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Abstract

Dynamic Power Management (DPM) techniques are crucial in min-
imizing the overall energy consumption in real-time embedded sys-
tems. The timing constraints of real-time applications and non-trivial
time/energy transition overheads introduce significant challenges, as
the device sleep intervals should be longer than a minimum threshold
(called the break-even time) to ensure energy-efficiency. In this paper,
we present a novel approach to the real-time DPM problem by explic-
itly enforcing long device sleep intervals for different devices, called
device forbidden regions. We focus on the application of our tech-
nique to task systems with Rate-Monotonic priorities, and develop
our algorithm DFR-RMS. Our solution includes a static component
where the duration and frequency of forbidden regions are determined
through the extended time-demand analysis to preserve the tempo-
ral correctness of all the tasks, while enhancing the energy savings.
Then, we present a sophisticated on-line component which interacts
with existing prediction-based DPM schemes to realize the full po-
tential of device forbidden regions. Further, our scheme can be used
with or without Dynamic Voltage Scaling (DVS). Our experimental
evaluation hints that significant energy gains can be obtained, when
compared to the existing prediction-based techniques. Another con-
tribution of this research effort is to show that the general problem of
generating feasible schedules for preemptive periodic real-time tasks
where all device sleep intervals are longer than the device break-even
times is NP-Hard in the strong sense.

1 Introduction

Due to the ever-increasing presence of computing and com-
munication devices that rely on battery power, energy manage-
ment remains as one of the most important research avenues.
In real-time embedded systems, a widely popular energy man-
agement technique is Dynamic Voltage Scaling (DVS). DVS is
based on adjusting the CPU voltage and frequency on-the-fly
[26]. DVS techniques exploit the convex relationship between
the CPU power and processor frequency, and target saving en-
ergy by reducing the CPU frequency (speed) and supply volt-
age. As guaranteeing the timing constraints is of paramount
importance in real-time embedded systems, numerous studies
were published in the last decade to maximize energy savings
by reducing the CPU speed while preserving the feasibility un-
der different task/system models [3, 20, 21].
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More recently, the research community grew increasingly
conscious about the effects of DVS on system-wide energy
consumption. In fact, CPU is only one of the significant
power consumers in a computer system. A number of re-
search groups reported [12, 22] that DVS can increase the to-
tal energy consumption; mainly because, with increased task
execution times, it may force the components other than the
CPU (e.g. memory, I/O devices) to remain in active state for
longer time intervals. Further, the DVS schemes should recog-
nize that the real-time application workloads have frequency-
independent (off-chip) components which do not scale with
the CPU frequency. A number of research studies [2, 13, 28]
explored the problem of computing task-level energy-efficient
speeds below which DVS ceases to be energy-efficient. The
work in [2] presents one of the most advanced solutions to this
problem, where task-level speed assignments are computed in
polynomial-time for periodic real-time applications scheduled
by preemptive Earliest-Deadline-First (EDF) policy, while tak-
ing into account the task off-chip/on-chip workloads, the CPU
and device active powers.

The other major line of research involves Dynamic Power
Management (DPM). With DPM, some system devices are put
to low-power/sleep states when they are not in use, in order to
reduce their power consumption [19]. Traditionally, I/O de-
vices (e.g. communication units and disk drives) and memory
modules with considerable active power figures have been the
primary targets of DPM techniques. The primary challenge in
DPM techniques is to decide when to switch a device to a low-
power state: this is because there is usually a significant en-
ergy and time overhead in switching between active and sleep
states. For this reason, there is a device-dependent minimum
idle period length that compensates for the overhead involved
in the transitions, called the break-even time. If the device has
to be re-activated before this threshold, then the overall energy
consumption will increase. Stochastic, predictive and timeout-
based techniques were proposed and developed by the research
community to address the problem of assessing the right time
instant to turn off a component [4].

In real-time systems, predicting the next time instant when
a device will be needed is crucial not only because it is the key
for effective energy management, but also because inaccurate
predictions may hurt the feasibility of the system, in view of
the non-trivial activation/de-activation delays. Hence, the real-
time DPM has a number of unique characteristics. A number
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of research groups recently tackled this problem. For exam-
ple, [23, 24] present heuristic-based DPM schemes that can be
used with both EDF and RMS scheduling polices. However,
the schemes consider only non-preemptive real-time task ex-
ecution. In [25], the same group of authors present an offline
scheme, called Maximum Device Overlap (MDO), for preemp-
tive task scheduling. MDO involves very high time complexity
(proportional to the square of the hyperperiod) and it cannot be
successfully adapted to dynamic/online settings where job re-
lease and execution times can vary considerably.

For such systems, online dynamic power management be-
comes an imperative. The University of Nebraska-Lincoln
Real-Time Systems research group exploited various aspects
of this problem, mostly within the periodic EDF scheduling
framework. In [6, 9], the authors give an online DPM scheme
based on next device usage predictions. Further, the algo-
rithm can be used in conjunction with DVS. In [8], the authors
present Energy Efficient Device Scheduling (EEDS) frame-
work, which is based on exploiting task and device slacks to
create long idle intervals, again for preemptive EDF. In [7],
EEDS is extended to include non-preemptive shared resources.

In this paper, we present a novel approach to the online real-
time DPM problem. Specifically, by observing that creating
long device sleep intervals is the key for effective power man-
agement, we explicitly and periodically enforce such intervals
for each device at run time. These intervals, called device for-
bidden regions (DFRs), enable the system to put these devices
to sleep states. The parameters (duration and separation time)
of DFRs are determined through static analysis. Further, the
forbidden regions are guaranteed to be longer than the device
break-even times, ensuring energy savings.

