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Abstract

Dynamic Voltage Scaling (DVS) and Dynamic Power Manage-
ment (DPM) techniques form the basis of numerous energy man-
agement schemes proposed for real-time embedded systems. DVS
targets reducing the dynamic CPU energy consumption, while DPM
attempts to reduce the energy consumption of idle devices by putting
them to low-power states over sufficiently long intervals. It is imper-
ative that the system-wide energy management schemes efficiently
integrate DV'S and DPM while exploiting the subtle trade-off dimen-
sions. In this paper, we develop and propose a unified framework for
periodic real-time tasks where DVS and DPM are judiciously com-
bined. The framework, called DFR-EDF, assumes a general system-
level energy model and includes both static and dynamic (online)
components. The static part is based on the extension of the recently
proposed Device Forbidden Regions (DFRs) approach to Earliest-
Deadline-First (EDF) scheduling. The online component integrates
the predictive DPM techniques and offers a generalized slack re-
claiming mechanism that can be used by DVS and DPM simulta-
neously. Our experimental evaluation indicates significant gains of
DFR-EDF at the system-level compared to the state-of-the-art so-
lutions. Finally, this research effort makes another contribution by
formally showing that optimally solving the DPM problem in pe-
riodic real-time execution settings is NP-Hard in the strong sense,
even in the absence of DVS.

1 Introduction

Effective energy management for computing systems re-
mains an elusive problem, despite the significant insight that
the research community gained in the last decade through nu-
merous research studies and projects. For real-time embed-
ded systems, energy-awareness is now a prime design and op-
erational objective that must be achieved without sacrificing
the critical temporal predictability guarantees. Dynamic Volt-
age Scaling (DVS) and Dynamic Power Management (DPM)
are two well-known techniques for energy management. With
DVS [18], the CPU clock frequency and supply voltage can
be adjusted dynamically on-the-fly. Due to the convex rela-
tionship between the CPU power consumption and proces-
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sor frequency, DVS helps to significantly reduce processor
dynamic energy consumption at the cost of increased task
response times [2, 11, 12, 13]. On the other hand, DPM
was proposed to reduce the device (primarily I/O device and
main memory) energy consumption by transitioning devices
to low-power (sleep) states when not in use [4, 5, 10, 17].
While it has an intuitive appeal, a primary challenge with
DPM is to ensure that the non-trivial energy overheads as-
sociated with device state transitions do not offset the energy
savings obtained during the device idle intervals [4, 5, 10].

While DVS and DPM are both important and each alone
presents non-trivial difficulties in real-time settings, a main
motivation for this research effort is the need for unified
frameworks that contain both techniques as essential compo-
nents. The growing awareness for system-level energy mini-
mization [1, 3, 6, 20, 22] as opposed to component (e.g. CPU
or device) level techniques provides another inspiration for
our work. As we elaborate in Section 1.1, the system-level
solutions are far fewer compared to extensive DVS- or DPM-
only energy management literature. Moreover, most of the
existing system-level solutions either ignore the DPM aspect
or attempt to integrate it with DVS through simple run-time
heuristics. Yet, the proper integration of DVS and DPM tech-
niques poses several challenges, even for a single real-time
application as recently demonstrated in [6]. This is due to the
fact that aggressive DVS schemes lead to short device idle
intervals that limit the effectiveness of DPM solutions — sim-
ilarly, solutions with DPM as the primary focus may lead to
excessive CPU power consumption. Our primary objective in
this paper is to develop a unified energy management frame-
work for deadline-driven periodic real-time applications by
exploiting the interplay between DVS and DPM with both
static and dynamic (run-time) solution components.

1.1 Related Work

DVS has attracted significant attention in the research
community; in particular, the problem of minimizing energy
consumption through DVS while still meeting the deadlines
(the RT-DVS problem) has been addressed extensively over
the past decade for various task models [2, 11, 12, 13]. More
recently, it was reported that aggressive use of DVS tech-
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niques may lead to increased device usage times and en-
ergy consumption, thereby increasing overall system energy.
This essentially led to the introduction of energy-efficient fre-
quency scaling concept [1, 8, 20, 21, 22]. Despite some dif-
ferences in their task/energy models, all these solutions es-
sentially identify an energy-efficient (or, critical) CPU fre-
quency below which the system consumes more energy per
execution cycle. The frequency is never scaled below that
threshold at run-time. However, all these system-level stud-
ies, while taking device energy consumption during task ex-
ecutions into consideration, effectively ignore the DPM di-
mension to a large extent.

This is because, in practice, device transitions incur sig-
nificant time and energy overheads. As a result, for every
device, there exists a minimum idle interval length (called the
device break-even time) that justifies the device state transi-
tions for energy saving [4, 5, 10]. The break-even time of I/O
devices can be significant and comparable to task execution
times [4, 10]. If the device is re-activated before the break-
even time, then the overall energy would increase; as a result,
it is more energy-efficient to keep the device simply in active
state for short idle intervals. Thus, accurately predicting the
length of idle intervals is crucial to perform effective DPM at
run-time. In real-time systems, the length of device idle in-
tervals are typically estimated using prediction based mecha-
nisms. This is often achieved by estimating the earliest time
an idle device will be needed by any task at run-time. Ex-
ploiting activation patterns of periodic tasks is a primary tool
in existing predictive techniques [3, 15, 16, 17]. The problem
of energy minimization for real-time systems through DPM
(the RT-DPM problem) has been addressed in several works
[4, 15, 16, 17]. More recently, the work in [5] proposed a
novel RT-DPM approach based on Device Forbidden Regions
(DFR) concept. With DFRs, through a pre-processing phase,
the system plans for putting devices to sleep states for long
intervals in advance. The DFRs are enforced at run-time with
pre-determined periods. Further, the DFR approach can be
easily combined with simple predictive schemes [5]. The
framework in [5] was developed for systems using Fixed-
Priority (Rate-Monotonic) Scheduling.

