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Abstract M anaging power consumptionwhile simultaneously delivering acceptablelevels
of performance is becoming a critical issuein several application domains such
as wireless computing. We integrate compiler-assisted techniques with power-
aware operating system services and present scheduling techniques to reduce
energy consumption of applications that have deadlines. We show by simula-
tion that our dynamic power management schemesdramatically decrease energy
consumption.
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1. Introduction

Asthe remarkable advancesin VL SI and communication technol ogieshave
culminated in a proliferation of mobile, embedded and wireless computersin
the last decade, system designers are faced with arelatively new and difficult
resource management problem. Most of these devices usualy have to rely
on battery power, which is usualy rather scarce. Moreover, many popular
and emerging applicationsdesigned for these platforms, such as wireless com-
munication, and image/audio/video processing, tend to consume considerably
higher power than more traditional tasks. Some recent studies even advocate
the replacement of CPU-centric operating system design view by the energy-
centric view [37]. In short, the power bottleneckas to be addressed in an
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efficient way to guarantee the functionality in the upcoming pervasive comput-
ing era.

The Engineering and Computer Science communitiesat large confronted the
low power system design problems with a multi-dimensional effort [12, 28].
Hardware and software manufacturers have agreed to introduce standards such
as the ACPI (Advanced Configuration and Power Interface) [16] for power
management of laptop computers that allows several modes of operation, such
as predictive system shutdown [34]. Such on-going low-power research has
important implications for real-time systems design, simply because most of
the applicationsrunning on power-limited systemsinherently impose temporal
constraints on the response time (such as real-time communication in satel-
lites).

Anincreasingly popular techniquefor saving power, Dynamic Voltage Scal-
ing (DVS) [38], is based on exploiting the convex (usually quadratic) relation
between the supply voltage and the CPU power consumption. In addition, it
has been long recognized that the CPU clock frequency (hence, the speed)
should be reduced in parallel with the supply voltage [8]. In thiscase, it is
possibleto obtain striking (quadratic) energy savings at the expense of roughly
linearly increased response time. One aspect that needs to be carefully taken
into consideration isthe energy and delay overhead associated with speed/volt-
age changes. Some studies are optimistic about the overhead imposed by DVS
schemes [30]; we examine thisissuein more detail in Section 4.

The DV'S framework aims at stretching out task executions through speed
and voltage reduction. For real-time systems, the proposed DV S schemes fo-
Cus on minimizing energy consumption in the system, while still meeting the
deadlines. The extensive literature on traditional real-time scheduling theory
[22, 7] dealswith settingswhere the CPU speed is constant, and hence can not
be directly applied.

The principle of slowing down the processor can and should be applied in
multiple dimensions. The natural starting point is the static DV'S dimension,
where the aim is to compute the optimal speed assignments for a given real-
time task set and a (worst-case) workload.

In one of the earliest studiesin thisline, Yao et. a [40] provided an optimal
static off-line scheduling algorithm to minimize the total energy consumption
while meeting all the deadlines, assuming independent aperiodic tasks with
release times and timing constraints. The algorithm has O(nlog?n) time com-
plexity for a system of n tasks. Heuristicsfor on-line scheduling of aperiodic
taskswhile not hurting the feasibility of off-line periodic requests are proposed
in [14], which also suggested assigning a uniform speed value to al periodic
tasks using the total task utilizationas a basis. Non-preemptive power aware
scheduling is investigated in [13]. Concentrating on a periodic task set with
identical periods, the effects of having an upper bound on the voltage change
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rate are examined in [15]. The authors show that the problem is intractable
even with a linear change rate and propose a heuristic to tackle the problem.
The static solution for the general periodic model where tasks have poten-
tially different power consumption characteristicsis providedin [4]. Aydin et.
a recently showed [5] the equivalence of the static dynamic voltage scaling
problem to the reward-based scheduling problem [3].

Designing areal-time system with worst-case workload assumptionin mind
is common and often necessary. However, the actualworkload may be much
lower than the worst-case assumption in many real-time applications. Most of
the scheduling schemes presented in the above studies, while using exclusively
worst-case execution time (WCET) to guarantee the timeliness of the system,
lack the ability to dynamically take advantage of unused computation time. In
fact, applications usually exhibit a large variation in actual execution times;
for example, [9] reports that the ratio of the worst-case execution time to the
best-case execution time can be as high as 10 in typical applications. Conse-
guently, dynamically monitoring and reclaiming the ‘unused’ computatiam
be (and, as we show below, isin fact) a powerful approach to obtain consider-
able power savings and to minimize the effects of conservative predictions of
the actual execution time by the WCET information. In thisline of research,
the aim is to dynamically reduce the CPU speed of running task(s) by taking
into account the early completionsin the history of task executions. The main
problem, naturally, is to determine the speed reduction amount that would not
compromise any timing constraints, in addition to choosing the tasks that will
be executed at the low speed.

One technique for dynamic reclaiming relies on dowing down the proces-
sor whenever there is only a single task eligible for execution [33], where a
set of periodic tasks scheduled by Rate Monotonic Scheduling [20] is consid-
ered. A more general dynamic reclaiming approach, based on comparing the
worst-case execution schedule to the actual schedule is proposed in [17]. In
that study, a detailed analysis is provided for frame-based tasks; the exten-
sion to general Earliest Deadline First (EDF) scheduling of periodic tasksis
sketched. One assumption of that work is that there are (only) two discrete
speed levels. However, systems which are able to operate on a (more or less)
continuous voltage spectrum are rapidly becoming a reality thanksto advances
in power-supply electronicsand CPU design[10, 27]. For example, the Crusoe
processor is able to dynamically adjust clock frequency in 33 MHz steps[36].