While an attractive approach, DFR scheme introduces a
number of challenging technical problems. During a forbid-
den region, none of the tasks using the related device can be
dispatched; hence, the duration and period of DFRs must be
carefully selected to preserve temporal correctness. The DFR
approach is generic in the sense that it can be used with any
scheduling policy and with/without a specific task speed as-
signment (i.e. with or without DVS). Moreover, as we show,
the activation of a forbidden region can be dynamically post-
poned under certain conditions, to eliminate unnecessary tran-
sition overheads.

In this paper, we illustrate the application of DFRs to
fixed-priority real-time systems with Rate-Monotonic schedul-
ing (RMS), and present the details of the resulting algorithm,
called DFR-RMS. It is a fact that most of the online real-time
DPM schemes to date were developed for EDF [7, 8, 9]. While
an evaluation of relative merits of dynamic and fixed priority
scheduling in real-time systems is still open to debate, we con-
tend that the well-established design methodologies and large
number of real time applications depending on RMS [17] jus-
tify such a decision. We illustrate how the well-known Time
Demand Analysis (TDA) [1, 15] technique can be extended
to assess the feasibility of schedules obtained by DFR-RMS.
Further, we present an efficient greedy algorithm to determine
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the duration and activation periods of individual DFRs to max-
imize energy savings. Finally, we show how the algorithm can
be adapted to DVS settings where dynamic reclaiming [3, 20]
helps to save additional energy.

Our experimental evaluation shows that, DFR-RMS can
yield significant (up to 27%) gains in device variable active en-
ergy, which is typically consumed by short idle intervals dur-
ing which the device(s) cannot be shutdown by typical DPM
algorithms. Further, this translates to non-trivial gains in over-
all system energy. Finally, a by-product of this research ef-
fort is to show that the general problem of generating feasible
schedules for preemptive periodic real-time tasks where all de-
vice sleep intervals are longer than the device break-even times
is NP-Hard in the strong sense, underlining the inherent diffi-
culty of DPM for real-time applications, in general.

The rest of this paper is organized as follows. In Section 2,
we present our notation and system models. Section 3 elabo-
rates on the basic principles of existing online real-time DPM
schemes, and illustrates the main rationale of DFR scheme,
through a running an example. In Section 4, we explain how
the Time Demand Analysis can be used to check the feasibility
of the systems with DFR, assuming Rate-Monotonic task pri-
orities. In Section 5, we present a method to determine the du-
ration and minimum separation times of forbidden regions, to
maximize energy savings. Section 6 includes a full discussion
of the online component of the algorithm. Section 7 presents
the experimental evaluation, followed by conclusions in Sec-
tion 8.

2 System Model and Assumptions
2.1 Task Model

We consider a set of independent periodic real-time tasks
U = {7,...,7,} that are to be executed on a uniprocessor
system. The period of task 7; is denoted by 7}, and the rel-
ative deadline of each task instance (job) is equal to the task
period. The ;" instance of task 7; is denoted by 7;. j. Task
priorities are inversely proportional to the periods (i.e. we as-
sume rate-monotonic priorities [16]). We assume preemptive
scheduling.

The worst-case execution of time of task 7; is denoted by
C;. The utilization of task 7; is defined as U; % Note
that, on DVS-enabled processors where the processér speed
(frequency) S can vary between a lower bound S,,,;, and an
upper bound' S,,4.., C; and U; will be a function of the CPU
speed. Specifically, the worst-case execution time C;(S) of
task 7; at CPU speed S is given by C;(S) = & + y; where x;
is the task’s on-chip workload at S, 4., and y; is the task’s off-
chip workload (that does not scale with the CPU speed) [2].
Similarly, the task’s effective utilization U;(.S) at CPU speed
S can be defined as

C;
ST

For convenience, we normalize the CPU speed with respect to Sy qz; that
is, we assume that Sy,q2 = 1.0



Throughout the paper, we will use the notation C; (U;) to
refer to the worst-case execution time (utilization) under max-
imum CPU speed. The base total utilization Uy, of the task
set is the aggregate utilization of all the tasks at the maximum
CPU speed, that is Uy = .., U;. We will assume that
the task set is deemed to be feasible when all tasks are exe-
cuted with S,,,,, and by preemptive Rate Monotonic Schedul-
ing policy: any of the several well-known RMS schedulability
tests [10, 15, 16] can be used for this purpose.

2.2 Device Model

We assume that the system has a device set D
{D,..., Dy} with m off-chip (external) devices. The de-
vices that we consider will have at least an active and a sleep
state. In the sleep state, a device typically consumes much less
power compared to the active state [8].

The devices used by individual tasks are given by Device
Usage Lists (DULs)[9]. Specifically, DUL; corresponds to
the set of devices needed by 7; during its execution. Similarly,
v; denotes the set of tasks that need the device D; during their
execution: formally, v; = {7.|D; € DUL,}.

Following [8, 9, 23, 24], we assume inter-task device
scheduling: all devices in DU L; need to be in active state
when 7; executes. This is a conservative but realistic assump-
tion, considering the non-trivial time and energy overheads in-
volved in performing device state transitions during task exe-
cution [9, 23]. We adopt the following notation to show the
power/energy characteristics of a given device D; :

. Pé
P?: The power consumption in sleep state

ti . The time overhead to perform a transition from ac-
tive to sleep state

ti,: The time overhead to perform a transition from sleep
to active state

: The power consumption in active state
[ ]

E!: The energy overhead to perform a transition from
active to sleep state

Ei_: The energy overhead to perform a transition from
sleep to active state

e B;: The break-even time of the device

The energy consumption of device D; can be divided in
three components:

Eéevice = E}ized + Ezrans + E;Lnod (1)
Above, E}Lm 4 1s the energy consumed by the device
when it is actively in use by the running task 7, (i.e. when
D; € DUL, and 7, is running). Under the inter-task device
scheduling paradigm (see above), for a given workload, the
online DPM algorithms do not have direct control on E}ize &
as the device will be in active state whenever a task in ~; is
running.
However, the online DPM algorithms can transition a de-
vice to sleep state when a task that does not use that device is
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dispatched (or, when the CPU is idle). If undertaken, such a
decision will involve an energy overhead (EY,,,,,) and a time
delay, for transitions in each direction. During intervals where
D; is kept in active state, even though D; ¢ DUL, (where
T, 18 the running task), there will be additional energy con-
sumption. This component, denoted by E?_ .. is typically due
to an anticipation of a request for the device D; in the near
future. In fact, most of the existing online real-time DPM al-
gorithms try to predict the length L of the idle interval, and ini-
tiate the transition to the sleep state only when L is larger than
a pre-defined threshold value. This threshold value, generally
called the break-even time (B;) of device D; can be computed
as [8, 9]:

E;s + Eéa — [P;L } (tfzs + tzea)]}

B; = max{ti +t.,, pi _ pi
a s

2

By avoiding switching a device to the sleep state when the
predicted idle interval is shorter than the break-even time as
defined above, the DPM algorithms make sure that device tran-
sition is energy-efficient. Further, Equation (2) guarantees that
the length of the interval is greater than the time needed to
perform the transitions (i.e. % +t,).

As a result, the decisions of DPM algorithms affect E;
and B!, .. Defining E!,. = E + E!

m mod?

rans

trans we can re-write:

EZlevice = E}ixed + E;ar (3)

While the system-wide energy consumption remains as a
very important metric, observe that the relative merits of an
online DPM algorithm can be accurately measured by the sav-
ings it yields for Eyqr = > E!

var:

2.3 System Energy Model

The total energy consumption of an embedded real-time sys-
tem can be defined by the sum of energy consumption of on-
chip (primarily, CPU) and off-chip units (external devices,
such as main memory and I/O devices):

m

Eiot = Ecpu + Edevice = Ecpu + E Eevice
i—1

“

On DVS settings, the CPU energy consumption is the sum
of the dynamic CPU power consumption (which can be ad-
justed by modifying the CPU supply voltage and frequency)
and static power [2, 14]. If the system does not have the DVS
capability, then the system always uses the speed Sy,q, = 1.0
when executing tasks, and switches to the idle mode when
there are no ready tasks. It is assumed that completely turn-
ing off the CPU or devices at run-time is not feasible, in view
of the periodic nature of the real-time applications.



3 Online Dynamic Power Management
for Real-Time Systems

One of the major challenges in online real-time dynamic power
management is to make sure that the device sleep intervals are
longer than the corresponding break-even times, to guarantee
the energy efficiency. In theory, the scheduler can attempt to
order the execution of tasks in such a way that the device us-
age and sleep intervals are grouped together to the extent it
is possible. Unfortunately, the following result underlines the
inherent difficulty of the problem:

Theorem 1 Given a set of periodic tasks V and a set of de-
vices D, generating a feasible schedule where each device
sleep interval is greater than the corresponding device break-
even time is NP-Hard in the strong sense.

The full proof of this result, which is omitted due to space
constraints, can be found in [11]. In [19], it was already proven
that the dynamic power management problem is NP-Complete
(in the weak sense) even for tasks without timing constraints.
Our result implies that the problem of guaranteeing the fea-
sibility and long sleep intervals at the same time (when one
exists) is not likely to admit even a pseudo-polynomial time
solution, unless NP = P.

3.1 Predicting Device Usage Times

The alternative solution is to commit to a given scheduling pol-
icy (such as RMS or EDF) and then perform device transitions
judiciously by trying to predict the next device usage time of
device D; at time t (denoted by N DUT;(t)), at run-time. The
device can be put to sleep state with confidence if the differ-
ence NDUT(t) —t > B, as long as NDUT(t) does not
overestimate the actual next device usage time.

Unfortunately, the stringent timing constraints of real-time
tasks, the variability in actual execution times, and release time
jitters make a precise prediction impossible. Further, even if
all this information is known to a clairvoyant scheduler, per-
forming an exact online response time analysis for various task
instances (to figure out when a task in need of D; will be dis-
patched next) is not computationally feasible [17].

One conservative but safe solution is to compute
N DUT,;(t) by considering the current time, the tasks in ready
queue, and the release time of any uncompleted job that re-
quires D;. Hence, if the ready queue contains a task that re-
quires D;, NDUT;(t) will be simply ¢; otherwise it will be the
earliest next release time of any instance of a task in ;. This is
indeed the main principle of the Conservative Energy-Efficient
Device Scheduling (CEEDS) algorithm, proposed by Cheng
and Goddard [6, 9]. When de-activating a device, CEEDS also
schedules an activation time (or, UpTime) by considering typi-
cally non-negligible re-activation delays and NDUT. By intro-
ducing a running example, we illustrate the main principles of
CEEDS.
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Consider three real-time tasks 71, 75 and 73 with the fol-
lowing parameters: C; = Cy = C3 = 1000, 77 = 2000,7T5 =
4000 and T3 8000. The devices D; and Dy are used
by the tasks 7 and 7o, respectively. For these two devices,
By = 990,tl, = tl, = 495 By = 20 and t2, = ¢2, = 10.
Assume all tasks are released at ¢ = 0 and all devices are ini-
tially in active state.
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Figure 1: The schedule generated by RMS and CEEDS
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Figure 1a shows the task and device schedules generated by
RMS and CEEDS. At t = 1000, CEEDS switches D; to sleep
state as the time to predicted next device usage time (NDUT)
for D1 is greater than the device’s break-even time. CEEDS
also starts switching D1 to active state at time 1505, to make
sure that it is fully active by t = 2000 (the next release time of
71). Similar explanations can be given for other time instants
involving D, and D, activations/deactivations.

