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Abstract

Dynamic Voltage Scaling (DVS) and Dynamic Power Manage-

ment (DPM) techniques form the basis of numerous energy man-

agement schemes proposed for real-time embedded systems. DVS

targets reducing the dynamic CPU energy consumption, while DPM

attempts to reduce the energy consumption of idle devices by putting

them to low-power states over sufficiently long intervals. It is imper-

ative that the system-wide energy management schemes efficiently

integrate DVS and DPM while exploiting the subtle trade-off dimen-

sions. In this paper, we develop and propose a unified framework for

periodic real-time tasks where DVS and DPM are judiciously com-

bined. The framework, called DFR-EDF, assumes a general system-

level energy model and includes both static and dynamic (online)

components. The static part is based on the extension of the recently

proposed Device Forbidden Regions (DFRs) approach to Earliest-

Deadline-First (EDF) scheduling. The online component integrates

the predictive DPM techniques and offers a generalized slack re-

claiming mechanism that can be used by DVS and DPM simulta-

neously. Our experimental evaluation indicates significant gains of

DFR-EDF at the system-level compared to the state-of-the-art so-

lutions. Finally, this research effort makes another contribution by

formally showing that optimally solving the DPM problem in pe-

riodic real-time execution settings is NP-Hard in the strong sense,

even in the absence of DVS.

1 Introduction

Effective energy management for computing systems re-

mains an elusive problem, despite the significant insight that

the research community gained in the last decade through nu-

merous research studies and projects. For real-time embed-

ded systems, energy-awareness is now a prime design and op-

erational objective that must be achieved without sacrificing

the critical temporal predictability guarantees. Dynamic Volt-

age Scaling (DVS) and Dynamic Power Management (DPM)

are two well-known techniques for energy management. With

DVS [18], the CPU clock frequency and supply voltage can

be adjusted dynamically on-the-fly. Due to the convex rela-

tionship between the CPU power consumption and proces-
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sor frequency, DVS helps to significantly reduce processor

dynamic energy consumption at the cost of increased task

response times [2, 11, 12, 13]. On the other hand, DPM

was proposed to reduce the device (primarily I/O device and

main memory) energy consumption by transitioning devices

to low-power (sleep) states when not in use [4, 5, 10, 17].

While it has an intuitive appeal, a primary challenge with

DPM is to ensure that the non-trivial energy overheads as-

sociated with device state transitions do not offset the energy

savings obtained during the device idle intervals [4, 5, 10].

While DVS and DPM are both important and each alone

presents non-trivial difficulties in real-time settings, a main

motivation for this research effort is the need for unified

frameworks that contain both techniques as essential compo-

nents. The growing awareness for system-level energy mini-

mization [1, 3, 6, 20, 22] as opposed to component (e.g. CPU

or device) level techniques provides another inspiration for

our work. As we elaborate in Section 1.1, the system-level

solutions are far fewer compared to extensive DVS- or DPM-

only energy management literature. Moreover, most of the

existing system-level solutions either ignore the DPM aspect

or attempt to integrate it with DVS through simple run-time

heuristics. Yet, the proper integration of DVS and DPM tech-

niques poses several challenges, even for a single real-time

application as recently demonstrated in [6]. This is due to the

fact that aggressive DVS schemes lead to short device idle

intervals that limit the effectiveness of DPM solutions – sim-

ilarly, solutions with DPM as the primary focus may lead to

excessive CPU power consumption. Our primary objective in

this paper is to develop a unified energy management frame-

work for deadline-driven periodic real-time applications by

exploiting the interplay between DVS and DPM with both

static and dynamic (run-time) solution components.

1.1 Related Work

DVS has attracted significant attention in the research

community; in particular, the problem of minimizing energy

consumption through DVS while still meeting the deadlines

(the RT-DVS problem) has been addressed extensively over

the past decade for various task models [2, 11, 12, 13]. More

recently, it was reported that aggressive use of DVS tech-
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niques may lead to increased device usage times and en-

ergy consumption, thereby increasing overall system energy.

This essentially led to the introduction of energy-efficient fre-

quency scaling concept [1, 8, 20, 21, 22]. Despite some dif-

ferences in their task/energy models, all these solutions es-

sentially identify an energy-efficient (or, critical) CPU fre-

quency below which the system consumes more energy per

execution cycle. The frequency is never scaled below that

threshold at run-time. However, all these system-level stud-

ies, while taking device energy consumption during task ex-

ecutions into consideration, effectively ignore the DPM di-

mension to a large extent.

This is because, in practice, device transitions incur sig-

nificant time and energy overheads. As a result, for every

device, there exists a minimum idle interval length (called the

device break-even time) that justifies the device state transi-

tions for energy saving [4, 5, 10]. The break-even time of I/O

devices can be significant and comparable to task execution

times [4, 10]. If the device is re-activated before the break-

even time, then the overall energy would increase; as a result,

it is more energy-efficient to keep the device simply in active

state for short idle intervals. Thus, accurately predicting the

length of idle intervals is crucial to perform effective DPM at

run-time. In real-time systems, the length of device idle in-

tervals are typically estimated using prediction based mecha-

nisms. This is often achieved by estimating the earliest time

an idle device will be needed by any task at run-time. Ex-

ploiting activation patterns of periodic tasks is a primary tool

in existing predictive techniques [3, 15, 16, 17]. The problem

of energy minimization for real-time systems through DPM

(the RT-DPM problem) has been addressed in several works

[4, 15, 16, 17]. More recently, the work in [5] proposed a

novel RT-DPM approach based on Device Forbidden Regions

(DFR) concept. With DFRs, through a pre-processing phase,

the system plans for putting devices to sleep states for long

intervals in advance. The DFRs are enforced at run-time with

pre-determined periods. Further, the DFR approach can be

easily combined with simple predictive schemes [5]. The

framework in [5] was developed for systems using Fixed-

Priority (Rate-Monotonic) Scheduling.

