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Abstract—The negative impact of the popular energy man-
agement technique Dynamic Voltage and Frequency Scaling
(DVFS) on the reliability of real-time embedded systems, in
terms of increased transient fault rates, has been recently
identified. As a result, recent research literature includes a
number of solutions within the so-called Reliability-Aware
Power Management (RA-PM) framework, where the aim is
to preserve the system’s original reliability. In this research
effort, we propose a more general framework where the aim
is to achieve arbitrary reliability levels that may vary for
each periodic task. A critical component of our solution is
the use of dynamically allocated recoveries: we show that
providing a relatively modest recovery allowance to a given
periodic task helps to achieve surprisingly high reliability
levels as long as these allowances can be reclaimed on-demand
during the hyperperiod. We propose a pseudo-polynomial time
feasibility test, as well as static and dynamic algorithms to
determine the recovery allowance and frequency assignments
to minimize energy consumption while satisfying timing and
reliability constraints. Our experimental evaluation points to
the significant gain potential of the new framework in terms
of both energy and reliability figures.

I. I NTRODUCTION

Many of the state-of-the-art energy management frame-
works for real-time embedded systems employ theDynamic
Voltage and Frequency Scaling (DVFS)technique. With
DVFS, the supply voltage and frequency of the processor
are simultaneously scaled at run-time to save power at the
expense of increased task response times. Several processor
technologies, including IntelSpeedStepand AMD Power-
Now!, have direct support for DVFS. The energy-aware
scheduling of real-time tasks in the presence of DVFS has
been extensively studied in the last decade [3], [4], [9], [19].

On the other hand, thereliability, and in general,fault
toleranceobjectives are of paramount importance for real-
time systems: faults that can occur at run-time can cause
errors and/or deadline misses. While permanent faults can
bring the entire processing unit to a halt (and cannot be
tolerated without spare computing units), it is shown that
most of the faults are caused by environmental factors (such
as electromagnetic interference or cosmic rays [34]) and
they affect the systems for short durations. Thesetransient
faults can result in soft errors and erroneous computations,
affecting tasks in execution. On single-processor systems,

transient faults can be tolerated by thebackward recovery
techniques that typically rely ontime redundancy[1], [21],
[31]: faulty computation can be repeated if there is sufficient
time before the task’s deadline.

The three-dimensional interplay of energy, reliability, and
timeliness objectives introduces non-trivial challenges. First,
both DVFS and time-redundancy based recovery techniques
actively compete for the use of available system slack
that can be used either for slow-down or as reserved re-
covery slots. Second, recent studies revealed that DVFS
comes at the cost of significantly increased transient fault
rates [25], [32], suggesting that provisioning for run-time
faults becomes even more important in DVFS settings.
The reliability-aware power management (RA-PM)frame-
work [30], [31], [33] is proposed to address the reliability-
degradation problem associated with DVFS. Specifically,
RA-PM solutions allocate a recovery job to every real-time
job whose frequency is scaled down, before its deadline.
In this way the recovery can be executed, should an error
be detected at the end of job’s execution. It is shown that
this approach preserves theoriginal reliability of the task
set, which is defined as the probability of completing all the
jobs with success when voltage/frequency scaling is disabled
[30], [31].

The main objectives of this research effort are twofold:
1. To lay the foundations of a more comprehensive frame-

work to achievearbitrary reliability levels for individual
periodic tasks, when employing DVFS. This may prove very
useful for applications with different/mixed criticality(or,
importance) levels whose requirements may not be fully
captured by simply preserving the original reliability levels.
For instance, some critical tasks may require very high
reliability levels – in fact, reliability levels that require
the use of recoveries even when not using DVFS may be
sought. Conversely, for some other tasks, a modest reliability
reduction may be acceptable in exchange for high energy
savings.Such task-variant reliability objectives can neither
be expressed nor achieved in existing RA-PM solutions.

2. To investigate and exploit the potential of deploying
dynamically allocated recoveriesfor periodic tasks, in co-
management of reliability and energy. As opposed to the
current RA-PM schemes thatstatically allocate aseparate



recovery to each and every scaled job, our framework
is based on providing every periodic task with a certain
recovery allowancefor the execution. The recoveries can
be used by any number of the jobs of the task under
consideration during the hyperperiod, as long as the recovery
allowance is not exceeded. Our analysis and results indicate
that such a dynamic recovery allocation strategy is highly
effective, in the sense that:i. even with rather small number
of recovery allowances, a surprisingly high reliability levels
can be obtained, and,ii . energy savings can be significantly
improved due to the less conservative and task-dependent
recovery reservation. Eventually, these two leverage dimen-
sions help us to formulate and tackle the general problem
of determining recovery allowance and frequency assign-
ments to minimize energy consumption, while meeting
the timing constraints and task-level reliability targets.

The remaining of this paper is organized as follows. After
presenting our models and basic definitions in Section II,
we compare existing recovery strategies and illustrate the
principles, as well as the potential of, dynamic allocation
of recoveries through concrete examples in Section III. In
Section IV, we discuss the main dimensions of the general
problem, which are subsequently addressed in Section V
(the feasibility problem) and Section VI (the frequency
and recovery allowance assignment problem). Section VI
presents our two proposed schemes as well as their dynamic
extensions, and includes their detailed experimental compar-
ison. Finally, Section VII gives the closely related work and
Section VIII concludes the paper.

