Energy Management under General Task-Level Reliability Castraints

Baoxian Zhao, Hakan Aydin Dakai Zhu
Department of Computer Science Department of Computer Science
George Mason University University of Texas at San Antonio
Fairfax, VA 22030 San Antonio, TX 78249
bzhao@gmu.edu, aydin@cs.gmu.edu dzhu@cs.utsa.edu

Abstract—The negative impact of the popular energy man- transient faults can be tolerated by thackward recovery
agement technique Dynamic Voltage and Frequency Scaling techniques that typically rely otime redundancyl], [21],

(DVFS) on the reliability of real-time embedded systems, in 131)- tay |ty computation can be repeated if there is suffitie
terms of increased transient fault rates, has been recently . , .
time before the task’s deadline.

identified. As a result, recent research literature includs a _) ° o
number of solutions within the so-called Reliability-Aware The three-dimensional interplay of energy, reliabilityda
Power Management (RA-PM) framework, where the aim is timeliness objectives introduces non-trivial challendgésst,

to preserve the system’s original reliability. In this resarch poth DVFS and time-redundancy based recovery techniques
effort, we propose a more general framework where the aim 5.ively compete for the use of available system slack
is to achieve arbitrary reliability levels that may vary for .

each periodic task. A critical component of our solution is that can be used either for slow-d_own or as reserved re-
the use of dynamically allocated recoveries: we show that Covery slots. Second, recent studies revealed that DVFS
providing a relatively modest recovery allowance to a given comes at the cost of significantly increased transient fault
periodic task helps to achieve surprisingly high reliabilty rates [25], [32], suggesting that provisioning for run4im
levels as long as these allowances can be reclaimed on-demhan faults becomes even more important in DVFS settings.

during the hyperperiod. We propose a pseudo-polynomial tire o
feasibility test, as well as static and dynamic algorithms @ 1 he reliability-aware power management (RA-PNtame-

determine the recovery allowance and frequency assignment Work [30], [31], [33] is proposed to address the reliabiity
to minimize energy consumption while satisfying timing and degradation problem associated with DVFS. Specifically,

reliability constraints. Our experimental evaluation points to RA-PM solutions allocate a recovery job to every real-time
the significant gain potential of the new framework in terms ol whose frequency is scaled down, before its deadline.
of both energy and reliability figures. .

In this way the recovery can be executed, should an error
be detected at the end of job’s execution. It is shown that
this approach preserves tloeiginal reliability of the task

Many of the state-of-the-art energy management frameset, which is defined as the probability of completing all the
works for real-time embedded systems employBly@amic jobs with success when voltage/frequency scaling is dishbl
Voltage and Frequency Scaling (DVF&chnique. With [30], [31].

DVFS, the supply voltage and frequency of the processor The main objectives of this research effort are twofold:
are simultaneously scaled at run-time to save power at the 1. To lay the foundations of a more comprehensive frame-
expense of increased task response times. Several processmrk to achievearbitrary reliability levels for individual
technologies, including InteBpeedSteand AMD Power- periodic tasks, when employing DVFS. This may prove very
Now!, have direct support for DVFS. The energy-awareuseful for applications with different/mixed criticalitfor,
scheduling of real-time tasks in the presence of DVFS hasmportance) levels whose requirements may not be fully
been extensively studied in the last decade [3], [4], [9]{1 captured by simply preserving the original reliability éds.

On the other hand, theeliability, and in generalfault For instance, some critical tasks may require very high
toleranceobjectives are of paramount importance for real-reliability levels — in fact, reliability levels that reqe
time systems: faults that can occur at run-time can causthe use of recoveries even when not using DVFS may be
errors and/or deadline misses. While permanent faults casought. Conversely, for some other tasks, a modest retiabil
bring the entire processing unit to a halt (and cannot beeduction may be acceptable in exchange for high energy
tolerated without spare computing units), it is shown thatsavings.Such task-variant reliability objectives can neither
most of the faults are caused by environmental factors (suche expressed nor achieved in existing RA-PM solutions.
as electromagnetic interference or cosmic rays [34]) and 2. To investigate and exploit the potential of deploying
they affect the systems for short durations. Thigaasient dynamically allocated recoverief®r periodic tasks, in co-
faults can result in soft errors and erroneous computationsnanagement of reliability and energy. As opposed to the
affecting tasks in execution. On single-processor systemgurrent RA-PM schemes thatatically allocate aseparate

I. INTRODUCTION

recovery to each and every scaled job, our frameworldefined asU = """, u;. Assuming preemptive Earliest-
is based on providing every periodic task with a certainDeadline-First (EDF) scheduling, the necessary and suffi-
recovery allowancedor the execution. The recoveries can cient condition for feasibility under the maximum speed
be used by any number of the jobs of the task undes,,.. is U < 1.0 [18]. The execution frequency (speed)
consideration during the hyperperiod, as long as the regove of task T; is denoted byf;. Clearly, f; can assume only
allowance is not exceeded. Our analysis and results irdicabne of the discrete speed levels{isy, . .., s;}. We assume
that such a dynamic recovery allocation strategy is highljthat the task may take up 1% time units when executed at
effective, in the sense that:even with rather small number frequencyf;.
of recovery allowances, a surprisingly high reliabilityddés
can be obtained, and, energy savings can be significantly B. Energy Model
improved due to the less conservative and task-dependent Considering the increasing static power trends with scaled
recovery reservation. Eventually, these two leverage nime feature sizes, as well as the existence of multiple system
sions help us to formulate and tackle the general problerf§omponents consuming power, it has been observed that
of determining recovery allowance and frequency assign- Power management schemes that focus on individual com-
ments to minimize energy consumption, while meeting Ponents may not be energy efficient at the system level and
the timing constraints and task-level reliability targets. ~ System-wide power management becomes a necessity [3],
The remaining of this paper is organized as follows. After[16]. In this paper, we adopt a simple system-level power
presenting our models and basic definitions in Section 1Mmodel, where the power consumption of a system running
we compare existing recovery strategies and illustrate tht speeds can be expressed as [3], [32]:
principles,_as well as the potential of, dyr_1amic a_lllocationp(s) = Py 4+ W(Pig + P1) = Py + h(Ping + Cop - s™) (1)
of recoveries through concrete examples in Section Ill. In
Section 1V, we discuss the main dimensions of the generaf\bove, Ps stands forstatic power which can be removed
problem, which are subsequently addressed in Section W¥nly by powering off the whole system. Due to the pro-
(the feasibility problem) and Section VI (the frequency hibitive overhead of turning off/on a system in periodic
and recovery allowance assignment problem). Section Vreal-time execution settings, we assume that the system is
presents our two proposed schemes as well as their dynamile on state at all times and tha®, is always consumed.
extensions, and includes their detailed experimental ewmp Hence, we will focus on the energy consumption related
ison. Finally, Section VII gives the closely related worldan to active power, represented by the second component in

Section VIII concludes the paper. the above equation. The coefficighis 1 when the system
actively executes a task; otherwige= 0. P;,; stands for
Il. MODELS AND DEFINITIONS thefrequency-independent active poweshich includes any

active power that does not depend on running speed and
A. Task Model . .
can be effectively removed by putting the system to sleep.