The research studies that analyze and/or exploit the

DVS/DPM trade-offs are relatively few. In [6], an exact

characterization of the interplay of DVS and DPM was pre-

sented. Despite its novelty and precision, its limitation comes

from the simple application model with a single frame-based

task. In [3], the authors proposed a system energy manage-

ment scheme SYS-EDFwith both DVS and DPM components

for periodic real-time tasks and EDF scheduling. The DVS

component of SYS-EDF is based on the concept of energy-

efficient frequency scaling while the DPM component uses

next device usage time predictions. In [14], assuming that

CPU frequency can take any value to guarantee feasibility, the

authors theoretically investigated the problem of minimizing

processor energy consumption while taking into account both

dynamic CPU power and CPU state transition overheads.

Contributions of this research. In this paper, we develop

a unified framework (called DFR-EDF) that considers the

trade-offs between the effective DPM and DVS policies to

minimize overall system energy for periodic real-time tasks.

We assume a general energy model where the CPU and de-

vice power consumptions, as well as device break-times and

transition overheads (in terms of both energy and time) are

considered. Our solution judicially combines both DVS and

DPM components and includes a static and a dynamic part.

A critical building block for our framework is the Device

Forbidden Regions (DFRs) concept [5] that is formally ex-

tended to EDF scheduling for the first time in this paper.

EDF, by offering 100% CPU utilization and admitting simple

utilization-based feasibility tests, provides an important lever-

age mechanism for our unified framework. We develop an ef-

ficient static feasibility test forDFR-EDF (Section 3.2), prove

its correctness, and show how this test can be used to de-

rive system-wide energy-efficient DFR parameters as well as

processing frequencies for DVS simultaneously at the static

(design) phase (Section 3.3). We also present our dynamic

schemes that extend the duration of device idle intervals by

combining DFRs and predictive techniques (Section 4.1) and

exploit the run-time slack for both DVS and DPM, simulta-

neously (Section 4.3). Our experimental evaluation with re-

alistic processor and device specifications indicates that our

scheme outperforms state-of-art schemes by margins of up to

27% on overall system energy (Section 5). Further, our eval-

uation shows that unlike existing schemes, DFR-EDF main-

tains a robust performance for various system profiles regard-

less of whether the CPU or device energy is dominant. Fi-

nally, another contribution of this research effort is to show

that the open problem of optimally solving the DPM problem

for periodic real-time tasks (even without DVS) is NP-Hard

in the strong sense (Section 3).

While inspired by our previous work [5] that introduced

the DFR concept and showed its applicability in fixed-priority

settings, the present work has a number of conceptual nov-

elties beyond extending the DFR framework to dynamic-

priority settings efficiently (which is a non-trivial challenge

in its own). The focus of [5] was primarily the DPM-related

issues: although it included a run-time DVS component, the

DPM and DVS solutions were disjoint. Specifically, the DFR

parameters were obtained assuming maximum frequency and

the question of assigning optimal reduced frequency with

DVS was left open. In contrast, the DFR-EDF framework

determines the ideal DFR parameters and CPU operating fre-

quency (namely, the best power management configuration)

through a search that considers the impact on device and CPU

energy simultaneously. Also, in [5] the dynamic slack was

unconditionally used for frequency reduction. In this work

through a generalized reclaiming mechanism the run-time

slack can be used for both DVS and DPM, whenever possible.
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2 System Model and Assumptions

2.1 Processor and Task Model

We consider a DVS-capable uni-processor system with k

discrete CPU frequency values f1, . . . , fk (fi < fi+1). All

frequency values are normalized with respect to fk; i.e. fk =
1.0. The workload consists of set of n independent periodic

tasks ψ = {T1 . . . Tn}. Each periodic task Ti is represented

by the pair (Ci, Pi), where Ci denotes the worst-case exe-

cution time under maximum processor frequency fk and Pi

denotes the period. The relative deadlines of the tasks are

equal to their periods. The worst-case execution time of task

Ti at frequency f is assumed to be ( Ci

f
). The base utiliza-

tion of the task set ψ is given by Utot =
n∑

i=1

Ci

Pi
. At any

time, tasks eligible for execution are scheduled by preemptive

Earliest-Deadline-First (EDF) scheduling policy. We assume

Utot ≤ 1 and hence the task set is schedulable by EDF at the

maximum CPU frequency [9].

2.2 Device Model

The system has a set of m devices represented by D =
{D1 . . . Dm}. The set of devices used by a given task Ti dur-

ing its execution is denoted by γi. Each device is assumed to

have at least two power states: an active (working) and a low-

power sleep state. In sleep state, a device cannot process any

requests but consumes less power. P i
a and P i

s represent the

power consumption of Di in active and sleep states, respec-

tively. The transitions between active and sleep states involve

overheads both in terms of time and energy. The periodic na-

ture of the applications implies that any device put to sleep

state will be eventually re-activated. Thus, for convenience,

the energy overhead of transitioning Di once from active to

sleep and back from sleep to active is captured under a sin-

gle variable Ei
sw. Similarly, T i

sw indicates the total transition

delay between active and sleep states.

Due to the constraints imposed by device transition delays,

Di cannot be transitioned between active and sleep states over

an interval of length smaller than T i
sw. Further, in view of

the energy transition overheads, the minimum length of idle

interval over which transitioning a device Di saves energy (as

opposed to keeping Di continuously in active state) is given

by
Ei

sw−P i
s ·T

i
sw

P i
a−P i

s
. Thus, the break-even time Bi of device Di

is expressed as [4, 5, 10] Bi = max(T i
sw,

Ei
sw−P i

s ·T
i
sw

P i
a−P i

s
).

In accordance with the previous RT-DPM research [3, 4,

5, 15, 17], throughout this paper we assume inter-task de-

vice scheduling: all devices in γi should be in active state

when task Ti executes. As the exact times at which a run-

ning task generates a request for a device cannot be known

in advance and device state transition delays are often signifi-

cant, the inter-task device scheduling paradigm is considered

realistic for energy modeling and minimization objectives in

real-time systems research [3, 4, 5, 17].