Despite the gains due to staticand dynamic reclaimingschemes, there is
still room for additional savings provided that we have access to the statisti-
cal workload information; in this chapter, we present also aggressive schemes
where we anticipatethe early completions of future executions and specula-
tively reduce the CPU speed. This approach immediately raises two inter-
twined questions, namely, (a) the levelof aggressivenessthat justifies specula-
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tive speed reductionsunder a given probability distribution of actual workload;
and (b) the issue of guaranteeing the timing constraints.

Note that both dynamic reclaiming and aggressive scheduling techniques
can be adopted at the task leveland at the system levelln the former, user-
or compiler-inserted Power Management Points (PMPs) allow intra-task mon-
itoring of the execution and controlling speed of a given task to improve the
energy savings[1, 32]. In the latter, the operating system invokes the PMPs at
context switch times, taking advantage of the global knowledge (i.e., system-
wide workload). Finally, it is worth mentioning that a whole new line of re-
search that tolerates (and tries to minimize) deadline misses for the sake of
energy savings has recently emerged [23, 18, 19, 31, 11]. These softrea-time
scheduling techniques also make use of the statisticalworkload information
while determining the CPU speed assignments.

In this chapter, we summarize theresultsof our multi-layered research effort
in power-aware scheduling for real-time systems. Our solution is based on a
three-dimensional approach that can be applied at thetask level or at the system
level, whiletaking into account energy and time overheads. Hence, we present:

1 A static(off-line) solutionto compute the optimal speed, assuming worst-
case workloagd

2 A dynamic(on-line) speed adjustment mechanism based on the actual
workload used to reclaim unused time/energy, when executionsfall short
of their worst-case workload, and

3 An adaptive and speculativespeed adjustment mechanism based on sta-
tistical information about the workloadised to anticipate and compen-
sate probable early completions of future executions.

We emphasize once again that, in the context of real-time systems, all these
components should be designed not to cause any deadlines to be missed even
under the worst-case scenario: theaimisto meet the timing constraintswhile
simultaneously and dynamically reducing power consumption as much as
possible.

2. Real-time task and system models

Typical real-time research assumes that atask, T1;, has adeadline, D;, which
is derived from the system’s real-time requirements. |f we assume that a task
isready at time O, then D; can be seen as the length of the time interval within
which 1; isallowed to execute. Given that variable voltage CPUs are available,
the time to execute a program, P, depends on the processor speed. We will
characterize a task (we will use task 1; and program B to denote the same
entity) by the worst case number of CPU cycle<C;, needed to execute the
program.
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In order to smplify the analysis and to allow for the derivation of analytical
formulas, we would like to assume that C; is independent of the CPU speed
for a given processor architecture. This assumption, however, does not hold if
the speed of the memory system isindependent of the speed of the CPU, since
memory references will consume larger number of cycles when the processor
speed is high, thusincreasing the total number of cycles needed to execute the
program. For this reason, we assume that G is the worst case number of CPU
cycles needed to execute a program at the maximum processor speed.

We have conducted a number of simulation experiments using SimpleScalar
3.0[6] (amicro architectural simulator) to determine the degree of pessimism
in the definition of C;. These experiments show that, with on-chip caches and
low cache missrates, C; does not change substantially with the processor speed.
For the Li, Perl, Go and Compress programs from the SPEC benchmarks [35],
changing the processor speed from 700 MHz to 300 MHz changed the number
of CPU cycles needed to execute the benchmarks by 0.01%, 1.2%, 1.9% and
0.6%, respectively. In all the experiments, the default SimpleScalar configura-
tionsfor the L1 and L2 caches are used and no disk 1/0 is performed (typical
assumption for real-time systems).

In this chapter, we normalize the units of C; such that the maximum proces-
sor speed is 1. That is, if the maximum processor speed is s CPU cycles per
second, then we define a hypercycleto consist of s CPU cycles and express
G in terms of the number of hypercycles. The maximum processor speed is
thus normalized to Snax= 1 hypercycles per second. We will simply refer to
hypercycles by “cycles’, and thus, at Syax the time for executing G; cyclesis
Ci seconds.

Modeling control flow

We consider a general form of program execution in which a program B,
is divided into nj segments, T; (j),1 < j < nj, where a segment is a loop, a
procedure call or, in general, any subgraph of the control flow graph of B
(see Figure 7.1). We assume that each segment T; ;) executes a maximum
of G (j) cycles. Each segment is represented by a circle. A segment that is
composed of aloop is represented by a square and a number representing the
maximum loop index. Note that a“segment flow graph” isa compact version
of the control flow graph of the program, in which subgraphs are replaced by
single nodes. Each execution of the program will follow a specific path from
the start node to an end node.

For any given node, j, in the segment flow graph, let IM.wg ;) denote the
maximum number of cycles to complete the execution of the program, starting
at the beginning of segment j. Clearly, M_wg (j), 1 < j < nj can be computed
recursively from
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Figure 7.1.  Schematic of asegment flow graph.

Mwg () ZCi,(j)+kf€T1§>j<){n—WQ,(k)} (7.1)

where B(]) isthe set of children of node j in the segment flow graph. If node
1 represents the first ssgment in the program, then Ci = G (1 represents the
worst case execution of the entire program B.