II. M ODELS AND DEFINITIONS

A. Task Model

We consider a set of independent periodic real-time tasks
Γ = {T1, .., Tn}. Each taskTi is characterized by a period
pi, its worst-case (WC)execution timeci, and thebest-case
(BC) execution timebci. As we consider DVFS-enabled
processors, these execution times correspond to the cases
where tasks are executed at the maximum processor speed.
The relative deadline of taskTi is assumed to be equal to
its period. Thejth job of Ti, denoted asTij , arrives at time
(j − 1) · pi and has a deadline ofj · pi. We define the
hyperperiodH of the task set as the least common multiple
(LCM) of all tasks’ periods. The total number of jobs of
taskTi during the hyperperiod is represented byki = H

pi
.

We assume that the DVFS-enabled processor hasℓ dis-
crete speeds levels,smin = s1 < s2 . . . < sℓ = smax.
Here,smin = s1 stands for the minimum available speed of
the processor. Moreover, for simplicity, we normalize speed
levels with respect to the maximum speedsmax, where
smax = sℓ = 1.0. Note that, in modern processors,ℓ is
typically a small number not exceeding10.

The nominal utilization of taskTi undersmax is defined
as ui = ci

pi
. The (nominal) system utilization is further

defined asU =
∑n

i=1 ui. Assuming preemptive Earliest-
Deadline-First (EDF) scheduling, the necessary and suffi-
cient condition for feasibility under the maximum speed
smax is U ≤ 1.0 [18]. The execution frequency (speed)
of task Ti is denoted byfi. Clearly, fi can assume only
one of the discrete speed levels in{s1, . . . , sℓ}. We assume
that the task may take up toci

fi
time units when executed at

frequencyfi.

B. Energy Model

Considering the increasing static power trends with scaled
feature sizes, as well as the existence of multiple system
components consuming power, it has been observed that
power management schemes that focus on individual com-
ponents may not be energy efficient at the system level and
system-wide power management becomes a necessity [3],
[16]. In this paper, we adopt a simple system-level power
model, where the power consumption of a system running
at speeds can be expressed as [3], [32]:

P (s) = Ps + ~(Pind + Pd) = Ps + ~(Pind + Cef · sm) (1)

Above, Ps stands forstatic power, which can be removed
only by powering off the whole system. Due to the pro-
hibitive overhead of turning off/on a system in periodic
real-time execution settings, we assume that the system is
in on state at all times and thatPs is always consumed.
Hence, we will focus on the energy consumption related
to active power, represented by the second component in
the above equation. The coefficient~ is 1 when the system
actively executes a task; otherwise,~ = 0. Pind stands for
the frequency-independent active power, which includes any
active power that does not depend on running speed and
can be effectively removed by putting the system to sleep.
Pind is assumed to be a constant. Thefrequency-dependent
active powerPd depends on the system running speeds,
and system-dependent constantsCef andm [6]. From this
model, one can derive the minimumenergy-efficient speed
value assee = m

√

Pind

Cef ·(m−1) [3], [32]. That is, for energy
efficiency, no job should be executed at a speed lower than
see as doing so would result in higher energy consumption.

C. Fault and Reliability Models

During the operation of a computing system, bothperma-
nentandtransientfaults may occur due to, for instance, the
effects of hardware defects or cosmic ray radiations, which
can result in systemerrors. Transient faults, which are the
focus of this paper, have been shown to be dominant [14]
especially with scaled technology sizes [13]. Transient faults
have been traditionally modeled by Poisson distributions,
where the average arrival rate of soft errors caused by such
faults is assumed to beλ [25]. However, considering the
negative effects of DVFS on transient faults, soft error rates
at a lower speeds (< smax) (and the corresponding supply
voltageV ) can be modeled as [32]:



λ(s) = λ0 · 10
d·(1−s)
1−smin (2)

where λ0 corresponds to the average error rate at the
maximum speedsmax and d (> 0) is a constant, which
represents the sensitivity of soft errors caused by transient
faults due to DVFS. That is, reducing the supply voltage and
processing speed for energy savings can lead to exponen-
tially increased soft errors [8], [32]. The maximum average
arrival rate of soft errors is assumed to beλmax = λ0 · 10d,
which corresponds to the lowest processor speedsmin (and
minimum supply voltageVmin) [31], [32].

The reliability of a single job of task Ti, running at
frequencyfi, is the probability of completing the job without
incurring errors due to transient faults and is given as [31],
[32]:

Ri(fi) = e
−λ(fi)·

ci
fi (3)

whereci is the worst-case execution time ofTi under the
maximum processor speed. Theoriginal reliability of a
single job ofTi, denoted byR0

i , is the one that corresponds
to the case where the job runs at the maximum processing
frequency. That is,R0

i = Ri(1.0).

Definition 1. The task-level reliabilityof taskTi, denoted
by Φi, is the probability of completing allki instances ofTi

successfully during a hyperperiodH .

Definition 2. The system’s overall reliability, denoted by
Φsys, is defined as completing all jobs successfully during
a hyperperiodH , and is given byΦsys =

∏n

i=1 Φi.

It can be seen that task-level and system-level reliabilities
will, among other factors, highly depend on the running
frequency assignment to tasks. The task-level and system-
level original reliabilities are defined as the ones that result
from running all jobs at the maximum speed during a hyper-
period [31], which are denoted byΦ0

i andΦ0
sys, respectively.

Finally, the target reliability of taskTi is denoted byΦt
i.