We consider a set of independent periodic real-time taskg;,,; is assumed to be a constant. Thequency-dependent
I' = {Ty,..,T,}. Each taskT; is characterized by a period active powerP, depends on the system running speed
pi, its worst-case (WCgxecution timer;, and thebest-case and system-dependent constafits andm [6]. From this
(BC) execution timebc;. As we consider DVFS-enabled model, one can derive the minimuenergy-efficient speed
processors, these execution times correspond to the cas@fue ass., = = % [3], [32]. That is, for energy

. ef - (m—

where tasks are executed at the maximum processor spegiciency, no job should be executed at a speed lower than
The relative deadline of task; is assumed to be equal to ;a5 going so would result in higher energy consumption.
its period. Thej*" job of T;, denoted ag;;, arrives at time

(j — 1) - p; and has a deadline of - p;. We define the C. Fault and Reliability Models
hyperperiodH of the task set as the least common multiple During the operation of a computing system, bpétma-
(LCM) of all tasks’ periods. The total number of jobs of nentandtransientfaults may occur due to, for instance, the
taskT; during the hyperperiod is represented y= . effects of hardware defects or cosmic ray radiations, which
We assume that the DVFS-enabled processor/hdis- can result in systenerrors. Transient faults, which are the
crete speeds levels,,i;, = s1 < s2... < St = Smaa- focus of this paper, have been shown to be dominant [14]
Here, s;in = s1 stands for the minimum available speed of especially with scaled technology sizes [13]. Transiealkt$a
the processor. Moreover, for simplicity, we normalize sbee have been traditionally modeled by Poisson distributions,
levels with respect to the maximum speeg,., where where the average arrival rate of soft errors caused by such
Smaz = S¢ = 1.0. Note that, in modern processors,is faults is assumed to ba [25]. However, considering the
typically a small number not exceeding. negative effects of DVFS on transient faults, soft erroesat
The nominal utilization of task; unders,,., is defined at a lower speed (< s,,q.) (and the corresponding supply
asu; = +. The (nominal) system utilization is further voltageV’) can be modeled as [32]:

d-(1—s)
A(s) = Ao - 10T=5min (2
where)\, corresponds to the average error rate at the
maximum speeds,,., andd (> 0) is a constant, which
represents the sensitivity of soft errors caused by trahsie
faults due to DVFS. That is, reducing the supply voltage and

processing speed for energy savings can lead to exponen-'

tially increased soft errors [8], [32]. The maximum average
arrival rate of soft errors is assumed to bg,, = Ao - 109,
which corresponds to the lowest processor spggd (and
minimum supply voltagé/,,.;,,) [31], [32].

The reliability of a single job of task 7;, running at
frequencyyf;, is the probability of completing the job without
incurring errors due to transient faults and is given as,[31]
[32]:

f

Ri(f) = 0 @)

wherec; is the worst-case execution time @f under the
maximum processor speed. Thugiginal reliability of a
single job ofT;, denoted byR?, is the one that corresponds

to the case where the job runs at the maximum processinggure 1.

frequency. That isR) = R;(1.0).

Definition 1. The task-level reliabilityof task T;, denoted
by ®;, is the probability of completing akt; instances off;
successfully during a hyperperiad.

Definition 2. The system’s overall reliability, denoted by
s, is defined as completing all jobs successfully during
a hyperperiodH, and is given byb,,, = [[.-, ®.

It can be seen that task-level and system-level reliadsliti
will, among other factors, highly depend on the running
frequency assignment to tasks. The task-level and system-
level original reliabilities are defined as the ones that result
from running all jobs at the maximum speed during a hyper-
period [31], which are denoted W} and®), ., respectively.

sys?

Finally, thetarget reliability of task T} is denoted byd!.

Ill. RECOVERY STRATEGIES FORPERIODIC EXECUTION

MODEL

To recover from the soft errors triggered by the transient
faults, we can exploit backward recovery technique and
improve task/system’s reliability. In this section, we quame
the impact of different recovery allocation strategies loa t
reliability of periodic tasks. Consider the case where #st
T; runs at the frequency; during hyperperiodi. The exact
expression of its task-level reliabilit§; will depend on the
numberand distribution of recovery tasks.

o Case 1: No recoveriesln this case, no provisions
are made to recover from potential transient faults
that can affect individual jobs. As a result, the en-
tire execution will be successful if and only if there
are no errors induced by transient faults during the

Ty | | | Ti || | T3 || | T4 || |
o s m e
(a) The case of no recovery
T |Bn | Ty |Bu | Ty |B|3 | T, |B14 |

T aw T T %
(b) The case of statically allocated recoveries
A
L, [[m], [, |

0

72

[l

24

(d) The case of dynamically allocated dual recoveries

Impact of recovery strategies for a task runninghatscaled

frequencyf = 0.6 over k; = 4 consecutive instances

hyperperiod. We findd; = (R;(f;))*, and further,
@y = [[i—,(Ri(f:))*, which corresponds to the
probability of completing all job instances without
incurring any transient faults during the hyperperiod.
This approach has the clear drawback of reducing the
reliability by great margins. As a concrete example,
consider the taskl}; with worst-case execution time
c1 = 8ms and the periogh; = 24ms. Assume the hy-
perperiod includeg; = 4 job instances ofl}, namely,
Ti1, T12, T13 and T14. The transient fault model uses
the parameters from [31] with, = 1075, d = 3 and
Smin = 0.1. When all the jobs run at the maximum
frequency (.0), the overall probability of failureRoF,
defined ad - Reliability), is evaluated a8x10~°. If we
scale down all these jobs to a low frequernfcy= 0.6 as
shown in Figure 1(a), the neRRoF of the task is found
as1.15 x 10~°. Observe how the lack of provision for
recoveries results in a reliability degradation by more
than four orders of magnitude even for a single task,
during the hyperperiod.