The research studies that analyze and/or exploit the
DVS/DPM trade-offs are relatively few. In [6], an exact
characterization of the interplay of DVS and DPM was pre-
sented. Despite its novelty and precision, its limitation comes
from the simple application model with a single frame-based
task. In [3], the authors proposed a system energy manage-
ment scheme SYS-EDF with both DVS and DPM components
for periodic real-time tasks and EDF scheduling. The DVS
component of SYS-EDF is based on the concept of energy-
efficient frequency scaling while the DPM component uses
next device usage time predictions. In [14], assuming that
CPU frequency can take any value to guarantee feasibility, the
authors theoretically investigated the problem of minimizing
processor energy consumption while taking into account both
dynamic CPU power and CPU state transition overheads.
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Contributions of this research. In this paper, we develop
a unified framework (called DFR-EDF) that considers the
trade-offs between the effective DPM and DVS policies to
minimize overall system energy for periodic real-time tasks.
We assume a general energy model where the CPU and de-
vice power consumptions, as well as device break-times and
transition overheads (in terms of both energy and time) are
considered. Our solution judicially combines both DVS and
DPM components and includes a static and a dynamic part.

A critical building block for our framework is the Device
Forbidden Regions (DFRs) concept [5] that is formally ex-
tended to EDF scheduling for the first time in this paper.
EDF, by offering 100% CPU utilization and admitting simple
utilization-based feasibility tests, provides an important lever-
age mechanism for our unified framework. We develop an ef-
ficient static feasibility test for DFR-EDF (Section 3.2), prove
its correctness, and show how this test can be used to de-
rive system-wide energy-efficient DFR parameters as well as
processing frequencies for DVS simultaneously at the static
(design) phase (Section 3.3). We also present our dynamic
schemes that extend the duration of device idle intervals by
combining DFRs and predictive techniques (Section 4.1) and
exploit the run-time slack for both DVS and DPM, simulta-
neously (Section 4.3). Our experimental evaluation with re-
alistic processor and device specifications indicates that our
scheme outperforms state-of-art schemes by margins of up to
27% on overall system energy (Section 5). Further, our eval-
uation shows that unlike existing schemes, DFR-EDF main-
tains a robust performance for various system profiles regard-
less of whether the CPU or device energy is dominant. Fi-
nally, another contribution of this research effort is to show
that the open problem of optimally solving the DPM problem
for periodic real-time tasks (even without DVS) is NP-Hard
in the strong sense (Section 3).

While inspired by our previous work [5] that introduced
the DFR concept and showed its applicability in fixed-priority
settings, the present work has a number of conceptual nov-
elties beyond extending the DFR framework to dynamic-
priority settings efficiently (which is a non-trivial challenge
in its own). The focus of [5] was primarily the DPM-related
issues: although it included a run-time DVS component, the
DPM and DVS solutions were disjoint. Specifically, the DFR
parameters were obtained assuming maximum frequency and
the question of assigning optimal reduced frequency with
DVS was left open. In contrast, the DFR-EDF framework
determines the ideal DFR parameters and CPU operating fre-
quency (namely, the best power management configuration)
through a search that considers the impact on device and CPU
energy simultaneously. Also, in [5] the dynamic slack was
unconditionally used for frequency reduction. In this work
through a generalized reclaiming mechanism the run-time
slack can be used for both DVS and DPM, whenever possible.



2 System Model and Assumptions
2.1 Processor and Task Model

We consider a DVS-capable uni-processor system with &
discrete CPU frequency values fi,..., fr (fi < fir1). All
frequency values are normalized with respect to f; i.e. fr, =
1.0. The workload consists of set of n independent periodic
tasks ¢ = {717 ...T,}. Each periodic task T; is represented
by the pair (C;, P;), where C; denotes the worst-case exe-
cution time under maximum processor frequency fj, and P;
denotes the period. The relative deadlines of the tasks are
equal to their periods. The worst-case execution time of task
T; at frequency f is assumed to be (%). The base utiliza-

tion of the task set ¢ is given by Uit = Y, % At any

i=1
time, tasks eligible for execution are scheduled by preemptive

Earliest-Deadline-First (EDF) scheduling policy. We assume
Uior < 1 and hence the task set is schedulable by EDF at the
maximum CPU frequency [9].

2.2 Device Model

The system has a set of m devices represented by D =
{D;...D,,}. The set of devices used by a given task T; dur-
ing its execution is denoted by ~;. Each device is assumed to
have at least two power states: an active (working) and a low-
power sleep state. In sleep state, a device cannot process any
requests but consumes less power. P! and P! represent the
power consumption of D; in active and sleep states, respec-
tively. The transitions between active and sleep states involve
overheads both in terms of time and energy. The periodic na-
ture of the applications implies that any device put to sleep
state will be eventually re-activated. Thus, for convenience,
the energy overhead of transitioning D; once from active to
sleep and back from sleep to active is captured under a sin-
gle variable E? . Similarly, T, indicates the total transition
delay between active and sleep states.

Due to the constraints imposed by device transition delays,
D, cannot be transitioned between active and sleep states over
an interval of length smaller than 77,. Further, in view of
the energy transition overheads, the minimum length of idle
interval over which transitioning a device D, saves energy (as
opposed to keeping D; continuously in active state) is given
by E—%& Thus, the break-even time B; of device D;
is expressed as [4, 5, 10] B; = maxz (T, %)

In accordance with the previous RT-DPM ;ese;rch [3, 4,
5, 15, 17], throughout this paper we assume inter-task de-
vice scheduling: all devices in ~; should be in active state
when task 7; executes. As the exact times at which a run-
ning task generates a request for a device cannot be known
in advance and device state transition delays are often signifi-
cant, the inter-task device scheduling paradigm is considered
realistic for energy modeling and minimization objectives in

real-time systems research [3, 4, 5, 17].