III. R ECOVERY STRATEGIES FORPERIODIC EXECUTION

MODEL

To recover from the soft errors triggered by the transient
faults, we can exploit backward recovery technique and
improve task/system’s reliability. In this section, we compare
the impact of different recovery allocation strategies on the
reliability of periodic tasks. Consider the case where the task
Ti runs at the frequencyfi during hyperperiodH . The exact
expression of its task-level reliabilityΦi will depend on the
numberanddistribution of recovery tasks.

• Case 1: No recoveries.In this case, no provisions
are made to recover from potential transient faults
that can affect individual jobs. As a result, the en-
tire execution will be successful if and only if there
are no errors induced by transient faults during the

f
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Figure 1. Impact of recovery strategies for a task running atthe scaled
frequencyf = 0.6 over ki = 4 consecutive instances

hyperperiod. We findΦi = (Ri(fi))
ki , and further,

Φsys =
∏n

i=1(Ri(fi))
ki , which corresponds to the

probability of completing all job instances without
incurring any transient faults during the hyperperiod.
This approach has the clear drawback of reducing the
reliability by great margins. As a concrete example,
consider the taskT1 with worst-case execution time
c1 = 8ms and the periodp1 = 24ms. Assume the hy-
perperiod includeski = 4 job instances ofT1, namely,
T11, T12, T13 and T14. The transient fault model uses
the parameters from [31] withλ0 = 10−6, d = 3 and
smin = 0.1. When all the jobs run at the maximum
frequency (1.0), the overall probability of failure (PoF,
defined as1 - Reliability), is evaluated as8×10−9. If we
scale down all these jobs to a low frequencyf = 0.6 as
shown in Figure 1(a), the newPoF of the task is found
as1.15× 10−5. Observe how the lack of provision for
recoveries results in a reliability degradation by more
than four orders of magnitude even for a single task,
during the hyperperiod.

• Case 2: Statically allocated recoveries.Now, consider
the case where the recovery jobs are assignedstatically
to a subset of jobs of the periodic task, while the
remaining jobs run without relying on a recovery.
Specifically, if a recovery job is assigned statically to
one of the instances ofTi, then the recovery is executed
at the maximum frequency if a fault is detected at the
completion time of that specific instance. As a result,
the probability of successfully completing that single



instance (in other words, its new reliability) is [30]:

R′′(fi) = Ri(fi) + R′
i(fi)

whereR′
i(fi) = (1 − Ri(fi))Ri(1.0). Above, the first

componentRi(fi) corresponds to the probability of
completing the job without any transient fault, while
the second componentR′(fi) indicates the probability
of having a transient fault, which is later success-
fuly recovered from by re-executing at the maximum
normalized frequency1.0. Since Ri(1.0) = R0

i by
definition,R′′

i (fi) is known to be no less than the job’s
original reliability R0

i [30].
For Ti’s task-level reliability, ifbi instances havestat-
ically allocated recoveries andki − bi instances run
without any recovery provision, we have:

Φi = (R′′
i (fi))

bi × Ri(fi)
ki−bi

A special case warrants further elaboration: All jobs
of Ti are scaled andbi = ki. This corresponds to the
traditional RA-PM solutions [31] and yields:

Φi = ΦRAPM,i = (R′′
i (fi))

ki

Obviously,Φi is maximized in this approach and the
scaledtask’s reliability is guaranteed to be better than
its original reliability Φ0

i .
If we return to our running example, in order to
maintain the system original reliability, the existing
RA-PM scheme [31] will statically schedule a recovery
job B1j for each individual job instanceT1j during the
hyperperiod as shown in Figure 1(b), and the newPoF
is found as9.19× 10−13 which is nowbetter than the
task’s original reliability by approximately four orders
of magnitude.
However, allocating a separate recovery to every job
instance of a scaled task requires significant amount of
static slack and affects the energy savings opportunities
of other tasksnegatively. Hence, a significant number
of tasks may remainun-managed(i.e., may have to run
at the maximum frequency without any recovery) [31].
Also note that RA-PM is in general unable to target a
specific reliability level which may be higher or lower
than the task’s original reliability.

• Case 3: Dynamically allocated recoveries.Another
possibility, which is the proposal of this research ef-
fort, is to provide each task with a certainrecovery
allowancefor execution.
Specifically, provisions will be made through a static
analysis to provide up toai ≤ ki recoveries to task
Ti anywhere in the hyperperiod, without associating a
given recovery with a specific task instance in advance.
The net result is that, at runtime, the task will be able
to use these dynamically allocated recoveries for any
ai arbitrary instances, effectively covering

∑ai

j=1

(

ki

j

)

distinct fault scenarios for taskTi.
To illustrate these points, consider taskTi running
with a single (ai = 1) dynamic recovery overki

instances during the hyperperiodH . The execution will
be successful if:

– No task instance encounters a fault, or,
– The jth instance encounters a fault, the single

dynamic recovery is successfully executed and the
job instances exceptTij complete without encoun-
tering a transient fault, for everyj = 1, . . . , ki.

