reasonably made. The length of H may vary depending
on the type of environmental sources and prediction tech-
niques used. Our approach does not depend on the length
of H, and requires harvesting prediction for only the coming
epoch.

3.2 Network and application model
We consider general WSN applications that periodically

collect data from N sensor nodes populated over the target
environment. The nodes are organized into a data collec-



tion tree using any tree construction protocol, such as the
Collection Tree Protocol (CTP) [3]. A sensor node is de-
noted as Vi, and the base station is denoted as BS. Within
a tree-based routing structure, at any time each node Vi is
connected to BS by a single path ρi consisting of zero or
more intermediate nodes. We use the notation Vi ∈ ρj to
indicate that Vi resides on a given path ρj .
A node Vi senses the environment and sends the resulting

data in packets towards BS along the path ρi, at rate ri.
These packets are referred as internal packets. Each node Vi

may also forward external packets at a certain rate. These
are received from the set of descendant nodes {Vj}, where Vi

resides on Vj ’s path to BS, i.e. Vi ∈ ρj . Therefore the total
outbound traffic at Vi equals ri+

∑
j:Vi∈ρj

rj . We refer to ri

as Vi’s internal packet rate, and
∑

j:Vi∈ρj
rj as its external

packet rate.
Sensor nodes produce utility by sensing and reporting data

to BS. Therefore we define the utility accrued by any node
Vi as a function of its packet rate ri, U(ri). U is a positive,
non-decreasing and concave function. Then we define the
aggregate utility U tot accrued jointly by all N nodes in the
network as:

U tot =

N∑
i=1

U(ri) (1)

Our energy model assumes, without loss of generality, that
sensing and processing energy costs are fixed, relatively neg-
ligible and can be ignored. We therefore consider the radio
transceiver as the main sink for energy consumption. Packet
routing results in two types of energy consuming activities,
packet transmission and reception. We denote the energy
spent on transmitting an internal or external packet as etx,
where etx can be measured in advance. Packet reception also
consumes energy. Our architecture assumes that reception
energy is controlled by the MAC layer, using techniques such
as TDMA or duty-cycled LPL approaches such as B-MAC
[16]. Therefore we model per-epoch reception energy as a
constant Erx which is dependent on the epoch length. We
can calculate, at each node Vi, the total energy consumed
Ec

i by handling internal and external packets in an epoch of
length S as:

Ec
i = etx · (ri +

∑
j:Vi∈ρj

rj) · S + Erx (2)

We also assume that each node Vi has a pre-assigned per-
epoch energy budget Bi. Such energy budgets can be pro-
duced by algorithms such as [9, 13, 14], based on the pre-
dictions of harvested energy for any of the epochs in the
horizon. Further, related work such as [5, 6] require that a
sensor node can consume no more than the amount of energy
harvested in any epoch. For these models a node’s allocated
energy budget in any epoch is set to the amount of energy
it can harvest. Any of these energy budgeting algorithms
guarantees the energy-neutral operation across all epochs.

4. THE MAXIMAL UTILITY RATE ALLO-
CATION PROBLEM

In this section, we define our rate allocation problem for
energy harvesting WSN systems. Our objective is to max-
imize the network utility U tot (Eq. (1)), given the limited
energy harvesting ability of nodes. We achieve this goal by

adjusting packet rate ri. Since the harvested power changes
from epoch to epoch, the rates of nodes need to be re-
adjusted in every epoch. We formulate this objective as an
optimization problem called Network Utility Maximization
with Energy Harvesting (NUM-EH ) as:

Max U tot (3)

s.t. ∀Vi,

Ec
i ≤ Bi (4)

ri ≥ rmin (5)

ri +
∑

j:Vi∈ρj

rj ≤ Rcap
i (6)

The optimal solution to the above problem consists of the
rates for all N nodes, i.e. {r1, . . . , rN} that maximizes U tot.
The constraint (4) enforces that the energy consumption Ec

i

of any node Vi must be smaller than the assigned energy
budget Bi in an epoch. The constraint (5) enforces that
the rate of any node must be higher than the minimum
required value rmin, in order to maintain the basic service
level at individual nodes. Finally, to avoid packet congestion
the total packet rate at any Vi, i.e. ri +

∑
j:Vi∈ρj

rj must

be smaller than Vi’s packet forwarding capacity denoted by
Rcap

i .
We observe that NUM-EH is a concave maximization

problem with three linear constraints. This is seen from
Eq. (2), where Ec

i is a linear function of ri and the set of
external rates {rj}. We notice that this problem is a spe-
cial case of the well-known network utilization maximization
problem [6, 7, 15] which can be solved using primal-dual
based algorithms. However, such algorithms are typically
too computationally expensive for resource-constrained sen-
sor nodes. We instead propose a polynomial-time algorithm
to solve the problem optimally and cost-effectively.

5. RATE ALLOCATION ALGORITHM
In this section, we propose the algorithm MAX-UTILITY

that optimally solves problem NUM-EH. MAX-UTILITY
is applicable to arbitrary utility functions that are concave
and non-decreasing. We first propose a centralized version
of this algorithm that can be run on a base station. We
then show how to implement MAX-UTILITY in a fully dis-
tributed fashion so resource-constrained sensor nodes can
collaboratively produce optimal rate assignments.