2.3 Energy Model

System energy consumption can be divided into static en-
ergy and dynamic energy components. The static power is
needed for purposes such as keeping the clock running, main-
taining the basic circuits and keeping the devices in sleep
states. Due to the periodic nature of real-time tasks and the
significant delays involved in completely turning off CPU and
other components, we assume that static energy is not man-
ageable and focus on minimizing the system-level dynamic
energy.

All the devices and CPU contribute to the overall dynamic
energy consumption which is expressed as:

m
Esystem = ECZW + Z E(Zievice

i=1
where E), is the energy consumed by the processor while
executing the task set 1. The processor power is modeled as
a convex function of its clock frequency (i.e. P(f) = af3,
where « is the switching capacitance). Ef_, ;.. corresponds
to the overall energy consumption due to a specific device
D; and includes three components: (1) The energy consumed
by D; when active and in use by tasks. This component
depends on the execution times of tasks using D;. (2) The
energy overhead involved in transitioning D; between active
and sleep states during execution. (3) The energy consumed
by D; when active and not in use. Obviously, a device not
in use may be forced to remain in active state when the esti-
mated length of the idle interval is shorter than its break-even
time.

3 DFR-EDF: Fundamentals and Static Analysis

In this section, we present the basics of the device for-
bidden region (DFR) based DPM methodology and then de-
rive a sufficient schedulability condition for DFR and EDF
scheduling. Following this, we show how to combine (and
obtain energy-efficient configuration parameters for) DPM
and DVS.

But first, we address a fundamental problem: How hard
is the problem of minimizing the system-level energy for
periodic real-time applications? Theorem 1, whose proof is
presented in [7] due to space constraints, indicates that solv-
ing the problem of minimizing device energy consumption
for general periodic tasks (even in the absence of DVS) is in-
tractable, closing an open problem!. We first formally define
the device energy minimization problem for real-time tasks.

!In [10] the authors indicate that the problem of minimizing device en-
ergy consumption in the absence of deadlines is NP-Hard only in ordinary
sense. Further, in [5] it was shown that generating a feasible schedule for
periodic tasks where every device idle interval is greater than its respective
break-even time is NP-Hard in the strong sense. While the result in [5] hints
to the inherent challenges involved in the problem, it does not imply that
device energy minimization is NP-Hard as a schedule with the mentioned
property does not necessarily minimize the total device energy consumption.
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RT-DPM: Given a set of real-time tasks and a set of devices
with known energy characteristics, find the feasible schedule
that minimizes the total device energy consumption.

Theorem 1 RT-DPM for general periodic tasks is NP-Hard
in the strong sense.

This result indicates that even a pseudo-polynomial time op-
timal algorithm for the problem is unlikely, unless P = N P.

3.1 Device Forbidden Regions

In [5], a novel DPM methodology based on the concept
of device forbidden regions was introduced. The key to that
approach is to plan in advance for long device idle intervals
called forbidden regions (FR) that will be enforced at run-
time. The forbidden region associated with device D; is de-
noted by F'R;; when F'R; is enforced (“activated”) at run-
time by the operating system, the corresponding device is put
to sleep state.

Each forbidden region F'R; is characterized by a length
(or, duration) A;, and a minimum separation time (or, period)
II; that are determined through static analysis. The length of
each F'R is guaranteed to be greater than the break-even time
of the associated device (i.e. A; > B;). Thus, when F'R; is
enforced at run-time, the state transition of D; is guaranteed
to be energy-efficient. However, no tasks using D; can exe-
cute for the duration of F'R;. Specifically, with F'Rs, a job is
eligible for execution only when it is released and there are no
enforced F'Rs in the system affecting its devices. Among all
eligible jobs, the one with the highest-priority is scheduled.

Since jobs may be prevented from execution due to run-
time enforcement of DFRs, the static analysis for DFR com-
ponents must include a schedulability test to guarantee the
feasibility of the real-time workload. A viable strategy is to
treat each F'R as a high priority task which only interferes
with the execution of other tasks using the device associated
with the F'R. This approach allows to preserve the feasibility
as long as two consecutive enforcements of the same F'R at
run-time are separated by a minimum distance equal to its pe-
riod. In other words, F'R run-time enforcements need not be
strictly periodic and can be delayed if necessary.

The above feature is also important because it allows to
combine the run-time enforcements of F'Rs with known sim-
ple prediction-based DPM mechanisms. Hence, DFR-based
DPM has also a mechanism to predict inherent device idle in-
terval lengths (for example, by using information about next
release times of periodic task instances). At run-time, when a
device can be transitioned to sleep state using the prediction
mechanism, an F'R is not enforced (but postponed), saving
its bandwidth for future usage. Further, whenever possible,
F'Rs are enforced in conjunction with existing idle intervals
to create long contiguous device sleep periods, resulting in
additional energy savings.

Now we present an example to illustrate the potential ben-
efits of employing DFR-based DPM policies, in conjunction

with EDF. We are given two periodic tasks 77 and 75 with
the following parameters: C; = Cy = 250, P, = 1200,
P, = 1500. T} uses the device D¢ with the break-even time
By = 1000, while 15 uses Dy with By = 1260.

Figure 1(a) shows the EDF schedule without DFRs during
the first hyperperiod. In the schedule, the maximum length
of the device idle interval for D; and D, are 950 and 1250,
respectively. Notice that, in this case, even an ideal predictive
DPM policy would not be able to transition any of the devices
at run-time, since the exact lengths of idle intervals for all
devices are smaller than their respective break-even times.