Case 2: Statically allocated recoveriesNow, consider
the case where the recovery jobs are assigtatically

to a subset of jobs of the periodic task, while the
remaining jobs run without relying on a recovery.
Specifically, if a recovery job is assigned statically to
one of the instances @f;, then the recovery is executed
at the maximum frequency if a fault is detected at the
completion time of that specific instance. As a result,
the probability of successfully completing that single

instance (in other words, its new reliability) is [30]:
R"(fi) = Ri(fi) + Ri(fi)

where R;(f;) = (1 — R;(f:))Ri(1.0). Above, the first
componentR;(f;) corresponds to the probability of
completing the job without any transient fault, while
the second componetit’(f;) indicates the probability
of having a transient fault, which is later success-
fuly recovered from by re-executing at the maximum
normalized frequencyl.0. Since R;(1.0) = RY by
definition, RY (f;) is known to be no less than the job’s
original reliability R? [30].

For T;'s task-level reliability, ifb; instances havetat-
ically allocated recoveries ank; — b; instances run
without any recovery provision, we have:

®; = (R (fi)" x Ri(f)" ™"

A special case warrants further elaboration: All jobs
of T; are scaled and; = k;. This corresponds to the
traditional RA-PM solutions [31] and yields:

(R} (fi)™

Obviously, ®; is maximized in this approach and the
scaledtask’s reliability is guaranteed to be better than
its original reliability ®9.

If we return to our running example, in order to
maintain the system original reliability, the existing
RA-PM scheme [31] will statically schedule a recovery
job By; for each individual job instancé;; during the
hyperperiod as shown in Figure 1(b), and the rienfr

is found as9.19 x 10~13 which is nowbetterthan the
task’s original reliability by approximately four orders
of magnitude.

However, allocating a separate recovery to every job
instance of a scaled task requires significant amount of
static slack and affects the energy savings opportunities
of other tasksnegatively. Hence, a significant number
of tasks may remainn-managedi.e., may have to run

at the maximum frequency without any recovery) [31].
Also note that RA-PM is in general unable to target a
specific reliability level which may be higher or lower
than the task’s original reliability.

b, =Prapm,i =

Case 3: Dynamically allocated recoveriesAnother
possibility, which is the proposal of this research ef-
fort, is to provide each task with a certaracovery
allowancefor execution.

Specifically, provisions will be made through a static
analysis to provide up ta; < k; recoveries to task
T; anywhere in the hyperperiodvithout associating a
given recovery with a specific task instance in advance.
The net result is that, at runtime, the task will be able
to use these dynamically allocated recoveries for any
a; arbitrary instances, effectively covering ., (’3)

distinct fault scenarios for task;.

To illustrate these points, consider tagk running
with a single ¢; = 1) dynamic recovery over;

instances during the hyperperiél The execution will
be successful if:

— No task instance encounters a fault, or,

— The j** instance encounters a fault, the single
dynamic recovery is successfully executed and the
job instances excefif;; complete without encoun-
tering a transient fault, for every=1,... k.

This effectively gives a reliability figure of

®; = Ri(fi)" + kiRL(fi)Ro(fi)* !

The reader should observe how even a single recovery
allowance effectively provisions fok; + 1 different
execution scenarios. Moreover, due to typically low
transient fault rates, these typically cover the scenar-
ios with maximum probability of occurrencén other
words, the probability of having fault scenarios with
increasing number of faults affecting multiple instances
of the sametask, while not exactly zero, will quickly
drop to very small numbers.

Increasing the level of dynamic recovery allowance to
a; = 2 would provision for cases where faults affect
any two arbitrary instances, covering an additional
w fault scenarios. Therefore, we have:

®; = Ri(fi)" + kiRi(fi)Rs(f)" "

ki(k; — 1 ,7

B oy

In general, for a task’; running at speed; and with
a; recovery allowances fok; job instances durind{,
the task-level reliabilityd, = ®;(f;, a;, k;) is found as:

+Z(>Hﬂ7Mﬂ“’ @)

In our running example, if we give a single recovery
allowance that can be used by any of the four scaled
down job instances (Figure 1(c)) the n&sF is evalu-
ated a5 x 10~ In the figure, the dashed lines around
the recovery taskB; indicate that it is not statically
associated by any specific job, but can be dynamically
scheduled whenever a transient fault is detected in any
job. Clearly, with the newPoF in this example, we
still preserve, and in fact improve by two orders of
magnitude, the task’s original reliability. Further, by
dynamically schedulingi; = 2 recoveries for these
job instances, th®oF reaches a level di.20 x 10713,
which is extremely close to that obtained by the RA-
PM technique [31]. This simple example illustrates
that dynamic allocation of recoveries can also achieve
very high reliability levels (comparable to RA-PM) by
reserving smaller number of recovery slots.

10
i 14]
10* R "
T =0.3 —+— w =0.3 —+— 1 e 121 e
S 10 f=0.5 ---x--- 415 f=0.5 ---x--- 1 ky=1000 —+—
c f20.7 - ee- a f20.7 - ee- 13 wof iﬁzloo IV R
L f=0.9 i 1% f=0.9 i 1g oL 1510 <o |
S X -
g 10 L g i ; 6 L i
S 10% | o X o = o
4 K e e K Ko e KK z L ¥ E 4L — b
10—6 - ‘a a a8 a = B & B - ’ E ETT E LTI P P IR Weennnn Wewrenn L RE z 2 s !(-: ______ TN n
o] o] o) a] 8] [
10-8 1 1 1 1 1 1 0 1 1 1 1 1 1
0 2 4 6 8 10 6 8 10 03 04 05 06 07 08 09 1
Number of Recoveries Number of Recoveries Frequency
Figure 2. d = 5: Impact of number of Figure 3. d = 3: Impact of number of Figure 4. Impact of frequency on the number
recoveries orPoF for different frequencies recoveries orPoF for different frequencies of recoveries needed to maintaif

