
Chapter 7

POWERMANAGEMENT POINTS IN POWER-

AWARE REAL-TIME SYSTEMS

Rami Melhem, Nevine AbouGhazaleh, Hakan Aydin, Daniel Moss�e

Department of Computer Science

University of Pittsburgh

Pittsburgh, PA 15260�

{melhem, mosse}@cs.pitt.edu

Abstract Managing power consumption while simultaneously delivering acceptable levels
of performance is becoming a critical issue in several application domains such
as wireless computing. We integrate compiler-assisted techniques with power-
aware operating system services and present scheduling techniques to reduce
energy consumption of applications that have deadlines. We show by simula-
tion that our dynamic power management schemes dramatically decrease energy
consumption.
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1. Introduction

As the remarkable advances in VLSI and communication technologies have
culminated in a proliferation of mobile, embedded and wireless computers in
the last decade, system designers are faced with a relatively new and difficult
resource management problem. Most of these devices usually have to rely
on batterypower, which is usually rather scarce. Moreover, many popular
and emerging applications designed for these platforms, such as wireless com-
munication, and image/audio/video processing, tend to consume considerably
higher power than more traditional tasks. Some recent studies even advocate
the replacement of CPU-centric operating system design view by the energy-
centric view [37]. In short, the power bottleneckhas to be addressed in an
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efficient way to guarantee the functionality in the upcoming pervasive comput-
ing era.

The Engineering and Computer Science communities at large confronted the
low power system design problems with a multi-dimensional effort [12, 28].
Hardware and software manufacturers have agreed to introduce standards such
as the ACPI (Advanced Configuration and Power Interface) [16] for power
management of laptop computers that allows several modes of operation, such
as predictive system shutdown [34]. Such on-going low-power research has
important implications for real-time systems design, simply because most of
the applications running on power-limited systems inherently impose temporal
constraints on the response time (such as real-time communication in satel-
lites).

An increasingly popular technique for saving power, Dynamic Voltage Scal-
ing (DVS) [38], is based on exploiting the convex (usually quadratic) relation
between the supply voltage and the CPU power consumption. In addition, it
has been long recognized that the CPU clock frequency (hence, the speed)
should be reduced in parallel with the supply voltage [8]. In this case, it is
possible to obtain striking (quadratic) energy savings at the expense of roughly
linearly increased response time. One aspect that needs to be carefully taken
into consideration is the energy and delay overhead associated with speed/volt-
age changes. Some studies are optimistic about the overhead imposed by DVS
schemes [30]; we examine this issue in more detail in Section 4.

The DVS framework aims at stretching out task executions through speed
and voltage reduction. For real-time systems, the proposed DVS schemes fo-
cus on minimizing energy consumption in the system, while still meeting the
deadlines. The extensive literature on traditional real-time scheduling theory
[22, 7] deals with settings where the CPU speed is constant, and hence can not
be directly applied.

The principle of slowing down the processor can and should be applied in
multiple dimensions. The natural starting point is the staticDVS dimension,
where the aim is to compute the optimal speed assignments for a given real-
time task set and a (worst-case) workload.

In one of the earliest studies in this line, Yao et. al [40] provided an optimal
static off-line scheduling algorithm to minimize the total energy consumption
while meeting all the deadlines, assuming independent aperiodic tasks with
release times and timing constraints. The algorithm has O(nlog2 n) time com-
plexity for a system of n tasks. Heuristics for on-line scheduling of aperiodic
tasks while not hurting the feasibility of off-line periodic requests are proposed
in [14], which also suggested assigning a uniform speed value to all periodic
tasks using the total task utilizationas a basis. Non-preemptive power aware
scheduling is investigated in [13]. Concentrating on a periodic task set with
identical periods, the effects of having an upper bound on the voltage change
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rate are examined in [15]. The authors show that the problem is intractable
even with a linear change rate and propose a heuristic to tackle the problem.
The static solution for the general periodic model where tasks have poten-
tially different power consumption characteristics is provided in [4]. Aydin et.
al recently showed [5] the equivalence of the static dynamic voltage scaling
problem to the reward-based scheduling problem [3].

Designing a real-time system with worst-case workload assumption in mind
is common and often necessary. However, the actualworkload may be much
lower than the worst-case assumption in many real-time applications. Most of
the scheduling schemes presented in the above studies, while using exclusively
worst-case execution time (WCET) to guarantee the timeliness of the system,
lack the ability to dynamically take advantage of unused computation time. In
fact, applications usually exhibit a large variation in actual execution times;
for example, [9] reports that the ratio of the worst-case execution time to the
best-case execution time can be as high as 10 in typical applications. Conse-
quently, dynamically monitoring and reclaiming the ‘unused’ computationcan
be (and, as we show below, is in fact) a powerful approach to obtain consider-
able power savings and to minimize the effects of conservative predictions of
the actualexecution time by the WCET information. In this line of research,
the aim is to dynamically reduce the CPU speed of running task(s) by taking
into account the early completions in the history of task executions. The main
problem, naturally, is to determine the speed reduction amount that would not
compromise any timing constraints, in addition to choosing the tasks that will
be executed at the low speed.

One technique for dynamic reclaiming relies on slowing down the proces-
sor whenever there is only a single task eligible for execution [33], where a
set of periodic tasks scheduled by Rate Monotonic Scheduling [20] is consid-
ered. A more general dynamic reclaiming approach, based on comparing the
worst-case execution schedule to the actual schedule is proposed in [17]. In
that study, a detailed analysis is provided for frame-based tasks; the exten-
sion to general Earliest Deadline First (EDF) scheduling of periodic tasks is
sketched. One assumption of that work is that there are (only) two discrete
speed levels. However, systems which are able to operate on a (more or less)
continuous voltage spectrum are rapidly becoming a reality thanks to advances
in power-supply electronics and CPU design [10, 27]. For example, the Crusoe
processor is able to dynamically adjust clock frequency in 33 MHz steps [36].

