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1.1 Introduction

The performance of modern computing systems has steadily increased in

the past decade thanks to the ever-increasing processing frequencies and inte-
gration levels. However, such performance improvements have resulted in dras-

tic

increases in the power consumption of computing systems and promoted

energy to be a first-class system resource. Hence, power-aware computing has
become an important research area and several hardware and software power
management techniques have been proposed. The common strategy to reduce
power consumption in a computing system is to operate system components
at low-performance (thus, low-power) states, whenever possible.

As one of the popular and widely exploited power management techniques,

3



4 Book title goes here

dynamic voltage and frequency scaling (DVFES) reduces the processor energy
consumption by scaling down the supply voltage and processing frequency
simultaneously [46, 48]. However, executing an application at lower process-
ing frequencies (that is, at lower speeds) normally increases the computation
time. Consequently, for real-time embedded systems with stringent timing con-
straints, special provisions are needed to avoid deadline misses when DVFS
is employed to save energy. For various real-time task models, a number of
power management schemes have been proposed to minimize the energy con-
sumption while meeting the deadlines [4, 10, 12, 31, 36, 37].

Reliability has been a traditional requirement for computer systems. Dur-
ing the operation of a computing system, both permanent and transient faults
may occur due to, for instance, the effects of hardware defects, electromag-
netic interferences or cosmic ray radiations, and result in system errors. In
general, fault tolerance techniques exploit space and time redundancy [33] to
detect and possibly recover from system errors caused by various faults. It has
been shown that transient faults occur much more frequently than permanent
faults [9, 23], especially with the continued scaling of CMOS technologies
and reduced design margins for higher performance [19]. For transient faults,
which will be the focus of this chapter, the backward error recovery is an ef-
fective fault tolerance technique. This technique restores the system state to
a previous safe state and repeats the computation when an error has been
detected [33].

Until recently, energy management through DVFS and fault tolerance
through redundancy have been studied independently in the context of real-
time systems. However, there is an interesting trade-off between system energy
efficiency and reliability as both DVFS and backward recovery techniques are
based on (and compete for) the active use of the available CPU time (also
known as slack). Moreover, it has been recently shown that DVFS has a di-
rect and adverse effect on the transient fault rates, especially for those induced
by cosmic ray radiations [15, 19, 61], which further complicates the problem.
Therefore, for safety-critical real-time embedded systems (such as satellite
and surveillance systems) where both reliability and energy efficiency are im-
portant, reliability-aware power management (RAPM) becomes a necessity.
A number of reliability-aware power management schemes have been recently
developed by the research community to address the negative effects of DVFS
on system reliability. These schemes, which are the main focus of this chap-
ter, typically guarantee system reliability requirements by scheduling proper
recovery tasks while still saving energy with the remaining system slack.

In this chapter, we first present system models and state our assumptions
(Section 1.2). Then, the fundamental idea of reliability-aware power manage-
ment is introduced in the context of a single real-time task (Section 1.3.1).
For systems with multiple real-time tasks that share a common deadline,
the reliability-aware power management framework with individual recov-
ery tasks is presented (Section 1.3.2), followed by the scheme that adopts
a shared recovery task (Section 1.3.3). For general periodic real-time tasks
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that have different deadlines, the task-level recovery technique is first intro-
duced (Sections 1.4.1); then the utilization-based RAPM schemes for the ear-
liest deadline-first (EDF) algorithm and priority-monotonic RAPM schemes
for the rate-monotonic scheduling (RMS) algorithm are discussed (in Sec-
tions 1.4.2 and 1.4.3, respectively). The dynamic RAPM schemes that exploit
dynamic slack generated at runtime for better energy savings are also covered
(Section 1.5). We further discuss the RAPM schemes for energy-constrained
systems aiming at maximizing system reliability (Section 1.6). We provide an
overview of other related studies and identify some open research problems
(Section 1.7). At the end, a brief summary concludes this chapter (Section 1.8).

1.2 Background and System Models

In this chapter, we consider a single processor system with DVFS capabil-
ity. We consider the problems of how to minimize energy consumption without
sacrificing system reliability, and to maximize system reliability with a given
energy budget, while guaranteeing the timing constraints of real-time tasks.
To better characterize the settings and define the scope of the discussion, in
what follows, we first present task, system power and fault models and state
our assumptions.

1.2.1 Real-Time Tasks

In real-time systems, applications are generally modeled by a set of tasks,
which arrive periodically and need to finish their executions before a certain
deadline after their arrivals [29]. More specifically, we consider an application
that consists of a set of n independent real-time tasks I' = {T1,...,T,}.
The task T; is characterized by a pair (¢;, p;), where ¢; denotes its worst-case
execution time (WCET) and p; represents its period (which coincides with
its relative deadline). That is, task T; generates an infinite number of task
instances (also called jobs) and the inter-arrival time of two consecutive jobs
of T; is p;. Once a job of task T; arrives at time ¢, it needs to execute (in the
worst case) for ¢; time units before its deadline ¢+ p; (which is also the arrival
time of the task T;’s next job).

Given that the system under consideration adopts a variable-frequency
processor, we assume that the WCET ¢; of task T; is obtained under the
maximum processing frequency fi,q; of the processor. Note that, a number of
studies have indicated that the execution time of tasks may not always scale
linearly due to memory accesses or I/O operations [6, 40]. However, to simplify
our discussions, in this chapter, the execution time of a task is assumed to
scale linearly with the processing frequency. That is, at the scaled processing
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frequency f (< fiaz), task T; will take (in the worst-case) le% time units
to complete its execution.

1.2.2 Dynamic Voltage and Frequency Scaling

In many execution scenarios, real-time tasks may complete their execu-
tions well before their deadlines and leave the processor idle. Such idle time
can be exploited through the dynamic power management (DPM) technique
by putting the system to low-power sleep states to save energy. However, a
more preferable strategy is to execute tasks at low processing frequencies and
complete them just in time before the deadlines. This is due to the fact that
the dynamic power Py normally dominates in processors. Py is linearly related
to processing frequency f and quadratically related to the supply voltage Vgyq
(that is, Py ~ f-V2) [7]. Moreover, the operating frequency for CMOS circuits
is almost linearly related to the supply voltage. Hence, the dynamic power be-
comes essentially a convex function of the processor frequency when applying
DVFS [46] where the supply voltage and frequency are adjusted simultane-
ously. In modern processors, such frequency changes can be performed quite
efficiently (in a few cycles or microseconds [2, 13]). Therefore, we assume that
the overhead for DVFS is negligible (or such overhead can be incorporated
into the WCETS of tasks). Note that we will use the term frequency change
to stand for scaling both processing frequency and supply voltage in the rest
of this chapter.

In addition to dynamic power, another component in system power con-
sumption is leakage power, which becomes increasingly important due to
scaled technology size and increased levels of integration [25]. Moreover, it is
necessary to consider all power-consuming system components (such as mem-
ory [27]) in an effective power management framework. Several such system-
level power models have been recently proposed [12, 22, 25]). In this chapter,
we adopt a simple system-level power model, where the system power con-
sumption P(f) of a computing system at processing frequency f is given
by [61]:

P(f) = Py + MPing + Pg) = Ps + h(Pina + Cep f™) (1.1)

Here, P, denotes the static power, which includes the power to maintain basic
circuits and to keep the clock running. It can be removed only by powering off
the whole system. When there is computation in progress, the system is active
and A = 1. When the system is turned off or in power-saving sleep modes,
h=0.

P;na is the frequency-independent active power, which corresponds to the
power that is independent of processing frequency. For simplicity, unless spec-
ified otherwise, P;,q is assumed to be constant and same for all the tasks;
it can be efficiently removed (typically, with acceptable overhead) by putting
the system components (e.g. main memory) into sleep state(s) [27]. Py is
the frequency-dependent active power, which includes the processor’s dynamic
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power and any power that depends on the system processing frequency f (and
the corresponding supply voltage) [7, 27]. The effective switching capacitance
Cey and the dynamic power exponent m (in general, 2 < m < 3) are system-
dependent constants [7]. Despite its simplicity, this power model captures the
essential components of an effective system-wide energy management frame-
work.