We now elaborate further on how the reliability levels of tasks with minimum recovery allowance. However, the ul-
a single periodic tasi; change with the recovery allowance timate design problem we aim to address is the following:
a;, frequency f;, and the number of job&,; within the Given a set of periodic tasks with task-level reliability
hyperperiod H. objectives {®;'| i = 1,...n}, how to choose frequency

Consider a periodic task;, with ¢; = 20ms, p; = 100ms {f:} and recovery allowance{a;} assignments to min-
and k; = 100 instances within a hyperperiod. We further imize energy consumption?Consideration of this prob-
assume thad, = 10~% and the fault-sensitivity exponedt lem mandates, in the first place, addressing fekasibility
may vary from3 to 5 [32]. Figures 2 and 3 show the rela- dimension to decide if all the timing constraints can be
tionship between the recovery allowangeand the achieved met with a given set of{ f;}{a;} assignments. We will
PoF for the cases of = 5 andd = 3, respectively. Here, we consider this problem in Section V. Then we will move on
report POF values normalized with respect to the one thatto the problem ofdetermining optimal {f;}{a;} values
corresponds to the task’s original reliability (i.¢.— ®?). to minimize energy consumption while satisfying reliatyili
As we can see, for a given frequency level, increasing thand timing constraints at the same time (Section VI).
number of recoveries significantly improves the reliapilit ~ Notice that if the input to a specific problem instance is
(reduces thePoF). However, after the recovery allowance only the overall system target reliabiliﬂygys, then the task-
reaches a certain number for a given frequency, the extrievel reliability objectives{®!} should be derived as the
reliability gain becomes extremely small, in fact negligib first step. In this case, a reasonable approach is to perform
— because the likelihood of new fault scenarios that can baniform reliability scaling in such a way that the ran%;f
covered by larger recovery allowances approaches quicklis set to a common valu€) across all taskd?, . .., T,.
zero, thanks to the very nature dynamic allocatiorstrat- |ntuitively, this makes sure that theoF improvement (or,
egy. Also, as expected, low frequency levels typically needjegradation) uniformly applies to all the tasks, compaced t
more recoveries to achieve a giveoF. Reducing the fault- the originalPoF levels {1 — @, i=1,...,n}.
sensitivity exponentl from 5 (Figure 2) to 3 (Figure 3)
makes the transient faults less likely, and thaF values V. FEASIBILITY CONDITIONS
further drop with the same recovery allowance. Before addressing the problem of choosing optimal re-

Figure 4 shows the number of recoveries needed t&overy allowance and frequency assignments, we need to
maintain the task-level original reliability as a function consider the feasibility problem. Specifically, if a centai
of the frequencyf, for various k; values (the number set of frequency{f;} and recovery{a;} assignments are
of jobs within the hyperperiod) and = 5. In general, considered for energy and reliability objectives, we must
the recovery allowance needed to maint@'?} drops with make sure that the jOb deadlines will be indeed met in
increasing frequency and decreasihg(a measure of the all execution scenarios within the hyperperiod, where up
length of the hyperperiod). An interesting observatiomfro 0 a; instances of taskl; can incur transient faults and
Fig. 4 is that with the dynamic allocation of only a small the corresponding dynamic recoveries are executed, for
number of recovery allowances, the task’s original religbi ¢ =1,...,n
can be maintained. In general, the same observation holds Given a set of integersy, ..., z,, a fault pattern [2]
for arbitrary task-level reliability targets, underliginthe corresponds to the set of execution scenarios where exactly

potential of the new technique compared to the traditionaf: distinct instances of; encounter transient faults during
RA-PM. the hyperperiodH. If z; < a; (Vi 1 < i < n), we

call this pattern af a, }-fault pattern For instance, assume
IV. DIMENSIONS OF THEPROBLEM a1 = 2,as = 3 andas = 1 for three tasksly, 7> and Ts.
The dynamically allocated recovery framework gives aAny execution scenario where at ma@s8 and1 instances of
powerful tool to enhance task-level reliabilities of pelio 73,7, andT5 fail, respectively, constitutes a different fault

pattern with respect tda; = 2,a2 = 3,a3 = 1} allowance. of reliability, timing andenergydimensions makes the prob-
If there are 3 instances df; within the hyperperiod we lem rather challenging. A given task’s energy consumption
need to consider all single and two-instance combinationss, in general, likely to decrease with decreasing frequenc
for potential fault occurrences. but this may also violate the task’s reliability constraint
Obviously, the feasibility must be preserved for all dis- Moreover, reducing a task’s frequency and/or increasisg it
tinct {a; }-fault patterns for a given recovery allowance setrecovery allowance may also affect slow-down opportusitie
{a;}. At first, from a computational point of view, this for other tasks.
appears as a prohibitively expensive task, because thereNote that task-level target reliability objectives impose
are[[;=, 755, (’“7) distinct {a, }-fault patterns for a given hard constraints on the frequency and recovery allowance
recovery allowance seftz; }, suggesting a potentially expo- assignment. In particular, if task; runs at discrete speed
nential number of cases to analyze. level f; = s; (1 < j < {), then Equation (4) suggests
Let Z(,,. . be the set of all{a;}-fault patterns the existence of a minimum recovery allowance valydo
corresponding to a given recovery allowance assignmerguarantee the reliability objective!. Consequently, we can
{ai,...,a,}. The following theorem, whose proof is pro- construct am x ¢ table Minimum Recovery Table (MRT))
vided in [29] due to space limitations, underlines thatwhere MRT;; = min{a;|®;(fi = sj,ai ki) > Pi}.
assessing feasibility under a single (and well-definedswor Intuitively the entry (i, j) of the table gives the minimum
case fault occurrence pattern is necessary and sufficient. number of dynamic recoveries that must be assigned to
i task 7; when it runs at speed; to achieve @!. It is
The_orem V.1. For a fixed frequency_and recovery aIIlowance clear that if f; = s;, the number of recoveries should be
assignmen{ay,, a, }, the periodic task set remains fea- oy acty 1/ RT; : a smaller value would violate the reliability
sible in every fault patterre Z{a17~~~a%}' ifand only if all onstraint and a larger one would unnecessarily narrow the
the dead.lmes can be met when the fa_r,stnstances of_ every feasibility space of other tasks (see Theorem V.1).
taskT; (i = ln) encounter transient faults during the goced on these observations, we propose two schemes.
same execution. The first, Lock-Step Frequency Scaling Algorithm (LSF)