Despite the gains due to static and dynamic reclaimingschemes, there is
still room for additional savings provided that we have access to the statisti-
cal workload information; in this chapter, we present also aggressive schemes
where we anticipatethe early completions of futureexecutions and specula-
tively reduce the CPU speed. This approach immediately raises two inter-
twined questions, namely, (a) the levelof aggressiveness that justifies specula-
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tive speed reductions under a given probability distribution of actual workload;
and (b) the issue of guaranteeing the timing constraints.

Note that both dynamic reclaiming and aggressive scheduling techniques
can be adopted at the task leveland at the system level. In the former, user-
or compiler-inserted Power Management Points (PMPs) allow intra-task mon-
itoring of the execution and controlling speed of a given task to improve the
energy savings [1, 32]. In the latter, the operating system invokes the PMPs at
context switch times, taking advantage of the global knowledge (i.e., system-
wide workload). Finally, it is worth mentioning that a whole new line of re-
search that tolerates (and tries to minimize) deadline misses for the sake of
energy savings has recently emerged [23, 18, 19, 31, 11]. These softreal-time
scheduling techniques also make use of the statisticalworkload information
while determining the CPU speed assignments.

In this chapter, we summarize the results of our multi-layered research effort
in power-aware scheduling for real-time systems. Our solution is based on a
three-dimensional approach that can be applied at the task level or at the system
level, while taking into account energy and time overheads. Hence, we present:

1 A static(off-line) solution to compute the optimal speed, assuming worst-
case workload,

2 A dynamic(on-line) speed adjustment mechanism based on the actual
workload, used to reclaim unused time/energy, when executions fall short
of their worst-case workload, and

3 An adaptive and speculativespeed adjustment mechanism based on sta-
tistical information about the workload, used to anticipate and compen-
sate probable early completions of future executions.

We emphasize once again that, in the context of real-time systems, all these
components should be designed not to cause any deadlines to be missed even
under the worst-case scenario: the aim is to meet the timing constraints while
simultaneously and dynamically reducing power consumption as much as
possible.

2. Real-time task and system models

Typical real-time research assumes that a task, τi , has a deadline, Di , which
is derived from the system’s real-time requirements. If we assume that a task
is ready at time 0, then Di can be seen as the length of the time interval within
which τ i is allowed to execute. Given that variable voltage CPUs are available,
the time to execute a program, Pi , depends on the processor speed. We will
characterize a task (we will use task τi and program Pi to denote the same
entity) by the worst case number of CPU cycles, Ci , needed to execute the
program.
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In order to simplify the analysis and to allow for the derivation of analytical
formulas, we would like to assume that Ci is independent of the CPU speed
for a given processor architecture. This assumption, however, does not hold if
the speed of the memory system is independent of the speed of the CPU, since
memory references will consume larger number of cycles when the processor
speed is high, thus increasing the total number of cycles needed to execute the
program. For this reason, we assume that Ci is the worst case number of CPU
cycles needed to execute a program at the maximum processor speed.

We have conducted a number of simulation experiments using SimpleScalar
3.0 [6] (a micro architectural simulator) to determine the degree of pessimism
in the definition of Ci . These experiments show that, with on-chip caches and
low cache miss rates, Ci does not change substantially with the processor speed.
For the Li, Perl, Go and Compress programs from the SPEC benchmarks [35],
changing the processor speed from 700 MHz to 300 MHz changed the number
of CPU cycles needed to execute the benchmarks by 0.01%, 1.2%, 1.9% and
0.6%, respectively. In all the experiments, the default SimpleScalar configura-
tions for the L1 and L2 caches are used and no disk I/O is performed (typical
assumption for real-time systems).

In this chapter, we normalize the units of Ci such that the maximum proces-
sor speed is 1. That is, if the maximum processor speed is s CPU cycles per
second, then we define a hypercycleto consist of s CPU cycles and express
Ci in terms of the number of hypercycles. The maximum processor speed is
thus normalized to Smax= 1 hypercycles per second. We will simply refer to
hypercycles by “cycles”, and thus, at Smax, the time for executing Ci cycles is
Ci seconds.

Modeling control 
ow

We consider a general form of program execution in which a program Pi

is divided into ni segments, τi;( j);1 � j � ni , where a segment is a loop, a
procedure call or, in general, any subgraph of the control flow graph of Pi

(see Figure 7.1). We assume that each segment τi;( j) executes a maximum
of Ci;( j) cycles. Each segment is represented by a circle. A segment that is
composed of a loop is represented by a square and a number representing the
maximum loop index. Note that a “segment flow graph” is a compact version
of the control flow graph of the program, in which subgraphs are replaced by
single nodes. Each execution of the program will follow a specific path from
the start node to an end node.

For any given node, j , in the segment flow graph, let Π wci;( j) denote the
maximum number of cycles to complete the execution of the program, starting
at the beginning of segment j . Clearly, Π wci;( j), 1 � j � ni can be computed
recursively from
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Figure 7.1. Schematic of a segment flow graph.

Π wci;( j) =Ci;( j)+ max
k2B( j)

fΠ wci;(k)g (7.1)

where B( j) is the set of children of node j in the segment flow graph. If node
1 represents the first segment in the program, then Ci = Ci;(1) represents the
worst case execution of the entire program Pi .