The energy-efficient frequency: Since energy is the integral of power over
time, the energy consumed by a task executing at constant frequency f (<
fmaz) 18 E(f) = P(f) - t(f) = P(f) - Cf% Here. t(f) = Cf% denotes
the execution time of the task at frequency f. From the power model in
Equation (1.1), intuitively, executing the task at lower processing frequencies
can result in less energy consumption due to the frequency-dependent active
power Py. However, at lower frequencies, the task needs more time to complete
its execution and thus consumes more energy due to the static and frequency-
independent active power. Therefore, there exists a minimal energy-efficient
frequency fee below which a task starts to consume more system energy [22,
25]. Considering the prohibitive overhead of turning on and off a system (e.g.,
tens of seconds), we assume that the system is on for the operation interval
considered and Ps is always consumed. By differentiating E(f) with respect
to f and setting it to 0, we can find that [61]:

Pind
ee = | 7= Jmaz 1.2
o= gt 1 (12)

Consequently, for energy efficiency, the frequency f to execute any task should
be limited to the range fee < f < fimaz. Moreover, to simplify the discussion,
we assume that normalized frequencies are used and that the maximum fre-
quency is fmar = 1.

1.2.3 Transient Faults and Backward Recovery

Unlike crash failures that result from permanent faults, a soft error that
follows a transient fault typically do not last for long and disappears when
the computation is repeated. With the aim of tolerating transient faults, we
exploit temporal redundancy (that is, system slack) and employ backward
recovery techniques to tolerate soft errors. More specifically, when soft errors
due to transient faults are detected by, for example, sanity (or consistency)
checks at the completion time of a task, a recovery task is dispatched in the
form of re-execution [33]. The overhead for error detection is assumed to be
incorporated into tasks’ worst-case execution times.

Traditionally, transient faults have been modeled through a Poisson pro-
cess with an average arrival rate of A [49, 51]. With the continued scaling of
technology sizes and reduced design margins, it has been shown that DVFS
has a direct and negative effect on the arrival rate A due to the increased num-
ber of transient faults (especially the ones induced by cosmic ray radiations)
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at lower supply voltages [15, 19]. For systems with a DVFS-enabled processor,
the average rate of soft errors caused by transient faults at scaled processing
frequency f (and the corresponding supply voltage) can be expressed as [61]:

A(f) = 2o - g(f) (1.3)

where A\ is the average error rate corresponding to the maximum processing
frequency fimaz- That is, g(fmaz) = 1. With reduced processing frequencies
and supply voltages, the average error rate generally increases and g(f) > 1
for f < fmaz. In other words, g(f) is a non-increasing function of the proces-
sor frequency f.

Exponential fault rate model: The radiation-induced transient faults in
semiconductor circuits have been known and well studied for decades [67].
When high-energy particles strike a sensitive region in semiconductor devices,
a dense track of electron-hole pairs are deposited, which can accumulate and
exceed the minimum charge (i.e., the critical charge) required to flip the value
stored in a memory cell [21], or be collected by pn-junctions via drift and
diffusion mechanisms to form a current pulse and cause a logic error [26].
However, it has been a great challenge to model such soft errors caused by
transient faults considering the various factors, such as cosmic ray flux (i.e.,
number of particles per area), technology feature size, chip capacity, supply
voltage and operating frequency [39, 41, 68].

In general, when the supply voltage of a semiconductor device decreases,
the critical charge becomes smaller, which can lead to exponentially increased
transient fault rates [21, 41]. Such effects have been observed on both proces-
sors [38] and memory subsystems [68]. Moreover, in addition to high-energy
particles such as cosmic rays, which are more likely to cause transient faults in
circuits with smaller critical charge, lower-energy particles do also exist, and
in much larger quantities [67]. Therefore, considering the number of particles
in the cosmic rays and the relationship between transient fault rate, critical
charge and supply voltage, an exponential rate model for soft errors caused by
transient faults has been derived as [61]:

a(1—f)

A(f) = Ao~ g(f) = Aol0T-7ee (1.4)

In the expression above, the exponent d (> 0) is a constant which indicates
the sensitivity of the rate of soft errors to DVFS. The maximum error rate
at the minimum energy efficient processing frequency f.. (and corresponding
supply voltage) is assumed to be A4 = Ao109. For example, when d = 3,
the average rate of soft errors at the minimum frequency can be 1000 times
higher than that at the maximum frequency.
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1.3 Reliability-Aware Power Management

The preceding discussion shows that when the processing frequency (and
supply voltage) of a task is scaled down through DVFS to save energy, the
probability of incurring soft errors due to transient faults during the scaled
execution will drastically increase, which in turn leads to significantly-reduced
reliability. To compensate such reliability loss at lower supply voltage, special
provisions are needed when DVFS is employed. Suppose that the original re-
liability of a system denotes the probability of successful operation without
incurring any errors caused by transient faults for a given interval when there
is no power management (i.e. when all tasks are executed at the maximum
processing frequency fiaq.). With the goal of preserving system’s original re-
liability in the presence of DVFS, we now present the details of the reliability-
aware power management (RAPM) framework.

Specifically, we first introduce the fundamental idea of reliability-aware
power management in the context of a single real-time task. The approach
involves scheduling an additional recovery task to recuperate reliability loss
induced by power management (DVFS). Next, for systems with multiple real-
time tasks that share a common deadline/period, the RAPM scheme with
individual recovery tasks is discussed, followed by the scheme with a single
shared recovery task. The RAPM schemes for general periodic tasks with
different deadlines will be presented in Section 1.4.

1.3.1 The Case with a Single Real-Time Task

For systems with a single real-time task T, let R° denote the original
reliability of an instance of task T" when it runs at the maximum frequency
Ffmaz. R° is the probability of successfully completing the execution of the
task instance without incurring soft errors caused by transient faults. Since
system reliability depends on the correct execution of every instance of the
task, to achieve the objective of maintaining the system’s original reliability,
we can preserve the original reliability R for each instance of task T'.

The central idea behind RAPM is to schedule a recovery task using the
available slack before exploiting the slack for DVFS to save energy [55, 56].
As a concrete example, we consider a single task T' that has the worst-case
execution time ¢ and period p as 2 and 5, respectively. Suppose that an in-
stance of task T arrives at time ¢, which needs to complete its execution by
time ¢ + 5. As shown in Figure 1.1(a), we can see that there are S = 3 units
of slack available.

Without paying special attention to system reliability, the ordinary power
management would utilize all the available slack to scale down the processing
frequency of the task instance through DVFS for maximum energy savings
[4, 46]. Therefore, the scaled frequency for the task instance under the ordinary
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FIGURE 1.1: Ordinary and reliability-aware power management schemes.

power management will be f = % * fmaz = 0.4 (recall that fy,.. = 1), as
shown in Figure 1.1(b). In the figures, the X-axis represents time, the Y-axis
represents processing frequency (e.g., cycles executed per time unit), and the
area of the task box defines the workload (e.g., number of cycles) of the task
instance. By focusing on active power and assuming that P;,q = 0.1,Ccy =1
and m = 3 [7], from Equation (1.1), we can easily find that the ordinary power
management can save 63% of the active energy when compared to that of no
power management (NPM) where all tasks run at the maximum frequency.