2.3 Energy Model

System energy consumption can be divided into static en-

ergy and dynamic energy components. The static power is

needed for purposes such as keeping the clock running, main-

taining the basic circuits and keeping the devices in sleep

states. Due to the periodic nature of real-time tasks and the

significant delays involved in completely turning off CPU and

other components, we assume that static energy is not man-

ageable and focus on minimizing the system-level dynamic

energy.

All the devices and CPU contribute to the overall dynamic

energy consumption which is expressed as:

Esystem = Ecpu +

m∑

i=1

Ei
device

where Ecpu is the energy consumed by the processor while

executing the task set ψ. The processor power is modeled as

a convex function of its clock frequency (i.e. P (f) = αf3,

where α is the switching capacitance). Ei
device corresponds

to the overall energy consumption due to a specific device

Di and includes three components: (1) The energy consumed

by Di when active and in use by tasks. This component

depends on the execution times of tasks using Di. (2) The

energy overhead involved in transitioning Di between active

and sleep states during execution. (3) The energy consumed

by Di when active and not in use. Obviously, a device not

in use may be forced to remain in active state when the esti-

mated length of the idle interval is shorter than its break-even

time.

3 DFR-EDF: Fundamentals and Static Analysis

In this section, we present the basics of the device for-

bidden region (DFR) based DPM methodology and then de-

rive a sufficient schedulability condition for DFR and EDF

scheduling. Following this, we show how to combine (and

obtain energy-efficient configuration parameters for) DPM

and DVS.

But first, we address a fundamental problem: How hard

is the problem of minimizing the system-level energy for

periodic real-time applications? Theorem 1, whose proof is

presented in [7] due to space constraints, indicates that solv-

ing the problem of minimizing device energy consumption

for general periodic tasks (even in the absence of DVS) is in-

tractable, closing an open problem1. We first formally define

the device energy minimization problem for real-time tasks.

1In [10] the authors indicate that the problem of minimizing device en-

ergy consumption in the absence of deadlines is NP-Hard only in ordinary

sense. Further, in [5] it was shown that generating a feasible schedule for

periodic tasks where every device idle interval is greater than its respective

break-even time is NP-Hard in the strong sense. While the result in [5] hints

to the inherent challenges involved in the problem, it does not imply that

device energy minimization is NP-Hard as a schedule with the mentioned

property does not necessarily minimize the total device energy consumption.

123123



RT-DPM: Given a set of real-time tasks and a set of devices

with known energy characteristics, find the feasible schedule

that minimizes the total device energy consumption.

Theorem 1 RT-DPM for general periodic tasks is NP-Hard

in the strong sense.

This result indicates that even a pseudo-polynomial time op-

timal algorithm for the problem is unlikely, unless P = NP .

3.1 Device Forbidden Regions

In [5], a novel DPM methodology based on the concept

of device forbidden regions was introduced. The key to that

approach is to plan in advance for long device idle intervals

called forbidden regions (FR) that will be enforced at run-

time. The forbidden region associated with device Di is de-

noted by FRi; when FRi is enforced (“activated”) at run-

time by the operating system, the corresponding device is put

to sleep state.

Each forbidden region FRi is characterized by a length

(or, duration) ∆i, and a minimum separation time (or, period)

Πi that are determined through static analysis. The length of

each FR is guaranteed to be greater than the break-even time

of the associated device (i.e. ∆i > Bi). Thus, when FRi is

enforced at run-time, the state transition of Di is guaranteed

to be energy-efficient. However, no tasks using Di can exe-

cute for the duration of FRi. Specifically, with FRs, a job is

eligible for execution only when it is released and there are no

enforced FRs in the system affecting its devices. Among all

eligible jobs, the one with the highest-priority is scheduled.

Since jobs may be prevented from execution due to run-

time enforcement of DFRs, the static analysis for DFR com-

ponents must include a schedulability test to guarantee the

feasibility of the real-time workload. A viable strategy is to

treat each FR as a high priority task which only interferes

with the execution of other tasks using the device associated

with the FR. This approach allows to preserve the feasibility

as long as two consecutive enforcements of the same FR at

run-time are separated by a minimum distance equal to its pe-

riod. In other words, FR run-time enforcements need not be

strictly periodic and can be delayed if necessary.

The above feature is also important because it allows to

combine the run-time enforcements of FRs with known sim-

ple prediction-based DPM mechanisms. Hence, DFR-based

DPM has also a mechanism to predict inherent device idle in-

terval lengths (for example, by using information about next

release times of periodic task instances). At run-time, when a

device can be transitioned to sleep state using the prediction

mechanism, an FR is not enforced (but postponed), saving

its bandwidth for future usage. Further, whenever possible,

FRs are enforced in conjunction with existing idle intervals

to create long contiguous device sleep periods, resulting in

additional energy savings.

Now we present an example to illustrate the potential ben-

efits of employing DFR-based DPM policies, in conjunction

with EDF. We are given two periodic tasks T1 and T2 with

the following parameters: C1 = C2 = 250, P1 = 1200,

P2 = 1500. T1 uses the device D1 with the break-even time

B1 = 1000, while T2 uses D2 with B2 = 1260.