Although knowing the worst case execution scenario of atask is essential
to guarantee that a task meets its deadline, usually a program, B, executes for
much less than its worst case estimate, C; [9]. Thisis because the input data
and system architecture (e.g., the amount of cache in the system) determine
not only the actual number of cycles the segment executes (typically less than
Gi), but also determines the execution path of B. If we denote by C_avg (j, the
average number of cycles consumed in the execution of segment j of B, then
the average number of cycles to complete the execution of P starting at the
beginning of segment j, denoted by N _avg (j), can be computed recursively
from

M-avg ) =C-avg )+ Proby - M_avg (k) (7.2
keB(j)

where Proby is the probability that execution proceeds from segment j to seg-
ment k. Clearly, execution should proceed from segment j to one of the seg-
mentsin B(j), and thus g j) Probx = 1.
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Periodic task model

Typically, rea-time systems execute periodic tasks, where each task t; has
associated with it a period, T;, which representsthe interarrival time of consec-
utive instances of the task. We will assume that atask T; isready for execution
at the beginning of its period and should complete execution by the end of its
period. Frame-based systenage special periodic rea-time systems in which
a sequence of frames is repeatedly executed, and all tasksin a frame have the
same period, T, and the same initial phasing. In practice, many real-time sys-
tems are frame-based, since designing and verifying the correctness for such
systemsis much simpler than for more general real-time systems.

Given a set of tasks, {11,...,In}, l6t U = ZiN:1% be the total utilization
of the task set under the maximum processor speed (recall that we normalized
Snax=1). TheutilizationU can also be seen astheload imposed on the system
by the task set under consideration. It iswell known that if U < 1, T; = Dj,
and EDF scheduling is used, then each instance of every task will meet its
deadline [20]. In this chapter, we will assume that there are no precedence
constraintsamong the N periodic tasks and that EDF is used to schedule these
tasks.

Power consumption model

Variable-voltage CPUs can reduce power consumption quadraticallyor cu-
bically at the expense of linearly increased delay (reduced speed) [15]. Thus,
any effective DV S scheme should be able to vary the voltage fed to the system
component and the frequency of the system clock. The power consumption
of the processor under the speed Sis given by g(S), which is assumed to be a
strictly increasing convex function, represented by a polynomial of at least the
second degree [15]. If task T; occupies the processor during the time interval
[t1,t2], then the energyconsumed during thisinterval is fttf g(S(t))dt, whichis
equal to g(S)(t —t1) if Sis constant during the period [t1,tp]. Unless stated
otherwise, we assume that the CPU speed can be changed continuously be-
tween aminimum speed, Syin (minimum supply voltage necessary to keep the
system functional), and the maximum speed Syax The idle processor power
consumption, gigle, is usualy lessthan g(Smin) but larger than g(0).

The importance of the speed management is derived from the convexity of
the power function g(S). Specificaly, if 1; isallotted Y; time unitsto execute,
then § = % is the speed that will execute C; in exactly Y; time units. Because
the function g is convex, we have

9(S)Y < g(S)x+g(S") (Y —x)

for any S # S’ and x such that Sx+ S'(Y; — x) = G;. Thismeans that the total
energy consumption is reduced when the processor speed is uniform during
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theY; time units. Notethat in case of asingletask, Y;j = D, but when there are
several tasks, their alocationstypically fall short of their deadline.

3. PMPs: Power Management Points

In the context of power management through CPU speed adjustment, a
power management poirRMP, is an abstraction that lets us reason about and
influence power management at specific pointsin time. Typically, aPMP will
have associated with it a piece of code that manages information about the ex-
ecution of the tasksin the system and decides about changing the CPU speed.
A PMP code can be part of the user’s program (executes in user space) or can
be part of the operating system (executesin kernel space). In either case, after
making a decision to change the CPU speed, a PM P typically makes the appro-
priate system calls to change both the CPU clock frequency and CPU voltage.
We distinguish between two types of PMPs.

m A task-level PMPisinvoked during the execution of a given task, T, and
uses information only about T; to make decisions about T;'s execution
speed. Task-level PMPs may be inserted by the user or by the compiler
in the program. For instance, the user or the compiler may insert a PMP
at the beginning of each segment of the program.

= A system-level PMPakes a more global view of the system and uses
information about all the tasks in the system to make speed adjustment
decisions. For instance, after determining the next task to be dispatched,
the scheduler in an operating system may execute a PMP to determine
the execution speed of the next task.

To make adecision, a PMP usestask profile informatiopsuch asworst case
executions, average case executions and timing or performance constraints,
and execution progress informatiaach as CPU time consumption and early
termination of tasks. The task profile information can be precomputed and
stored, while the execution progress information must be collected at run time
with help from the hardware and/or the operating system. Different speed
adjustment schemes can be designed based on how a PMP computes the slack
existingin the system and on how to use this slack to carry out power (viaCPU
speed) management.

3.1 Static (off-line) power management

In static power management, a PMP computes the processor speed based
on the assumption that each task, 1;, will execute the maximum number of
cycles, G. If executing G; cycles at speed Syax does not consume the entire
time alocated to T, then it is possible to reduce the speed of executing T;
thus reducing the consumed energy, while still meeting the timing constraints.
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This power management scheme is called static because only worst-case task
profile information and no execution progress information is used in speed
adjustments.

For task-level power management, if D; is the time alocated to execute T,
then the speed during the execution of t; can be safely setto § = % Clearly,
if § > Smax then it is not possible to guarantee completion of t;’s execution
within the given time constraints. Also, if S; < Snin, We should set § = Sqyin.
A single PMP at the beginning of task’s execution is needed to calculate and
set the processor speed to S.