However, as discussed earlier, with reduced processing frequency and sup-
ply voltage, the execution of task T' is more susceptible to errors caused by
transient faults [19, 61]. Suppose that the exponent in the exponential fault
rate model is d = 2 (see Equation (1.4)). At the reduced frequency f = 0.4, the
probability of incurring errors due to transient fault(s) during 7’s execution
can be found as:

s10327D)
pr=1—Ry=1—¢ M0 7
d(1—f) 2(1-0.4)
- 1_ e,)\olo 1—fee % —1— e—>\0010 1—0.37 0_}4
~ 1—(R%)? =1—(1-p")%°~200p° (1.5)

Here, the minimum energy-efficient frequency can be found as f.. = 0.37. R°
is the original reliability of task T and p° (= 1 — R) is the corresponding
probability of failure of task T’s scaled execution. Since p® is in general a
very small number (usually < 107%), we can see that, executing the task
instance of T at scaled frequency f = 0.4 can lead to approximately 200
times higher probability of failure figures. Such increase in the probability of
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failure during the execution of individual tasks will degrade the overall system
reliability, which is unbearable, especially for safety-critical systems where the
requirement for high levels of reliability is strict.

Instead of using all the available slack for DVFS to save energy, we can
also reserve part of the available slack for temporal redundancy to re-execute
the tasks incurring soft errors and thus increase system reliability [33]. Hence,
the central idea of reliability-aware power management is to reserve part of
the available slack and schedule a recovery task, which can recuperate the
reliability loss due to energy management. Then, the remaining slack can be
utilized by DVFS to scale down the execution of tasks for energy savings. For
simplicity, we assume that the recovery task takes the form of re-execution
and has the same size of the task to be recovered.

For the above example, 2 units of the available slack can be reserved for
scheduling a recovery task RT, as shown in Figure 1.1(c). The remaining 1
unit of slack can be utilized by DVF'S to scale down the processing frequency
of task T to f = ﬁ = 0.67. Note that, the recovery task RT will be invoked
only if the scaled execution of task T is subject to a soft error caused by
transient faults. Without considering the energy consumption of the recovery
task, executing task T at the scaled frequency f = 0.67 could yield 26%
energy savings when compared to that of no power management. Moreover,
since the recovery task takes the form of re-execution of its primary task, it
will be executed at the maximum frequency f,q. = 1 to ensure that there is
no deadline miss.

With the additional recovery task RT, the reliability R of task T will
be the summation of the probability of the primary task T' being executed
correctly and the probability of incurring errors due to transient faults during
task T’s execution while the recovery task RT is executed correctly. With the
assumption that the recovery task RT is essentially the re-execution of task
T at the maximum frequency finqq, its probability of successful execution will
be RY = ¢~*0¢ Thus, we have:

R = DSy (1 - e—W)S) ‘R"> R (1.6)

where A(f) is the average rate of soft errors due to transient faults at the
reduced frequency f. From the above equation, we can see that, the resulting
reliability for task 7' under RAPM is always better than its original reliability
RO.

Therefore, when the amount of available slack is larger than the worst-case
execution time of a task, the RAPM scheme can reserve part of the slack to
schedule a recovery task while using the remaining slack for DVFS to save
energy. With the help of the recovery task, which is assumed to take the
form of re-execution at the maximum frequency in case the scaled execution
of the primary task fails, the RAPM scheme guarantees to preserve a real-
time task’s original reliability while still obtaining energy savings using the
remaining slack, regardless of different error rate increases (i.e., different values
of d) and the scaled processing frequency [55, 56].
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1.3.2 Multiple Tasks with a Common Deadline

When there are multiple real-time tasks, the reliability-aware power man-
agement problem gains a new dimension. Here, we need to allocate the avail-
able slack to multiple tasks, possibly in different amounts, to maximize the
energy savings while preserving system reliability. We start our analysis with
systems where all tasks have the same period, which have been denoted as
frame-based task systems [35]. In such systems, the common period is con-
sidered as the frame of the application. Due to their periodicity, we consider
only the tasks within one frame for such systems, where all tasks arrive at the
beginning of a frame and need to complete their executions by the end of the
frame (that is, the common deadline).

Recall that the reliability of a system generally depends on the correct
execution of all its tasks. Although it is possible to preserve the original re-
liability of a given system while sacrificing the reliability of some individual
tasks, for simplicity, we focus on preserving the original reliability of each task
to guarantee the system original reliability. From the above discussions, we
know that, for any task whose execution is scaled down, the reliability-aware
power management can schedule a recovery task to recuperate the reliability
loss due to power management at the reduced supply voltage levels.

For ordinary power management that does not consider system reliability,
the optimal scheme for obtaining the maximum energy savings is to allocate
the available slack to all tasks proportionally and scale down their executions
uniformly [3, 46]. The optimality comes from the convex relationship between
the energy consumption of tasks and their processing frequencies. However,
when system reliability is considered, the proportional slack allocation scheme
may not be the most energy-efficient approach, especially for cases where the
amount of available slack is not enough to accommodate a separate recovery
task for each and every task.

An Example: We explain the key idea of the reliability-aware power man-
agement for systems with multiple real-tasks that share a common deadline,
again, through a concrete example. Here, the system consists of four tasks,
which have the same period of 7. If the worst-case execution time of each
task is 1 time unit, 3 units of slack time exist within each frame as shown in
Figure 1.2(a). It is not hard to see that the available slack is not sufficient to
accommodate a separate recovery task for each of the four tasks and not all
tasks can be scaled down under RAPM for energy savings.

If we adopt a greedy approach and allocate all the available slack to the
first task 71, a recovery task RT) (which takes 1 unit of slack) can be scheduled
and the remaining 2 units of slack can be utilized to scale down the processing
frequency of task Ty to f = %, as shown in Figure 1.2(b). Assuming the same
parameters as in in the power model in Section 1.3.1, simple calculation shows
that about 22% energy savings can be obtained compared to that of no power
management case. As explained earlier, the original reliability of task 77 is
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FIGURE 1.2: RAPM for multiple tasks with a common deadline.

preserved with the help of the recovery task RTj. Moreover, as tasks 15, T3
and T} are executed at the maximum frequency f,q., their original reliabilities
are preserved as well. Therefore, the overall system reliability is guaranteed
to be no worse than the system original reliability.

However, the greedy strategy of allocating all available slack to one task
may not be the most energy-efficient one and we can select more tasks for more
energy savings. In fact, the available slack is not enough to slow down all four
tasks. Moreover, if we select three tasks, all 3 units of available slack will be
utilized for scheduling the recovery tasks, which leaves no slack for DVFS and
no energy savings can be obtained. Instead, suppose that two tasks 77 and
Ty are selected. After scheduling their recovery tasks R17 and RT5 and using
the remaining 1 unit of slack to scale down the processing frequency of tasks
Ty and T», we obtain the schedule shown in Figure 1.2(c). Here, the scaled
frequency for tasks 77 and T» is fi2 = % and the energy savings can be calcu-
lated as 28% — a significant improvement over the greedy approach. Observe
that in this solution, the original system reliability is still preserved.

Optimal Task Selection: From this example, we can see that, one of the key
problems in the reliability-aware power management for frame-based real-time
tasks is to select an appropriate subset of tasks to apply DVFS. The execution
of the selected tasks will be scaled down after reserving part of the slack to
schedule a separate recovery task for each of them. The remaining tasks are
left intact and they run at the maximum processing frequency in order to
preserve their original reliability.

Intuitively, for a system with a given amount of available slack S, when
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more tasks are selected, more slack needs to be reserved for the recovery
tasks, which reduces the amount of slack for DVFS to scale down the selected
tasks and thus reduce the energy savings. Similarly, if fewer tasks are selected,
using the large amount of slack to scale down a few tasks may not be energy
efficient either. Therefore, there should exist an optimal subset of selected
tasks for which the energy savings are maximized. A natural question to ask
is whether there exists a fast (that is, polynomial-time) solution to the problem
of reliability-aware energy management for multiple tasks. Unfortunately, the
answer is negative, as we argue below.