Two observations are in order. First, observe that the tran-
sition times of D; are significant compared to its idle interval
length. Thus, the total sleep time of D; is very small. Sec-
ond, even though Dy is not needed in intervals [0, 1000] and
[4000, 5000], it remains active during these intervals. This is
because, during these intervals, 75 is in the ready queue, Do
is active and Dy € DU L. Figure 1b shows the device states
and transitions over the hyperperiod. From Figure 1b, it can be
seen that D is in sleep state for a total of 40 time units while
D sleeps for 3960 time units.

3.2 Dynamic Power Management through
Device Forbidden Regions

Our approach to real-time DPM problem is based on the sleep
intervals which are explicitly and periodically enforced for
each device. These special intervals are called device for-
bidden regions. A separate forbidden region F'R; is defined
for each device D;. The forbidden region F'R; has a pre-
determined duration A; > B;; as a result D; can be safely
put to the sleep state during its forbidden region.

Further, a minimum separation time (or, period) 11; is asso-
ciated with F'R;, meaning that two consecutive “activations”
of a given F'R; should be separated by at least II; time units.
As it will be seen, under certain circumstances, it may be more



beneficial to delay the next activation of a forbidden region. In
other words, F'R;’s may be activated in “sporadic” manner.
The next “earliest release” (activation) time of F'R; during ex-
ecution is denoted by the variable 7 f;.

An extremely important implication of inserting enforced
device forbidden regions to real-time schedules is that, none
of the tasks using D; can be dispatched while F'R; is active.
However, other tasks (i.e. those in ¥ — ;) can still execute. In
other words, the tasks in ~; are effectively “blocked” by F'R;
when the latter is active.

Naturally, a task using two different devices D; and D,
would be blocked whenever F'R; or I'R; is active. It goes
without saying that determining A; and II; values to guarantee
the feasibility of the real-time task set, and at the same time,
to maximize energy savings is a non-trivial problem. These
issues are addressed in Sections 4 and 5.

It is also important to underline that the DFR scheme does
not exclude the usage of CEEDS, or for that matter, any other
prediction-based online DPM algorithm. In fact, the feasibil-
ity analysis that we present (Section 4) treats each forbidden
region F'R; as a high priority periodic task delaying the exe-
cution of tasks in ;. Consequently, when the system is able
to shutdown the device D; using the standard prediction tech-
niques (e.g. through CEEDS), the next activation time 7 f; of
F'R; can be postponed without affecting feasibility. This, in
turn, will help to save the bandwidth of the forbidden region
and prolong the sleep interval in the future. Similarly, when
a scheduled activation time of F'R; corresponds to a time in-
stant when D is actively used by the running task, F'R; should
be postponed to a later time, to avoid unnecessary transitions.
Clearly, in all these cases, the activation of all subsequent for-
bidden regions of the same device will be delayed by the same
amount.

To illustrate these principles, we re-visit the example given
in Section 3.1 and show the schedule generated by DFR-RMS
(Figure 2a). In this example, the forbidden region durations
and separation times are selected as A; = Ay = 1000 and
II; = Il = 4000. It is assumed that the first scheduled release
time of both forbidden regions is ¢ = 0.
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Figure 2: DFR-RMS Schedule

At time 0, 71 is dispatched. F'R; is postponed as D; is
already active and in use by the current job. F'Ry is enabled:
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Ds, is put to sleep state since it is currently not in use. We set
the next activation time of Dy to t + Ay — t2, = 990. At time
1000, 7, completes and 75 is dispatched. 75 finds D5 in active
state. Also, F'Ry ends and r f5 is set to ¢t + IIs — As = 4000.
D; is put to sleep since NDUT] is found to be greater than
B; through CEEDS prediction mechanism. In this case, we
can further postpone F'R; to preserve its “bandwidth” for the
future. We set the activation time of Dy to NDUT; — t!,
1505.

Att = 1505, the predicted N DUT} is 2000. DFR-RMS, at
this point, realizes that F'1?; is pending and makes a decision
to forcefully start F'Ry at ¢ = 2000. Observe that this allows
D to remain in sleep state without compromising the timing
constraints. At ¢t = 2000, F'R; is enabled and the activation
time of D7 is set to 2505. In the mean time, D5 is shutdown
as NDUT, > Bs. The activation time of D> is set to 3990
and T3 is dispatched. At time 3000, F'R; is disabled and 7 f;
is set to 6000. D; completes its transition to the active state
and 71 preempts 73 upon arrival. At time 3990, DFR again
postpones activation of Dy as r f is 4000 which is the same as
NDUT5. It is worthwhile to observe how DFR prolongs the
idle intervals and prevents D» from remaining in active state
unnecessarily. The rest of the schedule can be obtained in the
same way. Figure 2b shows the device states and transitions for
the DFR algorithm. As a result, with DFR-RMS, D; remains
in sleep state for a total of 2020 units while D5 sleeps for 5950
units — a significant improvement over the figures obtained by
the CEEDS algorithm.

We underline that, even though the on-going discussion as-
sumed the execution at the maximum CPU speed, DFR-RMS
scheme can work in conjunction with any DVS-based speed
assignment framework, as long as the speed assignments pre-
serve the system feasibility. For instance, the technique in
[2] which determines the task speeds by taking into account
task on-chip and off-chip workloads, as well as frequency-
dependent and -independent power components, can be read-
ily adopted. One crucial difference is that unlike the EDF-
based settings of [2] where the effective utilization can be set
to 100%, here, total utilization may be limited by the well-
known Liu-Layland bound n(Z% — 1) [16]. In Section 6, we
comment also on the potential of using dynamic reclaiming
at run-time, in conjunction with DVS, to improve the energy
savings.