Figure 1(a) shows the EDF schedule without DFRs during

the first hyperperiod. In the schedule, the maximum length

of the device idle interval for D1 and D2 are 950 and 1250,

respectively. Notice that, in this case, even an ideal predictive

DPM policy would not be able to transition any of the devices

at run-time, since the exact lengths of idle intervals for all

devices are smaller than their respective break-even times.
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3600 3900

(a) EDF Schedule

(b) Forbidden Regions and EDF Scheduling

Figure 1. Motivational example for DFR-based DPM

Figure 1(b) shows the schedule with FRs and EDF

scheduling for the same task set. In this case, a separate

forbidden region is assigned to each device: FR1 with du-

ration ∆1 = 300 and period Π1 = 2400; FR2 with duration

∆2 = 300 and period Π2 = 3000. The enforced forbid-

den regions are shown with dark colors in the schedule. Ob-

serve how the enforcement of FR1 at t = 1200 is exactly

aligned with the end time of an existing device idle interval

[250, 1200] forD1. This effectively creates a long contiguous

idle interval [250, 1500] for D1 during which it can be put to

sleep state. Similar patterns can be seen in the schedule at

times t = 1500, 3600 and 4500. Note that two consecu-

tive FR enforcements are separated by a temporal distance at

least equal to their periods. As seen in Figure 1(b) FRs and

their run-time enforcements help create long sleep intervals

for both devices without affecting the feasibility.

3.2 EDF Schedulability Analysis with DFRs

While the potential benefits of DFRs for enhancing the ef-

fectiveness of DPM are clear, it is imperative to make sure

that all task instances meet their deadlines under various DFR

activation patterns. In this subsection, we derive a sufficient

schedulability condition for a set of periodic tasks scheduled

with preemptive EDF, in the presence of device forbidden

regions with given duration (∆) and period (Π) parameters.

Later in Section 3.3 we deal with determining ∆ and Π pa-

rameters.

Definition 1 Υk represents all the forbidden regions associ-

ated with all the devices used by the k smallest period tasks.
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Formally, if tasks are sorted in non-decreasing order of peri-

ods, Υk represents the set containing all the forbidden regions

associated with devices ∪k
i=1γi.

Theorem 2 Given a set of periodic tasks ψ = {T1 . . . Tn}
arranged in non-decreasing order of periods and a set of for-

bidden regions φ = {(∆1,Π1) . . . (∆m,Πm)}, the periodic
task set ψ can be scheduled by EDF in feasible manner if,

∀kk=1...n

∑

i∈Υk

(
∆i

Πi

+
∆i

Pk

) +
k∑

j=1

Cj

Pj

≤ 1

The proof of Theorem 2 can be found in Appendix.

Complexity: The schedulability test has n iterations and each

iteration takes O(m + n)-time. Therefore, the overall com-

plexity is O(mn + n2). Since the number of devices is typi-

cally much smaller than the number of tasks, the complexity

of the static feasibility test can be considered as O(n2).
In DVS settings with variable processing frequency, we

have the following corollary as a consequence of Theorem 2.

Corollary 1 Given a set of periodic tasks ψ = {T1 . . . Tn}
arranged in non-decreasing order of periods, and a set of for-

bidden regions φ = {(∆1,Π1) . . . (∆m,Πm)}, the periodic
task set ψ can be scheduled by EDF in a feasible manner at

the processing frequency f if,

∀kk=1...n

∑

i∈Υk

(
∆i

Πi

+
∆i

Pk

) +

k∑

j=1

Cj

f · Pj

≤ 1

3.3 Determining System Parameters for Effective

Integration of DVS and DPM

To integrate DVS and DPM, DFR-EDF relies on a power

management configuration C uniquely determined by a pro-

cessing frequency f and a set of forbidden regions φ =
{(∆1,Π1) . . . (∆m,Πm)}. In Section 3.2, we provided an

efficient test to decide whether the task set ψ is feasible un-

der EDF with a given forbidden region set φ. Obviously, it is

equally important to determine the power management con-

figuration C that yields best energy savings, as there are typi-

cally many configurations that preserve the feasibility.

However, such a decision is not trivial. Typically, DVS

and DPM components tend to favor power management con-

figurations with opposing features. Reducing the processing

frequency (to favor DVS) will scale up task execution times

and hence seriously constrain the DPM opportunities. On the

other hand, configurations that favor DPM will create long

idle intervals that require high CPU frequencies and will also

need to take into account the device transition overheads. In

fact, in the light of Theorem 1 (which indicates that RT-DPM

is intractable even in the absence of DVS), one can safely

state that an exact and efficient solution is unlikely. TheDFR-

EDF framework takes a more direct approach: it exploits sev-

eral features of forbidden regions and known properties of

DVS solutions to quantify the energy savings one can expect,

given a power management configuration C. Hence, the static

phase of DFR-EDF includes an iterative procedure to decide

on the run-time power configuration.

An inspection of Corollary 1 reveals that as more FRs are

assigned to the system, the minimum frequency that guaran-

tees feasibility will typically increase. Thus, there is a trade-

off between assigning additional FRs to decrease device en-

ergy consumption and the resulting increase in processor en-

ergy consumption. DFR-EDF incrementally assigns FRs to

the system. At each step, it evaluates the expected benefit (in

terms of energy savings) of assigning an FR for another sys-

tem device separately, and commits to the one which appears

most promising. The process of assigning new FRs to the

power management configuration stops when it is expected

that by doing so the overall energy consumption will increase

(due to, typically, excessive CPU energy consumption).

To formally describe this procedure, we introduce the no-

tation ∆Ei
sys for the expected change in system energy con-

sumption as a consequence of adding a new forbidden re-

gion, FRi, to an already assigned forbidden region set φ. Let

∆Ei
device and ∆Ei

cpu denote the expected decrease in device

energy and the expected increase in processor energy respec-

tively, due to the additional forbidden region FRi during a

hyperperiod. ∆Ei
sys can be expressed as:

∆Ei
sys = ∆Ei

device − ∆Ei
cpu

If ∆Ei
sys > 0 then the system is expected to benefit from

the additional forbidden region FRi. On the other hand, if

∆Ei
sys < 0 then the system energy is likely to increase due

to the addition of FRi.