For system-level power management of N periodic tasks scheduled using
EDF, the convexity of the power function, g(S), impliesthat all deadlines can
be met and that the total energy is minimized when the speed of the processor
is the same for all the tasks. Hence, when executing a periodic task set with
utilization U < 1, the energy consumption is minimized if the CPU speed is
set uniformly to max{ Syin, U Smax} -

In order to appreciate the energy savings resulting from static power man-
agement, assume conservatively that the idle power, gigle, isequal to zero and
assume that g(S) = aS®, for some constant a. If Tiem is the least common
multiple of the periods Ty, ..., Ty, then, executing at Syax= 1 during Tjcm Will
result in an energy consumption equal to 31, gi(Snax a2 = AU Tiem. If
the speed is set to U Sqyax then the energy consumption during T reduces to
SL161(U) g Tem = aU *Tjem, whichisafactor of U2 lower than aU Ticm, For
example, if U = 0.5, then static power management consumes only 25% of the
energy that is consumed without power management.

The optimality of the uniform speed based on the load assumes that the
power functions, gi(S), are the same for all tasks. However, due to the fact that
different tasks may use different hardware units and have different patterns of
memory and cache usage, we may have a different power consumption func-
tion, gi(), for each task 1;. (The different power functions could refer to dif-
ferent tasks or different segments of the same task.) In this case, the energy
consumption is minimized when each task T; executes at a speed S derived
from solving the following optimization problem:

N G
minimize{_zlgi(S)ﬁ}
such that

N
G
27s =

Snin S S S Snax
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The above formulation is abtained by noting that when the speed of execut-
ing T; isset to §, then each instance of T; executes for atime g and thus the

fraction of time allocated to T; (the time utilization) isincreased from & to £ T
EDF can alwaysmeet the deadlinesif the sum of utilizationsof the tasksm the
system isless than one.

After solving the above minimization problem (see [4] for solution tech-
niques), the speed S of each task, T;, can be stored in its process control block.
Before the scheduler dispatches 1;, it calls a PMP to set the processor speed
to S. That is, the processor speed change becomes part of the context switch
operation.

In summary, static power management for both task-level and system-level
aim at the same goal, namely fully utilizing the CPU in the system, assuming
worst case execution scenarios. When a single task isinvolved, the task-level
management is sufficient to determine the uniform speed of that task, but when
several tasksare involved, the operating system must intervene becauseitisthe
only entity that knows about all tasks and their characteristics.

3.2 Dynamic (on-line) power management

Dynamic power management is based on the observation that tasks usually
do not execute their worst case scenarios, and thus by using execution progress
information, the processor speed can be adjusted during the execution to in-
crease the energy saving beyond that achieved by static power management.
To simplify the discussion, we assume that the power consumption functionis
the same for all the tasks, and that S; is the optimal speed obtained by static
power management.

When tasks do not execute their worst case scenario, slack (unused compu-
tation time) is generated dynamically in the system; thefirst task of aPMPisto
compute this slack. One way of estimating this dack isto determine whether
atask or task segment is running earlier than predicted by the worst-case sce-
nario. For instance, if the worst case scenario indicates that a PMP should be
reached at timet,,c and thisPMP is actually reached at timetyc (tac < two), then
the difference of slackarny = twec — tac Can be considered as an earliness slack
which can be used to slow down the processor.

An alternate way of looking at the earliness slacks to consider the work
(in terms of number of CPU cycles) that remains to be executed until the next
deadline, D. Let My, and My, be the worst case estimate and the average case
estimate of that work, respectively. Given that static power management fully
utilizes the processor assuming worst case execution scenarios, the speed Sq
guarantees that the period from t, to the deadline D is exactly equal to e,
which is the time needed to execute Ny, at speed S.. In other words, the slack
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D —tac— M = D — tae— (D — twe) = twe — tac is the slack time between the
current time and the deadline, after accounting for the execution of My, at
Speed Ss.

Given that the worst case execution scenario occurs very rarely, it is rea-
sonable to assume that a more useful estimate of the slack is obtained by as-
suming the average case scenario for the remaining work, rather than the worst
case scenario. For example, one may specul ate that the usable slack is equal to
slackpeculate= SlaCkearly + ”WCS‘S'_'“. This speculation is based on the assump-
tion that only the average case scenario for the remaining work will be exe-
cuted, and that this work will execute at speed Ss. The rationale behind using
slackpeculatel S to consider the average case behavior, which is more common
than the worst case behavior.

After a PMP computes slack it uses this slack to slowdown the execution
of the next task or task segment. Assuming that the worst case estimate of
the number of cycles in this next task or task segment is C, and that Ss is
the execution speed calculated from static power management, then the time
allocated to the execution of the C cyclesi |s <. Adding the dlack to thistime,
the new execution speed is computed as:

C

= 7.3
Snext %5 + slack ( )

However, it should be noted that there is a lower bound on the processor
speed in order to guarantee that, in the worst case, the remaining work will
be completed by the deadline D. Specificaly, if the speed for executing the
next task or task segment is Shext: then this execution will consume at most
atime equal to g=. Hence, the remaining time until the deadline, D — tac —

<= should be at Ieast large enough to guarantee that the worst case scenario
of the remaini ng work, My — C, can finish by the deadline. Given that the
maximum speed iS Snax this remaining work will require at least % to
execute. Hence, ax

C MNwe—C
D—tage— =— >
a Shext — Smax
should always hold, which means that
C
Shext > Dt M€ = Steasible (7.4)
D — tao — g

From Equations (7.3) and (7.4), we can put an upper bound on the amount
of slack that can be used to compute the next speed. Namely,

Myc.—C
slack< slacknax= (D —tac— Scniax)) — gs (7.5)
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(d) negative maximum slack at the next PMP

Figure 7.2.  Anexample of slack computation; height of box is CPU speed for task.