4 Extending Time Demand Analysis to
DFR-RMS

Time Demand Analysis (TDA) technique [15] is a well-
established methodology to assess the feasibility of a peri-
odic real-time task set scheduled by the preemptive RMS pol-
icy. It provides a sufficient and necessary condition for the
schedulability and is generalized to various settings with ape-
riodic servers, precedence constraints, and task blocking times
[1, 17]. TDA relies heavily on the critical instant concept,



where the response time of a job is maximum when it is re-
leased simultaneously with all high-priority tasks [16]. Let
hp(i) denote all tasks with priority higher than that of a given
periodic task 7;. The time demand function of 7; (denoted by
w;(t)) is defined as:

wit) =Ci+ Y (%1'@

7 €hp(i) J

Theorem 2 [15, 17] A set of fixed-priority periodic indepen-
dent real time tasks with relative deadlines equal to the periods
is feasible if and only if ¥Vi 3t 0 <t < T;, w;(t) < t, under
critical instant phasing.

The exact characterization of the critical instant for DFR-
RMS is non-trivial. Multiple forbidden regions that overlap in
time will cause a total interference which is less than their total
duration, and a given forbidden region F'l?; may be dynami-
cally postponed (for example, when D; is in active use at the
release time of F'R;). Further, the tasks in hp(7) that typically
delay the execution of 7; may be themselves delayed by vari-
ous forbidden regions. Nevertheless, it is still possible to use
the traditional TDA technique by conservatively (i.e. by over-
estimating) the interference of high priority tasks in Ap(i) and
the forbidden regions, on a given task.

Let w!'f(t) be the time-demand function of 7; in the DFR-
RMS algorithm, such that the total interference on 7; from
tasks in Ap(i) and forbidden regions is maximized.

Proposition 1 /n DFR-RMS, for every task T; and every t in
the range [0, T;], we have:
FR

w;

() <w™*(t)

=it Y [1:G+ Y TleA

ri€hp(i) 7 jeDUL; 7

Proof:  The right hand side of the expression in Proposi-
tion 1 overestimates the actual maximum interference on 7;
by assuming that:

e the task 7; is released at the same time as all tasks in
hp(i),

e none of the tasks in hp(7) is delayed by any forbidden
regions until 7; completes, and,

e all forbidden regions F'R; such that D; € DUL; are
activated at ¢ = 0, and each of these forbidden regions is
treated as a high priority preemptive task invoked at the
maximum frequency (i.e. every II; time units).

Note that the last assumption above effectively ignores the
“overlap effect’ of forbidden regions on 7;: if two forbidden
regions I'R; and F'Ry, that delay 7; overlap for x time units,
then their total interference would be A; + A, — z, and not
A+ A; as assumed. However, it is fairly difficult to precisely
characterize the aggregate impact of such overlaps — though it
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is certain that the worst-case interference for 7; occurs when
there are no such overlaps at all. Hence, the proposition holds.

Corollary 1 A set of periodic tasks can be feasibly scheduled
by DFR-RMS if Vi 3t 0 <t <T;, w*(t) <t.

Note that just like the original TDA algorithm, it is neces-
sary and sufficient to evaluate w;"*"(¢) at every period bound-
ary in interval [0, 7T;]. Hence, the overall complexity of the
extended TDA is O(w (n +m)?).

Remark: If the task set has some shared resources which can
lead to additional blocking, then these extra blocking times can
be easily incorporated to the framework as illustrated for the

traditional TDA in [1, 17].

5 Determining Forbidden Region
Parameters

Before DFR scheme can be used with a given task set, the
duration (A;) and period (II;) of each forbidden region F'R;
needs to be determined. While a fundamental requirement is
to ensure the feasibility of the real-time task set, another major
objective is to optimize energy savings with the selected A;
and II; values.

Intuitively, the longer A; (beyond B;), the higher energy
savings for device D;. Similarly, as II; decreases, the number
of forbidden region instances of F'R; gets higher, increasing
the overall sleep time. Also, considering that the energy sav-
ings of D; during a sleep interval is proportional to the differ-
ence (P! — P!), we can define the Expected Energy Savings
(EES) of D; as:

EES; =

(Py— P

S 5)

3

In order to perform an efficient search in the possible {A;, II;}
spaces, we need to first establish some lower and upper bounds
on these quantities.

Bounding A;: Observe that having a forbidden region du-
ration A; < B; is not helpful: this stems from the very defi-
nition of break-even time. Similarly, it is easy to see that A;
cannot exceed T; — C; (the maximum allowable laxity for 7;)
for any task 7; that uses D;. Doing otherwise may result in a
deadline miss for 7, in case that an instance of 7; is released
immediately after the activation of F'R;. Hence, we have:

Bi, < Az S min (T] — C])
T;E€EYi

Bounding II;: Consider the quantity z; = max{T}}.
JEY

When evaluating the feasibility of any task in ~y; through the

TDA in Section 4, the quantity [{-] = 1 for any IT; > z;.

Hence, if a given task 7, is infeasible with a certain II; = z;

value (D; € DUL,), then it is guaranteed to remain infea-
sible for any II; > z;. Recalling that increasing II; does



not help to improve the energy savings either, we can obtain
II; < maX{T }.