Let us denote the total workload (computation requirement) of all tasks
by L = 37" ; ¢;. The available slack is S = D — L, where D is the common
deadline (also the frame of the task set). Without loss of generality, assume
that a subset of tasks are selected, where the total computation time of the
selected tasks is X. We have X < L and X < S. After reserving X units of
slack for recovery tasks, the remaining S — X units of slack could be used to
scale down the processing frequency for the selected tasks. Considering the
convex relationship between energy consumption and processing frequency,
the optimal solution to get the maximum energy savings can be obtained by
uniformly scaling down the execution of the selected tasks. Therefore, the
amount of fault-free energy consumption (without considering the execution
of recoveries that are needed only with a small probability) will be:

S
(L_X)(Pind+cef 'f:nnax) (17)

X\
Eiotar = PS'D+S<Hnd+c€f' (_> >+

where the first part represents the energy consumption due to the static power,
which is always consumed during the operation. The second part is the energy
consumption for the selected tasks and the third part is the energy consump-
tion of the unselected tasks. Simple algebra shows that, to minimize Ejotq,
the total size of the selected tasks should be equal to:
Ping + Cop\ 77
ind T ef) (18)

Xopt = S -
= (Pt

Hence, the value of X,,; can serve as a guideline for task selection to obtain the
best energy savings. If X, > L, all tasks should be selected and scaled down
uniformly for maximum energy savings. Otherwise (the case where X,,; < L),
if there exist a subset of tasks such that the summation of their computation
is exzactly Xopt, selecting that subset would definitely be optimal.

However, finding a subset of tasks with exactly X,p,+ units of total com-
putation time turns out to be NP-hard [57]. Note that, the reliability of any
single selected task under RAPM is better than its original reliability with the
help of its recovery task (Equation 1.6). To select as many tasks as possible, we
can adopt an efficient task selection heuristic, namely the smallest-task-first
(STF) scheme. That is, after obtaining X, for a given task set, we can find
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the largest value of k, such that the total computation of the first k smallest
tasks is no more than X,,;. The drawback of this heuristic is that, the differ-
ence between X, and the total computation of the selected tasks (denoted
as selection error) can be large, which may result in less energy savings. As
the second scheme, we can select tasks following the largest-task-first (LTF)
heuristic. That is, the tasks can be selected by processing them in decreasing
order of their size, as long as the selection error is larger than the current task.
Hence, LTF can ensure that the selection error is bounded by the size of the
smallest task. Interested readers are referred to [57] for further details.

The results of performance evaluation through extensive simulations, given
in [55, 56, 57|, show that the RAPM technique is able to preserve (even
improve) the overall system reliability, while the ordinary (but reliability-
ignorant) power management technique can result in reliability degradations
of several orders of magnitude. Moreover, RAPM schemes can still obtain up
to 40% energy savings where the gains tend to be higher at lower workloads.
However, since some amount of CPU time needs to be reserved for recover-
ies, the energy savings achieved by RAPM schemes are generally 20% to 30%
lower compared to those of ordinary power management schemes.

1.3.3 Shared Recovery Technique

The probability of incurring an error due to transient faults during the exe-
cution of a task is rather low, even for scaled execution at low supply voltages.
Hence, most of the recovery tasks will not be invoked at run-time. Moreover,
the required slack for multiple separate recovery tasks reduces the prospects
for energy savings with less available slack for DVFS. That is, the RAPM
scheme with individual recovery tasks is, in some sense, conservative. In fact,
when the execution of a scaled task completes successfully without incurring
any error, its recovery task will not be activated and the corresponding slack
time can immediately be made available for the next scaled task. Furthermore,
to preserve the original reliability of a task, it is sufficient to ensure that, at
the dispatch time of a task whose execution is scaled down, there is sufficient
slack time for a recovery (to re-execute the task) at the maximum frequency.

The key idea of the shared-recovery based RAPM scheme is to reserve slack
time for only one recovery block, which can be shared by all selected tasks at
run-time [53]. Therefore, more slack can be left for DVFS to scale down the
execution of the selected tasks and save more energy. Here, to ensure that the
recovery block is large enough to re-execute any scaled task at the maximum
frequency, its size needs to be the same as the largest selected task. As long as
there is no error caused by transient faults during the execution of scaled tasks
at run-time, the next scaled task can run at its pre-calculated low processing
frequency. When an error is detected during the execution of a scaled task,
the recovery will be triggered and the faulty task will be re-executed at the
maximum frequency. After that, a contingency schedule is adopted in the sense
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that all remaining selected tasks are executed at the maximum frequency until
the end of the current frame to preserve the system reliability.
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(c) Task T fails and recovers; T runs at fmaz
FIGURE 1.3: 2 tasks managed by the shared recovery technique.

The idea can be further illustrated with the following example. As shown
in Figure 1.3(a), there are two tasks Tj and T that share a common pe-
riod/deadline of 7. The worst-case execution times of T} and T, are 2 and 1,
respectively. The system potentially has access to 7—3 = 4 units of slack when
both tasks execute at the maximum frequency. If we consider the individual-
recovery based RAPM scheme, it can be found that selecting only task T3
to utilize all slack (while task T, runs at the maximum frequency) will yield
maximum energy savings. With the same parameters for the system power
model as in Section 1.3.1, the energy savings can be calculated as 33% with
respect to no power management scheme.

For the shared-recovery based RAPM scheme, only one recovery of size
2 units (the maximum size of tasks 77 and T%) is scheduled, which can be
shared by both tasks. The remaining 2 units of slack can be used to scale
down the execution of both tasks 77 and Tb at the frequency of f = %, as
shown in Figure 1.3(b). Compared to the no power management scheme, it
can be found that 40% energy can be saved, which is better than that of the
individual-recovery based RAPM scheme.

Figure 1.3(c) further shows the scenario where, after the detection of an
error due to transient faults, the shared recovery block is utilized to re-execute
task 77 at the maximum frequency. From previous discussions, we know that
the reliability of task 77 is no worse than its original reliability. Moreover,
by switching to the contingency schedule after recovering the faulty task T3
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and enforcing task 75 run at the maximum frequency, the original reliability
of task Ty is also preserved. To conclude, the shared-recovery based RAPM
scheme can still preserve the original reliability of a task system [53].

Our evaluation results show that the energy savings performance of the
shared-recovery based RAPM scheme is excellent — in fact, very close (within
5% difference for most cases) to that of the ordinary power management. Per-
haps unexpectedly, the results also indicate that the RAPM scheme with a
shared recovery task can offer non-trivial gains on the reliability side over
individual-recovery based RAPM schemes as well [53]. This comes from the
fact that, the shared-recovery based RAPM scheme provides a better protec-
tion for all single-fault scenarios that are typically much more likely than some
multiple-fault scenarios that the individual-recovery based RAPM schemes
provision for. Since optimizing the most common case is a well-known system
design technique, overall reliability achieved by the shared-recovery technique
tends to be better in most cases.

1.4 RAPM for Periodic Real-Time Tasks

For frame-based real-time tasks that share a common period/deadline, the
available slack within a frame is accessible to all tasks, which allows the use
of the shared-recovery based RAPM scheme. However, for general periodic
real-time tasks with different periods, the active task instances (or jobs) of
different tasks can have different deadlines, preventing them from sharing a
common recovery task. In addition, the available system slack may also have
different expiration times [4], which makes it difficult (if not impossible) to
develop the shared-recovery based RAPM scheme for general periodic real-
time tasks. Hence, in this section, we focus on the individual-recovery based
RAPM schemes, where each task instance whose execution is scaled down will
have a separate recovery task.