N

0 1200 2400 3600 4800 6000
| R 5 m |
|?2| T, T T
0 1500 3000 4500 6000
(a) EDF Schedule
R B
RN e i N e R i O
0 1200 1500 2400 3600 3900 4800 6000
A A P -
|T2| FR,| T, T, FR,| T,
0 1500 1800 3000 4500 4800 6000
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(b) Forbidden Regions and EDF Scheduling
Figure 1. Motivational example for DFR-based DPM

Figure 1(b) shows the schedule with F'Rs and EDF
scheduling for the same task set. In this case, a separate
forbidden region is assigned to each device: F'R; with du-
ration A; = 300 and period II; = 2400; F' Ry with duration
Ay = 300 and period IIo = 3000. The enforced forbid-
den regions are shown with dark colors in the schedule. Ob-
serve how the enforcement of F'R; at t = 1200 is exactly
aligned with the end time of an existing device idle interval
[250, 1200] for D;. This effectively creates a long contiguous
idle interval [250, 1500] for Dy during which it can be put to
sleep state. Similar patterns can be seen in the schedule at
times ¢ = 1500, 3600 and 4500. Note that two consecu-
tive F'R enforcements are separated by a temporal distance at
least equal to their periods. As seen in Figure 1(b) F'Rs and
their run-time enforcements help create long sleep intervals
for both devices without affecting the feasibility.

3.2 EDF Schedulability Analysis with DFRs

While the potential benefits of DFRs for enhancing the ef-
fectiveness of DPM are clear, it is imperative to make sure
that all task instances meet their deadlines under various DFR
activation patterns. In this subsection, we derive a sufficient
schedulability condition for a set of periodic tasks scheduled
with preemptive EDF, in the presence of device forbidden
regions with given duration (A) and period (IT) parameters.
Later in Section 3.3 we deal with determining A and II pa-
rameters.

Definition 1 Yy, represents all the forbidden regions associ-
ated with all the devices used by the k smallest period tasks.



Formally, if tasks are sorted in non-decreasing order of peri-
ods, Y, represents the set containing all the forbidden regions
associated with devices UY_; ;.

Theorem 2 Given a set of periodic tasks v = {T1...T,}
arranged in non-decreasing order of periods and a set of for-
bidden regions ¢ = {(A1,111) ... (A, Iy)}, the periodic
task set ) can be scheduled by EDF in feasible manner if,

A DAL KRG
kit D (G + )+ ?; <1
€Yy j=1

The proof of Theorem 2 can be found in Appendix.
Complexity: The schedulability test has n iterations and each
iteration takes O(m + n)-time. Therefore, the overall com-
plexity is O(mn + n?). Since the number of devices is typi-
cally much smaller than the number of tasks, the complexity
of the static feasibility test can be considered as O(n?).

In DVS settings with variable processing frequency, we
have the following corollary as a consequence of Theorem 2.

Corollary 1 Given a set of periodic tasks v = {T1...T,}
arranged in non-decreasing order of periods, and a set of for-
bidden regions ¢ = {(A1,111) ... (A, )}, the periodic
task set 1) can be scheduled by EDF in a feasible manner at
the processing frequency f if,

AAL L
Vk’k:l...n § (H + Pk) +Z
i j=1

€Y
3.3 Determining System Parameters for Effective
Integration of DVS and DPM

G <1
[P

To integrate DVS and DPM, DFR-EDF relies on a power
management configuration C uniquely determined by a pro-
cessing frequency f and a set of forbidden regions ¢ =
{(A1,111) ... (A}, I0,,,) }. In Section 3.2, we provided an
efficient test to decide whether the task set v is feasible un-
der EDF with a given forbidden region set ¢. Obviously, it is
equally important to determine the power management con-
figuration C that yields best energy savings, as there are typi-
cally many configurations that preserve the feasibility.

However, such a decision is not trivial. Typically, DVS
and DPM components tend to favor power management con-
figurations with opposing features. Reducing the processing
frequency (to favor DVS) will scale up task execution times
and hence seriously constrain the DPM opportunities. On the
other hand, configurations that favor DPM will create long
idle intervals that require high CPU frequencies and will also
need to take into account the device transition overheads. In
fact, in the light of Theorem 1 (which indicates that RT-DPM
is intractable even in the absence of DVS), one can safely
state that an exact and efficient solution is unlikely. The DFR-
EDF framework takes a more direct approach: it exploits sev-
eral features of forbidden regions and known properties of
DVS solutions to quantify the energy savings one can expect,
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given a power management configuration C. Hence, the static
phase of DFR-EDF includes an iterative procedure to decide
on the run-time power configuration.

An inspection of Corollary 1 reveals that as more F'Rs are
assigned to the system, the minimum frequency that guaran-
tees feasibility will typically increase. Thus, there is a trade-
off between assigning additional F'Rs to decrease device en-
ergy consumption and the resulting increase in processor en-
ergy consumption. DFR-EDF incrementally assigns F'Rs to
the system. At each step, it evaluates the expected benefit (in
terms of energy savings) of assigning an F'R for another sys-
tem device separately, and commits to the one which appears
most promising. The process of assigning new F'Rs to the
power management configuration stops when it is expected
that by doing so the overall energy consumption will increase
(due to, typically, excessive CPU energy consumption).

To formally describe this procedure, we introduce the no-
tation AEéys for the expected change in system energy con-
sumption as a consequence of adding a new forbidden re-
gion, F'R;, to an already assigned forbidden region set ¢. Let
AE}, ;.. and AE? denote the expected decrease in device
energy and the expected increase in processor energy respec-
tively, due to the additional forbidden region F'R; during a
hyperperiod. AE?, _ can be expressed as:

sYs

— AE!

cpu

AEg,,

= AE(ZieUice
If AEﬁys > 0 then the system is expected to benefit from
the additional forbidden region F'R;. On the other hand, if
AE‘gyS < 0 then the system energy is likely to increase due
to the addition of F'R;.