In Figure 7.2 we show an example to clarify the above slacks. The deadline
D is 50mslater than ty,. and the remaining My, = 25 million cycles should
execute at aspeed S; = 500 MHz to meet the deadline (in thefigure, M denotes
amillion cycles). It isassumed that a PMP is placed every 5 million cycles of
the remaining work. In the figure, the execution of C at speed S cycles is
represented by a rectangle whose area is C. The height of the rectangleis S
and itswidth, % isthe execution time. Assume that a PMP isreached at time
tac = twe — SMs(recall that tyc is reached in the worst case scenario). Figure
7.2(a) shows the earliness slack, while Figure 7.2(b) shows the speculative
slack assuming that M 5, = 15 million cycles. Figure 7.2(c) showsthe maximum
slack assuming that the next task consumes 5 million cycles and that Syax=
666MHz.

In general, the PMP can select any value for the slack between zero and
slacknax In fact, a zero slack means that the PMP does not perform any dy-
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namic speed adjustment and selects the speed computed by static power man-
agement. A slack equal to slacknax is a very aggressive scheme which gives
all the available slack to the next task or task segment. This scheme may slow
down the next task or task segment too much without taking into consideration
the remaining computations in the system, perhaps causing the CPU speed to
be raised to Snax

If aPMP is very aggressive in speculatively reducing the processor speed,
the next PMP may be reached at atime, t',c, which islater than the time, t'y,
predicted by the worst case scenario, and the maximum slack, slackyay, may
be negative. The consequence of negative slack (too much aggressiveness)
is the setting of speed above Ss in order to meet the deadlines. As shown in
Figure 7.2(d), if slacknax= 15mswere used, Shext = 200 MHz; if the next task
executes its worst case scenario, then at the next PMP, slackyax is equal to
—2.5ms which means that the speed has to be raised to 666 MHz in order to
guarantee that the deadline will not be missed.

4. The overhead of speed management

Changing the speed of a CPU takes time and energy, an overhead that was
ignored in the above estimation of the usable slack. In this section we study
how long and how much energy is spent in each PMP, and later compare this
overhead with the actual gainsfrom DVS.

4.1 Time overhead

At every PMP, a time overhead is incurred for computingthe new speed,
Sexty and for changingthe speed from the current speed, Surrents 10 Shext
through a voltage transition in the processor's DC-DC switching regulator (re-
sulting in a processor frequency change) and the clock generator. We denote
changing both voltage and frequency by the term speed changeln order to
guarantee that the deadlines are met, the above time overheads must to be con-
sidered.

When a PMP is added at the beginning of a segment T; (j), the estimates
Gi (j) and C_avg j) should be modified to include the number of cycles, F,
needed to run the PMP code. From experiments with SimpleScalar 3.0, where
we implemented speed setting and inserted PMPs in different applications, we
observed that the overhead, F;, of computing the new speed varied between
280 and 320 CPU cycles. Therefore, we consider . to be constant.

To change voltage, a DC-DC switching regulator is employed. Thisregula-
tor cannot make an instantaneous transition from one voltage to another [15].
When setting a new speed, both the CPU clock and the voltage fed to the CPU
need to be changed, incurring awide range of delays. For example, the Strong
Arm SA-1100s capable of on-the-fly clock frequency changesin the range of
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59MHz to 206MHz where each speed and voltage change incurs a latency of
up to 150 psec [25], while the |pARM processor [29] (alow-power implemen-
tation of the ARMS8 architecture) takes 15 psfor afull swing from 10 MHz to
100 MHz. Another example is the Transmeta TM5400, which is specifically
designed for DV S [36]. Some systems can continue operation while changing
speed and voltage [29, 15], but the frequency continuesto vary during the tran-
sition period. A conservative approach, which we adopt, is to assume that the
processor cannot execute application code during this period.

Hence, we assumethat afixed time, R, is needed for each speed step transi-
tion. That is, thetime overhead for speed changesisF; - d(Scurrent; Shext), Where
d(S,S;) isafunction that returns the number of speed steps needed to make
atransition between § and S;. In the Transmeta mode!, this function returns
how many multiples of 33MHz is the difference between § and S.

The overhead of changing the speed should be accounted for in order to
guarantee that deadlines are met. Specifically, the maximum feasible slack,
slacknay should be adjusted by subtracting this overhead before computing
the new speed. Moreover, because slackyaxis computed assuming that the pro-
CESSOr runs at Snayx We should allow the time for a future PMP to switch the
processor speed to Syaxto meet the deadline. Thiswill require Fd(Shext; Smax)
to switch the speed to Sphax N other words, slacknax computed by Equa-
tion (7-5) should be reduced by Ftd(&urrenty Snext) + Ftd(Snexb Snax) to guar-
antee that deadlines are met.

4.2 Energy overhead

Given that a PMP executes code which is not part of the application code,
the energy consumed during the execution of a PMP is an overhead that exists
only because of the power management. In addition to the energy consumed
in executing a PMP, there is an energy overhead associated with the change
in voltage and frequency to change the CPU speed from Syrrent t0 Shex This
overhead is proportional to the number of speed steps, d(Scurrent; Shext)- N
the ssimulations presented below, we will assume that the energy overhead for
changing the speed isequal to F; - d(Scurrent; Shext) - 9(Scurrent) . This means that
during the speed change, the CPU consumes power at a rate equal to its con-
sumption, while executing at speed Surrent-

In the next two sections, we compare different power management schemes
that use different methods for estimating the slack and different schemes for
using the slack. These methods can take into consideration the energy and time
overheads, as discussed above.
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5. Task-level dynamic power management

Consider atask, T, whichisalotted atime D; to execute, and assume that a
PMP is executed at the beginning of segment j of thistask. Moreover, assume
that the PMP is actually invoked at time t,¢, even though this PMP is supposed
to be called at timet,,c, according to the worst case scenario executing at speed
Ss. In order to compute the speed, S (j, for executing segment T; (), the PMP
needs to estimate the slack that it will use for speed adjustment. Thisslack can
vary between zero and slackyay, Which, due to the time and energy overheads
should be modified from Equation (7.5) to