This effectively gives a reliability figure of

Φi = Ri(fi)
ki + kiR

′
i(fi)Ri(fi)

ki−1

The reader should observe how even a single recovery
allowance effectively provisions forki + 1 different
execution scenarios. Moreover, due to typically low
transient fault rates, these typically cover the scenar-
ios with maximum probability of occurrence. In other
words, the probability of having fault scenarios with
increasing number of faults affecting multiple instances
of the sametask, while not exactly zero, will quickly
drop to very small numbers.
Increasing the level of dynamic recovery allowance to
ai = 2 would provision for cases where faults affect
any two arbitrary instances, covering an additional
ki(ki−1)

2 fault scenarios. Therefore, we have:

Φi = Ri(fi)
ki + kiR

′
i(fi)Ri(fi)

ki−1

+
ki(ki − 1)

2
(R′

i(fi))
2Ri(fi)

ki−2

In general, for a taskTi running at speedfi and with
ai recovery allowances forki job instances duringH ,
the task-level reliabilityΦi = Φi(fi, ai, ki) is found as:

Ri(fi)
ki +

ai
∑

j=1

(

ki

j

)

(R′
i(fi))

jRi(fi)
ki−j (4)

In our running example, if we give a single recovery
allowance that can be used by any of the four scaled
down job instances (Figure 1(c)) the newPoF is evalu-
ated as6×10−11. In the figure, the dashed lines around
the recovery taskB1 indicate that it is not statically
associated by any specific job, but can be dynamically
scheduled whenever a transient fault is detected in any
job. Clearly, with the newPoF in this example, we
still preserve, and in fact improve by two orders of
magnitude, the task’s original reliability. Further, by
dynamically schedulinga1 = 2 recoveries for these
job instances, thePoF reaches a level of9.20× 10−13,
which is extremely close to that obtained by the RA-
PM technique [31]. This simple example illustrates
that dynamic allocation of recoveries can also achieve
very high reliability levels (comparable to RA-PM) by
reserving smaller number of recovery slots.
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of recoveries needed to maintainΦ0

We now elaborate further on how the reliability levels of
a single periodic taskTi change with the recovery allowance
ai, frequencyfi, and the number of jobski within the
hyperperiod H.

Consider a periodic taskTi, with ci = 20ms, pi = 100ms

and ki = 100 instances within a hyperperiod. We further
assume thatλ0 = 10−6 and the fault-sensitivity exponentd

may vary from3 to 5 [32]. Figures 2 and 3 show the rela-
tionship between the recovery allowanceai and the achieved
PoF for the cases ofd = 5 andd = 3, respectively. Here, we
report PoF values normalized with respect to the one that
corresponds to the task’s original reliability (i.e.,1 − Φ0

i ).
As we can see, for a given frequency level, increasing the
number of recoveries significantly improves the reliability
(reduces thePoF). However, after the recovery allowance
reaches a certain number for a given frequency, the extra
reliability gain becomes extremely small, in fact negligible
– because the likelihood of new fault scenarios that can be
covered by larger recovery allowances approaches quickly
zero, thanks to the very nature ofdynamic allocationstrat-
egy. Also, as expected, low frequency levels typically need
more recoveries to achieve a givenPoF. Reducing the fault-
sensitivity exponentd from 5 (Figure 2) to 3 (Figure 3)
makes the transient faults less likely, and thePoF values
further drop with the same recovery allowance.

Figure 4 shows the number of recoveries needed to
maintain the task-level original reliability as a function
of the frequencyf , for various ki values (the number
of jobs within the hyperperiod) andd = 5. In general,
the recovery allowance needed to maintainΦ0

i drops with
increasing frequency and decreasingki (a measure of the
length of the hyperperiod). An interesting observation from
Fig. 4 is that with the dynamic allocation of only a small
number of recovery allowances, the task’s original reliability
can be maintained. In general, the same observation holds
for arbitrary task-level reliability targets, underlining the
potential of the new technique compared to the traditional
RA-PM.

IV. D IMENSIONS OF THEPROBLEM

The dynamically allocated recovery framework gives a
powerful tool to enhance task-level reliabilities of periodic

tasks with minimum recovery allowance. However, the ul-
timate design problem we aim to address is the following:
Given a set of periodic tasks with task-level reliability
objectives {Φi

t| i = 1, . . . n}, how to choose frequency
{fi} and recovery allowance{ai} assignments to min-
imize energy consumption?Consideration of this prob-
lem mandates, in the first place, addressing thefeasibility
dimension to decide if all the timing constraints can be
met with a given set of{fi}{ai} assignments. We will
consider this problem in Section V. Then we will move on
to the problem ofdetermining optimal {fi}{ai} values
to minimize energy consumption while satisfying reliability
and timing constraints at the same time (Section VI).

Notice that if the input to a specific problem instance is
only the overall system target reliabilityΦt

sys, then the task-
level reliability objectives{Φt

i} should be derived as the
first step. In this case, a reasonable approach is to perform
uniform reliability scaling, in such a way that the ratio1−Φt

i

1−Φ0
i

is set to a common valueQ across all tasksT1, . . . , Tn.
Intuitively, this makes sure that thePoF improvement (or,
degradation) uniformly applies to all the tasks, compared to
the originalPoF levels{1 − Φ0

i , i = 1, . . . , n}.

V. FEASIBILITY CONDITIONS

Before addressing the problem of choosing optimal re-
covery allowance and frequency assignments, we need to
consider the feasibility problem. Specifically, if a certain
set of frequency{fi} and recovery{ai} assignments are
considered for energy and reliability objectives, we must
make sure that the job deadlines will be indeed met in
all execution scenarios within the hyperperiod, where up
to ai instances of taskTi can incur transient faults and
the corresponding dynamic recoveries are executed, for
i = 1, ..., n.