We now show how to quantify AE),_ ... and AE! . As
a consequence of forbidden region enforcements, the devices
are transitioned to sleep states. Each F'R; enforcement pro-
vides a potential device energy saving of A; - (P! — P?). Dur-
ing a hyperperiod H, there can be at most Lnﬂj F'R; enforce-

ments. As such, AE; can be approximated as,

evice

H

AEY . =|—
device LH’L

1A (P = P)

Let f1 and f2 denote the minimum frequencies that guar-
antee the feasibility of task set 1) with F'R sets ¢ and
(¢ U FR;), respectively. Let P.p,, denote the power con-
sumption of the processor at maximum frequency. Recall that
Uyot represents task set utilization under maximum processor
frequency (fi, = 1). As a consequence of adding F'R;, the
system is forced to switch to fo from frequency f7. Clearly,

fo > fi. Thus, AEépu can be quantified as,
AEépu =H- UtOt ! PCPU . (f22 - f12)

We assume the existence of a function MinSchedulable-
Freq() that determines the minimum CPU frequency f that
guarantees the feasibility of task set ¢» with F'R set ¢. Min-
SchedulableFreq() can be easily implemented in 7 iterations



by running the test provided in Corollary 1 and recording the
minimum feasible frequency? at each step. The maximum
frequency value recorded through n iterations is the minimum
value that guarantees the feasibility (as using a lower fre-
quency would violate the feasibility condition for at least one
iteration). If this maximum frequency exceeds fr = 1 then ¢
is not schedulable with ¢ and MinSchedulableFreq() returns
null. Note that MinSchedulableFreq() has the same complex-
ity as the feasibility test provided in Section 3.2 (O(n?)).
Finally, for a given F'R;, the range of possible A; and
IT; values should be provided to make the algorithm’s search
component complete. Clearly, A; must be no shorter than
the corresponding device break-even time and cannot exceed
the maximum laxity of a task using the corresponding device.

Hence, B; < A; < |min (P; — Cj). Also, the ratio
3l Di€v;j
must not exceed (1 — Up,), where Up, is the total utilization

of tasks using device D;. Thus, 1_AUiDi <II;, < H.

A
o

DetermineEMPRoutine():

o SetZ=1{Di,...
o Setp =10
e Set f = MinSchedulableFreq(v, ¢)
e Repeat

— Set AL

sys

s D}

1,VD; € Z

— For each device D; in Z, compute through
MinSchedulableFreq() a tentative (A,,I1;)
pair and a processor frequency f; that pro-
vides the maximum AE? . while commit-
ting to the current F'Rs in set ¢ and main-
taining the feasibility.

— Let ¢* represent the device index that yields
max(AE? )
i€Z

sys

- if (AEY,, > 0)

* Set ¢ = ¢ U (A, IL;r)
x SetZ =27 — D«
* Set f = fi

e Until(Z =0 OR AE!,

<0)

e return (f, ¢) as the power management configu-
ration C

Figure 2. Determining Energy-Minimal System Parameters

DetermineE MPRoutine() given in Figure 2 determines the
power management configuration C that consists of a set of
FRs and CPU frequency f. The procedure starts with an
empty F'R set and incrementally assigns F'Rs one at a time.
At each stage, for each device D; not associated with an F'R

2The frequency levels that are below the energy-efficient frequency level
[1] are not considered.
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(set Z), it scans the range of A, and II; at a fixed number
of points and determines the (A;, II;) pair and processor fre-
quency f; that maximizes AEéys using the MinSchedulable-
Freq() routine. Our experience with extensive simulations in-
volving wide range of parameters show that scanning 20-30
equi-distant candidate A; and II; values is sufficient to de-
termine system parameters that yield significant energy sav-
ings. Further, since MinSchedulableFreq() has the complex-
ity O(n?), scanning a fixed number of candidate values for
each D, can be afforded at the static phase.

Following this, the most promising F'R and correspond-
ing processor frequency combination (i.e. the one with the
largest positive AEgyS) is recorded as the new best config-
uration. This iterative process stops either when all devices
are assigned with F'Rs, no more F'Rs can be assigned due to
feasibility, or assigning additional /'Rs does not improve the
system energy (i.e. AE;‘US < 0 for all devices in Z).
Complexity: DetermineEMPRoutine() has at most m itera-
tions. Each iteration invokes the schedulability test a constant
number of times for every device not associated with an FR.
Thus, the complexity of each iteration is O(m(mn + n?))
making the overall complexity O(m?(mn + n?)). The num-
ber of devices in the system is typically small compared to
the number of tasks. Consequently, in practice the complex-
ity can be approximated as O(n?), which is affordable for a
routine invoked only once in static analysis phase.

4 Online Components

In Section 3, we provided the details of the static com-
ponent of DFR-EDF, which generates a power management
configuration C with forbidden regions and a CPU frequency.
In this section, we present the details of its online (dynamic)
component that includes mechanisms to further increase the
length of device idle intervals and reclaim slack that may arise
from early completions for both DVS and DPM.

4.1 Enforcement of Device Idle Intervals

The performance of the DPM component can be further
improved by incorporating run-time prediction mechanisms,
allowing enforcement of idle intervals even longer than the
statically-determined F'R durations. To see this, first observe
that the pre-determined period II; of a given forbidden re-
gion F'R; gives the minimum separation time of two consec-
utive enforcements of F'R;: delaying the next enforcement
of F'R; cannot have a negative impact on feasibility. This
gives a powerful opportunity to enhance the DPM effective-
ness at run-time. For example, if the online DPM component
can efficiently conclude that an active device D; can be put to
sleep state for more than B, time units without enforcing an
F'R; or causing deadline miss, that would allow the system to
postpone the next activation of F'R;, saving its bandwidth for
future use. That is, the ability to accurately predict the inher-
ent device idle intervals in the schedule is still important for
the DFR-EDF framework. In this subsection we show how
this can be achieved with low run-time overhead.