First, we show that the constraint (4) and (6) can be com-
bined into one single constraint as follows. Substituting the
equality (2) into constraint (4) gives:

Ec
i = etx · (ri +

∑
j:Vi∈ρj

rj) · S + Erx ≤ Bi (7)

yielding:

ri +
∑

j:Vi∈ρj

rj ≤ Bi − Erx

etx · S (8)

The right-hand side of the above inequality, Bi−Erx

etx·S , is

a constant as Bi, E
rx, etx and S are all known constants.

This can be combined with constraint (6) into one single
constraint, ri +

∑
j:Vi∈ρj

rj ≤ CAPACITYi where:

CAPACITYi = Min

{
Rcap

i ,
Bi − Erx

etx · S

}
(9)



We refer to CAPACITYi as the rate capacity of node Vi.
We can re-write problem NUM-EH concisely as:

Max U tot =

N∑
i=1

U(ri)

s.t. ∀Vi, ri ≥ rmin (10)

∀Vi, ri +
∑

j:Vi∈ρj

rj ≤ CAPACITYi (11)

We refer to constraint (10) as the min-rate constraint, and
constraint (11) as the capacity constraint.

5.1 The centralized version
Now we present the centralized version of algorithmMAX-

UTILITY. Before the algorithm starts, BS collects two pieces
of information from each node. The first is the rate capacity
CAPACITYi, computed locally by each node using Eq. (9).
The second is the node id of parent of each node, and the BS
uses the parenthood relation of nodes to derive the structure
of the existing data collection tree. MAX-UTILITY allo-
cates rates as evenly as possible to nodes, while also satis-
fying constraints (10-11). Given an arbitrary concave, non-
decreasing functions U , this will maximize network utility
U tot. This property is formally given later in Proposition
1. MAX-UTILITY runs in multiple iterations, and assigns
rates to a subset of nodes in each iteration. The iteration
ends when rates are assigned to all N nodes.

CAP [i] The remaining rate capacity of node
Vi

unassigned[i] The set of unassigned nodes in Vi’s
subtree τi

|unassigned[i]| The size of unassigned[i]
ASSIGNED SET The set of assigned nodes

R̃[] The rate assignment derived by
MAX-UTILITY

rc[i] The maximum common rate for
nodes in unassigned[i]

Vu The node with the least rc[i] among
all the unassigned nodes

Table 1: List of notations

The algorithm has two lists of inputs and one output. The
first input list contains N rate capacities CAPACITYi, one
for each node Vi. The second list contains N vectors, one for
each Vi. Denote the subtree rooted at node Vi by τi. The
vector of each Vi contains all the nodes in the subtree τi
rooted at Vi. This vector is derived based on the previously
discovered tree structure. For notational simplicity we re-use
τi to represent this vector. The output is the rate assignment
vector derived by MAX-UTILITY, denoted by R̃[].
MAX-UTILITY uses one global variable and three per-

node variables that are updated from iteration to iteration.
The global variable ASSIGNED SET is a set containing
all the nodes in the network that have been assigned rates so
far. As will be seen later, in each iteration MAX-UTILITY
adds at least one node to ASSIGNED SET . The algo-
rithm terminates when all N nodes are inASSIGNED SET .
Next we declare three per-node variables. First, CAP [i] is
the remaining capacity of node Vi, initialized to CAPACITYi.
Second, unassigned[i] is a subset of τi containing any nodes

in τi that have not yet been assigned rates. unassigned[i]
includes Vi itself, and is initialized to τi. Finally, rc[i] is the
maximum common rate for nodes in unassigned[i]. Table
1 summarizes these notations. This construction is illus-
trated in Fig. 1. In the 1st iteration, when none of nodes in
subtree τ7 rooted at V7 have been assigned, unassigned[7]
contains all four nodes in τ7, {V1, V2, V6, V7}. The last vari-
able rc[i] is the maximum common rate that can be assigned
to the nodes in unassigned[i]. rc[i] is computed by divid-
ing Vi’s remaining rate capacity CAP [i] by |unassigned[i]|
which is the number of nodes in unassigned[i], i.e. rc[i] =

CAP [i]
|unassigned[i]| . For example, in the 1st iteration, rc[7] =
CAPACITY7
|unassigned[7]| =

16
4

= 4.

Algorithm 1 MAX-UTILITY

1: - Input: {CAPACITYi} and {τi}; Output: R̃[]
2: - Initialization: ASSIGNED SET = ∅,

∀Vi, CAP [i] = CAPACITYi, unassigned[i] = τi
3: for each node Vi in the network do
4: If CAP [i] < rmin · |unassigned[i]|, then return ∅
5: end for
6: while |ASSIGNED SET | < N do
7: for any node Vi ̸∈ ASSIGNED SET do
8: rc[i] = CAP [i]/|unassigned[i]|
9: end for
10: Find out Vu which has the least rc[i] among any Vi ̸∈

ASSIGNED SET
11: for any node Vi ∈ unassigned[u] do

12: Set R̃[i] = rc[u], and add Vi to ASSIGNED SET

13: end for
14: for any node Vi ̸∈ ASSIGNED SET do
15: if Vu ∈ unassigned[i], i.e. Vi is Vu’s ancestor then
16: CAP [i] = CAP [i]− rc[u] · |unassigned[u]|
17: end if
18: if Vu ∈ unassigned[i] then
19: for any node Vj ∈ unassigned[u] do
20: Remove Vj from unassigned[i].
21: end for
22: end if
23: end for
24: end while
25: return R̃[].