Given a set of integersz1, . . . , zn, a fault pattern [2]
corresponds to the set of execution scenarios where exactly
zi distinct instances ofTi encounter transient faults during
the hyperperiodH . If zi ≤ ai (∀i 1 ≤ i ≤ n), we
call this pattern an{ai}-fault pattern. For instance, assume
a1 = 2, a2 = 3 and a3 = 1 for three tasksT1, T2 and T3.
Any execution scenario where at most2, 3 and1 instances of
T1, T2 andT3 fail, respectively, constitutes a different fault



pattern with respect to{a1 = 2, a2 = 3, a3 = 1} allowance.
If there are 3 instances ofT1 within the hyperperiod we
need to consider all single and two-instance combinations
for potential fault occurrences.

Obviously, the feasibility must be preserved for all dis-
tinct {ai}-fault patterns for a given recovery allowance set
{ai}. At first, from a computational point of view, this
appears as a prohibitively expensive task, because there
are

∏n
i=1

∑ai

j=1

(

ki

j

)

distinct {ai}-fault patterns for a given
recovery allowance set{ai}, suggesting a potentially expo-
nential number of cases to analyze.

Let Z{a1,...,an} be the set of all{ai}-fault patterns
corresponding to a given recovery allowance assignment
{a1, . . . , an}. The following theorem, whose proof is pro-
vided in [29] due to space limitations, underlines that
assessing feasibility under a single (and well-defined) worst-
case fault occurrence pattern is necessary and sufficient.

Theorem V.1. For a fixed frequency and recovery allowance
assignment{a1, . . . , an}, the periodic task set remains fea-
sible in every fault pattern∈ Z{a1,...,an}, if and only if all
the deadlines can be met when the firstai instances of every
task Ti (i = 1 . . . n), encounter transient faults during the
same execution.

Moreover, the last condition can be checked by resorting
to fault-sensitive processor-demand analysis techniques[2]
as detailed in our technical report. The technique essentially
consists in creating thisworst-casefault scenario (where the
first ai instances of each taskTi need separate recoveries)
and making sure that thefault-sensitiveprocessor demand in
every interval(0, D) (D ≤ H), does not exceed the length
of the interval and has the complexityO(( H

pmin
) · n) where

pmin is the smallest period among all tasks. It is sufficient
to check the validity of this condition only at task period
boundaries.

It is worthwhile to note that this result is along the
lines of existing real-time scheduling theory which suggests
that, when the workload of instances of given periodic
task may change (for example, by intentionallyskipping
certain instances), the worst-case occurs with the so-called
deeply redpattern – a scenario where all tasks present their
maximum demand as early as possible and delay theskips
as much as possible [7], [17], [22]. Our result essentially
extends those results to fault-sensitive settings and has the
same pseudo-polynomial time complexity.

VI. RECOVERY ALLOWANCE AND FREQUENCY

ASSIGNMENTS

A. Static Phase

In this section, we address our main design problem: to
determine frequency and recovery allowance assignments to
minimize the total energy, while meeting task-level reliabil-
ity and time constraints. In general, the non-trivial interplay

of reliability, timing andenergydimensions makes the prob-
lem rather challenging. A given task’s energy consumption
is, in general, likely to decrease with decreasing frequency;
but this may also violate the task’s reliability constraint.
Moreover, reducing a task’s frequency and/or increasing its
recovery allowance may also affect slow-down opportunities
for other tasks.

Note that task-level target reliability objectives impose
hard constraints on the frequency and recovery allowance
assignment. In particular, if taskTi runs at discrete speed
level fi = sj (1 ≤ j ≤ ℓ), then Equation (4) suggests
the existence of a minimum recovery allowance valueai, to
guarantee the reliability objectiveΦt

i. Consequently, we can
construct ann× ℓ table (Minimum Recovery Table (MRT)),
where MRTi,j = min{ai|Φi(fi = sj , ai, ki) ≥ Φt

i}.
Intuitively the entry(i, j) of the table gives the minimum
number of dynamic recoveries that must be assigned to
task Ti when it runs at speedsj to achieveΦt

i. It is
clear that if fi = sj, the number of recoveries should be
exactlyMRTi,j: a smaller value would violate the reliability
constraint and a larger one would unnecessarily narrow the
feasibility space of other tasks (see Theorem V.1).

Based on these observations, we propose two schemes.
The first, Lock-Step Frequency Scaling Algorithm (LSF),
initially sets all task frequencies tofi = smax = sℓ

and ai = MRTi,ℓ. Then it iteratively attempts to reduce
the frequency level of each task by one level, as long
as the reliability and feasibility constraints are satisfied.
Specifically, in a given iteration ofLSF, a specific quantity
δi,j is evaluated for each task. When the current frequency
of taskTi is reduced fromfi = sj+1 to sj, we have:

δi,j =
ki(Ei(sj+1) − Ei(sj))

Ri(sj+1)ki − Ri(sj)ki

aboveki(Ei(sj+1) − Ei(sj)) indicates the energy savings
obtained by totalki job instances ofTi within the hyper-
period, when the taskfi is scaled down fromsj+1 to sj .
Similarly, Ri(sj+1)

ki − Ri(sj)
ki is the reliability degrada-

tion that accompanies the same tentative speed reduction.
Informally, δi,j is a measure ofutility (i.e. energy savings
per unit reliability degradation) corresponding to one-level
speed scaling, guiding the algorithm’s operation.