At time ¢, let C} denote the remaining worst-case exe-
cution time of job J; under the frequency assigned by the
static routine. Let HPj, denote the set of jobs in the ready
queue having higher priority than any unfinished job of Tj,.
In the worst-case feasible schedule (where all jobs present
their worst-case workload), a given task 7} cannot start to
execute until time ¢ + > C7. Further, if an instance of

JEHP
T}, is not currently ready, then one needs to wait at least
until its earliest next release time Ry (t). Hence, in either
case, at time ¢, T}3’s next dispatch time cannot occur ear-

lier than max(Ry(t),t + > CF). Thus, at time ¢, D;
JEHP,
used by 7T} can be put to sleep state for a maximum of
VF = max(Ry, —t, Y. C7) time units without causing
JEHP
a deadline miss for T},

Interestingly, the DFR-EDF framework creates further op-
portunities to put a device to sleep state by exploiting the run-
time information about idle intervals currently enforced for
other devices. Specifically, note that when a device D is ex-
plicitly put to sleep state (e.g. through an FR), a task T}, using
both D; and another device D; is guaranteed not to generate
a request for D; as well, while D; remains in sleep state.
This follows from the inter-task device scheduling paradigm,
where all the devices of a given task must be ready before it
can start to execute. In other words, the existence of a task 77,
using both D; and D; during its execution, makes the s/eep
intervals of D; and D; inter-dependent at run-time.

Let n; denote the end of a currently enforced idle interval
for device D;. At time ¢, a task T}, is guaranteed not to use
any device D; € ~, for at least (n; — t) time units, if there
exists another device D; & -y, for which an idle interval is
already enforced until time n;. Considering all other devices,
we can see that D; € ~y; cannot be used by T}, for a maximum
of WF = maz(n; —t), j|D; € (v — D;) time units.

Combining the two factors, namely the interference of
high priority jobs and impact of already enforced sleep inter-
vals we find that at time ¢, D; € 7}, can be safely put to sleep
state for 8% () = maz(VF, WF) time units without causing a
deadline miss for 7},. By iterating over all tasks using D; and
taking the minimum, we can determine the maximum time D;
can be put to sleep state without affecting feasibility.

Proposition 1 A given device D; can be put to sleep state at
time t for 6;(t) = min(65(t)), k|D; € i, time units without
hurting system feasibility.

0;(t) can be determined in time O(n logn). Due to space
constraints, the details of the run-time complexity, and the
exact pseudo-code for deciding on device transitions at run-
time are presented in [7].

4.2 Dynamic Frequency Scaling

Many DVS schemes adopt a nominal (default) frequency
frnom [2, 11, 13] that is statically computed. In DFR-EDF
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framework, [0, is determined using the DetemineE MPRou-
tine() described in Section 3.3. It has been well-established
that aggressive slowdown will affect system energy nega-
tively and hence, at run-time, the frequency should not be
lowered below a certain energy-efficient threshold [1, 3, 8].
In DFR-EDF, we adopt the system energy-efficient scaling
technique given in [3]. In that technique, an energy-efficient
frequency threshold is calculated dynamically based on the
power characteristics of the processor, active devices and de-
vices in sleep state, at job dispatch times. The processor fre-
quency is never reduced below this threshold.

4.3 Generalized Slack Reclaiming

As many real-time tasks complete early at run-time, de-
tecting and reclaiming unused CPU time (s/ack) has been a
major tool for dynamic DVS schemes [2, 11, 19]. These
schemes typically incorporate mechanisms to decide on the
amount of slack that can be reclaimed without compromis-
ing the feasibility, before the CPU frequency is reduced. Dy-
namic slack can be also exploited by DPM techniques to in-
crease the length of device idle intervals by delaying task ex-
ecutions [4]. DFR-EDF has a built-in mechanism that can
be used to keep track of and reclaim dynamic slack, for DVS
or DPM. However, possibly the most novel aspect of DFR-
EDF’s generalized reclaiming mechanism is that, whenever
possible, it allows the use of the same dynamic slack for both
DVS and DPM (i.e. for both lowering the processor frequency
and increasing the idle intervals of devices).

We first give a motivational example to illustrate this orig-
inal aspect. Figure 3 shows three ready jobs with decreasing
priority at time ¢. Each job requires a worst-case execution
time of 10 units under their nominal frequency assumed to be
fr = 1. Jobs J; and J3 use device D; with break-even time
12 units, while J> uses no device. D1 has no associated F R
and is in active state at time ¢.

777 7
/////;//////%//7/////////2
AN 00

t t3 t+10

I

77,7377

t+20 t+30

Figure 3. Reclaiming for both DVS and DPM

Assume .J; completes early at time ¢; =t + 3, creating a
dynamic slack of 7 units. At time ¢, Jo will be dispatched
and D; is no longer in use. Thus, the system needs to make a
decision on whether or not to transition 7 and decide on the
processor frequency for executing .Jo. Notice that at time ¢,
if the dynamic slack is ignored, the device idle interval length
of D, is predicted to be 10 units (the worst-case execution
time of J5) which is smaller than the break-even time of D;.
Hence, D1 would be kept in active state by a naive predictive
DPM policy. However, J3 can start as late as ¢ + 20 without
violating system feasibility. Thus, by taking into account the
dynamic slack of 7 units, one can transition D; at time ¢1, as
delaying its usage until ¢ + 20 for 17 units (which is greater



than the break-even time of D;) would still keep the system
feasible. Also, J (dispatched at time ¢;) can use the same
dynamic slack of 7 units to lower its dispatch frequency to %.
Thus, the dynamic slack of 7 units from .J; ’s early completion
has supported both DVS and DPM.

We now give the details of DFR-EDF s generalized slack
monitoring and reclaiming mechanism. To keep track of un-
used run-times we adopt a technique similar to that used in
Dual Speed Dynamic Reclaiming Algorithm (DSDR) [19].
When a job completes, its remaining (unused) run-time is
added to a data structure called the slack-queue. Each ele-
ment in the slack-queue has two components, one indicating
the remaining run-time of the job and the other indicating its
deadline. The slack-queue is maintained in non-decreasing
order of deadlines. At time ¢, the remaining run-time of job
J; is denoted by rrt;. At the release time of J;, rrt; is set to
fncj At time ¢, when J; is being dispatched, let H denote
the set of elements in slack-queue with deadlines no greater
than that of .J;. The slack available to J; at time ¢ due to early
completions is given by slack; = ) rrt;. Note that the re-

jEH
maining run-times of jobs and henJce the slack-queue change
with time and need to be updated accordingly. We refer to
[19] for rules to update job run-times and slack-queue.