Deﬁne the utilization Up, of a given device D as the total
utilization of tasks in ;. Observe that the ratio 1'1 . for given
forbidden region F'R; cannot exceed 1 — Up,, since this is the
maximum amount of time during which D; can be in sleep
state. Combining all this, we get:

1 _UD TTiEY

Given the expected energy savings formula (Equation (5)),
a reasonable approach is to treat the devices with large EFS;
values with high priority in the search process, to increase the
potential energy savings. Moreover, for a given D;, the A and
II ranges can be scanned at equi-distant points to assess the
feasibility and E'ES; with the given values. Our experience
shows that evaluating EE'S; for 10-15 equi-distant candidate
A; and TI; values gives significant energy savings while keep-
ing the running time at acceptable levels. The resulting Greedy
FR Assignment algorithm is given below.
Complexity: At each iteration, the complexity of finding the
best (A;, II;) pairs is still O(w(n + m)?),
given the constant number of candidate points evaluated in the
range. Hence, the overall complexity of this static algorithm is

O(mestipatosstm(n + m)?)

Greedy FR Assignment Algorithm

o 7 ={Dy,...,D,}
e W =10
e Repeat

— for each device D; in Z, compute the (4,
I1;) pair that gives the best EES; while
committing to A, II values already in W
and maintaining the feasibility.

— Commit to (A, IT;) pair for D; in Z that
gives the maximum EES.

- SetW =WuU D]‘

- SetZ=7-D,

e Until (Bi|D; € Z A {A;,11;} is feasible)

6 DFR Algorithm: Online Routines

In this section, we present full details of the online component
of the algorithm. For every forbidden region FR, IT and A
values are computed using the technique given in the preced-
ing section. Initial release times 7 f; of all forbidden regions
are set to 0 and all devices are assumed to be initially in ac-
tive state. The algorithm performs device and forbidden region
related actions at dynamically scheduled device management

points (DMPs).

There are four DMP types: ENABLE, DISABLE, ACTI-
VATE and DEACTIVATE, corresponding to starting an FR,
ending an FR, activating a device and deactivating a device,
respectively. DMPs can be implemented using an internal ta-
ble and a timer. The internal table can be used to record points
at which DFR actions are scheduled. We assume the existence
of a routine Schedule DMP() for this purpose. Schedule DMP()
takes as input the DMP type and the action’s scheduled timing
information. Further, the system is assumed to have a pro-
grammable timer which issues interrupts at requested times,
corresponding to DMPs. Upon the receipt of such an interrupt,
the algorithm will be invoked by the operating system and will
scan its internal table, performing all actions that were sched-
uled for this DMP. We now explain how Device Management
Routines in Figure 3 can be used to perform DFR actions listed
in Figure 4.

The system’s ready queue is assumed to be divided into
two components: R,, which contains tasks currently eligible
for execution, and Ry, which contains ready tasks currently
“blocked” by active forbidden regions. At every job arrival
point, the new job of task 7;, is inserted to either R, or Ry,
depending on current active forbidden regions.

Note that each FR can be in three possible states. If an FR
has started, it is in ENABLED state and upon termination the
FR is switched to DISABLED state. FR is in PENDING state
if it has been postponed. Starting an FR can be performed in
two modes. In FORCE mode, FR is activated without any sec-
ondary check. In DEFAULT mode, some look-ahead is used
to see if FR can be postponed to save additional energy, as
explained below.

The scheduler function, shown in Figure 5, tries to put all
active devices not in use by the current job to sleep, by in-
voking TryShutDown() function. There are two alternative
ways of shutting down a device: either by predicting its next
usage time and comparing it against the break-even time, or
through forbidden regions. When predicting the next device
usage time, our scheme takes also into account the blocking
times of other tasks by other forbidden regions, in addition to
standard CEEDS prediction mechanism. The second option
involving FRs occurs when the FR associated with the device
is in PENDING state. This occurs due to dynamic postpone-
ments of FR next release times.

Given these two options, the algorithm tries to shutdown
the device using CEEDS so as to postpone FR and preserve its
bandwidth for future, in the first place. However, if CEEDS
is unable to shutdown the device and FR associated with the
device is in PENDING state (has been postponed), we shut-
down the device using FR scheme. Also notice here that if the
predicted next device usage time N DUT;(t) of D; is such that
t+ B; > NDUT;(t) > rf;, then D; can be safely and effi-
ciently put to sleep. Given this, F'R; will be postponed at 7 f;.
At device activation point we can force this postponed F'R; to
start at predicted next device usage time and hence postpone
device activation. This helps in increasing device idle interval
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1 GetNextDeviceUsage (D;,t) :
if 7, in ready queue
z = max (FR;, endtime|FR) blocks ;)
NDUT(D;,7;) = max(t,z)

else
NDUT(D;,7j) = release time of 7; >t
end if
NDUT;(t) = min(NDUT(D;,7;)) T; € i
2 WakeUp (D;) :

if (NDUT; (t) —t > B;)
ScheduleDMP (ACTIVATE, D;, NDUT;(t) — ti,)
elseif (FR; is PENDING)
ScheduleDMP (ENABLE, FORCE, FR;, NDUT; (t))
elseif (NDUT;(t) > rf;)
ScheduleDMP (ENABLE, FORCE, FR;, NDUT; (t))
else
Activate D;
3 ShutDown (D;, TurnOnTime) :
TurnOnTime = max (t+1, TurnOnTime)
Deactivate D;
ScheduleDMP (ACTIVATE, D;, TurnOnTime)
TryShutDown (D;) :
if (NDUT;(t) —t > B; OR NDUT;(t) > rfi)
ShutDown (D;, NDUT;(t) — i)
elseif (FR; is PENDING)
StartFR (FR;)
5 StartFR (FR;) :
ShutDown([h,t+wAiftéa)
ScheduleDMP (DISABLE, FR;,t + A;)

IS

Move 7; in (y; N R,) from R, to R
Set FR; to ENABLED
Scheduler ()

6 TerminateFR (F'R;) :
Set Tfi to t+1II; — A;
ScheduleDMP (ENABLE, DEFAULT, FR;, t+11;—A;)

Move 7; in (y;NRy) from R, to Ra
Set FR; to DISABLED
Scheduler ()