In a given iteration ofLFS, a taskTi is said to beeligible
for frequency scaling fromsj+1 to sj , if the task set remains
feasible with fi = sj and ai = MRTi,j assignments
(assuming other tasks’ assignments remain the same). Let
Gh be the set ofeligible tasks in iterationh. LFSselects the
taskTi ∈ Gh for scaling down by one level as the one with
maximumδi,j value; and stops when eitherGh is empty or
the energy-efficient frequency values for all tasks have been
reached. As a result,LFShas at most(ℓ−1)n iterations and
each iteration performs at mostn2 feasibility checks. The
complexity ofLFS is thereforeO(ℓ · n3( H

Pmin
)).

We also experimented with a faster algorithm called
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Figure 5. Impact of the utilization on the energy
consumption with 10 tasks per set
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Figure 6. Impact of the utilization on the energy
consumption with 20 tasks per set
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Figure 7. Impact of uniform reliability scaling
factor on system energy consumption

the Dual Speed (Dual)Algorithm, that avoids checking
the potential utility of scaling down every task, for every
frequency level. Specifically, that algorithm first identifies
the lowestcommonspeedsc for all tasks such that the
feasibility is preserved with{fi = sc} and{ai = MRTi,c}
assignments. These can be done in at mostlog(ℓ) steps by
performing a binary search on the number of availableℓ

discrete frequencies. Then it attempts to reduce the speed of
some tasks tosc−1 while preserving feasibility, essentially
using at most two distinct speed levels for the entire task set.
The algorithm is based on the intuition that a uniform speed
assignment is typically beneficial for real-time task sets,due
to the convexity of dynamic power consumption. The dual-
speed algorithm has the complexityO((log ℓ+n)·n( H

Pmin
)).

The pseudo-codes of bothLFS andDual algorithms can be
found in our technical report [29].

Performance Evaluations:A discrete-event simulator was
implemented in C programming language to evaluate the
performance of our new schemes. In our simulations, in
addition to LFS and Dual schemes, we implemented two
additional schemes:

• The periodicRA-PM scheme [31], whose objective is
to preserve the system’s original reliability. We imple-
mented thelargest-utilization-first (LUF)andsmallest-
utilization-first (SUF)variations to determine the man-
aged tasks [31]. The results were very similar, and we
include only the results forLUF below.

• The Static Power Management (SPM)scheme [3],
which computes optimal slow-down factors to minimize
energy without considering reliability objectives. It is
included in our comparison to assess the potential
energy cost of provisioning for reliability.

A cubic frequency-dependent power componentPd is
assumed and it is set to unity at the maximum processor
frequency. The frequency-independent power component
Pind for each task is normalized with respect toPd and
we setPind = 0.05 in our simulations. The ten discrete
frequency levels that we assume are modeled after Intel
Xscale processor [24]. Also, Poisson distribution is used
to simulate transient faults with an average fault rate of
λ0 = 10−6 at the maximum frequency, which is a realistic
fault rate as reported in [34]. In our simulations, we set the

fault rate exponentd to 3.

Each point in the presented figures is obtained by averag-
ing the results obtained through1000 different task sets. The
periods (pi) of each task set are uniformly generated and
fall in the range of[10ms, 1080ms]. The total utilization
(U ) of per task set is varied from 0.2 to 1.0 (full load)
in steps of 0.1. TheUUniFast algorithm [5] is used to
generate the individual task utilizations (ui). All energy
consumption results are normalized with respect to theno
power management (NPM)scheme that executes all tasks
without any frequency and voltage scaling (i.e. atsmax).

First, we evaluate the impact of the utilization on the en-
ergy consumptions by settingΦt

i = Φ0
i (original reliability)

for all tasks. Figure 5 shows the evaluation results with 10
tasks per task set. As expected, the energy consumption of
all schemes increases with increasingU , due to the need
for higher frequencies to preserve feasibility. The perfor-
mance ofSPMcorresponds to maximum energy savings that
can be obtained,even when ignoring reliability objectives.
Compared toRA-PM, Dual andLFShave significant energy
savings up to50%. This is due to the dynamic recovery
allocation strategy that can achieve reliability objectives
with small number of recoveries, while leaving more slack
for slowdown. In fact, whenU ≤ 0.5, the performance
of our schemes approaches to that of SPM, because the
use of small number of recoveries can be compensated by
small increases in frequency levels in that region. It is also
worthwhile to note thatLFS, despite its more complex search
algorithm, has only marginal gains overDual and only at
high utilization values, when the objective is to maintain
original reliabilities. Figure 6 presents the same analysis this
time for 20-task sets and we observe that the trends remain
very similar. It is interesting to note thatDual approaches
furtherLFSwith increasing number of tasks as the algorithm
has more chances to identify tasks for scaling down tosc−1

without violating feasibility.