Moreover, the last condition can be checked by resortindnitially sets all task frequencies tg; = smax = st
to fault-sensitive processor-demand analysis technifgles anda; = MRT;,. Then it iteratively attempts to reduce
as detailed in our technical report. The technique esdntia the frequency level of each task by one level, as long
consists in creating thiworst-casefault scenario (where the as the reliability and feasibility constraints are satikfie
first a; instances of each task need separate recoveries) Specifically, in a given iteration dfSF, a specific quantity
and making sure that tHfault-sensitiveprocessor demand in 9i,; iS evaluated for each task. When the current frequency
every interval(0, D) (D < H), does not exceed the length of taskT; is reduced fromf; = s;1 to s;, we have:
of the interval and has the complex@((%) -n) where ki(Ei(sj41) — Ei(s))

Pmin iS the smallest period among all tasks. It is sufficient 0ij = Y
.y . . . R1(8J+1) = Rl(Sj) g
to check the validity of this condition only at task period
boundaries. abovek;(E;(s;+1) — Ei(s;)) indicates the energy savings

It is worthwhile to note that this result is along the obtained by totak; job instances off; within the hyper-
lines of existing real-time scheduling theory which sudgges Period, when the task; is scaled down froms;; to s;.
that, when the workload of instances of given periodicSimilarly, Ri(s;+1)* — R;(s;)" is the reliability degrada-
task may change (for example, by intentionatiiipping tion that accompanies the same tentative speed reduction.
certain instances), the worst-case occurs with the segtall Informally, é; ; is a measure ofitility (i.e. energy savings
deeply redpattern — a scenario where all tasks present theiPer unit reliability degradation) corresponding to oneele
maximum demand as early as possible and delayskies ~ SPeed scaling, guiding the algorithm’s operation.
as much as possible [7], [17], [22]. Our result essentially [N & given iteration oLFS a taskT; is said to beeligible
extends those results to fault-sensitive settings and s t for frequency scaling from; 1 to s;, if the task set remains

same pseudo-polynomial time complexity. feasible with f; = s; and a; = MRT;; assignments
(assuming other tasks’ assignments remain the same). Let
VI. RECOVERY ALLOWANCE AND FREQUENCY G, be the set otligible tasks in iteratiorh. LFS selects the
ASSIGNMENTS taskT; € Gy, for scaling down by one level as the one with

A Static Ph maximumd; ; value; and stops when eithél, is empty or
. Static Phase the energy-efficient frequency values for all tasks havenbee
In this section, we address our main design problem: taeached. As a resultFShas at mos{/— 1)n iterations and

determine frequency and recovery allowance assignments &ach iteration performs at most feasibility checks. The

minimize the total energy, while meeting task-level reliab complexity of LFSis thereforeO(¢ - n?’(PL))

min

ity and time constraints. In general, the non-trivial iplay We also experimented with a faster algorithm called

0.7 T T T T T T T T

[N
*

09 | 09 |

[N
*

0.65

| RAPM % e : | RAPM % . Dual
0.8 o 0.8 Dual —e— % o5 Dual
0.7 | LFS -oocbee o 2 i 07k LES - e i . SPM @

06 | e g 0.55

05 F X = g

06 | |

05 X o 1 05 b

03 .~ o b 03 | . o | 0.45

02 i ! L L L L L 02 i ! L L L L L 0.4 il in in| inl i) in| inl . =
02 03 04 05 06 07 08 09 1 02 03 04 05 06 07 08 09 1 10° 10° 10* 10° 102 10" 10° 10' 10%

Utilization (U) Utilization (U) Uniform Reliability Scaling Factor(Q)

Normalized Energy Consumption
(%)
]
=<
]
m AW
Normalized Energy Consumption
(%)
]
B
o+

Normalized Energy Consumption

6 3

10

Figure 5. Impact of the utilization on the energy Figure 6. Impact of the utilization on the energy Figure 7. Impact of uniform reliability scaling
consumption with 10 tasks per set consumption with 20 tasks per set factor on system energy consumption

the Dual Speed (Dual)Algorithm, that avoids checking fault rate exponend to 3.

the potential utility of scaling down every task, for every Each point in the presented figures is obtained by averag-
frequency level. Specifically, that algorithm first ider#i ing the results obtained throudgh00 different task sets. The
the lowestcommonspeeds,. for all tasks such that the periods ;) of each task set are uniformly generated and
feasibility is preserved witH f; = s} and{a; = MRT;.} fall in the range of[10ms, 1080ms]. The total utilization
assignments. These can be done in at megl() steps by (U) of per task set is varied from 0.2 to 1.0 (full load)
performing a binary search on the number of available in steps of 0.1. TheUUniFast algorithm [5] is used to
discrete frequencies. Then it attempts to reduce the spfeed generate the individual task utilizations;). All energy
some tasks ta._; while preserving feasibility, essentially consumption results are normalized with respect torthe
using at most two distinct speed levels for the entire task sepower management (NPMjcheme that executes all tasks
The algorithm is based on the intuition that a uniform speedyithout any frequency and voltage scaling (i.e sal..).

assignment is typically beneficial for real-time task sets First, we evaluate the impact of the utilization on the en-
to the convexity of dynamic power consumption. Lhe dual-ergy consumptions by setting = ? (original reliability)