Although knowing the worst case execution scenario of a task is essential
to guarantee that a task meets its deadline, usually a program, Pi , executes for
much less than its worst case estimate, Ci [9]. This is because the input data
and system architecture (e.g., the amount of cache in the system) determine
not only the actual number of cycles the segment executes (typically less than
Ci), but also determines the execution path of Pi . If we denote by C avgi;( j) the
average number of cycles consumed in the execution of segment j of Pi , then
the average number of cycles to complete the execution of Pi starting at the
beginning of segment j , denoted by Π avgi;( j), can be computed recursively
from

Π avgi;( j) =C avgi;( j)+ ∑
k2B( j)

Probk �Π avgi;(k) (7.2)

where Probk is the probability that execution proceeds from segment j to seg-
ment k. Clearly, execution should proceed from segment j to one of the seg-
ments in B( j), and thus ∑k2B( j)Probk = 1.
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Periodic task model

Typically, real-time systems execute periodic tasks, where each task τ i has
associated with it a period, Ti , which represents the interarrival time of consec-
utive instances of the task. We will assume that a task τ i is ready for execution
at the beginning of its period and should complete execution by the end of its
period. Frame-based systemsare special periodic real-time systems in which
a sequence of frames is repeatedly executed, and all tasks in a frame have the
same period, T , and the same initial phasing. In practice, many real-time sys-
tems are frame-based, since designing and verifying the correctness for such
systems is much simpler than for more general real-time systems.

Given a set of tasks, fτ1; : : : ;τNg, let U = ∑N
i=1

Ci
Ti

be the total utilization
of the task set under the maximum processor speed (recall that we normalized
Smax= 1). The utilizationU can also be seen as the load imposed on the system
by the task set under consideration. It is well known that if U � 1, Ti = Di ,
and EDF scheduling is used, then each instance of every task will meet its
deadline [20]. In this chapter, we will assume that there are no precedence
constraints among the N periodic tasks and that EDF is used to schedule these
tasks.

Power consumption model

Variable-voltage CPUs can reduce power consumption quadraticallyor cu-
bically at the expense of linearly increased delay (reduced speed) [15]. Thus,
any effective DVS scheme should be able to vary the voltage fed to the system
component and the frequency of the system clock. The power consumption
of the processor under the speed S is given by g(S), which is assumed to be a
strictly increasing convex function, represented by a polynomial of at least the
second degree [15]. If task τi occupies the processor during the time interval
[t1; t2], then the energyconsumed during this interval is

R t2
t1 g(S(t))dt, which is

equal to g(S)(t2� t1) if S is constant during the period [t1; t2]. Unless stated
otherwise, we assume that the CPU speed can be changed continuously be-
tween a minimum speed, Smin (minimum supply voltage necessary to keep the
system functional), and the maximum speed Smax. The idle processor power
consumption, gidle, is usually less than g(Smin) but larger than g(0).

The importance of the speed management is derived from the convexity of
the power function g(S). Specifically, if τ i is allotted Yi time units to execute,
then Si =

Ci
Yi

is the speed that will execute Ci in exactly Yi time units. Because
the function g is convex, we have

g(Si)Yi � g(S0)x+g(S00)(Yi �x)

for any S0 6= S00 and x such that S0x+S00(Yi �x) =Ci . This means that the total
energy consumption is reduced when the processor speed is uniform during
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the Yi time units. Note that in case of a single task, Yi = D, but when there are
several tasks, their allocations typically fall short of their deadline.

3. PMPs: Power Management Points

In the context of power management through CPU speed adjustment, a
power management point, PMP, is an abstraction that lets us reason about and
influence power management at specific points in time. Typically, a PMP will
have associated with it a piece of code that manages information about the ex-
ecution of the tasks in the system and decides about changing the CPU speed.
A PMP code can be part of the user’s program (executes in user space) or can
be part of the operating system (executes in kernel space). In either case, after
making a decision to change the CPU speed, a PMP typically makes the appro-
priate system calls to change both the CPU clock frequency and CPU voltage.
We distinguish between two types of PMPs.

A task-level PMPis invoked during the execution of a given task, τ i , and
uses information only about τ i to make decisions about τ i ’s execution
speed. Task-level PMPs may be inserted by the user or by the compiler
in the program. For instance, the user or the compiler may insert a PMP
at the beginning of each segment of the program.

A system-level PMPtakes a more global view of the system and uses
information about all the tasks in the system to make speed adjustment
decisions. For instance, after determining the next task to be dispatched,
the scheduler in an operating system may execute a PMP to determine
the execution speed of the next task.

To make a decision, a PMP uses task profile information, such as worst case
executions, average case executions and timing or performance constraints,
and execution progress informationsuch as CPU time consumption and early
termination of tasks. The task profile information can be precomputed and
stored, while the execution progress information must be collected at run time
with help from the hardware and/or the operating system. Different speed
adjustment schemes can be designed based on how a PMP computes the slack
existing in the system and on how to use this slack to carry out power (via CPU
speed) management.

3.1 Static (o�-line) power management

In static power management, a PMP computes the processor speed based
on the assumption that each task, τ i , will execute the maximum number of
cycles, Ci . If executing Ci cycles at speed Smax does not consume the entire
time allocated to τ i , then it is possible to reduce the speed of executing τ i

thus reducing the consumed energy, while still meeting the timing constraints.
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This power management scheme is called staticbecause only worst-case task
profile information and no execution progress information is used in speed
adjustments.

For task-level power management, if Di is the time allocated to execute τ i ,
then the speed during the execution of τ i can be safely set to Si =

Ci
Di

. Clearly,
if Si > Smax, then it is not possible to guarantee completion of τ i’s execution
within the given time constraints. Also, if Si < Smin, we should set Si = Smin.
A single PMP at the beginning of task’s execution is needed to calculate and
set the processor speed to Si .

For system-level power management of N periodic tasks scheduled using
EDF, the convexity of the power function, g(S), implies that all deadlines can
be met and that the total energy is minimized when the speed of the processor
is the same for all the tasks. Hence, when executing a periodic task set with
utilization U � 1, the energy consumption is minimized if the CPU speed is
set uniformly to maxfSmin;USmaxg.