MAX-UTILITY, shown in Algorithm 1, is specified as fol-
lows. Line 2 initializes ASSIGNED SET to ∅, CAP [i] to
CAPACITYi, and unassigned[i] to τi. In lines 3-5, for any
node Vi we check whether it has sufficient capacity to sus-
tain the minimum required rate rmin for all the nodes in its
subtree τi. If there exists a node with insufficient capacity,
then we know there is no feasible rate assignment that can
satisfy the min-rate constraint and capacity constraint (at
Vi) at the same time. At this point MAX-UTILITY termi-

nates immediately with empty R̃[]. Line 6 starts the rate
assignment loop which will terminate when all N nodes are
assigned. In lines 7-9, for any node Vi ̸∈ ASSIGNED SET ,
we compute the maximum common rate rc[i] that can be as-
signed to the nodes in unassigned[i] (line 8). In line 10, we
find the node Vu which has the least rc[i] among any Vi ̸∈
ASSIGNED SET . Then for any nodes in unassigned[u],
MAX-UTILITY assigns rc[u] to them and adds them to
ASSIGNED SET (line 11-13).
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Figure 1: Example Data Collection Tree

Next, lines 14-23 update CAP [i], and unassigned[i] for
any nodes without an assigned rate. Specifically, since any
node Vi where Vu ∈ unassigned[i] are ancestors of Vu and
need to forward packets received from the nodes in
unassigned[u], we need to subtract rc[u] · |unassigned[u]|
(i.e. the total traffic that Vi received from Vu) from their
CAP [i] values (line 15-17). For any other nodes that are
not ancestors of Vu, their CAP [i] values remain the same.
Moreover, any nodes Vj ∈ unassign[u] with newly assigned
rates must be removed from the unassigned[i] sets of any
node Vi that is an ancestors of Vu, i.e. Vu ∈ unassigned[i]
(line 18-22). The rate assignment process from line 7 to 23
continues until all N nodes are assigned.
As can be seen, in each iteration, MAX-UTILITY picks a

Vu which has the least common rate rc[i] among any unas-
signed node Vi, and assigns rc[u] uniformly to any nodes
in unassigned[u], then produces a pruned tree by remov-
ing any newly assigned nodes. We refer to the node with
the least common rate rc[i] among any nodes in a tree (or
pruned tree) as the critical node of the tree. Note that in
any iteration, the selected Vu is the critical node in the tree
(pruned tree). The concept of critical node plays an impor-
tant role in our optimality proof.
Steps of MAX-UTILITY are illustrated through an exam-

ple. In Fig. 1, before the 1st iteration starts, rc[6] =
7
2
= 3.5,

rc[7] =
16
4

= 4, rc[8] =
10
3
, rc[9] =

13
2

= 6.5. Line 10 picks

V8 as Vu, and line 12 assigns R̃[3] = R̃[4] = R̃[8] = 10
3
,

and adds V3, V4, V8 to ASSIGNED SET . Since this as-
signment does not affect any other nodes, lines 14-23 are
not executed. In the 2nd iteration, V6 is picked as Vu, so
MAX-UTILITY assigns R̃[1] = R̃[6] = 3.5, and updates
CAP [7] = 16− 7 = 9, and unassigned[7] = {V2, V7}. V1, V6

are added to ASSIGNED SET . In the 3rd iteration, V7

is picked as Vu as rc[7] = 9/2 = 4.5 < rc[9] = 6.5. MAX-

UTILITY assigns R̃[2] = R̃[7] = 4.5, marks V2, V7 assigned
and makes no update. In the 4th iteration, V9 is picked as
Vu, MAX-UTILITY assigns R̃[5] = R̃[9] = 6.5, and adds
V5, V9 to ASSIGNED SET . Since all the nodes are now in
ASSIGNED SET , the algorithm terminates and returns
R̃[] = {3.5, 4.5, 10/3, 10/3, 6.5, 3.5, 4.5, 10/3, 6.5}.

5.2 Optimality of algorithm MAX-UTILITY
In Eq. (1), the network utility U tot is defined as the ag-

gregate utility accrued jointly by all the nodes,
∑N

i=1 U(ri).
Since U(ri) is concave, U

tot can be maximized by assigning

packet rates to nodes as evenly as possible, while satisfying
the min-rate, and capacity constraints at any nodes. This
observation is supported by the following proposition, which
can be proved based on the properties of concave functions:

Proposition 1. Given n non-negative real numbers
{r1, . . . , rn} where

∑n
i=1 ri ≤ W (W is any non-negative

constant),
∑n

i=1 U(ri) (U is a concave, non-decreasing func-
tion of r) is maximized when r1 = r2 = . . . = rn = W/n.

Now we prove that the rate assignment R̃[] derived by
Algorithm MAX-UTILITY maximizes U tot, while satisfying
constraints (10-11). For the sake of contradiction, we assume

that R̃[] is not optimal, and that there exists an optimal

assignment R∗[] which differs from R̃[]. The network utility
resulting from R∗[] is denoted by U tot,∗. We will show that

R∗[] ̸= R̃[] contradicts the optimality of R∗[], hence proving

that R∗[i] = R̃[i] must hold for every node Vi in the network.
We first propose Lemma 1, which is proved in the Appendix.