For periodic real-time tasks, the workload in a system is normally repre-
sented by system utilization. The utilization of a periodic real-time task T;
is defined as u; = <, where ¢; is its worst-case execution time and p; is its
period. The system utilization of a task set T’ with n tasks is correspondingly
defined as U = ), u;. For a task set to be schedulable on a uniprocessor
system, it is necessary to have U < 1 [29]. For task sets with U < 1, the spare
processor capacity is denoted as 1—U, which indicates the amount of available
static slack in the system. In this section, we address the problem of exploit-
ing spare processor capacity (that is, static slack) to maximize energy savings
while guaranteeing the original reliability of the system under consideration.
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1.4.1 Task-Level RAPM Techniques

Theoretically, it is possible to select only a subset of jobs of each task to
obtain the maximum energy savings. That is, the jobs of a given task can be
handled differently, where the execution of only a subset of selected jobs are
scaled down (with a separate recovery job scheduled before the deadline for
each), while the remaining jobs can run at the maximum frequency. However,
such a job-oriented approach requires the consideration of all jobs within the
hyper-period (defined as the least common multiple, LCM, of all tasks’ periods)
of the task set, which may be arbitrarily long. As a result, such an approach
cannot be generally considered as a computationally efficient technique.

This section focuses on a particular efficient task-level RAPM technique,
where all jobs of the same task will get the same treatment [58, 59, 65]. In
particular, the jobs of all the unselected tasks will run at the maximum fre-
quency for reliability preservation. Moreover, all the jobs of a given selected
task T}, will be scaled down to the same low processing frequency f; and each
such job will need to have a recovery scheduled before its deadline to preserve
its original reliability. To provide the recovery time needed by all the jobs of
Tk, we can construct a periodic recovery task (PRT), with the same timing
parameters (WCET and period) as those of task Tj. By incorporating such a
periodic recovery task into the task set, we can ensure that there is a recovery
job scheduled before the deadline of each job of Tj.

Periodic RAPM Problem: Let us denote by ® (C T') the subset of the
selected tasks. A periodic recovery task will be constructed for each task T}
(€ @) and the scaled frequency for task T} is fi (< fmaz). To preserve relia-
bility, the remaining (unselected) tasks run at the maximum frequency fraz-
Assume that the augmented task set, which incorporates the newly created
recovery tasks and the scaled execution of the selected tasks, is schedulable
under a given scheduling policy. Without considering the energy consumed by
recovery tasks (which normally have a small probability of being executed),
the fault-free energy consumption within the hyper-period (LC'M) of the task
set is:

LCM LCM max
BE@®) = Y P maz)ei + 3 o P(fk)c’“*;k (1.9)
T,e(T—®) ¢ T, €D

where the first part represents the energy consumed by the unselected tasks
and the second part corresponds to the energy consumed by the selected tasks.
Hence, the RAPM problem for periodic real-time tasks can be stated as fol-
lows: for a given scheduling policy, find the subset ® of tasks and their cor-
responding scaled frequencies to minimize E(®) while preserving the system
original reliability and meeting all deadlines.

Not surprisingly, finding the optimal subset ® and the scaled frequencies
to minimize Fg is NP-hard [59]. In fact, if all tasks have the same period, the
special case of the periodic RAPM problem becomes essentially the RAPM
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problem for multiple tasks sharing a common deadline, which is NP-hard
as discussed in Section 1.3.2. However, for different uniprocessor scheduling
policies, such as preemptive earliest-deadline first (EDF) and rate-monotonic-
scheduling (RMS), there are different schedulability conditions that result in
different task selection and frequency assignment strategies.

1.4.2 Utilization-Based RAPM for EDF Scheduling

Under preemptive EDF scheduling, a set of n periodic real-time tasks
are schedulable on a uniprocessor system as long as the system utilization
U < 1 [29]. The spare processor capacity is denoted as sc = 1 — U, which
can be exploited for energy and reliability management. Suppose that the
total utilization of the selected tasks in ® is X = > cgui < sc. After
incorporating the newly constructed periodic recovery tasks, the remaining
spare processor capacity is (sc — X), which can be used to scale down the
execution of all jobs of the selected tasks to save energy. Again, due to the
convex relation between power and processing frequency (see Equation 1.1),
the optimal solution that minimizes system energy consumption will consist
in uniformly scaling down all jobs of the selected tasks. The scaled processing
frequency can be found as f = m = é Note that, with the newly
constructed recovery tasks and the scaled execution of the selected tasks, the
system utilization of the augmented task set can be calculated as:

X X
U=U-X)+—+X=U+

7 X7os =1 (1.10)

That is, the augmented task set is still schedulable under EDF scheduling.
Based on system utilization, Equation (1.9) can be re-written as:

E(®) = LCM-Py+ LCMU — X)(Pipg + cef - [700)
+LCM - SC (Pznd + Cef * (E) ) (111)
SC

where the first part denotes the energy consumption due to static power, the
second part captures the active energy consumption of unselected tasks, and
finally, the third part represents the active energy consumption of the selected
tasks.

The formulation is similar to that of the case with multiple tasks sharing a
common deadline (Section 1.3.2). We can find that when the total utilization

1

of the selected tasks is Xopr = sc- (%”ligjff) """ E(®) is minimized. Again,
finding the optimal subset of tasks with total utilization equal to exactly
Xopt turns out to be NP-hard. Following a similar reasoning, the efficient
heuristics largest-utilization-first (LUF) and smallest-utilization-first (SUF)
can be adopted when selecting tasks [58, 59].
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1.4.3 Priority-Monotonic RAPM for Rate Monotonic Schedul-
ing

In rate monotonic scheduling (RMS), tasks are assigned static priorities
and the ones with smaller periods have higher priorities. Several feasibility
tests have been proposed for task sets under RMS with different levels of ac-
curacy and complexity. A simple well-known feasibility test is based on the
system utilization of a task set. A task set is feasible as long as its utilization
U < LLB(n) = n(2» — 1), where n is the number of tasks in the task set and
LLB(n) denotes the Liu-Layland bound [29]. Following the same approach as
that for EDF scheduling, similar utilization-based RAPM schemes can be de-
veloped using the Liu-Layland bound for the feasibility of task sets scheduled
by RMS. Interested readers can refer to [65] for detailed discussions.

Here, we focus on the feasibility test with the exact time demand analy-
sis (TDA) technique. The time demand function wg;(t) of task T; is defined
as [28]:

i—1

t
wq; (t) :C“LZ L}—k—‘ cp,for 0 <t < p; (1.12)

The task set is considered feasible if, for every task T; in the task set under
consideration, it is possible to find a time instant ¢ such that wq;(t) <t < p;.

First, by incorporating the scaled tasks in ® and their corresponding re-
covery tasks, the modified time demand function mwg;(t) for task T; (€ T')
can be defined as:

! t t]cx-f
mwg;(t) = {—-‘ Cr + {—-‘ = -mar
v ; Pk Tkeq>,1zg:kgi—1 Pk Jr
C; if Tz ¢ ‘I);
i { ci-(1+I2e2) ST, € @, (1.13)
The above function incorporates the time demand from all (scaled and un-
scaled) tasks as well as the required recovery tasks. It is not difficult to see
that the augmented task set is schedulable if, for every task T; € T, there is a
time instant ¢ such that mwg;(t) <t < p;.
Therefore, the periodic RAPM problem for RMS with TDA-based analysis
can be formally expressed as:
find the subset ® and the scaled frequencies for selected tasks so as to

minimize(E(P))
subject to
VT; € T, 3t, mwgq;(t) <t < p;,where 0 < t < p;

Following the idea of priority-monotonic frequency assignment [36], we as-
sume that the first  highest priority tasks are selected and ® = {Ty,--- , Ty }.
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That is, it is assumed that tasks are ordered by their priorities where T}
has the highest priority and T}, has the lowest priority. Depending on how
the scaled frequencies for the selected tasks are determined, we present two
priority-monotonic RAPM schemes, which assume the same and different fre-
quency settings for the selected tasks, respectively.