speed algorithm has the complexm((log@r@)-n(m)). for all tasks. Figure 5 shows the evaluation results with 10
The ps.,eudo—codes. of bottS andDual algorithms can be tasks per task set. As expected, the energy consumption of
found in our technical report [29]. all schemes increases with increasitig due to the need
Performance Evaluations: A discrete-event simulator was for higher frequencies to preserve feasibility. The perfor
implemented in C programming language to evaluate thenance ofSPMcorresponds to maximum energy savings that
performance of our new schemes. In our simulations, ircan be obtainedgven when ignoring reliability objectives
addition to LFS and Dual schemes, we implemented two Compared td(RA-PM Dual andLFS have significant energy
additional schemes: savings up to50%. This is due to the dynamic recovery
« The periodicRA-PM scheme [31], whose objective is allocation strategy that can achieve reliability objeesiv
to preserve the system’s original reliability. We imple- with small number of recoveries, while leaving more slack
mented theargest-utilization-first (LUF)andsmallest- ~ for slowdown. In fact, whenU < 0.5, the performance
utilization-first (SUF)variations to determine the man- of our schemes approaches to that of SPM, because the
aged tasks [31]. The results were very similar, and weuse of small number of recoveries can be compensated by
include only the results focUF below. small increases in frequency levels in that region. It i als
« The Static Power Management (SPMjcheme [3], worthwhile to note thalFS, despite its more complex search
which computes optimal slow-down factors to minimize algorithm, has only marginal gains ovBual and only at
energy without considering reliability objectives. It is high utilization values, when the objective is to maintain
included in our comparison to assess the potentiapriginal reliabilities. Figure 6 presents the same analffsis
energy cost of provisioning for reliability. time for 20-task sets and we observe that the trends remain
A cubic frequency-dependent power componditis Very similar. It is interesting to note th&ual approaches
assumed and it is set to unity at the maximum processdprtherLFSwith increasing number of tasks as the algorithm
frequency. The frequency-independent power componentas more chances to identify tasks for scaling dows.to
Pi,q for each task is normalized with respect £ and Without violating feasibility.
we set P;,4 = 0.05 in our simulations. The ten discrete Figure 7 shows the impact of the task-level target reli-
frequency levels that we assume are modeled after Intadbilities (®!) on the energy consumptions whéh= 0.5
Xscale processor [24]. Also, Poisson distribution is usedor 20-task sets. Here, the x axis is thaiform reliability
to simulate transient faults with an average fault rate ofscaling factor @, defined in Section IV. Specifically, a
Ao = 1075 at the maximum frequency, which is a realistic value of Q@ = 1 corresponds to targeting original task-level
fault rate as reported in [34]. In our simulations, we set thereliabilities; a smaller (larger) scaling fact@r corresponds

0.6 T T T T T T T T
0.55

0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4

g 0.35 0.25 L L L L L L L !
02 03 04 05 06 07 08 09 1 1 2 3 4 5 10° 10° 10* 10° 102 107 10° 10* 10?7 10°

Utilization (U) WC/BC Uniform Reliability Scaling Factor(Q)

0.9 T T T T T T T

05
0.45
04
035
03

Normalized Energy Consumption
Normalized Energy Consumption

Normalized Energy Consumption

Figure 8. Impact of utilizationPoF' on system Figure 9. Impact of actual workloads on systemFigure 10. Impact of uniform reliability scaling
energy consumption energy consumption factor on system energy consumption

to targeting smaller (largeBoF figures. TheSPMalgorithm slack, and evaluate thearlinessof each task at dispatch

is reliability-ignorant, but its energy consumption figuse time. However, a given job’s speed is actually reduced only
included as a comparison. Several observations are in:ordewhen the amount of safely reclaimable slack (earliness) is
when @ > 102, our algorithms’ performance converges large enough to schedule also a new dynamically scheduled
to that of SPM because they also choose to execute tasksecovery — this limits the extent of achievable dynamic slow
without (or with very small number of) recoveries since down, but preserves the reliability constraint. Yet, whéota
the target reliability requirements are loose. Howevethwi completes successfully (i.e. without a fault), the aldonit
decreasing, the algorithms are forced to schedule addi-can re-use the slack of the new recovery to safely slow-down
tional recoveries and this causes some modest increase &mother job. Based on these principles, we extehdisiand
energy consumption. It is interesting to note that in theDual Speedschemes to dynamic settings, obtainibg-FS
region[10~%,10~1] the energy consumption of the schemesand D-Dual algorithms, respectively.

increases only marginally. This is due to the fact that thePerformance Evaluation: We implemented-LFS and D-

recoveries can t_)e assigned only in_intgger un_its; and OBl algorithms in our .simulator. We also implemented

a new recovery 1s added to the apphcatlon_, t)_/plcally overal the Dynamic RA-PM (D-RA-PM¥cheme, which uses the

reliability improves by great margins. This is further en- . -

hanced by the existence of discrete speed levels; maie wrapper task techniqug8l], to perform slack reclaiming
y P ’ ng at runtime. Finally, we implemented Reliability-Ignorant-

fine-grainedreliability control somewhat difficult. However, _ . . .
for very high reliability requirements (e.q) < 10-) the Reclaiming scheme (RIRyhich uses the entire dynamic
e = slack for slow-down at run-time, without considering the

algorithms are forced to provision for additional recoesri . - . : X

with a corresponding energy cost. In fact, one can notic otentlal_ rel|ab|I|ty degradatiorRIR is essentially .used as
that the comprehensive search mechanism.Fes starts to a ya_rdstlck algorithm to assess the energy savings of our
pay off when the require®oF levels are very low. solutions. : . .

We use the same evaluation settings as in the evalua-
tion part of static algorithms. To model the variations in
the actual workload, we us%%c (varying from 1 to 5),

The static algorithm&FS andDual are designed to meet which represents the ratio of worst-case execution time to
the problem’s timing and reliability constraints under &ter the best- case execution time. The higher this ratio, the
case workload assumptions. However, it is well-known thatmore the actual workload deviates from the worst case. We
often the tasks’ actual workloads during execution deviatgandomly generate the actual execution time of each job,
from the worst-case, and significant amount of dynamicoy using normal distribution with the mea#*“£2< and
slack can be expected. In fact, exploiting the dynamic slackstandard derivatioﬁf‘% [4]. This guarantees thab.7%
by reducing the processor speed as appropriate is a commoifi generated execution times fall in the rangeC, W C)|
strategy in DVFS frameworks [4], [19]. and values outside this range are not considered. For each

While similar opportunities exist in our settings, the points in the figures 1000 task sets (each with 20 tasks)
dynamic reclaiming becomes more challenging due to hardre used; each execution is repeated 1000 times during
reliability constraints. Specifically, reclaiming slackran- the hyperperiod. All energy consumption results are again
time by dynamically reducing the speed, even if it guarateenormalized with respect to NPM.
the timing constraintscan violate the task’s given target Figure 8 illustrates the energy consumptions as a function
reliability objectives of total utilization /), with & = 5 and ®! = & for all