Lemma 1. Given an arbitrary tree-based network, the op-
timal rate assignment R∗[] must assign equal rates to all
nodes in unassigned[u], where Vu is the critical node of the
tree.

Lemma 1 implies that R∗[] must assign a common rate
denoted as R∗[u] to all the nodes in unassigned[u]. We now
present Lemma 2, which shows that R∗[u] must be equal to
rc[u], i.e. the maximum common rate that can be assigned
to nodes in unassigned[u].

Lemma 2. Given an arbitrary tree-based network where
Vu is the critical node in the tree, the optimal rate assign-
ment R∗[] must assign a common rate rc[u] to any nodes
in unassigned[u], regardless of the rates assigned to other
nodes in the tree.

The proof of Lemma 2 can be found in the Appendix.
Since ∀Vi ∈ unassigned[u], R̃[i] = rc[u] holds (line 12),

Lemma 2 implies that ∀Vi ∈ unassigned[u], R∗[i] = R̃[i]

must hold. In other words R̃[] derived by MAX-UTILITY
is optimal for any nodes in unassigned[u], where Vu is the
critical node. Since assigning R∗[u] = rc[u] to any node
Vi ∈ unassigned[u] is optimal regardless of what rates are
assigned to the rest of nodes, we can focus on finding the
optimal rate assignment for a partial tree formed by disre-
garding any nodes in unassigned[u] (i.e. removing nodes in
unassigned[u] from unassigned[i] of any ancestors of Vu),
and setting CAP [i] = CAP [i] − rc[u] · |unassigned[u]| for
any node Vi that is an ancestor of Vu. Note that the partial
tree generated in this way contains exactly the set of nodes
remaining unassigned at the beginning of the 2nd iteration
of MAX-UTILITY. Also each node in the partial tree must
have the same CAP [i] and unassigned[i] as they have in the
2nd iteration of MAX-UTILITY. Since Lemma 2 applies to
an arbitrary tree, it holds for this partial tree as well. In

other words, R∗[] must assign a common rate rc[u
′
] to any

nodes Vi ∈ unassigned[u
′
], where Vu

′ is the critical node of
the partial tree.

Since the structure and capacity of the partial tree is the
same as the updated tree in the 2nd iteration, the critical
node Vu

′ must be exactly the Vu picked by MAX-UTILITY

in the 2nd iteration. Thus MAX-UTILITY must also as-
sign rc[u

′
] to any Vi ∈ unassigned[u

′
]. Therefore, ∀Vi ∈



unassigned[u
′
], R̃[i] = rc[u

′
] must hold. Since ∀Vi ∈

unassigned[u
′
], R∗[i] = rc[u

′
] holds as implied by Lemma 2,

we have ∀Vi ∈ unassigned[u
′
], R̃[i] = R∗[i] must hold. That

is, R̃[] is optimal for any nodes in unassigned[u
′
]. Again, we

may disregard any nodes in unassigned[u
′
] and focus on the

new partial tree formed in this way. The new partial tree
has the same structure and capacities as the updated tree in
the 3rd iteration of MAX-UTILITY. As we iteratively prune
the tree (partial tree) and apply Lemma 2 to the generated
partial trees until all the nodes are pruned except the root
BS, we have proved that the R̃[] derived by MAX-UTILITY

is completely identical to R∗[], and therefore R̃ is optimal
for the entire original tree.
Complexity analysis:
We show that forN nodes, the centralized MAX-UTILITY

runs in O(N3) time. We first focus on one iteration of the
while-loop from lines 6-24. The for-loop from lines 7 to 9 has
complexity O(N), since there are O(N) unassigned nodes
in each iteration. The selection of Vu in line 10 has com-
plexity O(N) as this is equivalent to finding the minimum
element among O(N) rc[i] values. The rate assignment to
nodes in unassigned[u] in lines 11-13 has complexity O(N)
as well, since the size of unassigned[u] is O(N). The for-
loop from lines 14 to 23 has complexity of O(N2). In each
loop, we need to update CAP [i] and unassigned[i] for O(N)
unassigned nodes Vi. Updating CAP [i] for each Vi takes
O(1) time (line 16), while updating each unassigned[i] take
O(N) time as it requires removal of O(N) nodes (lines 19-
21). Thus, the entire for-loop completes in O(N2) time as
there are O(N) nodes Vi ̸∈ ASSIGNED SET . Therefore,
each iteration of MAX-UTILITY completes in O(N2) time.
Next the number of iterations of MAX-UTILITY is given

by O(N), as the set ASSIGNED SET is initially empty
and each iteration adds at least one node to
ASSIGNED SET . Therefore, the total complexity of MAX-
UTILITY is O(N3). For practical purposes we expect that
the number of iterations will be small. This is because
the nodes that are close to the root have more descendent
nodes, hence much larger unassigned[i] than the nodes in
the lower levels of the tree. Therefore the high level nodes
usually have small rc[i] values and are more likely to be
picked as Vu. Since once these nodes are picked as Vu, all
nodes in their unassigned[i] sets are assigned and added to
ASSIGNED SET at once in one iteration, the set
ASSIGNED SET will grow rapidly and the expected num-
ber of iterations of MAX-UTILITY should be small. We will
justify this assertion through simulation analysis.