C C
slacknax= m— §s -k (d(&urrentys,(j)) ‘|‘d(s,(j)73nax))

where Surrent IS the currently executing speed. Given that S (j) is not known,
it can be safely and conservatively approximated by Smn to obtain

C C
Sfeasible_ §s ~h (d(&urrenu Smn) + d(Smm’ Snax))

Asdescribed in Section 3, aPMP can use all or part of slackyaxto compute
the speed of the segment. Then, for 0 < slack< slacknax

Gi(i)
G
-5~ +slack

slacknax=

S = (7.6)

In [26], three specific schemes were described for the computation of the
slack. The first scheme, called Greedy, uses slack= slackany. That is, it
uses the earliness slacko adjust the speed of the next task segment. The sec-

ond scheme, called Proportional, uses slack= SIaCI@aﬂynQT That is, it

distributes the earliness slack to all the future segments and gives to the next
segment only a proportional amount of that slack. The third scheme, called

Statistical, uses slack= mln{slacknaﬁslaclgpecmatmi} That is, it as-

sumes an average case scenario for the computation of the sI ack and distributes
thisslack to all the remaining segmentsin a proportional fashion.

We implemented a simulator to experiment with the different power man-
agement schemes. Inputsto the simulator are a segment flow graph, the ratio
of the worst case execution time to the best case execution time ((3), and the
system utilization or load (U). In the graphs below, the energy consumption
values are normalized to the energy consumed by the Static scheme. We ran
experiments using a synthetic program that has a segment flow graph similar
to one shown in Figure 7.1 where C; values, the loop indexes, and the actual
execution timesfor each segment are drawn from anormal distribution.
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From our experiments with SimpleScal ar, we extracted F. = 300 cycles and
R = 320 cycles for a single step of 33 MHz. These values are used in the
calculation of the total overhead associated with each PMP, and consequently
augmented the C; of each task i.
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Figure 7.3. Simulation resultsfor = 3 andload = 0.5.

In Figure 7.3, we show the results of simulating task-level dynamic power
management for the Greedy and the Proportional schemes mentioned above, as

well asfor aschemewhich usesslack= min{slacknax Kslaclgpecmatq%(g(_)},
- U

where K represents the aggressiveness in using the slack for slowing down the
next segment. We call this scheme, which is more flexible, K-speculative.
Note that the Statistical scheme is the K-speculative scheme with K = 1. As
shown in thefigure, Proportional and Greedy consume less energy than Static,
because of the dynamic slack reclaiming. In addition, varying the aggressive-
ness factor K dramatically affects the K-speculative scheme: for K = 0, Static
outperforms K-speculative since the latter does not take any advantage of the
reclaimed slack, andit hasto pay the overhead cost at each PMP, while Static
has overhead only once, at the beginning of execution. At the other end of
the spectrum, it is clear that K-speculative tends to Greedy when K increases.
K-speculative reaches its minimum consumption around K = 1, that is, ap-
proximately the average behavior of the system.

To study the effect of the variability of the workload, we experimented with
the same program at different values of B = m (see Figure 7.4).
We found that the larger variability, the more dynamic slack to reclaim, and
thus the smaller energy consumption. However, the pattern is very similar for
all values of f3.
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Figure 7.4. Simulation results for different values of 8 with load = 0.5.

6. System-level dynamic power management

The first observation that we make in this section is that the speed adjust-
ment schemes used in system-level dynamic power management for frame-
based periodic tasks are similar to the schemes described in the previous sec-
tion for task-level power management. The difference is that task-level man-
agement adjusts the speed for n segments of the same task with a common
deadline, D, while system-level management adjusts the speed for N frame-
based tasks with a common deadline, T.

The second observation is that it is a good idea to combine task-level and
system-level dynamic management, since the former carries out adjustments
within the task’s alotted time, while the latter attempts to adjust speeds be-
tween tasks (when context switches occur). This way, system-level comple-
ments the task-level dynamic management, allowing for benefits stemming
from both compilers and operating systems.

Thirdly, we note that the case of general periodic tasksis more complicated
than frame-based systems because each task has a different deadline. For sim-
plicity of presentation, we do not take the PMP overhead (of computing or
changing speeds) into account in this section. The principles are the same as
outlined in Section 4. To detect earliness slack, we perform comparisons be-
tween the actual execution history and the canonical schedule S St which
is the static optimal schedule on which every instance presents its worst-case
workload to the processor and instances run at the constant speed Ss. The CPU
speed isadjusted (i.e., a PMP isexecuted) only at task dispatch times.
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Due to the periodic nature of the tasks we consider, it isimpractical to pro-
duce and keep the entire static optimal schedule S Static (Jength of Sstatic could
be Ticm) during the execution. To address feasibility and efficiency while tasks
execute, complete, and re-arrive dynamically, we choose to construct and up-
date a data structure (called a-queue) that helpsto compute the earliness slack
a dispatch time. At any time t during actual execution, the a-queue con-
tains information about the (up to) N tasks that would be active (i.e., running
or ready) at timet in the worst-case static optimal schedule SS?1¢, That is, a-
queueisthe ready queue of SSt2tC g timet and it is constructed and maintained
so that the remaining execution time, rem (t), of T; at timet in SS21¢ under the
static optimal speed S, is available (note that rem (t) > 0).