Therefore, we present a conservative but safe techniquasks. The relative order of schemes remains the same with
to perform dynamic slack reclaiming at runtime while still respect to Figure 5. However, nd+RA-PMs performance
preserving the task-level reliability guarantees. Speddif, relatively deteriorates compared to the static versiofis &h
we use the DRA algorithm [4] to keep track of the dynamicbecauseD-RA-PMis based on thevrapper-tasktechnique

B. Dynamic extensions

which uses the maximum frequency as the nominal speedand temporal redundancy to save energy and to preserve
of all jobs to preserve reliability when dynamically redugi system reliability [11]. Popet al. studied the energy and
the speed. However, our schemes use nominal frequencgliability trade-offs for distributed heterogeneous euted
assignments from the static algorithms, which are relptive systems [20]. More recently, Ejladit al. studied a standby-
lower. Also we notice that our dynamic schemes no longesparing hardware redundancy technique for fault tolerance
converge tdRIR at highU values due to the need for reserv- where the standby processor is operated at low power state
ing additional recovery to maintain reliability guararéee = whenever possible provided that it can catch up and finish
RIR, by ignoring reliability, can reclaim full dynamic slack. the tasks in time [10]. In our previous work, we proposed
Another observation is that with increasing utilizatiottss a reliability-aware power management (RA-PM) framework
difference of energy performances betwdeh FS andD- to preserve system reliability while exploiting slack tifioe
Dual becomes more emphasized since the latter is restricteghergy savings [30], and extended it to periodic real-time
to the use of two speed levels during dynamic reclaiming. tasks [31]. However, all these papers focused on preserving

Figure 9 shows the impact of variability in the actual the original reliability of tasks without considering the
workload (i.e. the‘g—g) on the energy performance, when different reliability requirements of individual taskshigh
U = 0.6 and ®! = @Y. In general, we find that the en- is the topic of this paper. More recently, we proposed the
ergy consumption decreases with increasing dynamic slac&eneralized Shared Recovery (GSHEhnique [28], where
(higher % ratio). The D-Dual's limitations due to the a small number of recovery tasks are shared among tasks
use of two speeds restrict its ability to exploit fully the while satisfying an arbitrargystem-level reliability target
increasing dynamic slack. Finally, the hard requirementn addition, GSHRconsiders only frame-based task systems,
for maintaining the reliability objectives results in reda where all tasks share a common deadline. Also, in [33], we
ability for reclaiming slack, compared RIR applied the weakly-hard real-time model to RA-PM settings.

In Figure 10, we show the relationship between the taskHowever, that technique is an individual-recovery based
level target reliabilities ¢!) and the energy consumptions, scheme where jobs without statically scheduled recoveries
for U = 0.5 and VE‘;—CC = 5. Again, we observe patterns have to be still executed at the maximum frequency. In
similar to those observed in the case of static schemethis work, we differentiate the reliability requirement§ o
(Figure 7). A notable difference is that the shortcomings ofindividual periodic tasks and study recovery allowancesdas
D-Dual are slightly more emphasized in dynamic settings. schemes, where all jobs can be scaled down and recoveries

are dynamically allocated.
VII. CLOSELY RELATED WORK

In recent years, DVFS has been investigated extensively VIIl. CONCLUSIONS

to manage energy in real-time systems [4], [19]. However, |y this research effort, we presented a framework to
the joint consideration of energy management and faulbrovide arbitrary task-level reliability guarantees toripe
tolerance has attracted attention only very recently. By exodic real-time tasks, while controlling energy consumptio
ploiting the primary/backup model, Unsetl al. proposed an through DVFS. As opposed to the existing reliability-aware
energy-aware software-based fault tolerance schemeewhepower management (RA-PM) frameworks, where the aim
the execution of backup tasks is postponed as much as pog- to preserve the original reliability and the recovery
sible to minimize the overlap between primary and backugobs are statically allocated to scaled jobs, we introduced
executions and thus to reduce energy consumption [23]. Afne concept ofrecovery allowanceshat can be reclaimed
adaptive checkpointing scheme to tolerate a fixed numbegnywhere during the hyperperiod. This flexibility helps to
of transient faults while minimizing energy consumption jmprove reliability significantly, with minimum in-advaec
has been studied in [26]. Considering both re-execution angbservation for potential recoveries. We presented static
replication for fault tolerance, Izosimat al. studied an op- gpg dynamic algorithms that are shown to reduce energy
timization problem for mapping a set of tasks with reliajili - consumption while maintaining the feasibility and relii
constraints, timing constraints and precedence relations gpjectives. To the best of our knowledge, this is the first
processors and determining appropriate fault tolerantie po work to consider task-level reliability objectives in peaic

cies for tasks [15]. Note that, these studies either focesed execution settings. An interesting future work directierid
tolerating a fixed number of faults [15] or assumed a constantonsider multi-processor settings where both permaneht an

arrival rate for transient faults [27]. However, the negati transient faults could be potentially tolerated throughia m
effect of DVFS on system reliability due to increased numbeiof hardware and time redundancy techniques.

of transient faults at lower supply voltages (especialhtiie

ones induced by cosmic ray radiations) has been shown [32]. ACKNOWLEDGMENTS

Such negative effects have been confirmed in other studies This work was supported by US National Science Foun-
as well [8], [12]. Ejlali et al. studied a number of schemes dation awards CNS-1016855, CNS-1016974, and CAREER
that combine the information about hardware resourcegdwards CNS-0546244 and CNS-0953005.

(1]

(2]

(3]

(4]

(5]
(6]

(7]

REFERENCES

P. M. Alvarez, H. Aydin, R. Melhem, and D. Mosse. Schedul-
ing optional computations in fault-tolerant real-time teyss.

In Proc. International Conf. on Real-Time Computing Systemq.
and Applications (RTCSA2000.

H. Aydin. Exact fault-sensitive feasibility analysi$ @al-time
tasks. IEEE Transactions on ComputerS6(10):1372-1386, [
2007.

H. Aydin, V. Devadas, and D. Zhu. System-level energy
management for periodic real-time tasks. Rroc. of IEEE
Real-Time Systems Symposium (RTB&)es 313-322, Dec.
2006.

H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez.
Power-aware scheduling for periodic real-time taskSEE [
Trans. on Computers$3(5):584—-600, 2004.