7 DeviceCntrlRoutine (F'R;, mode) :
if (mode equals FORCE)
StartFR(FR;)
else /+ DEFAULT modex/
switch(D; state)
Casel:D; SLEEP OR TRANSITIONING
Set F'R; PENDING
D; ACTIVE
if(D; € DULy)
Set FR; PENDING
else
if (NDUT;(t) —t > B;)
ShutDown (D;, NDUT;(t) — ti,)
Set F'R; PENDING
else
StartFR(FR;)
end if
end if
end if

Case2:

Figure 3: Device Management Routines
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1 At task arrival time ¢:
if IFR;:FR; ENABLED AND D; € DUL;
insert 7; to Ry
else
insert 7; to R,
2 At task completion time ¢:
if R, not empty
Scheduler ()
else
for every D; ACTIVE
TryShutDown (D;)
end if
3 At scheduled device management points:
switch (DMPType)
case ENABLE:DeviceCntrlRoutine (FR;, mode)
case DISABLE:TerminateFR (D;)
case ACTIVATE:WakeUp (D)
case DEACTIVATE:ShutDown (Dj)

Figure 4: The DFR Actions

Scheduler():

7n, = highest priority task in R,

for every D; ACTIVE and not used by 7,
TryShutDown (D;)

Dispatch 73

Figure 5: The scheduler function

lengths. The operations described above are also performed
on all active devices whenever a task completes and the ready
queue is empty.

At device management points the system takes required ac-
tions. As said, there can be a match involving four DMP types.
First, if this is a scheduled FR start time then DeviceCntrl-
Routine() is called. If this routine is called in FORCE mode
then FR is immediately activated. The FORCE mode oper-
ation helps make sure the devices continue in sleep state by
postponing device activations. In DEFAULT mode, a decision
to start or postpone FR is made. If the device is already in
sleep state or is active, and being used by the current job there
is no motive to start a forbidden region; hence, it is postponed.
FR is also postponed when corresponding devices are transi-
tioning from active to sleep or sleep to active. When the device
is active and not in use we again perform a check to see if the
device can be shutdown using CEEDS. If this succeeds, we
postpone FR else start FR and shutdown the device.

Second, if this is a scheduled FR end time we schedule the
next FR. Whenever an FR starts or terminates, it is essential to
invoke the scheduler, as jobs may migrate between R, and R.

Third, if this corresponds to a device activation time we
check to see if this activation can be postponed. The rationale
behind doing this is that between the time a device activation
was scheduled and is performed, a forbidden region may have
been postponed or started, both of which may enable the de-



vice to continue in sleep state. Thus, the activation of the de-
vice may be postponed reflecting the new state of the system.
Also in this function, we take actions to deal with forceful FR
start which was explained earlier. If device activations can-
not be postponed, then we start switching the device to active
state immediately. This is accomplished through the WakeUp()
function.

Lastly, in ShutDown() function, we start switching the de-

vice to sleep state and schedule an activation time for the de-
vice in future. This activation time is computed based on either
the next device usage time or forbidden region end point.
Run-time Complexity: At every DMP, the system may
have to perform at most two actions for every device: EN-
ABLE/DISABLE FR and/or ACTIVATE/DEACTIVATE de-
vice. The next device usage time information can be computed
in O(n) time for each device. Therefore the algorithm runs in
O(mn) time at each invocation point. Since the number of de-
vices is typically small compared to the number of tasks in the
system, the DFR’s run-time complexity can be considered as
linear in the number of tasks in the system.
Extensions to DVS Settings with Dynamic Slack Reclaim-
ing: The DFR algorithm can be used in DVS settings with any
feasible task speed assignment. Further, we use an extension
of SDRA algorithm [2] to fixed-priority settings for reclaim-
ing. In SDRA, at dispatch time a job computes its ’earliness’
by considering the slack of all higher priority jobs. Earliness
represents the total slack available in the system from higher
priority tasks that the current job can reclaim. Earliness is
modeled through maintaining the a-queue, which represents
the canonical schedule in which all jobs take their worst-case
execution time. All jobs, upon arrival, insert their worst case
execution times (under the nominal speed) to the a-queue.
Jobs in the a-queue are ordered based on task priorities. A
consequence of DFR algorithm is that, at dispatch time, care
must be taken not to consider blindly all higher priority tasks in
the a-queue: Some of these higher priority tasks may be cur-
rently blocked by forbidden regions. Reclaiming from such a
task might indeed lead to potential deadline misses. Therefore,
in DFR settings, the earliness is computed by considering only
the higher priority jobs that have completed their execution.

7 Experimental Results

In this section, we show the performance evaluation of DFR
scheme through simulations. We implemented a discrete event
simulator to evaluate our scheme. We randomly generated
1000 synthetic task sets, each containing 20 periodic tasks.
The periods of the tasks were randomly chosen to be in the in-
terval [25ms, 1300ms] which corresponds to the period range
observed in example real-time applications [18]. We recorded
the energy consumption of the task set during the hyperpe-
riod (LCM). Each task is assumed to use 0-2 devices, deter-
mined randomly from the device list given in [8], as done in
the same paper. We adopt the device specifications provided in
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[8]. The simulator is modeled after the Intel Xscale processor,
with specifications in [27]. On DVS settings, if the speed that
we target does not correspond to the existing frequency levels,
we use the next (higher) speed level.

We compare the performance of three schemes:

e Always On (AON), where the devices remain in active
state throughout the simulation (no dynamic power man-
agement).

CEEDS [8], adapted to RMS settings. This scheme per-
forms device shutdown and activation based solely on
next device usage time predictions.

¢ DFR-RMS, in which devices are put to prolonged sleep
intervals at run time through device forbidden regions.
The minimum separation time (period) and duration of
forbidden regions are computed through the algorithm
given in Section 5.