Single Frequency for Selected Tasks: Starting with the single frequency
assignment for the selected tasks, the RAPM-TDA scheme resorts to the exact
TDA test that considers all the time instants within a task’s period to get a
lower scaled frequency and thus better energy savings. The scaled frequency
fraprvi—Tpa(x) for the selected x highest priority tasks is given by:

fraPv—TpA(T) = max {feeu qméa%({fz(‘r)}} (1.14)
fi(x) = Og}i%i{fi(%f)} (1.15)

Sic [ ]
e [ﬁ] cr+(t—mwg;(t))
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where f;(z) is the scaled frequency determined by task T; and mwg;(t) is the
modified time demand function as defined in Equation (1.13) with fr = fimaz-

If there does not exist a feasible time instant for any task 7; (that is,
mwg;(t) > t for YVt 0 < ¢t < p;), it is not valid to select exactly x highest
priority tasks. Otherwise, by applying Equation (1.9), we can get the en-
ergy consumption when the x highest priority tasks are scaled down to the
frequency of frapam—rpa(x). Searching through all the feasible task selec-
tions, RAPM-TDA can find out the optimal number of highest priority tasks
Zopt and the corresponding scaled frequency frapm—rpa(Topt) that give the
minimal energy consumption in pseudo-polynomial time. The complexity of
RAPM-TDA can be easily found to be O(n3r), where r = Ee is the ratio of
the largest period to the smallest period.

Multiple Frequencies for Selected Tasks: In RAPM-TDA, it is possible
that the resulting single scaled frequency is constrained by a high priority
task T}, in the subset ®. That is, T} has more stringent timing constraints and
requires a higher scaled frequency. For such cases, by exploiting the slack time
from the high frequency assignment for high priority tasks, the RAPM-TDAM
scheme iteratively re-calculates and assigns a lower frequency for low priority
tasks in the subset ®, and thus saves more energy.

More specifically, for a given subset ® with x highest priority tasks, if the
single scaled frequency obtained by RAPM-TDA is frapyv—1pa(z) = fr(x)
and k < x, we can assign the frequency frapm—rpa(x) to the first k& highest
priority tasks. Then, we can re-calculate the scaled frequency for the remaining
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tasks in the subset ®. When the frequency assignment for the first £ highest
priority tasks is fixed, the modified work demand function and scaling factor
for task T; (k < i <mn) can be re-calculated as:

mwg;(t) = zk: {iw (1 + f"}—j””) ¢+

=11 Pi

Z;‘:k+1 [t/pil2- ¢ _ ifi < (1.17)
S (/012 + LH ¢ ifi> . '
Bl i<
film,t) =< T " (1.18)
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After re-calculating the scaled frequencies for tasks Ty1 to T, we can obtain
a new maximum frequency f"*(x). Suppose that f"“*(z) = f7“*(x), where
k+1 < g < n. If ¢g > z, the scaled frequency for the remaining tasks in
the subset ® will be f™¢*(x). Otherwise, we can assign f™°*(x) as the scaled
frequency for tasks Tj4+1 to T,, and then repeat the above process until we
complete the frequency assignment for all tasks in the subset ®. Then, the
energy consumption for the case of selecting x highest priority tasks can be
calculated. Checking through all possible values of z, finally we could obtain
the optimal value of x,,; and corresponding frequency settings that result in
the minimum energy consumption. With an additional round to assign the
possible different scaled frequencies for tasks in the subset, one can derive the
complexity of the RAPM-TDAM scheme as O(n'r), where, again, r = g—’l‘ is
the ratio of the largest period to the smallest period.

The performance of the task-level RAPM schemes for periodic real-time
tasks follows a trend similar to those of the individual-recovery based RAPM
schemes for frame-based tasks. First, system reliability can be preserved by
all the RAPM schemes. Second, energy savings of the RAPM schemes gener-
ally increase at smaller system utilization values since additional static slack
provides better slow-down opportunities [58, 59, 65].

1.5 Dynamic RAPM with Online Slack Reclamation

It is well-known that real-time tasks typically take a small fraction of their
worst-case execution times at run-time [20]. Moreover, for the RAPM frame-
work with backward recovery techniques, the recovery tasks are invoked and
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executed only if the executions of their corresponding scaled tasks fail. Oth-
erwise, the processor time reserved for those recovery task can be freed and
becomes dynamic slack as well. Therefore, significant amount of dynamic slack
can be expected at run-time, which should be exploited to further scale down
the processing frequency of selected tasks for additional energy savings or to
select additional tasks and enhance system reliability.

Dynamic RAPM for Frame-Based Tasks: For frame-based task systems
where the tasks share a common period (and deadline), any dynamic slack
generated at run-time is accessible to all remaining tasks within the current
frame. Therefore, whenever additional dynamic slack is generated at run time,
one approach would be to re-distribute all system slack by solving a smaller
RAPM problem for the remaining tasks. However, the required computational
overhead can be high, especially for systems with many tasks.

Another straightforward approach is to allocate all available dynamic slack
to the next task to be dispatched. If the next task already has a statically as-
signed recovery task, such dynamic slack can be utilized to further scale down
the processing frequency for the task as long as the resulting frequency is
not lower than the energy-efficient frequency fe.. Otherwise (i.e. if there is
no statically assigned recovery task), in case that the dynamic slack is not
enough to schedule a recovery for the next task, it cannot be reclaimed by the
next task and will be saved for future tasks. For cases where the amount of
dynamic slack is large enough, after scheduling a recovery for the next task,
the remaining dynamic slack can be utilized to scale down the processing fre-
quency of the task. It has been shown that such greedy slack reclamation is
quite effective for additional energy savings [55, 56].

Dynamic RAPM for Periodic Tasks: In periodic execution settings, the
dynamic slack may be generated at different priorities and may not always be
reclaimable by the next ready job. A piece of slack is reclaimable for a job only
if the slack has higher priority than that of the job [4]. Moreover, possible pre-
emptions that a job could experience after it has reclaimed some slack further
complicate the problem. This is because, in the RAPM framework, once the
execution of a job is scaled through DVFS, additional slack must be reserved
for the potential recovery operation to preserve system reliability. Therefore,
conserving the reclaimed slack by a job until it completes its execution (at
which point the slack may be used for recovery operation if errors occur, or
freed otherwise) is essential in reliability-aware power management settings.

Slack management for periodic real-time tasks has been studied extensively
(as in the CASH-queue [8] and a-queue [4] techniques) for different purposes.
By borrowing and also extending some fundamental ideas from these studies,
we discuss the wrapper-task mechanism to track and manage dynamic slack,
which can guarantee the conservation of the reclaimed slack by a job for
dynamic RAPM schemes. Essentially, each wrapper-task represents a piece
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of dynamic slack generated at run-time. At the highest level, there are three
rules for managing dynamic slack with wrapper-tasks:

e Rule 1 (slack generation): When new slack is generated due to early
completion of jobs or unneeded recovery jobs, a new wrapper-task is
created with the following two timing parameters: a size that equals the
amount of dynamic slack generated and a priority that is equal to that
of the job whose early completion gave rise to this slack. Then, the newly
created wrapper-task is added into a wrapper-task queue (WT-Queue),
which is used to track available dynamic slack. The wrapper-tasks with
the same priority can be merged into a larger wrapper-task with size
equal to the summation of these wrapper-tasks’ sizes.

e Rule 2 (slack reclamation): The slack is reclaimed when: (a) the next
dispatched highest priority job is a non-scaled job and its reclaimable
slack is larger than the job’s WCET (which ensures that a recovery, in
the form of re-execution, can be scheduled to preserve reliability); or,
(b) the next dispatched job has already been scaled (that is, CPU time
has been already reserved for its recovery) but its scaled frequency is
still higher than the energy efficient frequency fe. and reclaimable slack
exists. After reclamation, the corresponding wrapper-tasks are removed
from the WT-Queue and destroyed, which guarantees the conservation
of slack for the job under consideration.

e Rule 3 (slack exchange): After slack reclamation, the remaining
wrapper-tasks in the WT-Queue compete for the processor along with
ready jobs. When a wrapper-task has the highest priority and is “sched-
uled”: (a) if there are available ready jobs, the wrapper-task will “fetch”
the highest priority job and “wrap” the execution of that job during the
interval when the wrapper-task is “executed”. In this case, the corre-
sponding slack is actually borrowed to the ready job. When the job
returns such slack to the system, the new slack will have a lower priority
than that of the job; (b) otherwise, if there is no ready job, the pro-
cessor becomes idle. The wrapper-task is said to “execute no-ops” and
the corresponding dynamic slack is consumed/wasted during this time
interval.