Figure 7 shows the impact of the task-level target reli-
abilities (Φt

i) on the energy consumptions whenU = 0.5
for 20-task sets. Here, the x axis is theuniform reliability
scaling factor Q, defined in Section IV. Specifically, a
value ofQ = 1 corresponds to targeting original task-level
reliabilities; a smaller (larger) scaling factorQ corresponds
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Figure 8. Impact of utilizationPoF on system
energy consumption
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Figure 9. Impact of actual workloads on system
energy consumption
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Figure 10. Impact of uniform reliability scaling
factor on system energy consumption

to targeting smaller (larger)PoF figures. TheSPMalgorithm
is reliability-ignorant, but its energy consumption figureis
included as a comparison. Several observations are in order:
when Q ≥ 102, our algorithms’ performance converges
to that of SPM because they also choose to execute tasks
without (or with very small number of) recoveries since
the target reliability requirements are loose. However, with
decreasingQ, the algorithms are forced to schedule addi-
tional recoveries and this causes some modest increase in
energy consumption. It is interesting to note that in the
region[10−4, 10−1] the energy consumption of the schemes
increases only marginally. This is due to the fact that the
recoveries can be assigned only in integer units; and once
a new recovery is added to the application, typically overall
reliability improves by great margins. This is further en-
hanced by the existence of discrete speed levels; makingvery
fine-grainedreliability control somewhat difficult. However,
for very high reliability requirements (e.g.Q ≤ 10−5) the
algorithms are forced to provision for additional recoveries
with a corresponding energy cost. In fact, one can notice
that the comprehensive search mechanism ofLFS starts to
pay off when the requiredPoF levels are very low.

B. Dynamic extensions

The static algorithmsLFS andDual are designed to meet
the problem’s timing and reliability constraints under worst-
case workload assumptions. However, it is well-known that,
often the tasks’ actual workloads during execution deviate
from the worst-case, and significant amount of dynamic
slack can be expected. In fact, exploiting the dynamic slack
by reducing the processor speed as appropriate is a common
strategy in DVFS frameworks [4], [19].

While similar opportunities exist in our settings, the
dynamic reclaiming becomes more challenging due to hard
reliability constraints. Specifically, reclaiming slack at run-
time by dynamically reducing the speed, even if it guarantees
the timing constraints,can violate the task’s given target
reliability objectives.

Therefore, we present a conservative but safe technique
to perform dynamic slack reclaiming at runtime while still
preserving the task-level reliability guarantees. Specifically,
we use the DRA algorithm [4] to keep track of the dynamic

slack, and evaluate theearlinessof each task at dispatch
time. However, a given job’s speed is actually reduced only
when the amount of safely reclaimable slack (earliness) is
large enough to schedule also a new dynamically scheduled
recovery – this limits the extent of achievable dynamic slow-
down, but preserves the reliability constraint. Yet, when ajob
completes successfully (i.e. without a fault), the algorithm
can re-use the slack of the new recovery to safely slow-down
another job. Based on these principles, we extendedLFSand
Dual Speedschemes to dynamic settings, obtainingD-LFS
andD-Dual algorithms, respectively.

Performance Evaluation: We implementedD-LFS andD-
Dual algorithms in our simulator. We also implemented
the Dynamic RA-PM (D-RA-PM)scheme, which uses the
wrapper task technique[31], to perform slack reclaiming
at runtime. Finally, we implemented aReliability-Ignorant-
Reclaiming scheme (RIR)which uses the entire dynamic
slack for slow-down at run-time, without considering the
potential reliability degradation.RIR is essentially used as
a yardstick algorithm to assess the energy savings of our
solutions.

We use the same evaluation settings as in the evalua-
tion part of static algorithms. To model the variations in
the actual workload, we useWC

BC
(varying from 1 to 5),

which represents the ratio of worst-case execution time to
the best- case execution time. The higher this ratio, the
more the actual workload deviates from the worst case. We
randomly generate the actual execution time of each job,
by using normal distribution with the meanWC+BC

2 and
standard derivationWC−BC

12 [4]. This guarantees that99.7%
of generated execution times fall in the range[BC, WC]
and values outside this range are not considered. For each
points in the figures 1000 task sets (each with 20 tasks)
are used; each execution is repeated 1000 times during
the hyperperiod. All energy consumption results are again
normalized with respect to NPM.

Figure 8 illustrates the energy consumptions as a function
of total utilization (U ), with WC

BC
= 5 andΦt

i = Φ0
i for all

tasks. The relative order of schemes remains the same with
respect to Figure 5. However, nowD-RA-PM’s performance
relatively deteriorates compared to the static version. This is
becauseD-RA-PM is based on thewrapper-tasktechnique



which uses the maximum frequency as the nominal speeds
of all jobs to preserve reliability when dynamically reducing
the speed. However, our schemes use nominal frequency
assignments from the static algorithms, which are relatively
lower. Also we notice that our dynamic schemes no longer
converge toRIRat highU values due to the need for reserv-
ing additional recovery to maintain reliability guarantees –
RIR, by ignoring reliability, can reclaim full dynamic slack.
Another observation is that with increasing utilizations,the
difference of energy performances betweenD-LFS and D-
Dual becomes more emphasized since the latter is restricted
to the use of two speed levels during dynamic reclaiming.

Figure 9 shows the impact of variability in the actual
workload (i.e. theWC

BC
) on the energy performance, when

U = 0.6 and Φt
i = Φ0

i . In general, we find that the en-
ergy consumption decreases with increasing dynamic slack
(higher WC

BC
ratio). The D-Dual’s limitations due to the

use of two speeds restrict its ability to exploit fully the
increasing dynamic slack. Finally, the hard requirement
for maintaining the reliability objectives results in reduced
ability for reclaiming slack, compared toRIR.

In Figure 10, we show the relationship between the task-
level target reliabilities (Φt

i) and the energy consumptions,
for U = 0.5 and WC

BC
= 5. Again, we observe patterns

similar to those observed in the case of static schemes
(Figure 7). A notable difference is that the shortcomings of
D-Dual are slightly more emphasized in dynamic settings.