In order to appreciate the energy savings resulting from static power man-
agement, assume conservatively that the idle power, gidle, is equal to zero and
assume that g(S) = αS3, for some constant α. If Tlcm is the least common
multiple of the periods T1; : : : ;TN, then, executing at Smax= 1 during Tlcm will
result in an energy consumption equal to ∑N

i=1 gi(Smax)
Ci

Smax

Tlcm
Ti

= αUTlcm. If
the speed is set to USmax, then the energy consumption during Tlcm reduces to
∑N

i=1 gi(U) Ci
USmax

Tlcm
Ti

= αU3Tlcm, which is a factor of U2 lower than αUTlcm. For
example, if U = 0:5, then static power management consumes only 25% of the
energy that is consumed without power management.

The optimality of the uniform speed based on the load assumes that the
power functions, gi(S), are the same for all tasks. However, due to the fact that
different tasks may use different hardware units and have different patterns of
memory and cache usage, we may have a different power consumption func-
tion, gi(), for each task τi . (The different power functions could refer to dif-
ferent tasks or different segments of the same task.) In this case, the energy
consumption is minimized when each task τ i executes at a speed Si derived
from solving the following optimization problem:

minimizef
N

∑
i=1

gi(Si)
Ci

TiSi
g

such that
N

∑
i=1

Ci

TiSi
� 1

Smin� Si � Smax
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The above formulation is obtained by noting that when the speed of execut-
ing τ i is set to Si , then each instance of τi executes for a time Ci

Si
, and thus the

fraction of time allocated to τ i (the time utilization) is increased from Ci
Ti

to Ci
TiSi

.
EDF can always meet the deadlines if the sum of utilizations of the tasks in the
system is less than one.

After solving the above minimization problem (see [4] for solution tech-
niques), the speed Si of each task, τi , can be stored in its process control block.
Before the scheduler dispatches τi , it calls a PMP to set the processor speed
to Si . That is, the processor speed change becomes part of the context switch
operation.

In summary, static power management for both task-level and system-level
aim at the same goal, namely fully utilizing the CPU in the system, assuming
worst case execution scenarios. When a single task is involved, the task-level
management is sufficient to determine the uniform speed of that task, but when
several tasks are involved, the operating system must intervene because it is the
only entity that knows about all tasks and their characteristics.

3.2 Dynamic (on-line) power management

Dynamic power management is based on the observation that tasks usually
do not execute their worst case scenarios, and thus by using execution progress
information, the processor speed can be adjusted during the execution to in-
crease the energy saving beyond that achieved by static power management.
To simplify the discussion, we assume that the power consumption function is
the same for all the tasks, and that Ss is the optimal speed obtained by static
power management.

When tasks do not execute their worst case scenario, slack (unused compu-
tation time) is generated dynamically in the system; the first task of a PMP is to
compute this slack. One way of estimating this slack is to determine whether
a task or task segment is running earlier than predicted by the worst-case sce-
nario. For instance, if the worst case scenario indicates that a PMP should be
reached at time twc and this PMP is actually reached at time tac (tac� twc), then
the difference of slackearly = twc� tac can be considered as an earliness slack
which can be used to slow down the processor.

An alternate way of looking at the earliness slackis to consider the work
(in terms of number of CPU cycles) that remains to be executed until the next
deadline, D. Let Πwc and Πav be the worst case estimate and the average case
estimate of that work, respectively. Given that static power management fully
utilizes the processor assuming worst case execution scenarios, the speed Ss

guarantees that the period from twc to the deadline D is exactly equal to Πwc
Ss

,
which is the time needed to execute Πwc at speed Ss. In other words, the slack
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D� tac�
Πwc
Ss

= D� tac� (D� twc) = twc� tac is the slack time between the
current time and the deadline, after accounting for the execution of Πwc at
speed Ss.

Given that the worst case execution scenario occurs very rarely, it is rea-
sonable to assume that a more useful estimate of the slack is obtained by as-
suming the average case scenario for the remaining work, rather than the worst
case scenario. For example, one may speculate that the usable slack is equal to
slackspeculate= slackearly+

Πwc�Πav
Ss

. This speculation is based on the assump-
tion that only the average case scenario for the remaining work will be exe-
cuted, and that this work will execute at speed Ss. The rationale behind using
slackspeculateis to consider the average case behavior, which is more common
than the worst case behavior.

After a PMP computes slack, it uses this slack to slowdown the execution
of the next task or task segment. Assuming that the worst case estimate of
the number of cycles in this next task or task segment is C, and that Ss is
the execution speed calculated from static power management, then the time
allocated to the execution of the C cycles is C

Ss
. Adding the slack to this time,

the new execution speed is computed as:

Snext=
C

C
Ss
+slack

(7.3)

However, it should be noted that there is a lower bound on the processor
speed in order to guarantee that, in the worst case, the remaining work will
be completed by the deadline D. Specifically, if the speed for executing the
next task or task segment is Snext, then this execution will consume at most
a time equal to C

Snext
. Hence, the remaining time until the deadline, D� tac�

C
Snext

should be at least large enough to guarantee that the worst case scenario
of the remaining work, Πwc�C, can finish by the deadline. Given that the
maximum speed is Smax, this remaining work will require at least Πwc�C

Smax
to

execute. Hence,

D� tac�
C

Snext
�

Πwc�C
Smax

should always hold, which means that

Snext�
C

D� tac�
Πwc�C

Smax

= Sf easible (7.4)

From Equations (7.3) and (7.4), we can put an upper bound on the amount
of slack that can be used to compute the next speed. Namely,

slack� slackmax= (D� tac�
Πwc�C)

Smax
)�

C
Ss

(7.5)
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Figure 7.2. An example of slack computation; height of box is CPU speed for task.