We now show how to quantify ∆Ei
device and ∆Ei

cpu. As

a consequence of forbidden region enforcements, the devices

are transitioned to sleep states. Each FRi enforcement pro-

vides a potential device energy saving of ∆i ·(P i
a−P

i
s). Dur-

ing a hyperperiodH , there can be at most b H
Πi

c FRi enforce-

ments. As such, ∆Ei
device can be approximated as,

∆Ei
device = b

H

Πi

c · ∆i · (P
i
a − P i

s)

Let f1 and f2 denote the minimum frequencies that guar-

antee the feasibility of task set ψ with FR sets φ and

(φ ∪ FRi), respectively. Let Pcpu denote the power con-

sumption of the processor at maximum frequency. Recall that

Utot represents task set utilization under maximum processor

frequency (fk = 1). As a consequence of adding FRi, the

system is forced to switch to f2 from frequency f1. Clearly,

f2 ≥ f1. Thus, ∆Ei
cpu can be quantified as,

∆Ei
cpu = H · Utot · Pcpu · (f2

2 − f2
1 )

We assume the existence of a function MinSchedulable-

Freq() that determines the minimum CPU frequency f that

guarantees the feasibility of task set ψ with FR set φ. Min-

SchedulableFreq() can be easily implemented in n iterations
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by running the test provided in Corollary 1 and recording the

minimum feasible frequency2 at each step. The maximum

frequency value recorded through n iterations is the minimum

value that guarantees the feasibility (as using a lower fre-

quency would violate the feasibility condition for at least one

iteration). If this maximum frequency exceeds fk = 1 then ψ

is not schedulable with φ and MinSchedulableFreq() returns

null. Note thatMinSchedulableFreq()has the same complex-

ity as the feasibility test provided in Section 3.2 (O(n2)).
Finally, for a given FRi, the range of possible ∆i and

Πi values should be provided to make the algorithm’s search

component complete. Clearly, ∆i must be no shorter than

the corresponding device break-even time and cannot exceed

the maximum laxity of a task using the corresponding device.

Hence, Bi ≤ ∆i ≤ min
j|Di∈γj

(Pj − Cj). Also, the ratio ∆i

Πi

must not exceed (1 − UDi
), where UDi

is the total utilization

of tasks using device Di. Thus, ∆i

1−UDi

≤ Πi ≤ H .

DetermineEMPRoutine():

• Set Z = {D1, . . . , Dm}

• Set φ = ∅

• Set f = MinSchedulableFreq(ψ, φ)

• Repeat

– Set ∆Ei
sys = −1, ∀Di ∈ Z

– For each device Di in Z , compute through

MinSchedulableFreq() a tentative (∆i,Πi)
pair and a processor frequency fi that pro-

vides the maximum ∆Ei
sys while commit-

ting to the current FRs in set φ and main-

taining the feasibility.

– Let i∗ represent the device index that yields

max
i∈Z

(∆Ei
sys)

– if (∆Ei∗

sys > 0)

∗ Set φ = φ ∪ (∆i∗ ,Πi∗)
∗ Set Z = Z −Di∗

∗ Set f = fi∗

• Until (Z = ∅ OR ∆Ei∗

sys ≤ 0)

• return (f, φ) as the power management configu-

ration C

Figure 2. Determining Energy-Minimal System Parameters

DetermineEMPRoutine() given in Figure 2 determines the

power management configuration C that consists of a set of

FRs and CPU frequency f . The procedure starts with an

empty FR set and incrementally assigns FRs one at a time.

At each stage, for each device Di not associated with an FR

2The frequency levels that are below the energy-efficient frequency level

[1] are not considered.

(set Z), it scans the range of ∆i and Πi at a fixed number

of points and determines the (∆i,Πi) pair and processor fre-

quency fi that maximizes ∆Ei
sys using the MinSchedulable-

Freq() routine. Our experience with extensive simulations in-

volving wide range of parameters show that scanning 20-30
equi-distant candidate ∆i and Πi values is sufficient to de-

termine system parameters that yield significant energy sav-

ings. Further, since MinSchedulableFreq() has the complex-

ity O(n2), scanning a fixed number of candidate values for

each Di can be afforded at the static phase.

Following this, the most promising FR and correspond-

ing processor frequency combination (i.e. the one with the

largest positive ∆Ei
sys) is recorded as the new best config-

uration. This iterative process stops either when all devices

are assigned with FRs, no more FRs can be assigned due to

feasibility, or assigning additional FRs does not improve the

system energy (i.e. ∆Ei
sys ≤ 0 for all devices in Z).

Complexity: DetermineEMPRoutine() has at most m itera-

tions. Each iteration invokes the schedulability test a constant

number of times for every device not associated with an FR.

Thus, the complexity of each iteration is O(m(mn + n2))
making the overall complexity O(m2(mn+ n2)). The num-

ber of devices in the system is typically small compared to

the number of tasks. Consequently, in practice the complex-

ity can be approximated as O(n2), which is affordable for a

routine invoked only once in static analysis phase.

4 Online Components

In Section 3, we provided the details of the static com-

ponent of DFR-EDF, which generates a power management

configuration C with forbidden regions and a CPU frequency.

In this section, we present the details of its online (dynamic)

component that includes mechanisms to further increase the

length of device idle intervals and reclaim slack that may arise

from early completions for both DVS and DPM.

4.1 Enforcement of Device Idle Intervals

The performance of the DPM component can be further

improved by incorporating run-time prediction mechanisms,

allowing enforcement of idle intervals even longer than the

statically-determined FR durations. To see this, first observe

that the pre-determined period Πi of a given forbidden re-

gion FRi gives the minimum separation time of two consec-

utive enforcements of FRi: delaying the next enforcement

of FRi cannot have a negative impact on feasibility. This

gives a powerful opportunity to enhance the DPM effective-

ness at run-time. For example, if the online DPM component

can efficiently conclude that an active deviceDi can be put to

sleep state for more than Bi time units without enforcing an

FRi or causing deadline miss, that would allow the system to

postpone the next activation of FRi, saving its bandwidth for

future use. That is, the ability to accurately predict the inher-

ent device idle intervals in the schedule is still important for

the DFR-EDF framework. In this subsection we show how

this can be achieved with low run-time overhead.
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At time t, let Cr
k denote the remaining worst-case exe-

cution time of job Jk under the frequency assigned by the

static routine. Let HPk denote the set of jobs in the ready

queue having higher priority than any unfinished job of Tk.