E. Bini and G. C. Buttazzo. Measuring the performance of
schedulability testsReal-Time System80(1-2), 2005. [
T. D. Burd and R. W. Brodersen. Energy efficient cmos
microprocessor design. IRroc. of The HICSS Conference
Jan. 1995.

M. Caccamo and G. C. Buttazzo. Exploiting skips in peitod [
tasks for enhancing aperiodic responsivenesrtt. IEEE
Real-Time Systems Symposium (RT$®7.

[8] V. Degalahal, L. Li, V. Narayanan, M. Kandemir, and M. J.

[9] V. Devadas and H. Aydin.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Irwin. Soft errors issues in low-power cachd&EE Trans. [
on Very Large Scale Integration (VLSI) Syste@®10):1157—
1166, Oct. 2005.

On the interplay of dynamic
voltage scaling and dynamic power management in real{
time embedded applications. FProc. ACM Conference on
Embedded Systems Software (EMSOFT'Q8p8.

A. Ejlali, B. M. Al-Hashimi, and P. Eles. A standby-
sparing technique with low energy-overhead for fault+tafte [
hard real-time systems. IRroc. of the Int'| conference on
Hardware/software codesign and system synthesis (CODES)
2009.

A. Ejlali, M. T. Schmitz, B. M. Al-Hashimi, S. G. Miremagd [
and P. Rosinger. Energy efficient seu-tolerance in dvsiedab
real-time systems through information redundancy.Ptoc.

of the Int'l Symposium on Low Power and Electronics and
Design (ISLPED)2005. [
D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge,
N. S. Kim, and K. Flautner. Razor: circuit-level correctioh
timing errors for low-power operatiohEEE Micro, 24(6):10—

20, 2004. [
P. Hazucha and C. Svensson.
scaling on the atmospheric neutron soft error ral&EEE
Trans. on Nuclear Sciencd7(6):2586—2594, 2000.

R. K. lyer, D. J. Rossetti, and M. C. Hsueh. Measurement|
and modeling of computer reliability as affected by system
activity. ACM Trans. Comput. Syst(3):214-237, 1986.

V. Izosimov, P. Pop, P. Eles, and Z. Peng. Design optmiz [
tion of time-and cost-constrained fault-tolerant disitéd
embedded systems. IRroc. of the conference on Design,
Automation and Test in Europe (DAT,E2005.

R. Jejurikar and R. Gupta. Dynamic voltage scaling for
system wide energy minimization in real-time embedded
systems. InProc. of the Int'l Symposium on Low Power
Electronics and Design (ISLPEDpages 78-81, 2004. [
G. Koren and D. Shasha. Skip-over: algorithms and cempl

ity for overloaded systems that allow skips. Broc. IEEE
Real-Time Systems Symposium (RT$%95.

19]

20]

(21]

22]

23]

24]

25]

26]

27]

28]

29]

30]

Impact of cmos technology

31

32]

(33]

34]

[18] C. L. Liu and J. W. Layland. Scheduling algorithms for

multiprogramming in hard real-time environmentlournal

of the ACM 20(1):46-61, Janary 1973.

P. Pillai and K. G. Shin. Real-time dynamic voltage sual

for lowpower embedded operating systems. Pimc. ACM
Symposium on Operating Systems Principles (SO3R)1.

P. Pop, K. Poulsen, V. Izosimov, and P. Eles. Scheduling
and voltage scaling for energy/reliability trade-offs euft-
tolerant time-triggered embedded systems. Phoc. of the
Int'l Conference on Hardware/software codesign and System
Synthesis (CODES+ISS$)ages 233-238, 2007.

D. K. Pradhan. Fault Tolerance Computing: Theory and
Techniques Prentice Hall, 1986.

G. Quan and X. Hu. Enhanced fixed-priority schedulinghwi
(m,k)- firm guarantee. IrProc. IEEE Real-Time Systems
Symposium (RTSSJ000.

O. S. Unsal, I. Koren, and C. M. Krishna. Towards energy-
aware software-based fault tolerance in real-time systems
In Proc. of The International Symposium on Low Power
Electronics Design (ISLPED)Aug. 2002.

R. Xu, D. Mossé, and R. Melhem. Minimizing expected
energy consumption in real-time systems through dynamic
voltage scaling. ACM Trans. for Embedded Computing
Systems25(4), 2007.

Y. Zhang and K. Chakrabarty. Energy-aware adaptiveckhe
pointing in embedded real-time systems.HAroc. of the con-
ference on Design, Automation and Test in Europe (DATE)
2003.

Y. Zhang and K. Chakrabarty. Task feasibility analyaisl
dynamic voltage scaling in fault-tolerant real-time enbed
systems. IrProc. of IEEE/ACM Design, Automation and Test
in Europe Conference(DATER004.

Y. Zhang, K. Chakrabarty, and V. Swaminathan. Energy-
aware fault tolerance in fixed-priority real-time embedded
systems. InProc. of the 2003 IEEE/ACM int'l conference
on Computer-aided desigr2003.

B. Zhao, H. Aydin, and D. Zhu. Generalized reliability-
oriented energy management for real-time embedded appli-
cations. InProc. the Design Automation Conference (DAC)
2011.

B. Zhao, H. Aydin, and D. Zhu. Energy management under
general reliability constraints: the periodic caseTéthnical
Report - GMU Computer Science De2011. Available at
http://cs.gmu.edufaydin/tr-2011-29.pdf.

D. Zhu. Reliability-aware dynamic energy managemeant i
dependable embedded real-time systems. Ptac. of the
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS2006.

D. Zhu and H. Aydin. Reliability-aware energy manageine
for periodic real-time tasks.|EEE Trans. on Computers
58(10):1382-1397, 2009.

D. Zhu, R. Melhem, and D. Mossé. The effects of energy
management on reliability in real-time embedded systems. |
Proc. of the Int'| Conf. on Computer Aidded Desj004.

D. Zhu, X. Qi, and H. Aydin. Energy management for
periodic real-time tasks with variable assurance requergs

In Proc. of the IEEE Int'| Conference on Embedded and Real-
Time Computing Systems and Applications (RTC3@(8.

J. F. Ziegler. Trends in electronic reliability:
Effects of terrestrial cosmic rays. available at
http://www.srim.org/SER/SERTrends.htm, 2004.