VII. C LOSELY RELATED WORK

In recent years, DVFS has been investigated extensively
to manage energy in real-time systems [4], [19]. However,
the joint consideration of energy management and fault
tolerance has attracted attention only very recently. By ex-
ploiting the primary/backup model, Unsalet al. proposed an
energy-aware software-based fault tolerance scheme, where
the execution of backup tasks is postponed as much as pos-
sible to minimize the overlap between primary and backup
executions and thus to reduce energy consumption [23]. An
adaptive checkpointing scheme to tolerate a fixed number
of transient faults while minimizing energy consumption
has been studied in [26]. Considering both re-execution and
replication for fault tolerance, Izosimovet al. studied an op-
timization problem for mapping a set of tasks with reliability
constraints, timing constraints and precedence relationsto
processors and determining appropriate fault tolerance poli-
cies for tasks [15]. Note that, these studies either focusedon
tolerating a fixed number of faults [15] or assumed a constant
arrival rate for transient faults [27]. However, the negative
effect of DVFS on system reliability due to increased number
of transient faults at lower supply voltages (especially for the
ones induced by cosmic ray radiations) has been shown [32].
Such negative effects have been confirmed in other studies
as well [8], [12]. Ejlali et al. studied a number of schemes
that combine the information about hardware resources

and temporal redundancy to save energy and to preserve
system reliability [11]. Popet al. studied the energy and
reliability trade-offs for distributed heterogeneous embedded
systems [20]. More recently, Ejlaliet al. studied a standby-
sparing hardware redundancy technique for fault tolerance,
where the standby processor is operated at low power state
whenever possible provided that it can catch up and finish
the tasks in time [10]. In our previous work, we proposed
a reliability-aware power management (RA-PM) framework
to preserve system reliability while exploiting slack timefor
energy savings [30], and extended it to periodic real-time
tasks [31]. However, all these papers focused on preserving
the original reliability of tasks without considering the
different reliability requirements of individual tasks, which
is the topic of this paper. More recently, we proposed the
Generalized Shared Recovery (GSHR)technique [28], where
a small number of recovery tasks are shared among tasks
while satisfying an arbitrarysystem-level reliability target.
In addition,GSHRconsiders only frame-based task systems,
where all tasks share a common deadline. Also, in [33], we
applied the weakly-hard real-time model to RA-PM settings.
However, that technique is an individual-recovery based
scheme where jobs without statically scheduled recoveries
have to be still executed at the maximum frequency. In
this work, we differentiate the reliability requirements of
individual periodic tasks and study recovery allowance based
schemes, where all jobs can be scaled down and recoveries
are dynamically allocated.

VIII. C ONCLUSIONS

In this research effort, we presented a framework to
provide arbitrary task-level reliability guarantees to peri-
odic real-time tasks, while controlling energy consumption
through DVFS. As opposed to the existing reliability-aware
power management (RA-PM) frameworks, where the aim
is to preserve the original reliability and the recovery
jobs are statically allocated to scaled jobs, we introduced
the concept ofrecovery allowancesthat can be reclaimed
anywhere during the hyperperiod. This flexibility helps to
improve reliability significantly, with minimum in-advance
reservation for potential recoveries. We presented static
and dynamic algorithms that are shown to reduce energy
consumption while maintaining the feasibility and reliability
objectives. To the best of our knowledge, this is the first
work to consider task-level reliability objectives in periodic
execution settings. An interesting future work direction is to
consider multi-processor settings where both permanent and
transient faults could be potentially tolerated through a mix
of hardware and time redundancy techniques.
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[24] R. Xu, D. Mossé, and R. Melhem. Minimizing expected
energy consumption in real-time systems through dynamic
voltage scaling. ACM Trans. for Embedded Computing
Systems, 25(4), 2007.

[25] Y. Zhang and K. Chakrabarty. Energy-aware adaptive check-
pointing in embedded real-time systems. InProc. of the con-
ference on Design, Automation and Test in Europe (DATE),
2003.

[26] Y. Zhang and K. Chakrabarty. Task feasibility analysisand
dynamic voltage scaling in fault-tolerant real-time embedded
systems. InProc. of IEEE/ACM Design, Automation and Test
in Europe Conference(DATE), 2004.

[27] Y. Zhang, K. Chakrabarty, and V. Swaminathan. Energy-
aware fault tolerance in fixed-priority real-time embedded
systems. InProc. of the 2003 IEEE/ACM int’l conference
on Computer-aided design, 2003.

[28] B. Zhao, H. Aydin, and D. Zhu. Generalized reliability-
oriented energy management for real-time embedded appli-
cations. InProc. the Design Automation Conference (DAC),
2011.

[29] B. Zhao, H. Aydin, and D. Zhu. Energy management under
general reliability constraints: the periodic case. InTechnical
Report - GMU Computer Science Dept., 2011. Available at
http://cs.gmu.edu/∼aydin/tr-2011-29.pdf.

[30] D. Zhu. Reliability-aware dynamic energy management in
dependable embedded real-time systems. InProc. of the
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2006.

[31] D. Zhu and H. Aydin. Reliability-aware energy management
for periodic real-time tasks. IEEE Trans. on Computers,
58(10):1382–1397, 2009.

[32] D. Zhu, R. Melhem, and D. Mossé. The effects of energy
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