In the worst-case feasible schedule (where all jobs present

their worst-case workload), a given task Tk cannot start to

execute until time t +
∑

j∈HPk

Cr
j . Further, if an instance of

Tk is not currently ready, then one needs to wait at least

until its earliest next release time Rk(t). Hence, in either

case, at time t, Tk’s next dispatch time cannot occur ear-

lier than max(Rk(t), t +
∑

j∈HPk

Cr
j ). Thus, at time t, Di

used by Tk can be put to sleep state for a maximum of

Vk
i = max(Rk − t,

∑
j∈HPk

Cr
j ) time units without causing

a deadline miss for Tk.

Interestingly, the DFR-EDF framework creates further op-

portunities to put a device to sleep state by exploiting the run-

time information about idle intervals currently enforced for

other devices. Specifically, note that when a device Dj is ex-

plicitly put to sleep state (e.g. through an FR), a task Tk using

both Dj and another device Di is guaranteed not to generate

a request for Di as well, while Dj remains in sleep state.

This follows from the inter-task device scheduling paradigm,

where all the devices of a given task must be ready before it

can start to execute. In other words, the existence of a task Tk

using both Di and Dj during its execution, makes the sleep

intervals of Di and Dj inter-dependent at run-time.

Let nj denote the end of a currently enforced idle interval

for device Dj . At time t, a task Tk is guaranteed not to use

any device Di ∈ γk for at least (nj − t) time units, if there

exists another device Dj ∈ γk for which an idle interval is

already enforced until time nj . Considering all other devices,

we can see thatDi ∈ γk cannot be used by Tk for a maximum

of Wk
i = max(nj − t), j|Dj ∈ (γk −Di) time units.

Combining the two factors, namely the interference of

high priority jobs and impact of already enforced sleep inter-

vals we find that at time t, Di ∈ γk can be safely put to sleep

state for δk
i (t) = max(Vk

i ,W
k
i ) time units without causing a

deadline miss for Tk. By iterating over all tasks using Di and

taking the minimum, we can determine the maximum timeDi

can be put to sleep state without affecting feasibility.

Proposition 1 A given deviceDi can be put to sleep state at

time t for δi(t) = min(δk
i (t)), k|Di ∈ γk time units without

hurting system feasibility.

δi(t) can be determined in time O(n logn). Due to space

constraints, the details of the run-time complexity, and the

exact pseudo-code for deciding on device transitions at run-

time are presented in [7].

4.2 Dynamic Frequency Scaling

Many DVS schemes adopt a nominal (default) frequency

fnom [2, 11, 13] that is statically computed. In DFR-EDF

framework, fnom is determined using the DetemineEMPRou-

tine() described in Section 3.3. It has been well-established

that aggressive slowdown will affect system energy nega-

tively and hence, at run-time, the frequency should not be

lowered below a certain energy-efficient threshold [1, 3, 8].

In DFR-EDF, we adopt the system energy-efficient scaling

technique given in [3]. In that technique, an energy-efficient

frequency threshold is calculated dynamically based on the

power characteristics of the processor, active devices and de-

vices in sleep state, at job dispatch times. The processor fre-

quency is never reduced below this threshold.

4.3 Generalized Slack Reclaiming

As many real-time tasks complete early at run-time, de-

tecting and reclaiming unused CPU time (slack) has been a

major tool for dynamic DVS schemes [2, 11, 19]. These

schemes typically incorporate mechanisms to decide on the

amount of slack that can be reclaimed without compromis-

ing the feasibility, before the CPU frequency is reduced. Dy-

namic slack can be also exploited by DPM techniques to in-

crease the length of device idle intervals by delaying task ex-

ecutions [4]. DFR-EDF has a built-in mechanism that can

be used to keep track of and reclaim dynamic slack, for DVS

or DPM. However, possibly the most novel aspect of DFR-

EDF’s generalized reclaiming mechanism is that, whenever

possible, it allows the use of the same dynamic slack for both

DVS and DPM (i.e. for both lowering the processor frequency

and increasing the idle intervals of devices).

We first give a motivational example to illustrate this orig-

inal aspect. Figure 3 shows three ready jobs with decreasing

priority at time t. Each job requires a worst-case execution

time of 10 units under their nominal frequency assumed to be

fk = 1. Jobs J1 and J3 use device D1 with break-even time

12 units, while J2 uses no device. D1 has no associated FR

and is in active state at time t.
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!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!

                
                
                
                
                

!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!

t+10t t+30t+20t+3

J1 J2 J3

Figure 3. Reclaiming for both DVS and DPM

Assume J1 completes early at time t1 = t + 3, creating a

dynamic slack of 7 units. At time t1, J2 will be dispatched

and D1 is no longer in use. Thus, the system needs to make a

decision on whether or not to transition D1 and decide on the

processor frequency for executing J2. Notice that at time t1,

if the dynamic slack is ignored, the device idle interval length

of D1 is predicted to be 10 units (the worst-case execution

time of J2) which is smaller than the break-even time of D1.

Hence,D1 would be kept in active state by a naive predictive

DPM policy. However, J3 can start as late as t + 20 without

violating system feasibility. Thus, by taking into account the

dynamic slack of 7 units, one can transition D1 at time t1, as

delaying its usage until t + 20 for 17 units (which is greater
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than the break-even time of D1) would still keep the system

feasible. Also, J2 (dispatched at time t1) can use the same

dynamic slack of 7 units to lower its dispatch frequency to 10

17
.

Thus, the dynamic slack of 7 units from J1’s early completion

has supported both DVS and DPM.

We now give the details of DFR-EDF’s generalized slack

monitoring and reclaiming mechanism. To keep track of un-

used run-times we adopt a technique similar to that used in

Dual Speed Dynamic Reclaiming Algorithm (DSDR) [19].