Slack Reclaiming for DVS: Recall from Section 4.1 that
CT represents the remaining worst-case execution time of .J;
under f,om. Further, from Section 4.2, when a job is being
dispatched at time ¢, the frequency is not reduced below the
energy-efficient frequency threshold ( fires). Thus, J; with
available slack slack; is dispatched at frequency:

cr
) fthres)

. K3
f = maa( slack; + rrt;

Slack Reclaiming for DPM: The slack that is available
for a specific job at dispatch time can be also used to improve
the estimation of the maximum time a device can idle without
compromising the feasibility. Specifically, recall from Sec-
tion 4.1 that Vf was defined as the maximum time D; can
remain in sleep state at time ¢ without causing a deadline
miss for T}, and was computed through the total remaining
workload of ready jobs in HPj, (jobs with higher priority
than any unfinished job of T}). Notice that the very same
principle can be applied to re-define V¥ in a more precise
manner: since in a pessimistic scenario the job of T} would
have to be delayed until all high priority jobs complete with
their worst-case workload, delaying T}, during the unused
run-times of such completed jobs (i.e. effectively keeping D;
in sleep state) would not hurt its feasibility. Let slacky de-
note the sum of remaining run-times from a// completed jobs
that is available to the earliest unfinished job instance of T}.
We update V¥ as:

VE = max(Ry(t) — t, slacky, + Z cr)
JEHP

The run-time complexity of maintaining the slack-queue is
O(n) [19]. Further, the slack for all unfinished job instances
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at time ¢ can be computed in O(nlogn) time. Hence, the
overall complexity is dominated by the DPM component with
a run-time complexity of O(nlogn) for each device (Our
technical report [7] contains full details).

S Experimental Evaluation

In this section, we experimentally evaluate the perfor-
mance of DFR-EDF. We constructed a discrete-event simula-
tor in C programming language. We generated 1000 synthetic
task sets each containing 20 tasks, simulated their execution
and recorded the system energy consumption. The task pe-
riods were chosen randomly in the range [25m.s, 1300ms].
CPU power is modeled according to Intel Xscale architecture
specifications [23]. Following [4], we considered settings
where each task uses 0-2 devices randomly selected from a
list that includes /BM Microdrive, SST Flash, Realtek Ether-
net Chip and SimpleTech Flash Card. The device specifica-
tions are adopted from [4].

In addition to DFR-EDF, we implemented three state-of-
the-art energy management algorithms in our simulator:

e SYS-EDF is a system-level energy management scheme
with both DVS and DPM components [3]. SYS-EDF
performs DVS using the concept of energy-efficient
scaling and has a simple prediction-based DPM compo-
nent that is applied at run-time.

DA-DVS (Device-Aware DVS) represents the DVS-only
schemes that exploit the concept of energy-efficient scal-
ing. We adopted the algorithm from [1] which gives the
optimal task level slowdown factors by taking into ac-
count device energy-efficient frequency thresholds. DA-
DVS does not have a DPM component.

EEDS (Energy-Efficient Device Scheduling) scheme,
adopted from [4], is a state-of-the-art DPM-only scheme
for dynamic priority systems and EDF scheduling.
There is no DVS component in EEDS and it is designed
for systems where the device power dominates over that
of the CPU.

Figure 4(a) shows the relative performance of these
schemes as a function of system utilization with worst-case
workloads. All energy values are normalized with respect
to the energy consumption of DA-DVS at 100% system uti-
lization. DFR-EDF provides clear gains over all schemes
throughout the entire spectrum. DA-DVS performs signifi-
cantly poorly compared to other schemes since it does not
have a DPM component. Among the two schemes with both
DVS and DPM components, the performance of SYS-EDF
quickly degrades at high utilization values, whereas DFR-
EDF maintains its high performance. This is because, with
increasing utilization, the system has to use high frequencies
and hence becomes increasingly dependent on DPM (rather
than DVS) for energy management. Further, the DPM pol-
icy of SYS-EDF is a relatively simple lookahead-based pre-
diction scheme. But DFR-EDF'’s sophisticated DPM com-
ponent helps to minimize device energy at high utilization



& T3 3 DADVS —— & DADVS ——

g AE g EEDS - 2 EEDS -

c 08 g c 08 C 25 SYSEDF & c SYS-EDF &

w AU e w DFR-EDF --#-- W 15 | DFR-EDF --#-- X

: 1™ x :

z 00 7 06n % %

> > > 15 > 1

) 0 0 0

o 04 o 04 e} 4 0

[0} [0} [0} 1 i [0}

N N N N

T DADVS —— | DADVS —— | g < T 050

g 02w EEDS -—x- | g 02 EEDS —*— | £ 0514 u-" £

5 SYS-EDF & 5 SYS-EDF @ 5 5

2 L. . . OREDF = z ‘ . DFR-EDF --a-- z ‘ ‘ ‘ ‘ z ‘ ‘ ‘ ‘
02 03 04 05 06 07 08 09 1 1 2 3 4 5 0.25 115 2 256 3 0.25 1 15 2 25

Utilization WCET/BCET P, Scaling Factor Pepu Scaling Factor

a. Impact of System Utilization

b. Impact of Workload Variability

c. Impact of Device Power d. Impact of CPU Power

Figure 4. Simulation Results

values which translate to significant system energy savings.
In fact, notice that even EEDS with its more comprehensive
DPM approach is able to outperform SYS-EDF at increas-
ing utilization values when the latter’s processor energy gains
become less significant. By judicially combining DVS and
DPM, DFR-EDF outperforms SYS-EDF and EEDS by mar-
gins of up to 27% and 24%, respectively.