5.3 The distributed version
We now present the distributed version of MAX-UTILITY,

referred as MAX-UTILITY-D. We decompose and distribute
the computations in Algorithm 1 to every node in the net-
work. The purpose of MAX-UTILITY-D is to support sys-
tems that do not possess or make use of a single resource-rich
central control point. MAX-UTILITY-D only requires a sin-
gle coordinator node such as a routing tree root. The tree
root can be any node in the network. The root does not
perform computations but only disseminates the minimum
common rate rc[u] to all other nodes.
MAX-UTILITY-D is specified as follows. Initially, each

node individually computes its rate capacity CAPACITYi

using Eq. (9). Then MAX-UTILITY-D starts an initializa-

tion stage during which all the nodes send an empty control
packet to the root. If a node Vi receives a control packet
from another node Vj , then Vi knows Vj resides in its subtree
τi. By the end of the initialization stage, each node knows
its subtree τi, and hence the initial unassigned[i]. Using
CAPACITYi and |unassigned[i]|, Vi computes the common
rate rc[i] that can be assigned to nodes in unassigned[i].

Each iteration of MAX-UTILITY-D consists of two stages.
The first stage determines the minimum common rate rc[u]
and the critical node Vu in the tree by requiring all the nodes
forward their rc[i] values to the root. In the second stage, the
root disseminates rc[u] across the network, and all nodes in
unassign[u] receive and use rc[u] as their packet rate. In the
first stage, each leaf node in the tree Vi sends its computed
rc[i] towards the root. Vi’s parent Vj receives rc[i], compares
rc[i] to rc[j] of itself, and forwards the larger of the two up-
wards. Vj also temporarily stores any received rc[i]. This
process proceeds over the entire tree in bottom-up fashion,
and finally the root discovers the minimum common rate
rc[u] in the tree. Then in the second stage the root dissemi-
nates rc[u] across the tree. When a node receives rc[u] from
the root, it compares rc[u] to its local rc to identify whether
it is the critical node. If it is not the critical node, then it
compares rc[u] to each of the previously stored rc values of
its descendent nodes to find out who is the critical node. In
this way the critical node Vu identifies itself, and commands
all unassigned nodes in unassigned[u] to use rc[u] as their
rates for the coming epoch. This rate assignment command
can be piggybacked in the packet for disseminating rc[u].

After the dissemination of rc[u] completes, all the nodes
has learned the identity of the critical node Vu, either by
comparing rc[u] to its own or stored rc values, or from the
rate assignment command issued by Vu. Finally, we need
to update CAP [i] and unassigned[i] of the nodes remaining
unassigned. If a node Vi is an ancestor of Vu, it has to update
CAP [i] = CAP [i]− rc[u] · |unassigned[u]| and then remove
all nodes in unassigned[u] from unassigned[i]. At the end
of the iteration, each node discards the temporarily stored
information and continues to the next iteration. In the next
iteration, only the nodes remaining unassigned participate.
The rate assignment iteration continues until all the nodes
are assigned.

Complexity analysis:
In MAX-UTILITY-D, the tree root only disseminates rc[u].

Each non-root node requires O(N) comparisons in each iter-
ation. This is because each non-root node compares its own
rc to O(N) rc values received from its descendent nodes (the
1st stage), and compares rc[u] disseminated by the root to
its own rc and O(N) temporarily stored rc. Further, up-
dating CAP [i] and unassigned[i] takes O(N) time for each
node as described in the complexity analysis of centralized
MAX-UTILITY.

Now we analyze the message complexity of the algorithm.
The initialization stage requires one round of network-wide
data collection. In each iteration, the determination of rc[u]
requires all the nodes to report their rc[i] values, thus in-
curring another round of data collection. The root then
announces rc[u] to all the nodes, incurring one round of
network-wide data dissemination. In each data collection
and dissemination round, each node sends exactly one packet.
Given O(N) iterations, MAX-UTILITY-D needs O(N)
rounds of network-wide data collection and dissemination.
Finally, as mentioned in the analysis of the centralized MAX-



UTILITY, the expected number of iterations is much lower
than N in practice.

6. PERFORMANCE EVALUATION
Though we have formally proved the optimality of MAX-

UTILITY, we have conducted a series of simulation exper-
iments to evaluate its performance gain and overhead. We
compare our algorithm against an alternative heuristic, called
Random Rate Augmentation (RRA). The specification of
RRA is given in the Appendix. By design, the rate assign-
ment derived by RRA is also feasible in term of satisfying
constraint (10-11). Although RRA is not optimal, it achieves
reasonably high utility values as it maximizes total packet
rate (flow) over the tree. Other algorithms, such as the one
proposed in [6] are not directly comparable to ours, since
their application and network model are different.
We compare the two rate allocation algorithms under var-