In this chapter, we assumethat tasks are schedul ed and dispatched according
to EDF* policy, which isthe same as EDF [20], but if deadlines are the same,
the task with the earliest arrival time and then lowest task id has the highest
priority. This EDF* priority orderingis essential in our approach because it
provides a total order on the priorities. (Any scheduling policy that provides
total order on prioritieswill work as well.) We denote the EDF* priority-level
of thetask i by di'; low values denote high priorities.

To relate the a-queue with the computation of earliness slack, let w3(t) de-
note the remaining worst-case execution time of task 1; under the speed S at
timet. Note that when task Ty is being dispatched, tasks with higher priority
that are till in the a-queue must be aready finished in the actual schedule
(since 1« currently has the highest EDF* priority), but they would have not yet
finished in S static,

Therefore, for any task 1 which is about to execute, any unused compu-
tation time (slack) of any task in the a-queue having strictly higher priority
than 1y will contribute to the earliness of 14 aong with the aready-finished
portion of Ty inthe actual schedule. That is, total earlinesof T4 isno lessthan

&x(t) = Tijdr<q; rem(t) +remy(t) — W (t) = Yijdr<d; rem(t) — WS (t).
The a-queue can be easily implemented using the following rules:

R1. Initially the a-queueis empty.

R2. Upon arrival, each task T1; "pushes’ its worst-case execution time under
speed S; to the a-queue in the correct EDF* priority position (this hap-
pens only oncefor each arrival, no re-push at 'return from preemptions’).

R3. Astime elapses, the elements in the a-queue are updated (consumed)
accordingly: the rem field at the head of a-queue is decreased with a
rate equal to that of the passage of time. Whenever the rem field of the
head reaches zero, that element is removed from a-queue and the update
continues with the next element. No update is done when the a-queueis
empty.
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Note that, at time t, thea-queue, updated according to the rules R1, R2
and R3, contains only the tasks that would be ready at time t in the static
optimal schedulé& Static, This observation stems from the following: (a) a-
gueue is ordered according to EDF* order, (b) every arriving task pushes its
remaining worst-case execution time according to Ss into the a-queue only
once, () the queueis updated only at the head, reflecting the fact that only the
task with the highest EDF* priority would be running in S St and (d) atask
that would have finished in S Static (i.e., rem= 0) is removed from the a-queue.
This effectively yieldsa dynamic imagef the ready queuein S Stac at timet.

Note that the dynamic reduction of rem in R3 above does not need to be
performed at every clock cycle; instead, for efficiency, we perform the reduc-
tion whenever a task is preempted or completes, by taking into account the
time elapsed since the last update. The above approach relies on two facts.
First, the system-level speed adjustment decision will be taken only at ar-
rival/preemption and completion times, and it is necessary to have an accurate
o-queue only at these points (if speeds are to be changed at other points like
the task-level PMPs, the update of rem must reflect that). Second, between
these points, each task is effectively executed non-preemptively.

As mentioned in Section 3 any specific algorithm should specify the exact
amount of earliness slack. One natural choiceisto use &x(t), that is, to reduce
the speed so as to profit from the full earliness. We call this simply Dynamic
Reclaiming AlgorithnfDRA).

6.1 Speculative Speed Reduction

Another dimension of the reclaiming process is based on the fact that we
may speculate on how early taskswill finish. This speculative move is similar
to the one for frame-based systems, but the periodic model has different dead-
lines and periods per task. With tasks arriving and departing dynamically, we
need to make sure that no deadlines are violated while speculatively reducing
the speed of the current task.

To simplify this speculative slack management, we restrict the speculative
power management to occur only when we can limit their effects upto the next
event (NE) that corresponds to the arrival/deadline of any task. When we can
ensure that a ready task 14 will not finish beyond NE, we can guarantee that
it will complete before its deadline (because, by definition, it is not later than
NE). Even then, we may need to increase the speed of other tasks Txy1, ..., Tr
that also complete before NE to guarantee timeliness, since these tasks may be
delayed if aworst-case scenario occurs for 14. Clearly, all these speed adjust-
ments should adhere to Syin and Shax

In addition to tasks that finish before NE, even the highest priority ready
task that completes after NE, T,, 1, may provide a portion of itstime allocation
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under certain conditions. For simplicity of presentation, we do not describe
this more complex scheme (for details, see[5]).

Asin frame-based systems, after computing slackpecuiateand slackay, we
can assign all or some of this dack to the next task to be executed. Thisis
controlled by an aggressiveness parameter that controls how much of the slack
will be used by the next task and how much will be “saved” for future tasks.
The computation of these slacksis very similar to the one in Section 5, where
the deadline D is replaced by the next event NE. In fact, if tyc—tac > 0, we
will be able to dow down task 1. Further, if there are other ready tasks that
will complete before NE, we need change the speed settings for these tasks.

6.2 Evaluation of the Dynamic Schemes

In order to experimentally evaluate the performance of DRA, we imple-
mented a periodic scheduling simulator for EDF* policy. We implemented the
following schemes. (a) Static uses constant speed S, and switchesto power-
down maode (i.e., S= Syin) Whenever there is no ready task; (b) DRA, which
reflects only using slackeary, and (c) SPECUL ATE, which uses slackpeculate
All graphs shown here are normalized to the Static scheme, and use the best
available aggressiveness parameter (which, similar to frame-based systems, is
around 1).

I'n our experiments, we investigated the average performance of the schemes
over a large spectrum of worst-case utilization U (or load) and variability in
actual workload (). The periods of the tasks were chosen randomly in the
interval [1000, 32000], Spinissetto 0.1, and Ss isset to U. The results shown
here focus on the average energy consumption of task sets containing 30 tasks
each and random valuesfrom anormal probability distributionfunction; results
with different number of tasks and uniform distribution are rather similar [2].
The mean and the standard deviation for any task, T1;, are set to C_avg and
G=C-2Y8 respectively, for agiven B, assuggested in[33]. These choicesensure
that, on the average, 99.7% of the execution times fall in the interval [C; —
2(G —C_avg),Cj]. For each task set, we measured the energy consumption
using a cubic power/speed function [15].