Figure 4(b) shows the relative performance of schemes
under variability in the actual workload. This variability is
controlled by modifying the worst-case to best-case execu-
tion time ratio, Vgg gj? . The actual workload of each job is
determined randomly at its arrival time, according to a uni-
form probability distribution between BCET and WCET.
Clearly, the higher the ‘gg gg ratio, the larger the dynamic
slack that can be used for additional energy savings. In these
experiments, the system utilization is fixed at 60% and all en-

ergy values are normalized with respect to energy consump-

tion of DA-DVS at vgg gg = 1. Notice that with increas-
ing Vgg gf, ratio the energy consumption of all schemes de-

creases, but relative improvements after a certain threshold
become marginal. This is because with ample slack, with
DVS, tasks tend to run at energy-efficient frequency thresh-
olds. Similarly, for DPM, the idle interval of each device is
naturally bounded by the periods of tasks using it. As ex-
plained in Section 4.3, whenever possible DFR-EDF utilizes
the same dynamic slack for both DVS and DPM.

Figures 4(c) and 4(d) show the impact of varying power
characteristics of system components, respectively. In these
experiments the system utilization is fixed at 60% and
WCEL — 1. In Figure 4(c), for each task set and device
usage pattern, we multiply the device active power (F,) of
all devices by a certain scaling factor and recompute the de-
vice break-even times while keeping the processor power the
same. That is, the higher the scaling factor, the more dom-
inant the device power. Similarly, in Figure 4(d), we mul-
tiply the processor power consumption at the maximum fre-
quency (FP.,,) while keeping the device power characteris-
tics the same. In both experiments, for each scaling factor we
measure the energy consumed by all schemes. All energy val-

ues are normalized with respect to scaling factor of one (i.e.
the original device/processor parameters as in [4, 23]).

With decreasing P, scaling factors or increasing P, scal-
ing factors, processor energy consumption becomes more
dominant and thus the role of DVS proves more crucial com-
pared to that of DPM in minimizing the system energy. Thus,
at low P, scaling factors and high P, scaling factors EEDS
performs worse compared to all other schemes. In fact, there
are regions in Figures 4(c) and 4(d) where EEDS performs
worse than DA-DVS which does not have a DPM compo-
nent. Similarly, with increasing P, scaling factors or decreas-
ing P, scaling factors, device energy consumption becomes
more dominant and thus DPM becomes critical for minimiz-
ing system energy. Thus, in these regions, EEDS outper-
forms both SYS-EDF and DA-DVS. However, due its inherent
design features that exploit DVS and DPM in a synergistic
way, DFR-EDF maintains a robust performance throughout
all scaling factors — unlike other schemes, DFR-EDF does
not suffer from excessive degradations in settings where CPU
or device power dominates.

6 Conclusion

In this paper, we proposed the DFR-EDF framework for
system-wide energy management of periodic real-time tasks.
We provided a sufficient and efficient feasibility test for a set
of periodic real-time tasks in the presence of device forbidden
regions under preemptive EDF policy. Then, by using this
test, we provided an algorithm to determine the DFR con-
figuration and processing frequency for efficient integration
of DPM and DVS in a single framework. We also provided
online components to integrate predictive DPM policies and
use slack reclaiming for both DVS and DPM simultaneously
at run-time. Simulation results indicate that DFR-EDF offers
significant energy gains over state-of-the-art energy manage-
ment schemes. A by-product of this research effort is the
formal demonstration that the R7-DPM problem for periodic
real-time tasks is NP-Hard in the strong sense.
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APPENDIX: Proof of Theorem 2
We will prove the theorem by contradiction. Assume there is a dead-
line miss and the following holds:

k
A A Cj

Vki=1...n Z (f + Fk) + Z P =1
i€y 7 j=1 J

Let t4 be the first time a job misses its deadline in the EDF schedule.
Let ¢ be the last time before ¢4 such that there are no pending job
execution requests with arrival times before ¢s and deadlines at or
before t4. ts is well defined as no requests can arrive before t = 0.

At time ¢, where t; < ¢t < tq4, let A(t) denote the set of ready
jobs with pending execution requirements whose arrival times are in
interval [¢s, t] and deadlines in interval [ts, t4]. By choice of ¢, A(%)
is a non-empty set throughout the interval [ts,¢q]. Hence, there is
always a pending job with deadline no greater than ¢4 in this interval.

Letty —ts = X. Let k be the largest index satisfying the con-
dition P, < X. Atany time ¢, ts < ¢t < {4, the job instances in
A(t) belong to a subset of tasks in {771 ... 7%} (since tasks are or-
dered according to periods). Y, denotes the set of forbidden regions
affecting one or more tasks in {7 ... Tx}.

As a result, at any time ¢ in the interval [ts, t4] either a job in
A(t) should be executing or all the jobs in A(t) should be prevented
from execution (blocked) by one or more F'Rs in Y. Therefore, the
entire interval [ts, t4] can be seen as a sequence of intervals where in
each interval either a job in .A(%) runs or all jobs in A(¢) are blocked
by one or more F'Rs in Y.

Let a1 denote total length of interval in [ts, tq] where all jobs
in A(t) are blocked due to F'R enforcements. v is bounded by
the total length of F'Rs in Y when they are activated with their
minimum separation times (II values) in [ts, t4]. Thus,

X
a1 < Z ’VH—‘| - A
ier,

Let vz denote the length of intervals in [ts, t4] where a job in A(%) is
executed. a2 is bounded by the total execution time of jobs in A(t),
ts <t < tq. Thus,

k
X
as < —|-C;
2> ZL PjJ J
j=1
Since a job misses its deadline at time ¢4 we must have,
ap +as > X

2

i€Ty,

Since [Y] < |[Y]+1and |Y| <Y,

k
X X
[_Hi] 'Ai"‘JE:lL—PjJ 05> X

k
Z X ZX
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=, = =1
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By choice of k, Py < P> ... < P, < X. Thus,

>

ieTy,

k
Ai Ai C]‘
DSy Y
Hi+Pk)+],:1Pj>

Giving a contradiction and proving the theorem.