ious experiment settings that consider different energy bud-
geting schemes, utility functions, and network sizes. With-
out loss of generality, we consider solar-powered sensor net-
works in our simulation. The solar power harvesting profile
is obtained from the Hamburg University of Technology [17].
We set the length of horizon to one day (24 hours) which is
further divided into 96 epochs each with length of 15 min-
utes. We assume two energy budgeting schemes, denoted
as Strictly Energy Neutral (SEN) and Maximum Uniform
Budget (MUB). The SEN scheme assigns the exact amount
of harvested energy as the energy budget for any epoch. For
the evening epochs with extremely low harvested energy,
SEN assigns a minimum energy budget equaling 5J to main-
tain the minimum rate rmin. The MUB scheme computes
the maximum uniform energy budget across all 96 epochs
while satisfying the min-rate and capacity constraints, and
assigns this budget to every epochs. The MUB scheme uses
the algorithm proposed in [9]. Note that the energy bud-
get varies across epochs if SEN scheme is used, while the
budget remains constant if MUB scheme is used. We are
interested in evaluating how different budgeting schemes
affect the network utility. This helps system designers in
choosing the right energy budgeting scheme for their appli-
cations. We consider three different concave utility func-
tions: log(100r + 1) (denoted as LOG),

√
100r (SQR) and

log[
√
1000r + 1] (denoted as composite utility or CPST).

We use the coefficients 100 and 1000 with r because r is
commonly small. Finally, we repeat our simulation in six
networks of different size, containing 25, 36, 64, 100, 169,
225 nodes respectively. We examine the accrued utilities,
and the algorithm overhead as the network grows.
The sensor nodes are organized into a collection tree using

the CTP protocol. The energy consumption for transmitting
a packet is randomly selected from the range (0.05− 0.1)J .
This range is obtained based on the measurements in [20].
The energy storage device has capacity of 1000J. The initial
energy level in the horizon is set to 500J. The minimum rate
rmin is set to 0.01, i.e. 1 packet per 100 seconds.

6.1 Simulation results
We evaluated algorithm MAX-UTILITY and RRA in

TOSSIM/TinyOS. We present our evaluation results along
four dimensions: accrued network utility U tot; rate (ri) dis-
tribution among nodes; energy level variation across epochs
of two selected nodes; algorithm running time and control
overhead. We calculate the energy level Γk of a node at the
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Figure 2: Solar energy harvested throughout a day.

end of the kth epoch using the formulas below:

Γ1 = Min.{Γinit + Ph
1 · S − Ec

1,Γ
max}

Γk = Min.{Γk−1 + Ph
k · S − Ec

k,Γ
max}

Γinit is the initial energy level. Γmax is the energy capacity.
Recall that Ph

k is the harvested power, S is the epoch length,
and Ec

k is the energy consumed in epoch k (Eq. (2)). Γk−1

is the ending energy level in the previous epoch k−1, which
is also the starting energy level in epoch k. Ph

k · S gives the
energy harvested in epoch k.

In Fig. 2, we show the solar energy trace, along with
the energy budget assignments derived by SEN and MUB
schemes. As seen from the figure, the amount of solar en-
ergy reaches its peak in the afternoon due to high sunlight
intensity. The line representing the energy budget assign-
ment derived by SEN overlaps the line representing the solar
energy in noon and afternoon. This is because SEN assigns
the amount of harvested energy as the energy budget for any
epochs, except for the evening epochs in which the harvested
energy is less than 5J. Finally, MUB assigns the highest uni-
form budget (around 11J) for any epochs.

6.2 Network utility
In Fig. 3 and 4, we compare the utility accrued by MAX-

UTILITY and RRA algorithm. We show the results for the
100-node network. In each figure we plot the utility values
in all 96 epochs, for all three utility functions. In each figure,
we plot six utility lines, one for each combination of the three
utility functions and two rate allocation algorithms.

Fig. 3 assumes SEN energy budgeting scheme. Since SEN
scheme assigns the harvested energy as the energy budget,
we observe that the variations in accrued utility indicate
similar pattern as the harvested energy (Fig. 2). Specif-
ically the utility reaches its peak in the afternoon since
high solar energy availability leads to high rate capacity
CAPACITYi at any nodes. For any utility functions, MAX-
UTILITY (OPT) achieves significantly higher utility than
RRA. Specifically for SQR, the utility value increases above
500 in the afternoon if MAX-UTILITY is used. However, if
RRA is used, the utility accrued never increases above 300.
For the rest of the day, MAX-UTILITY achieves utility fig-
ures that are mostly above 200, while RRA achieves utility
figures that are around 100.

In Fig. 4, we repeat the simulation for MUB energy bud-
geting. Because the MUB scheme is used, the energy budget
B is uniform across different epochs, thus yielding constant
rate capacities at nodes and much more stable utility per-
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formance in all six lines. Again, MAX-UTILITY achieves
much higher utility than RRA. For SQR, the utilities ac-
crued by MAX-UTILITY remain around 350 throughout
the day, while the one for RRA remains around 150. As
seen from Fig. 3 and 4, we observe that the MUB scheme
maintains stable and high utility at any time and is hence
suitable for the applications which desire utility stabiliza-
tion. On the other hand, SEN energy allocation achieves
very high utility when harvesting ability is high and is suit-
able for the applications where maximum utility is sought.