In Figure 7.2 we show an example to clarify the above slacks. The deadline
D is 50ms later than twc and the remaining Πwc = 25 million cycles should
execute at a speed Ss= 500 MHz to meet the deadline (in the figure, M denotes
a million cycles). It is assumed that a PMP is placed every 5 million cycles of
the remaining work. In the figure, the execution of C at speed S cycles is
represented by a rectangle whose area is C. The height of the rectangle is S
and its width, C

S, is the execution time. Assume that a PMP is reached at time
tac = twc� 5ms(recall that twc is reached in the worst case scenario). Figure
7.2(a) shows the earliness slack, while Figure 7.2(b) shows the speculative
slack assuming that Πav = 15 million cycles. Figure 7.2(c) shows the maximum
slack assuming that the next task consumes 5 million cycles and that Smax=
666MHz.

In general, the PMP can select any value for the slack between zero and
slackmax. In fact, a zero slack means that the PMP does not perform any dy-
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namic speed adjustment and selects the speed computed by static power man-
agement. A slack equal to slackmax is a very aggressive scheme which gives
all the available slack to the next task or task segment. This scheme may slow
down the next task or task segment too much without taking into consideration
the remaining computations in the system, perhaps causing the CPU speed to
be raised to Smax.

If a PMP is very aggressive in speculatively reducing the processor speed,
the next PMP may be reached at a time, t0ac, which is later than the time, t 0wc,
predicted by the worst case scenario, and the maximum slack, slackmax, may
be negative. The consequence of negative slack (too much aggressiveness)
is the setting of speed above Ss in order to meet the deadlines. As shown in
Figure 7.2(d), if slackmax= 15mswere used, Snext= 200 MHz; if the next task
executes its worst case scenario, then at the next PMP, slackmax is equal to
�2:5ms, which means that the speed has to be raised to 666 MHz in order to
guarantee that the deadline will not be missed.

4. The overhead of speed management

Changing the speed of a CPU takes time and energy, an overhead that was
ignored in the above estimation of the usable slack. In this section we study
how long and how much energy is spent in each PMP, and later compare this
overhead with the actual gains from DVS.

4.1 Time overhead

At every PMP, a time overhead is incurred for computingthe new speed,
Snext, and for changingthe speed from the current speed, Scurrent, to Snext

through a voltage transition in the processor’s DC-DC switching regulator (re-
sulting in a processor frequency change) and the clock generator. We denote
changing both voltage and frequency by the term speed change. In order to
guarantee that the deadlines are met, the above time overheads must to be con-
sidered.

When a PMP is added at the beginning of a segment τ i;( j), the estimates
Ci;( j) and C avgi;( j) should be modified to include the number of cycles, Fc,
needed to run the PMP code. From experiments with SimpleScalar 3.0, where
we implemented speed setting and inserted PMPs in different applications, we
observed that the overhead, Fc, of computing the new speed varied between
280 and 320 CPU cycles. Therefore, we consider Fc to be constant.

To change voltage, a DC-DC switching regulator is employed. This regula-
tor cannot make an instantaneous transition from one voltage to another [15].
When setting a new speed, both the CPU clock and the voltage fed to the CPU
need to be changed, incurring a wide range of delays. For example, the Strong
Arm SA-1100is capable of on-the-fly clock frequency changes in the range of
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59MHz to 206MHz where each speed and voltage change incurs a latency of
up to 150 µsec [25], while the lpARMprocessor [29] (a low-power implemen-
tation of the ARM8 architecture) takes 15 µs for a full swing from 10 MHz to
100 MHz. Another example is the Transmeta TM5400, which is specifically
designed for DVS [36]. Some systems can continue operation while changing
speed and voltage [29, 15], but the frequency continues to vary during the tran-
sition period. A conservative approach, which we adopt, is to assume that the
processor cannot execute application code during this period.

Hence, we assume that a fixed time, Ft , is needed for each speed step transi-
tion. That is, the time overhead for speed changes is Ft �d(Scurrent;Snext), where
d(Si;Sj) is a function that returns the number of speed steps needed to make
a transition between Si and Sj . In the Transmeta model, this function returns
how many multiples of 33MHz is the difference between Si and Sj .

The overhead of changing the speed should be accounted for in order to
guarantee that deadlines are met. Specifically, the maximum feasible slack,
slackmax, should be adjusted by subtracting this overhead before computing
the new speed. Moreover, because slackmax is computed assuming that the pro-
cessor runs at Smax, we should allow the time for a future PMP to switch the
processor speed to Smax to meet the deadline. This will require Ftd(Snext;Smax)
to switch the speed to Smax. In other words, slackmax computed by Equa-
tion (7.5) should be reduced by Ftd(Scurrent;Snext) +Ftd(Snext;Smax) to guar-
antee that deadlines are met.

4.2 Energy overhead

Given that a PMP executes code which is not part of the application code,
the energy consumed during the execution of a PMP is an overhead that exists
only because of the power management. In addition to the energy consumed
in executing a PMP, there is an energy overhead associated with the change
in voltage and frequency to change the CPU speed from Scurrent to Snext. This
overhead is proportional to the number of speed steps, d(Scurrent;Snext). In
the simulations presented below, we will assume that the energy overhead for
changing the speed is equal to Ft �d(Scurrent;Snext) �g(Scurrent). This means that
during the speed change, the CPU consumes power at a rate equal to its con-
sumption, while executing at speed Scurrent.