Effect of Utilization. We observed that the energy consumption has
very littlevariation when the utilization of thetask set (i.e., U) ischanged. This
is because the use of optimal speed S; resultsin having very similar effective
utilization, for any value of U. In other words, when the utilization decreases,
the speed decreases making the CPU fully utilized.

Effect of . The simulation results confirmed our prediction that the
energy consumption would be highly dependent on the variability of actual
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workload. The average energy consumption of the task sets, asafunction of 3,
withU = 0.6, isshown in Figure 7.5.
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Figure 7.5. Effect of variability in actual workload (load = 60%)

» When 3 = 1, thereis no CPU time to reclaim dynamically, and thus the
energy consumption is the same for al three techniques, as expected.
However, once the actual workload starts decreasing (that is, increasing
), DRA and SPECULATE are ableto reclaim unused computation time
and are able to save additional energy.

= Once we increase the 3 beyond 4, power savings of DRA and SPECU-
LATE continue to increase, but the improvement is not as impressive as
the case where that ratio is < 4. Thisis because the expected workload
converges rapidly to 50% of the worst-case workload with increasing 3
(remember that the mean of our probability distributionisC_avg.)

7. Maximizing reward while satisfying time and
energy constraints

So far, we have assumed that the main goal of power management is to
minimize the energy consumption while meeting timing constraints. In this
section, we will consider a different model in which the goal of the power
management is to maximize the system value while meeting both timing and
energy constraints. In this reward basedmodel, each task T; has a certain
“value”, vi. Given timing and energy constraints, the goal isto select the tasks
to execute and the speed at which these tasks should execute such that the total
value of the system is maximized. In other words, the goal is to find a subset
M of {1,...,N}, such that when the tasks T, i € M, execute at speed S, the
timing and energy constraints are satisfied, and the sum of the values of the
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tasksin M is maximized. To formalize the problem assume that Ti¢m is the
least common multipleof the N periods, Ty, ..., Ty, and that Ejcr, iSsthe energy
that is available for consumption during one Tic,. Then, the problemisto find
the subset of tasks (the set M) and the execution speed S for each task T; in
this subset to

maximize y v (7.7)

subject to <1 (79)
S '

p: gi(S)SCIT lem < Ejem (7.9

Snin < S < Snax (7-10)

Inequality (7.8) guarantees temporal feasibility (i.e., al deadlines will be
met) if EDF is used, inequality (7.9) guarantees that the energy budget will
not be exceeded, and inequality (7.10) guarantees that the selected speeds are
within the allowable speed bounds. The knapsack problem, which is shown
to be NP-hard [24], is a specid case of the above problem in which only the
first inequality applieswith S§; = Syax Heuristic search algorithms[24] can be
adapted to solve the problem with energy constraints.

A different model is the imprecise computation model [21] in which the
value of atask, Tj, depends on the number of cycles, X, that the task actually
executes. Thisdependenceisusually expressed intheform of anon-decreasing
continuousvalue function V; (X;), in which more reward is given when the task
executes more cycles.

Formulated in terms of reward functions, the problem is now to find the
alotment X, i=1,...,N, and the execution speeds § such that to

N
maximize Z\/i (X) (7.112)

subject to N X )
Zi— <1 (7.12)

ST,

Zlgl X| Tiem < Eiem (7.13)
X <G (7.14)
Shin < S < Shmax (7-15)

Thisisstill an open problem and one of our next research targets.
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8. Concluding remarks

In thischapter, we have introduced and described the concept of power man-
agement points (PMPs) in real-time systems. The main purpose of aPMPisto
manage energy consumption by adjusting the processor speed based on task
profiling information (static power management) and/or execution progress
information (dynamic power management). Both static and dynamic power
management can be done at the task-level, at the system-level, or a combina-
tion thereof. Although the static scheme is based on the worst-case workload
offered to the system, the dynamic schemes is based on the fact that compu-
tations often finish before their predicted worst-case workload. Therefore, the
dynamic schemes can take advantage of reclaiming unused computation (based
on past actual workload) and speculatively predicting future early completions
(based on statistical information of future workload).

The basic concept of reclaiming unused computation time to manage pro-
cessor speed was described for single processor systems. The extension of
these principles to multiprocessor systems depends on the mechanism used
for mapping tasks to processors. If such a mapping is done statically, then
the extension is rather simple, whileif the mapping is done dynamically, then
the extension should consider the interaction between the scheduling and the
mapping mechanisms. For more details about power management in multipro-
cessors, see[39, 41].

The overhead of power management is a very important factor that deter-
mines the effectiveness of using PMPs. Given that a PMP has to consume
some energy to save energy, the issue of the optimal number of PMPs and the
placement of these PMPs becomes a crucial factor for the overall energy effi-
ciency of the system. In [1], the tradeoff between the cost and the benefits of
the PMP is discussed in a simple computational model. The assessment of this
tradeoff in more realistic environmentsis still open for research.

A basic assumption made in this chapter is that the speed of the processor
can be changed continuously within a given range. Current variable speed
processors, however, allow the processor speed to be set only to a set of discrete
values. For instance, the Transmeta processor allows the speed to be set to
increments of 33 MHz within the range from 200 to 700 MHz. The power
management technique that we described for the continuous speed range can
be safely applied to the discrete speed processors if the speed is set to the
closest available speed that is faster than the calculated one. Such a speed
setting may not be optimum but guarantees that the deadlines are met.
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