6.3 Rate assignment and energy storage level
In this section, we show the resulting rate assignment and

energy storage levels of the two algorithms. First, we plot
in Fig. 5 the distribution of rates of all the nodes in the 100
nodes network at midnight, while using the SEN scheme and
the CPST utility function. From the figure, we observe that
MAX-UTILITY tends to distribute rates more evenly across
nodes than RRA. The rate assignment by MAX-UTILITY
has standard deviation of 0.1268, while for RRA the devia-
tion equals 0.1936. In Fig. 6(a-b) we plot the energy levels
of a heavily-loaded node and a lightly-loaded node in 96
epochs. The heavily-loaded node is high in the tree, thus
has higher workload and energy demand and lower energy
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(a) a lightly-loaded node; (b) a heavily-loaded node.

level. As seen from the figure, the energy neutral condition
is maintained for both nodes at all times.

6.4 The impact of network size
Now we study the impact of network size on performance

and overhead of MAX-UTILITY. In Fig. 7, we increase
the size of the network from 25 nodes to 225 nodes, and
plot the utility accrued by MAX-UTILITY. This simulation
assumes SEN energy budgeting and LOG utility. We ob-
serve from the plot that the utility grows steadily as the
network grows from 25 nodes to 169 nodes. As computed,
the average utility is 78.10 for 25 nodes network, 109.34 for
36-nodes network, 142.84 for 64-nodes network, 203.79 for
100-nodes network, 396.54 for 169-nodes network, respec-
tively. However, as the network size increases to 225, the
utility increases to only 403.48. In other words the utility
growth almost stops. This is because that, although there
are potentially more utility contributors in the 225-nodes
network, the achievable utility is constrained by the nodes
that are close to the tree root, since the rate capacity of
these nodes does not change with the network size. System
designers must be aware of this phenomenon while choosing
the network size and routing patterns.

We measure the actual running time of MAX-UTILITY in
terms of the number of iterations shown in Table 2. Again,
we assume 6 network sizes. As seen from the table, the
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number of iterations does not increase with the network
size. On the contrary, we observe that the 25-node net-
work requires the largest number of iterations, 9.97, while
the 64-nodes network requires the smallest number of iter-
ations, 6.99. Based on the tree structure we observe that
the number of iterations depends heavily on the number of
children the tree root has. As mentioned in 5.2, the children
of the root have large group of descendent nodes, hence are
more likely to be picked as the critical node Vu. Once they
become Vu, all their descendent nodes are added to the set
ASSIGNED SET in one iteration. This leads to the rapid
growth of ASSIGNED SET .
Finally, we count the average number of control packets

sent by a node in each invocation of the distributed MAX-
UTILITY to be 27.32 in 100-nodes network. If the node
operates at rate ri = 1 packet per second then 900 data
packets will be sent in an epoch. The packet overhead is then
27.32/900 ≈ 3%. This indicates that the MAX-UTILITY-D
is an entirely feasible alternative to MAX-UTILITY.

Num. of nodes 25 36 64 100 169 225
Num. of iterations 9.97 7.99 6.99 7.99 8.99 8.99

Table 2: The number of iterations of MAX-UTILITY

as a function of network size

7. CONCLUSIONS
This paper addressed a utility maximization problem for

energy harvesting sensor networks. Utility is defined as con-
cave and non-decreasing function of nodes sensing rate. We
proposed MAX-UTILITY, a rate allocation algorithm to
maximize the total utility achieved jointly by all the nodes,
while ensuring energy neutrality for any nodes. We formally
proved the optimality of the algorithm, and indicated that
the algorithm can derive optimal rate assignment in O(N3)
time where N is the network size. Finally, extensive simula-
tion results demonstrate its superior performance.
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APPENDIX
Proof of Lemma 1:
For the purpose of contradiction, we assume that, in R∗[],

nodes in unassigned[u] are assigned unequal rates {µ1, . . . ,
µ|unassigned[u]|}. However, as shown by Proposition 1 if

this assumption holds we can always further increase U tot,∗

by equalizing {µ1, . . . , µ|unassigned[u]|} to a common rate

R∗[u]=
µ1+...+µ|unassigned[u]|

|unassigned[u]| . This contradicts the optimal-

ity of R∗[]. Therefore, equal rate assignment to nodes in
unassigned[u] is a necessary condition for the optimality of
R∗[].
We still need to show such rate equalization does not vi-

olate the min-rate and capacity constraints (Eq. (10-11)).
This is justified as follow. First, the min-rate constraint is
not violated, because the new common rate R∗[u] must be
larger than the minimum of {µ1, . . . , µ|unassigned[u]|}, which
is in turn larger than rmin (due to the feasibility of R∗[]).
The rate capacity constraint is also satisfied. This is be-
cause Vu is the critical node with the least common rate
rc among any nodes in the tree. Thus, rc[u] cannot be
larger than rc[i] of any node Vi in unassigned[u]. Fur-
ther, R∗[u] ≤ rc[u] must hold, since if R∗[u] > rc[u] we
have R∗[u] · |unassigned[u]| > rc[u] · |unassigned[u]|, which
gives µ1+ . . .+µ|unassigned[u]| > CAP [u]. This implies that
R∗[] violates the capacity constraint which contradicts the
feasibility of R∗[]. Since R∗[u] ≤ rc[u], and rc[u] ≤ rc[i],
∀Vi ∈ unassigned[u] we know the common rate R∗[u] can-
not be larger than the maximally allowed common rate rc[i]
of any node Vi in unassigned[u], hence cannot violate the
capacity constraint at these nodes. Finally, the capacity vi-
olation cannot happen to any nodes outside unassigned[u]
since the total packet flow at Vu does not change after the
rate equalization. Therefore, we have proved that in R∗[],
any nodes in unassigned[u] must use a common rate.
Proof of Lemma 2:
In Lemma 1, we have shown that in R∗[] all nodes in