When a job completes, its remaining (unused) run-time is

added to a data structure called the slack-queue. Each ele-

ment in the slack-queue has two components, one indicating

the remaining run-time of the job and the other indicating its

deadline. The slack-queue is maintained in non-decreasing

order of deadlines. At time t, the remaining run-time of job

Ji is denoted by rrti. At the release time of Ji, rrti is set to
Ci

fnom
. At time t, when Ji is being dispatched, let H denote

the set of elements in slack-queue with deadlines no greater

than that of Ji. The slack available to Ji at time t due to early

completions is given by slacki =
∑

j∈H

rrtj . Note that the re-

maining run-times of jobs and hence the slack-queue change

with time and need to be updated accordingly. We refer to

[19] for rules to update job run-times and slack-queue.

Slack Reclaiming for DVS: Recall from Section 4.1 that

Cr
i represents the remaining worst-case execution time of Ji

under fnom. Further, from Section 4.2, when a job is being

dispatched at time t, the frequency is not reduced below the

energy-efficient frequency threshold (fthres). Thus, Ji with

available slack slacki is dispatched at frequency:

f = max(
Cr

i

slacki + rrti
, fthres)

Slack Reclaiming for DPM: The slack that is available

for a specific job at dispatch time can be also used to improve

the estimation of the maximum time a device can idle without

compromising the feasibility. Specifically, recall from Sec-

tion 4.1 that Vk
i was defined as the maximum time Di can

remain in sleep state at time t without causing a deadline

miss for Tk and was computed through the total remaining

workload of ready jobs in HPk (jobs with higher priority

than any unfinished job of Tk). Notice that the very same

principle can be applied to re-define Vk
i in a more precise

manner: since in a pessimistic scenario the job of Tk would

have to be delayed until all high priority jobs complete with

their worst-case workload, delaying Tk during the unused

run-times of such completed jobs (i.e. effectively keeping Di

in sleep state) would not hurt its feasibility. Let slackk de-

note the sum of remaining run-times from all completed jobs

that is available to the earliest unfinished job instance of Tk.

We update Vk
i as:

Vk
i = max(Rk(t) − t, slackk +

∑

j∈HPk

Cr
j )

The run-time complexity of maintaining the slack-queue is

O(n) [19]. Further, the slack for all unfinished job instances

at time t can be computed in O(n log n) time. Hence, the

overall complexity is dominated by the DPM component with

a run-time complexity of O(n log n) for each device (Our

technical report [7] contains full details).

5 Experimental Evaluation

In this section, we experimentally evaluate the perfor-

mance of DFR-EDF. We constructed a discrete-event simula-

tor in C programming language. We generated 1000 synthetic

task sets each containing 20 tasks, simulated their execution

and recorded the system energy consumption. The task pe-

riods were chosen randomly in the range [25ms, 1300ms].
CPU power is modeled according to Intel Xscale architecture

specifications [23]. Following [4], we considered settings

where each task uses 0-2 devices randomly selected from a

list that includes IBM Microdrive, SST Flash, Realtek Ether-

net Chip and SimpleTech Flash Card. The device specifica-

tions are adopted from [4].

In addition to DFR-EDF, we implemented three state-of-

the-art energy management algorithms in our simulator:

• SYS-EDF is a system-level energy management scheme

with both DVS and DPM components [3]. SYS-EDF

performs DVS using the concept of energy-efficient

scaling and has a simple prediction-based DPM compo-

nent that is applied at run-time.

• DA-DVS (Device-Aware DVS) represents the DVS-only

schemes that exploit the concept of energy-efficient scal-

ing. We adopted the algorithm from [1] which gives the

optimal task level slowdown factors by taking into ac-

count device energy-efficient frequency thresholds. DA-

DVS does not have a DPM component.

• EEDS (Energy-Efficient Device Scheduling) scheme,

adopted from [4], is a state-of-the-artDPM-only scheme

for dynamic priority systems and EDF scheduling.

There is no DVS component in EEDS and it is designed

for systems where the device power dominates over that

of the CPU.

Figure 4(a) shows the relative performance of these

schemes as a function of system utilization with worst-case

workloads. All energy values are normalized with respect

to the energy consumption of DA-DVS at 100% system uti-

lization. DFR-EDF provides clear gains over all schemes

throughout the entire spectrum. DA-DVS performs signifi-

cantly poorly compared to other schemes since it does not

have a DPM component. Among the two schemes with both

DVS and DPM components, the performance of SYS-EDF

quickly degrades at high utilization values, whereas DFR-

EDF maintains its high performance. This is because, with

increasing utilization, the system has to use high frequencies

and hence becomes increasingly dependent on DPM (rather

than DVS) for energy management. Further, the DPM pol-

icy of SYS-EDF is a relatively simple lookahead-based pre-

diction scheme. But DFR-EDF’s sophisticated DPM com-

ponent helps to minimize device energy at high utilization
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Figure 4. Simulation Results

values which translate to significant system energy savings.

In fact, notice that even EEDS with its more comprehensive

DPM approach is able to outperform SYS-EDF at increas-

ing utilization values when the latter’s processor energy gains

become less significant. By judicially combining DVS and

DPM, DFR-EDF outperforms SYS-EDF and EEDS by mar-

gins of up to 27% and 24%, respectively.

Figure 4(b) shows the relative performance of schemes

under variability in the actual workload. This variability is

controlled by modifying the worst-case to best-case execu-

tion time ratio, WCET
BCET

. The actual workload of each job is

determined randomly at its arrival time, according to a uni-

form probability distribution between BCET and WCET .