In the next two sections, we compare different power management schemes
that use different methods for estimating the slack and different schemes for
using the slack. These methods can take into consideration the energy and time
overheads, as discussed above.
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5. Task-level dynamic power management

Consider a task, τi , which is allotted a time Di to execute, and assume that a
PMP is executed at the beginning of segment j of this task. Moreover, assume
that the PMP is actually invoked at time tac, even though this PMP is supposed
to be called at time twc, according to the worst case scenario executing at speed
Ss. In order to compute the speed, Si;( j), for executing segment τi;( j), the PMP
needs to estimate the slack that it will use for speed adjustment. This slack can
vary between zero and slackmax, which, due to the time and energy overheads
should be modified from Equation (7.5) to

slackmax=
C

Sf easible
�

C
Ss
�Ft � (d(Scurrent;Si;( j))+d(Si;( j);Smax))

where Scurrent is the currently executing speed. Given that Si;( j) is not known,
it can be safely and conservatively approximated by Smin to obtain

slackmax=
C

Sf easible
�

C
Ss
�Ft (d(Scurrent;Smin)+d(Smin;Smax))

As described in Section 3, a PMP can use all or part of slackmax to compute
the speed of the segment. Then, for 0� slack� slackmax,

Si;( j) =
Ci;( j)

Ci;( j)

Ss
+slack

(7.6)

In [26], three specific schemes were described for the computation of the
slack. The first scheme, called Greedy, uses slack= slackearly. That is, it
uses the earliness slackto adjust the speed of the next task segment. The sec-
ond scheme, called Proportional, uses slack= slackearly

Ci;( j)

Π wci;( j)
. That is, it

distributes the earliness slack to all the future segments and gives to the next
segment only a proportional amount of that slack. The third scheme, called

Statistical, uses slack= minfslackmax;slackspeculate
Ci;( j)

Π avgi;( j)
g. That is, it as-

sumes an average case scenario for the computation of the slack and distributes
this slack to all the remaining segments in a proportional fashion.

We implemented a simulator to experiment with the different power man-
agement schemes. Inputs to the simulator are a segment flow graph, the ratio
of the worst case execution time to the best case execution time (β), and the
system utilization or load (U). In the graphs below, the energy consumption
values are normalized to the energy consumed by the Static scheme. We ran
experiments using a synthetic program that has a segment flow graph similar
to one shown in Figure 7.1 where Ci values, the loop indexes, and the actual
execution times for each segment are drawn from a normal distribution.
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From our experiments with SimpleScalar, we extracted Fc = 300 cycles and
Ft = 320 cycles for a single step of 33 MHz. These values are used in the
calculation of the total overhead associated with each PMP, and consequently
augmented the Ci of each task i.
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Figure 7.3. Simulation results for β= 3 and load = 0.5.

In Figure 7.3, we show the results of simulating task-level dynamic power
management for the Greedy and the Proportional schemes mentioned above, as
well as for a scheme which uses slack=minfslackmax;Kslackspeculate

Ci;( j)

Π avgi;( j)
g,

where K represents the aggressiveness in using the slack for slowing down the
next segment. We call this scheme, which is more flexible, K-speculative.
Note that the Statistical scheme is the K-speculative scheme with K = 1. As
shown in the figure, Proportional and Greedy consume less energy than Static,
because of the dynamic slack reclaiming. In addition, varying the aggressive-
ness factor K dramatically affects the K-speculative scheme: for K = 0, Static
outperforms K-speculative since the latter does not take any advantage of the
reclaimed slack, andit has to pay the overhead cost at each PMP, while Static
has overhead only once, at the beginning of execution. At the other end of
the spectrum, it is clear that K-speculative tends to Greedy when K increases.
K-speculative reaches its minimum consumption around K = 1, that is, ap-
proximately the average behavior of the system.

To study the effect of the variability of the workload, we experimented with
the same program at different values of β = Ci

Ci�2(Ci�C avgi)
(see Figure 7.4).

We found that the larger variability, the more dynamic slack to reclaim, and
thus the smaller energy consumption. However, the pattern is very similar for
all values of β.
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Figure 7.4. Simulation results for different values of β with load = 0.5.

6. System-level dynamic power management

The first observation that we make in this section is that the speed adjust-
ment schemes used in system-level dynamic power management for frame-
based periodic tasks are similar to the schemes described in the previous sec-
tion for task-level power management. The difference is that task-level man-
agement adjusts the speed for n segments of the same task with a common
deadline, D, while system-level management adjusts the speed for N frame-
based tasks with a common deadline, T .

The second observation is that it is a good idea to combine task-level and
system-level dynamic management, since the former carries out adjustments
within the task’s allotted time, while the latter attempts to adjust speeds be-
tween tasks (when context switches occur). This way, system-level comple-
ments the task-level dynamic management, allowing for benefits stemming
from both compilers and operating systems.

Thirdly, we note that the case of general periodic tasks is more complicated
than frame-based systems because each task has a different deadline. For sim-
plicity of presentation, we do not take the PMP overhead (of computing or
changing speeds) into account in this section. The principles are the same as
outlined in Section 4. To detect earliness slack, we perform comparisons be-
tween the actual execution history and the canonical schedule S static, which
is the static optimal schedule on which every instance presents its worst-case
workload to the processor and instances run at the constant speed Ss. The CPU
speed is adjusted (i.e., a PMP is executed) only at task dispatch times.
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Due to the periodic nature of the tasks we consider, it is impractical to pro-
duce and keep the entire static optimal schedule S static (length of S static could
be Tlcm) during the execution. To address feasibility and efficiency while tasks
execute, complete, and re-arrive dynamically, we choose to construct and up-
date a data structure (called α-queue) that helps to compute the earliness slack
at dispatch time. At any time t during actual execution, the α-queue con-
tains information about the (up to) N tasks that would be active (i.e., running
or ready) at time t in the worst-case static optimal schedule S static. That is, α-
queue is the ready queue of S static at time t and it is constructed and maintained
so that the remaining execution time, remi(t), of τi at time t in S static, under the
static optimal speed Ss, is available (note that remi(t)> 0).