CEEDS ——
DFR -
AON %

*-

CEEDS ——
DFR —x—
AON -

14 14

12 12

*

X%

0.6 0.6

Eyar (Normalized)
Ejot (Normalized)

0.4 0.4

0.2 0.2

20 30 40 50

Utilization (%)

60 70 20 30 40 50

Utilization (%)

60 70

(a) Energy Consumption (Eyqr) (b) Energy Consumption (E¢ot)

Figure 6: Energy Consumption (No DVS)

When evaluating the energy consumption, we present the
total device variable active energy (FE,.,) and the total sys-
tem energy (E}y,;), separately. As discussed in Section 2.2, the
DPM algorithms do not have a direct impact on Ef;zcq, but
only on E,,,, which can be reduced to the extent the algo-
rithm is successful in increasing the length of sleep intervals
and reducing unnecessary transitions. At the second level, we
also include E,,; values, showing the impact of DPM schemes
on overall system energy.

First, we consider settings where the actual execution time
of each job is equal to its worst-case execution time. We com-
pare the three schemes as a function of utilization. The task
utilizations are scaled from 0.2 to 0.7. Figure 6 shows the
relative performance of the DPM schemes, on settings where
all jobs run at the maximum CPU speed (no DVS). All re-
sults are normalized with respect to the energy consumption
of CEEDS. At lower utilization values, DFR-RMS effectively
postpones device activations using forbidden regions. This
helps in achieving prolonged sleep periods and clustered ac-
tive periods where the device is in continuous use. As a re-
sult, DFR-RMS reduces F,,, significantly: we obtain F,,,
gains in the range of 14% to 27% when compared to CEEDS.
DFR-RMS scheme successfully reduces E;,; by 5% to 19%,
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Figure 7: Energy Consumption (with DVS)
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Figure 8: Energy Consumption with P, scaling

as well. At high utilization values, the device idle intervals
are strongly constrained by device usage patterns, periods of
tasks and break-even times of devices. These factors reduce
the gains obtained by DFR-RMS scheme at high utilizations.
Notice that even at 70% utilization we are able to schedule
some forbidden regions and obtain gains. This is due to the
fact that schedulability of the task set is checked through time
demand analysis given in Section 4 and forbidden regions are
successfully able to exploit the CPU idle times.

We repeated the above experiments for DVS settings (Fig-
ure 7). An energy-efficient speed threshold for each task is
computed through the technique given in [2]. Then, task level
speed assignments are computed by the algorithm in [2] with
feasibility bound set to the Liu-Layland bound for 20 tasks
(approximately 70 %). The results are similar showing DFR-
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(a) Energy Consumption (Eyqr) (b) Energy Consumption (Etot)

Figure 9: Energy Consumption with reclaiming enabled
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RMS’s gains on DVS settings as well. Even though the rel-
ative performance of DFR-RMS is the same in both settings,
we found that the absolute F;,; values for DPM schemes with
DVS are lower than those without DVS, showing the positive
impact of DVS.

In the next experiment set, we show the impact of vary-
ing device characteristics on DPM schemes in general. In this
setup, we compare CEEDS and DFR-RMS. DVS is enabled
and nominal speed values are assigned as above. The system
utilization is fixed at 40%. For a given task set and a device us-
age pattern, we first record E,,- and E},; values for P, values
given in [8]. Then, for the same task set and device usage pat-
tern, we repeat the experiment by scaling up/down P, for all
devices and re-computing break-even times. Figure 8 shows
the results normalized with respect to energy consumption of
the task set with unscaled P, values, i.e. when the scaling fac-
tor is one. Note that, CEEDS forces a device to be in active
state at the predicted next device usage time, however the de-
vice may not be used at this point. With DFR-RMS scheme,
DEFR postponements and forceful DFR starts at next device us-
age times help prolong to extend sleep intervals. This makes
DFR scheme more tolerant to P, scaling. Thus, the gains of
DFR scheme increase significantly as we scale up P,, indicat-
ing that DFR would be even more applicable in systems with
significant power consumer devices.

Finally, we consider the effect of reclaiming on DFR
scheme. Again, the utilization is set to 40%. The actual
workload is varied randomly between best case execution time
(BCET) and worst case execution time (WCET) of the task.
We vary the ratio of Vgg g;": from 1 to 5. The SDRA algorithm
[2] is adopted for reclaiming. As mentioned in Section 6, a
consequence of DFR algorithm is that it is possible to reclaim
slack only from higher priority tasks that have completed ex-
ecution in the a-queue. This somewhat limits the gains for
DFR. In fact, the relative performances of CEEDS and DFR
appear to be mostly uniform throughout the spectrum.

8 Conclusions

In this paper, we addressed the problem of efficient device
power management for hard real time systems. The problem of
generating feasible schedules such that every device idle inter-
val is longer than the corresponding device break-even times
turns out to be NP-Hard in the strong sense. Then, we pro-

[ posed a novel and efficient online DPM algorithm, built on the

idea of Device Forbidden Regions (DFR). Our scheme explic-
itly inserts idle intervals to the schedule at run-time to help
transition devices to sleep state. We extended the well-known
Time-Demand Analysis technique to determine the feasibility
in the presence of forbidden regions and developed an algo-
rithm to assign the forbidden region parameters to improve the
energy savings. Through experimental evaluation, we showed
how our algorithm can manage to significantly reduce the un-
necessarily consumed device active power, by imposing sleep



intervals that are guaranteed to exceed the break-even times.
The gains are also reflected in total system energy figures.

The DFR algorithm can be used in conjunction with or
without DVS: our results show that it is equally effective in
both cases. Further, the well-known dynamic reclaiming algo-
rithms can be used in conjunction with DVS and DFR.
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