Clearly, the higher the WCET
BCET

ratio, the larger the dynamic

slack that can be used for additional energy savings. In these

experiments, the system utilization is fixed at 60% and all en-

ergy values are normalized with respect to energy consump-

tion of DA-DVS at WCET
BCET

= 1. Notice that with increas-

ing WCET
BCET

ratio the energy consumption of all schemes de-

creases, but relative improvements after a certain threshold

become marginal. This is because with ample slack, with

DVS, tasks tend to run at energy-efficient frequency thresh-

olds. Similarly, for DPM, the idle interval of each device is

naturally bounded by the periods of tasks using it. As ex-

plained in Section 4.3, whenever possible DFR-EDF utilizes

the same dynamic slack for both DVS and DPM.

Figures 4(c) and 4(d) show the impact of varying power

characteristics of system components, respectively. In these

experiments the system utilization is fixed at 60% and
WCET
BCET

= 1. In Figure 4(c), for each task set and device

usage pattern, we multiply the device active power (Pa) of

all devices by a certain scaling factor and recompute the de-

vice break-even times while keeping the processor power the

same. That is, the higher the scaling factor, the more dom-

inant the device power. Similarly, in Figure 4(d), we mul-

tiply the processor power consumption at the maximum fre-

quency (Pcpu) while keeping the device power characteris-

tics the same. In both experiments, for each scaling factor we

measure the energy consumed by all schemes. All energy val-

ues are normalized with respect to scaling factor of one (i.e.

the original device/processor parameters as in [4, 23]).

With decreasingPa scaling factors or increasing Pcpu scal-

ing factors, processor energy consumption becomes more

dominant and thus the role of DVS proves more crucial com-

pared to that of DPM in minimizing the system energy. Thus,

at low Pa scaling factors and high Pcpu scaling factors EEDS

performs worse compared to all other schemes. In fact, there

are regions in Figures 4(c) and 4(d) where EEDS performs

worse than DA-DVS which does not have a DPM compo-

nent. Similarly, with increasing Pa scaling factors or decreas-

ing Pcpu scaling factors, device energy consumption becomes

more dominant and thus DPM becomes critical for minimiz-

ing system energy. Thus, in these regions, EEDS outper-

forms both SYS-EDF and DA-DVS. However, due its inherent

design features that exploit DVS and DPM in a synergistic

way, DFR-EDF maintains a robust performance throughout

all scaling factors – unlike other schemes, DFR-EDF does

not suffer from excessive degradations in settings where CPU

or device power dominates.

6 Conclusion

In this paper, we proposed the DFR-EDF framework for

system-wide energy management of periodic real-time tasks.

We provided a sufficient and efficient feasibility test for a set

of periodic real-time tasks in the presence of device forbidden

regions under preemptive EDF policy. Then, by using this

test, we provided an algorithm to determine the DFR con-

figuration and processing frequency for efficient integration

of DPM and DVS in a single framework. We also provided

online components to integrate predictive DPM policies and

use slack reclaiming for both DVS and DPM simultaneously

at run-time. Simulation results indicate that DFR-EDF offers

significant energy gains over state-of-the-art energy manage-

ment schemes. A by-product of this research effort is the

formal demonstration that the RT-DPM problem for periodic

real-time tasks is NP-Hard in the strong sense.
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APPENDIX: Proof of Theorem 2

We will prove the theorem by contradiction. Assume there is a dead-

line miss and the following holds:

∀kk=1...n

X

i∈Υk

(
∆i

Πi

+
∆i

Pk

) +
k

X

j=1

Cj

Pj

≤ 1

Let td be the first time a job misses its deadline in the EDF schedule.

Let ts be the last time before td such that there are no pending job

execution requests with arrival times before ts and deadlines at or

before td. ts is well defined as no requests can arrive before t = 0.

At time t, where ts ≤ t ≤ td, let A(t) denote the set of ready

jobs with pending execution requirements whose arrival times are in

interval [ts, t] and deadlines in interval [ts, td]. By choice of ts, A(t)
is a non-empty set throughout the interval [ts, td]. Hence, there is

always a pending job with deadline no greater than td in this interval.

Let td − ts = X. Let k be the largest index satisfying the con-

dition Pk ≤ X. At any time t, ts ≤ t ≤ td, the job instances in

A(t) belong to a subset of tasks in {T1 . . . Tk} (since tasks are or-

dered according to periods). Υk denotes the set of forbidden regions

affecting one or more tasks in {T1 . . . Tk}.

As a result, at any time t in the interval [ts, td] either a job in

A(t) should be executing or all the jobs in A(t) should be prevented

from execution (blocked) by one or more FRs in Υk. Therefore, the

entire interval [ts, td] can be seen as a sequence of intervals where in

each interval either a job in A(t) runs or all jobs in A(t) are blocked

by one or more FRs in Υk.

Let α1 denote total length of interval in [ts, td] where all jobs

in A(t) are blocked due to FR enforcements. α1 is bounded by

the total length of FRs in Υk when they are activated with their

minimum separation times (Π values) in [ts, td]. Thus,

α1 ≤
X

i∈Υk

d
X

Πi

e · ∆i

Let α2 denote the length of intervals in [ts, td] where a job in A(t) is

executed. α2 is bounded by the total execution time of jobs in A(t),

ts ≤ t ≤ td. Thus,

α2 ≤
k

X

j=1

b
X

Pj

c · Cj

Since a job misses its deadline at time td we must have,

α1 + α2 > X

X

i∈Υk

d
X

Πi

e · ∆i +
k

X

j=1

b
X

Pj

c · Cj > X

Since dY e ≤ bY c + 1 and bY c ≤ Y ,

X

i∈Υk

(
X

Πi

+ 1) · ∆i +
k

X

j=1

X

Pj

· Cj > X

X

i∈Υk

(
∆i

Πi

+
∆i

X
) +

k
X

j=1

Cj

Pj

> 1

By choice of k, P1 ≤ P2 . . . ≤ Pk ≤ X. Thus,

X

i∈Υk

(
∆i

Πi

+
∆i

Pk

) +
k

X

j=1

Cj

Pj

> 1

Giving a contradiction and proving the theorem.
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