In this chapter, we assume that tasks are scheduled and dispatched according
to EDF* policy, which is the same as EDF [20], but if deadlines are the same,
the task with the earliest arrival time and then lowest task id has the highest
priority. This EDF* priority ordering is essential in our approach because it
provides a total order on the priorities. (Any scheduling policy that provides
total order on priorities will work as well.) We denote the EDF* priority-level
of the task i by d�

i ; low values denote high priorities.
To relate the α-queue with the computation of earliness slack, let wS

i (t) de-
note the remaining worst-case execution time of task τ i under the speed S at
time t. Note that when task τx is being dispatched, tasks with higher priority
that are still in the α-queue must be already finished in the actual schedule
(since τx currently has the highest EDF* priority), but they would have not yet
finished in S static.

Therefore, for any task τx which is about to execute, any unused compu-
tation time (slack) of any task in the α-queue having strictly higher priority
than τx will contribute to the earliness of τ x along with the already-finished
portion of τx in the actual schedule. That is, total earlinessof τ x is no less than
εx(t) = ∑ijd�

i <d�

x
remi(t)+ remx(t)�wSs

x (t) = ∑ijd�

i �d�

x
remi(t)�wSs

x (t).

The α-queue can be easily implemented using the following rules:

R1. Initially the α-queue is empty.

R2. Upon arrival, each task τi ”pushes” its worst-case execution time under
speed Ss to the α-queue in the correct EDF* priority position (this hap-
pens only once for each arrival, no re-push at ’return from preemptions’).

R3. As time elapses, the elements in the α-queue are updated (consumed)
accordingly: the remi field at the head of α-queue is decreased with a
rate equal to that of the passage of time. Whenever the remi field of the
head reaches zero, that element is removed from α-queue and the update
continues with the next element. No update is done when the α-queue is
empty.
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Note that, at time t, theα-queue, updated according to the rules R1, R2
and R3, contains only the tasks that would be ready at time t in the static
optimal scheduleS static. This observation stems from the following: (a) α-
queue is ordered according to EDF* order, (b) every arriving task pushes its
remaining worst-case execution time according to Ss into the α-queue only
once, (c) the queue is updated only at the head, reflecting the fact that only the
task with the highest EDF* priority would be running in S static, and (d) a task
that would have finished in S static (i.e., rem= 0) is removed from the α-queue.
This effectively yields a dynamic imageof the ready queue in S static at time t.

Note that the dynamic reduction of remi in R3 above does not need to be
performed at every clock cycle; instead, for efficiency, we perform the reduc-
tion whenever a task is preempted or completes, by taking into account the
time elapsed since the last update. The above approach relies on two facts.
First, the system-level speed adjustment decision will be taken only at ar-
rival/preemption and completion times, and it is necessary to have an accurate
α-queue only at these points (if speeds are to be changed at other points like
the task-level PMPs, the update of remi must reflect that). Second, between
these points, each task is effectively executed non-preemptively.

As mentioned in Section 3 any specific algorithm should specify the exact
amount of earliness slack. One natural choice is to use εx(t), that is, to reduce
the speed so as to profit from the full earliness. We call this simply Dynamic
Reclaiming Algorithm(DRA).

6.1 Speculative Speed Reduction

Another dimension of the reclaiming process is based on the fact that we
may speculate on how early tasks will finish. This speculative move is similar
to the one for frame-based systems, but the periodic model has different dead-
lines and periods per task. With tasks arriving and departing dynamically, we
need to make sure that no deadlines are violated while speculatively reducing
the speed of the current task.

To simplify this speculative slack management, we restrict the speculative
power management to occur only when we can limit their effects upto the next
event (NE) that corresponds to the arrival/deadline of any task. When we can
ensure that a ready task τx will not finish beyond NE, we can guarantee that
it will complete before its deadline (because, by definition, it is not later than
NE). Even then, we may need to increase the speed of other tasks τx+1; :::;τr

that also complete before NE to guarantee timeliness, since these tasks may be
delayed if a worst-case scenario occurs for τx. Clearly, all these speed adjust-
ments should adhere to Smin and Smax.

In addition to tasks that finish before NE, even the highest priority ready
task that completes after NE, τr+1, may provide a portion of its time allocation
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under certain conditions. For simplicity of presentation, we do not describe
this more complex scheme (for details, see [5]).

As in frame-based systems, after computing slackspeculateand slackearly, we
can assign all or some of this slack to the next task to be executed. This is
controlled by an aggressiveness parameter that controls how much of the slack
will be used by the next task and how much will be “saved” for future tasks.
The computation of these slacks is very similar to the one in Section 5, where
the deadline D is replaced by the next event NE. In fact, if twc� tac > 0, we
will be able to slow down task τ x. Further, if there are other ready tasks that
will complete before NE, we need change the speed settings for these tasks.

6.2 Evaluation of the Dynamic Schemes

In order to experimentally evaluate the performance of DRA, we imple-
mented a periodic scheduling simulator for EDF* policy. We implemented the
following schemes: (a) Static uses constant speed Ss, and switches to power-
down mode (i.e., S= Smin) whenever there is no ready task; (b) DRA, which
reflects only using slackearly, and (c) SPECULATE, which uses slackspeculate.
All graphs shown here are normalized to the Static scheme, and use the best
available aggressiveness parameter (which, similar to frame-based systems, is
around 1).

In our experiments, we investigated the average performance of the schemes
over a large spectrum of worst-case utilization U (or load) and variability in
actual workload (β). The periods of the tasks were chosen randomly in the
interval [1000, 32000], Smin is set to 0.1, and Ss is set to U . The results shown
here focus on the average energy consumption of task sets containing 30 tasks
each and random values from a normal probability distributionfunction; results
with different number of tasks and uniform distribution are rather similar [2].
The mean and the standard deviation for any task, τ i , are set to C avgi and
Ci�C avgi

3 respectively, for a given β, as suggested in [33]. These choices ensure
that, on the average, 99.7% of the execution times fall in the interval [Ci �
2(Ci �C avgi);Ci]. For each task set, we measured the energy consumption
using a cubic power/speed function [15].