It has been shown that the wrapper-task based mechanism can effectively
manage dynamic slack at run-time for dynamic RAPM schemes [58, 59]. In
general, higher energy savings can be obtained when more dynamic slack is
generated at run time (with higher workload variability). Also, by potentially
managing more tasks, higher system reliability can be achieved by the dy-
namic RAPM schemes. Interested readers are referred to [58, 59] for detailed
discussions.
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1.6 Reliability Maximization with Energy Constraints

In the RAPM schemes discussed so far, the goal was to minimize the system
energy consumption while preserving system original reliability by appropri-
ately scheduling the required recovery tasks. In this section, considering the
energy-constrained operation settings where the system energy consumption
for any given interval must not exceed a hard bound [1, 11, 35, 47], we discuss
the schemes that aim at mazimizing system reliability. Here, the negative ef-
fects of DVFS on system reliability are incorporated but no recovery task is
considered/scheduled. That is, we consider the problem of determining task
level frequency assignments to maximize overall system reliability (the prob-
ability of completing all tasks successfully) within the given energy budget
and without missing the deadlines of tasks. For simplicity, we focus on frame-
based task systems where tasks share a common deadline, the approach can
be extended to periodic real-time tasks as well [54].

Let Epudger be the energy budget that can be utilized by all tasks within
a frame that has the period (deadline) of D. Suppose that the processing
frequency for task T; is f; (< finaz), which can vary from task to task. The
system energy consumption within a frame can be given as follows:

E(f17'~'7fn) = Ps D+ZEz(fz)
=1

= P.-D+ > (Pina, -
=1

e L)

Here, E;(f;) stands for the active energy consumed by task T;, which comes
from the frequency-independent and frequency dependent power (see Sec-
tion 1.2.2). We consider a general case where the frequency-independent power
Ping, can vary from task to task. Note that E;(f;) is a strictly convex func-
tion and is minimized when f; = fe.,, the energy-efficient frequency for task
T; that can be derived through Equation (1.2).

Given that the rate of soft errors caused by transient faults follows a Pois-
son distribution as discussed in Section 1.2, the reliability (that is, the proba-
bility of completing a task without having errors caused by transient faults) of
task T; in one frame at the frequency f; is R;(fi) = e_’\(fi)*;_:7 where A(f;) is
given by Equation (1.3). Let ¢;(fi) = A(fi) - %. Considering that the correct
operation of a system depends on all its tasks, the system reliability within a
frame can be represented as:

n

R(fi,. o fa) = [T Rilfi) = e 2= el (1.20)
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Considering the well-known features of the exponential functions, to maximize
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system reliability R(f1,..., f»), we need to minimize Y., ¢;(f;). Therefore,
the energy-constrained reliability management (ECRM) problem can be stated
as: find the processing frequency f; (1 <i < n) so as to:

minimize Y ¢;(f;) (1.21)
i=1
Subject to:
E(flv"'vf’n.) S budget (122)
; 7 < (1.23)
f8€1 f < fmaac (1 <i< n) (124)

Here, the first inequality corresponds to the hard energy constraint; the second
one encodes the deadline constraint. The last constraint set gives the range of
feasible frequency assignments for the tasks.

Let E,.;n be the minimum energy that must be allocated to the given
task system to allow their completion before or at the deadline D. Given the
task parameters, E,,;, can be computed by the polynomial-time algorithm
developed in [3]. As a by-product, the same algorithm yields also the optimal
task-level frequency assignments (fl1, fla, ..., fl,) for the tasks when the total
system energy consumption is exactly E,qn. Obviously, if the energy budget
Epudget is less than Fy,;y,, there is no solution to the problem as the system
would lack the minimum energy needed for timely completion.

Moreover, let Enae = E(fmaz,-- -5 fmaz) be the maximum energy con-
sumption of the task set when all tasks run at f,,4.. As another boundary
condition, when the given energy budget Eyydget > Emaa, executing all tasks
at the maximum frequency is the optimal solution. Note that R;(f;) is a
strictly concave and increasing function of f;. Therefore, in what follows, we
will focus exclusively on settings where Enin < Fhudget < Emaa-

We first explain that, in the optimal solution to the ECRM problem, the
resulting total energy consumption E( f;” L f2PY) must be equal to Epydget-
Otherwise, with the assumption that Ebudget < E,naz, there must be a fre-
quency for task T; such that fOPt < fmaz- In this case, it should be pos-
sible to increase f** by € (> 0) such that f/ = (f?"" 4+ ¢) < fmaz and
E( Opt, cos Lo F9PY) < Epudget- 1t is clear that the deadline and energy
constraints are still satisfied after this modification. Further, as R;(f;) in-
creases monotonically with the increasing frequency f;, the overall system
reliability can be improved due to the execution of T; at frequency f/, which
is higher than f**. Hence, in the optimal solution (f{?*, ..., foP!), the result-
ing total energy consumption E(f7,..., foP) must be equal to Epyudget, the
given energy budget within a frame.

Therefore, the energy constraint for the original ECRM problem (Equa-
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tion (1.22)) can be re-written as:

E(fl;-”afn) = Ebudget (125)

which leads to a new non-linear (convex) optimization ECRM problem.

The new ECRM problem can be solved, for instance, by Quasi-Newton
techniques developed for constrained non-linear optimization [5]. The tech-
nique exploits the well-known Kuhn-Tucker optimality conditions for non-
linear programs in an iterative fashion by transforming the original problem
to a quadratic programming problem and solving it optimally. While opti-
mal, a theoretical complication with this approach is that it is very difficult
to express the maximum number of iterations as a function of the number of
unknowns which, in this case, corresponds to the number of tasks n.

The new ECRM problem can be also tackled with an efficient heuristic
scheme (denoted as ECRM-LU) that provably runs in polynomial-time and
satisfies the energy deadline, and frequency constraints. ECRM-LU proceeds
as follows. We temporarily ignore the deadline constraint (Equation (1.23))
and solve the problem only by considering the new energy constraint (Equa-
tion (1.25)) and frequency range constraints (Equation (1.24)). Notice that,
by excluding the deadline constraint, the problem is transformed to a separa-
ble convex optimization problem with n unknowns, 2n inequality constraints
and a single equality constraint. This problem, in turn, can be solved in time
O(n?) by iteratively manipulating the Kuhn-Tucker optimality conditions in
a way similar to the technique illustrated in algorithm given in [3]. Now, if
the resulting solution satisfies also the deadline constraint, obviously it is the
solution to the ECRM problem.

Otherwise, we can re-write the frequency constraint set as:

flzéflgfmax (1S'LS”) (126)

where f; is the frequency assignment to task 7; in the solution where the task
set completes at exactly t = D and with energy consumption Ey,;,. Again, the
corresponding { fI;} values can be computed in time O(n?) [3]. By enforcing
the new frequency constraint set given above, we make sure that the final
frequency assignments satisfy also the deadline constraint. Once again, this
version of the problem where the deadline constraint is handled implicitly by
enforcing the lower bounds on frequency assignments can be solved in time
O(n?). Hence, the overall time complexity of ECRM-LU is also O(n?).