unassigned[u] must be assigned a common rate R∗[u], where
Vu is the critical node in the tree. Now we show that this
common rate R∗[u] must be equal to rc[u] in order for R∗[]

to be optimal. Recall that rc[u] = CAP [u]
|unassigned[u]| . Notice

that nodes in unassigned[u] cannot be assigned a common
rate R∗[u] that is higher than rc[u] as this will exceed Vu’s
capacity, so R∗[u] > rc[u] cannot hold. Therefore we assume
R∗[u] < rc[u]. We show this assumption cannot hold either,
and thereby R∗[u] = rc[u] must hold.
If R∗[u] < rc[u] holds, we assert that the rate capacity of

Vu is not fully utilized. This is because R∗[u] < rc[u] means

R∗[u] · |unassigned[u]| < rc[u] · |unassigned[u]| = CAP [u]

Since the left-hand side of the above inequality gives the
total packet rate at Vu, if R

∗[u] is assigned to every nodes in
unassigned[u], this inequality implies Vu’s capacity CAP [i]
is under-utilized.

Given that Vu’s capacity is under-utilized, we make an-
other assertion that there exists a node Vk, an ancestor of
Vu, that must have its rate capacity fully utilized. This is
because if all the ancestors of Vu are also under-utilized,
then we can further increase U tot,∗ by increasing R∗[u] by
an amount of ϵ/|unassigned[u]|, where ϵ > 0 is the strictly
positive, minimum un-utilized capacity among any ancestors
of Vu. This contradicts the optimality of R∗[]. If there are
multiple such Vk nodes, we consider the one that is in the
lowest level of the tree.

Given the existence of Vk, we assert that in R∗[] there
must exist a node Vj ∈ τk and Vj ̸∈ unassigned[u] which
has rate R∗[j] > R∗[u]. (Recall that τk is the subtree rooted
at Vk.) This is because if no node in τk has rate higher
than R∗[u], then the total packet rate at Vk must be strictly
smaller than R∗[u] · |τk| (|τk| is the number of nodes in τk),
and in turn no larger than rc[k] · |τk| = CAP [k], i.e. Vk’s
capacity. R∗[u] · |τk| ≤ rc[k] · |τk| holds because R∗[u] < rc[u]
is assumed, and rc[u] ≤ rc[k] since Vu has the least rc among
any nodes in the tree. This implies the capacity of Vk is
under-utilized which contradicts our previous assertion that
Vk is fully utilized. Thus we justify the existence of such Vj .

Next, given R∗[j] > R∗[u], we know that the marginal
utility of the concave utility function U at point R∗[j] is
lower than that at R∗[u]. Therefore we can further increase

U tot,∗ by decreasing R∗[j] by a strictly positive amount ϵ
′
,

and increasing R∗[u] for each node in unassigned[u] by the

amount of ϵ
′

|unassigned[u]| , as long as R∗[j] > R∗[u] holds. In

other words, we can always increase U tot,∗ by reducing the
difference between R∗[j] and R∗[u]. This rate adjustment
cannot violate the min-rate constraint as R∗[u] > rmin. The
capacity constraint is also not violated, as the decrease of
R∗[j] does not increase the total packet rate at any nodes.

The increase of R∗[u] by ϵ
′

|unassigned[u]| will not exceed the

capacities of any Vu’s ancestors inside τk, as long as ϵ
′
is

no larger than the minimum unused capacity of any ances-
tors of Vu in τk. This is because Vk is the lowest ancestor
of Vu whose capacity is fully utilized, hence any ancestors
of Vu inside τk (i.e. below Vk) must have positive unused
capacity. Further, the total packet rate at any Vu’s ances-
tors outside τk does not change after the rate adjustment,
so their capacity constraints cannot be violated either.

Therefore, the feasible increase of U tot,∗ contradicts the
optimality ofR∗[], hence justifying thatR∗[u] < rc[u] cannot
hold, and R∗[u] = rc[u] must hold in order for R∗[] to be
optimal. Therefore we have proved Lemma 2.

Specification of the RRA algorithm

The RRA algorithm initially allocates rmin to every node,
and updates the remaining capacity of nodes accordingly. If
this violates the capacity constraints at some nodes, then
we know there exists no feasible assignments for the given
network. Otherwise, we start from that assignment and pro-
gressively improve U tot by augmenting the rates of nodes
with unused capacity. Specifically, based on the initial as-
signment, RRA randomly selects a node Vi with positive
remaining capacity, and determines the maximum possible
rate increment which Vi and its ancestors can afford. Then
RRA adds up this increment to Vi’s current rate, and ze-
ros out its remaining capacity. RRA updates the remaining
capacity of other nodes accordingly. This is the end of one
round of augmentation. We then continue augmenting other
nodes until no node has remaining capacity. The resulting
rates of nodes is the final utility achieved by RRA.