E�ect of Utilization. We observed that the energy consumption has
very little variation when the utilization of the task set (i.e., U) is changed. This
is because the use of optimal speed Ss results in having very similar effective
utilization, for any value of U . In other words, when the utilization decreases,
the speed decreases making the CPU fully utilized.

E�ect of β. The simulation results confirmed our prediction that the
energy consumption would be highly dependent on the variability of actual
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workload. The average energy consumption of the task sets, as a function of β,
with U = 0:6, is shown in Figure 7.5.
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Figure 7.5. Effect of variability in actual workload (load = 60%)

When β = 1, there is no CPU time to reclaim dynamically, and thus the
energy consumption is the same for all three techniques, as expected.
However, once the actual workload starts decreasing (that is, increasing
β), DRA and SPECULATE are able to reclaim unused computation time
and are able to save additional energy.
Once we increase the β beyond 4, power savings of DRA and SPECU-
LATE continue to increase, but the improvement is not as impressive as
the case where that ratio is � 4. This is because the expected workload
converges rapidly to 50% of the worst-case workload with increasing β
(remember that the mean of our probability distribution is C avgi .)

7. Maximizing reward while satisfying time and
energy constraints

So far, we have assumed that the main goal of power management is to
minimize the energy consumption while meeting timing constraints. In this
section, we will consider a different model in which the goal of the power
management is to maximize the system valuewhile meeting both timing and
energy constraints. In this reward basedmodel, each task τ i has a certain
“value”, vi . Given timing and energy constraints, the goal is to select the tasks
to execute and the speed at which these tasks should execute such that the total
value of the system is maximized. In other words, the goal is to find a subset
M of f1; : : : ;Ng, such that when the tasks τ i , i 2 M, execute at speed Si , the
timing and energy constraints are satisfied, and the sum of the values of the
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tasks in M is maximized. To formalize the problem assume that Tlcm is the
least common multiple of the N periods, T1; : : : ;TN, and that Elcm is the energy
that is available for consumption during one Tlcm. Then, the problem is to find
the subset of tasks (the set M) and the execution speed Si for each task τi in
this subset to

maximize ∑
i2M

vi (7.7)

subject to
∑
i2M

Ci

SiTi
� 1 (7.8)

∑
i2M

gi(Si)
Ci

SiTi
Tlcm� Elcm (7.9)

Smin� Si � Smax (7.10)

Inequality (7.8) guarantees temporal feasibility (i.e., all deadlines will be
met) if EDF is used, inequality (7.9) guarantees that the energy budget will
not be exceeded, and inequality (7.10) guarantees that the selected speeds are
within the allowable speed bounds. The knapsack problem, which is shown
to be NP-hard [24], is a special case of the above problem in which only the
first inequality applies with Si = Smax. Heuristic search algorithms [24] can be
adapted to solve the problem with energy constraints.

A different model is the imprecise computation model [21] in which the
value of a task, τi , depends on the number of cycles, Xi , that the task actually
executes. This dependence is usually expressed in the form of a non-decreasing
continuous value function Vi(Xi), in which more reward is given when the task
executes more cycles.

Formulated in terms of reward functions, the problem is now to find the
allotment Xi , i = 1; : : : ;N, and the execution speeds Si such that to

maximize
N

∑
i=1

Vi(Xi) (7.11)

subject to N

∑
i=1

Xi

SiTi
� 1 (7.12)

N

∑
i=1

gi(Si)
Xi

SiTi
Tlcm� Elcm (7.13)

Xi �Ci (7.14)

Smin� Si � Smax (7.15)

This is still an open problem and one of our next research targets.
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8. Concluding remarks

In this chapter, we have introduced and described the concept of power man-
agement points (PMPs) in real-time systems. The main purpose of a PMP is to
manage energy consumption by adjusting the processor speed based on task
profiling information (static power management) and/or execution progress
information (dynamic power management). Both static and dynamic power
management can be done at the task-level, at the system-level, or a combina-
tion thereof. Although the static scheme is based on the worst-case workload
offered to the system, the dynamic schemes is based on the fact that compu-
tations often finish before their predicted worst-case workload. Therefore, the
dynamic schemes can take advantage of reclaiming unused computation (based
on past actual workload) and speculatively predicting future early completions
(based on statistical information of future workload).

The basic concept of reclaiming unused computation time to manage pro-
cessor speed was described for single processor systems. The extension of
these principles to multiprocessor systems depends on the mechanism used
for mapping tasks to processors. If such a mapping is done statically, then
the extension is rather simple, while if the mapping is done dynamically, then
the extension should consider the interaction between the scheduling and the
mapping mechanisms. For more details about power management in multipro-
cessors, see [39, 41].

The overhead of power management is a very important factor that deter-
mines the effectiveness of using PMPs. Given that a PMP has to consume
some energy to save energy, the issue of the optimal number of PMPs and the
placement of these PMPs becomes a crucial factor for the overall energy effi-
ciency of the system. In [1], the tradeoff between the cost and the benefits of
the PMP is discussed in a simple computational model. The assessment of this
tradeoff in more realistic environments is still open for research.

A basic assumption made in this chapter is that the speed of the processor
can be changed continuously within a given range. Current variable speed
processors, however, allow the processor speed to be set only to a set of discrete
values. For instance, the Transmeta processor allows the speed to be set to
increments of 33 MHz within the range from 200 to 700 MHz. The power
management technique that we described for the continuous speed range can
be safely applied to the discrete speed processors if the speed is set to the
closest available speed that is faster than the calculated one. Such a speed
setting may not be optimum but guarantees that the deadlines are met.
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