The evaluation through extensive simulations show that ECRM-LU yields
reliability figures that are extremely close (within 1%) to those achieved by the
optimal solution [52, 54]. In general, the achieved system reliability increases
with increasing energy budget as more energy enables the system to operate
at higher processing frequencies, which results in fewer errors due to reduced
number of transient faults. Moreover, the system workload also has an inter-
esting effect on system reliability. Increasing the workload leads to increased
execution time, which in turn means increased probability of incurring errors
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caused by transient faults. However, higher system workload also forces the
system to adopt higher frequencies in order to meet the timing constraints of
tasks, which instead has a positive impact on the system reliability due to re-
duced error rates. Our results show that, for low workload (for instance, where
the amount of slack is more than the amount of computation of tasks), the
first effect dominates. After the workload reaches a certain point, the second
effect becomes the dominant factor and leads to better system reliability.

1.7 Other Techniques and Future Directions

In addition to the RAPM framework discussed above, there have been
other studies on the co-management of system reliability and energy con-
sumption, with and without the consideration of the negative effect of DVFS
on system reliability, respectively. After a brief overview of other reliability
and energy co-management techniques, in this section, we point out some open
problems and possible future directions for this line of research.

Co-Management of Energy and Reliability: One of the earliest energy-
aware fault tolerance schemes has been proposed by Unsal et al. for a set of
independent periodic real-time tasks [43]. Based on the primary and backup
fault tolerance model, the scheme postpones as much as possible the execu-
tion of backup tasks to minimize the overlap between primary and backup
executions and thus to reduce system energy consumption. With the goal of
tolerating a fixed number of transient faults, Melhem et al. explored the opti-
mal number of checkpoints, uniformly or non-uniformly distributed, to achieve
the minimum energy consumption for a duplex system (where two hardware
processing units are used to run the same software concurrently for fault de-
tection) [30]. To reduce the energy consumption in a traditional TMR system
(Triple Modular Redundancy, in which three hardware processing units are
used to run the same software simultaneously to detect and mask faults), El-
nozahy et al. studied an interesting Optimistic-TMR (OTMR) scheme, which
allows one processing unit to run at a scaled processing frequency provided
that it can catch up and finish the computation before the deadline if there is a
fault [18]. In [63], Zhu et al. further explored the optimal frequency settings for
an OTMR system and presented detailed comparisons among Duplex, TMR
and OTMR for reliability and energy consumption. For parallel real-time tasks
running on multiprocessor systems, Zhu et al. studied the optimal redundant
configuration of the processors to tolerate a given number of transient faults
through backward recovery techniques [62, 64].

With the assumption that the arrivals of transient faults follow a Poisson
distribution with a constant arrival rate, Zhang et al. studied an adaptive
checkpointing scheme to tolerate a fixed number of transient faults during the
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execution of a single real-time task [49]. The scheme dynamically adjusts the
checkpointing interval during the execution of a task based not only on the
slack time but also on the occurrences of transient faults during task’s execu-
tion, so as to reduce system energy consumption. The adaptive checkpointing
scheme was extended to a set of periodic real-time tasks on a single processor
system with the EDF (earliest deadline first) scheduling algorithm [51]. In [50],
the authors further considered the cases where faults may occur within check-
points. Following a similar idea and considering a fixed priority rate-monotonic
scheduling (RMS) algorithm, Wei et al. studied an efficient online scheme to
minimize energy consumption by applying DVFS with the consideration of
the run-time behaviors of tasks and fault occurrences while still satisfying
the timing constraints [44]. In [45], the authors extended the study to multi-
processor real-time systems. Izosimov et al. studied an optimization problem
for mapping a set of tasks with reliability constraints, timing constraints and
precedence relations to processors and for determining appropriate fault toler-
ance policies (re-execution and replication) for the tasks [24]. However, these
studies did not address the negative effects of DVFS on system reliability due
to the higher rate of soft errors caused by transient faults at lower supply
voltages.

Taking such negative effects into consideration, in addition to the RAPM
schemes discussed in this chapter, for real-time periodic tasks that have differ-
ent reliability requirements, a research effort that proposes the schemes that
selectively recover a subset of jobs for each task is given in [66]. For real-
time tasks with known statistical execution times, an optimistic RAPM has
also been proposed. The scheme deploys smaller size recovery tasks while still
preserving the system’s original reliability [60].

Ejlali et al. studied schemes that combine the information (about hard-
ware resources) and temporal redundancy to save energy and to preserve sys-
tem reliability [17]. By employing a feedback controller to track the overall
miss ratio of tasks in soft real-time systems, Sridharan et al. [42] proposed
a reliability-aware energy management algorithm to minimize the system en-
ergy consumption while still preserving the overall system reliability. Pop et al.
studied the problem of energy and reliability trade-offs for distributed hetero-
geneous embedded systems [32]. The main idea is to transform the user-defined
reliability goals to the objective of tolerating a fixed number of transient faults
by switching to pre-determined contingency schedules and re-executing indi-
vidual tasks. A constrained logic programming-based algorithm is proposed to
determine the voltage levels, process start time and message transmission time
to tolerate transient faults and minimize energy consumption while meeting
the timing constraints of the application. Dabiri et al. studied the problem
of assigning frequency and supply voltage to tasks for energy minimization
subject to reliability as well as timing constraints [14].

More recently, following the similar idea in OTMR [18], Ejlali et al. studied
a standby-sparing energy efficient hardware redundancy technique for fault-
tolerance, where a standby processor is operated at a low power state when-
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ever possible provided that it can catch up and finish the tasks in time [16].
This scheme was shown to have better energy performance when compared
to that of the backward recovery based RAPM approach. For frame-based
task systems with independent tasks, Qi et al. investigated global scheduling
based RAPM problem and studied several individual recovery based schemes
depending on when and how the tasks are selected [34].

Future Research Directions. Among the open problems, the extension of
the shared recovery technique to the preemptive periodic execution settings
needs to be mentioned. Moreover, with the emergence of multicore processors,
extending that technique to multiprocessor real-time systems can also be an
interesting direction. With the inherent hardware redundancy, multicore sys-
tems provide excellent opportunities to tolerate permanent faults. However,
how to effectively integrate the hardware and temporal redundancy to toler-
ate both permanent and transient faults while reducing energy consumption,
especially considering the intriguing interplay between power/energy, temper-
ature and rate of system failure, is another major open problem.

1.8 Summary

In this chapter, we discussed several reliability-aware power management
(RAPM) schemes for real-time tasks running on a single processor. The moti-
vation comes from the negative effect of the widely-deployed power manage-
ment technique, namely dynamic voltage and frequency scaling (DVFS), on
system reliability due to the increased transient fault rates associated with
operation at low supply voltages. The key idea of these RAPM schemes is
to recuperate the reliability loss due to DVFS by scheduling proper recovery
tasks, while still exploiting the remaining system slack to save energy.

Starting with the case of a single real-time task, we showed that, by
scheduling a recovery task before scaling down the execution of the task,
the RAPM scheme can preserve the system reliability while still obtaining en-
ergy savings. Then, for frame-based task systems where multiple real-time
tasks share a common deadline, the RAPM problem is shown to be NP-
hard and two efficient heuristics with individual recovery tasks are discussed.
Aiming to address the pessimism of the individual-recovery based schemes,
the RAPM scheme with a shared recovery task is presented. For general
periodic real-time tasks that have different deadlines, we presented a task-
level RAPM technique where all jobs of the same periodic task receive the
same treatment. Then, for the earliest-deadline-first (EDF) scheduling policy,
the utilization-based RAPM scheme are discussed, followed by the priority-
monotonic RAPM schemes for rate-monotonic scheduling (RMS). Dynamic
RAPM schemes that exploit dynamic slack generated at run time are further
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considered. For energy-constrained systems, we discussed the RAPM scheme
that aims at maximizing system reliability. At the end, an overview of other
related studies is provided and a few open research problems are identified.
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