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Abstract—In this paper, we consider the feasibility problem More recently, there has been a growing interest in dealing

of a set of real-time jobs which may be subject to a fault burst  with scenarios where faults follow a random pattern over a
during execution. A fault burst represents a time interval during  pounded time window and impose a potentially continuous
which multiple jobs may incur faults; henqe multiple recoveies disturbance to the computational activities [8]-[11]. Hmat
may be needed. We show that determining the feasibility of a e framework called théault burstmodel, the fault distri-
real-time system, which may be subject to a fault burst that my —, jo within the interval under consideration is not known

last at most A time units, is an NP-Hard problem even when the A It tati f d during the fault burst
exact position of the fault burst is known a priori. However, in a S a result, computations periorme uring thé fault burs

practical system, the fault burst may occur at any arbitrary and  interval are potentially unreliable. For example, shoritage
unpredictable time. We develop feasibility analysis by assning  fluctuations due to power supply jitters or electromagnetic
multiple recovery strategy where, in addition to the job at the end  interference (EMI) caused by short-lived atmosphericatéfe

of which the fault is detected, all preempted tasks are alsoe-  (e.g., lightning strikes) may cause incorrect computation
executed. We formally characterize the overhead that a scldeler the core logic andbit flips in architectural registers. Other
incurs due to a fault burst and present a generic recovery examples may be found in automotive and avionics areas,

overhead for any priority-driven scheduling algorithm. Next, we ; ;
analyze periodic task systems. We show that the preemptivel ﬁ)éztre grg:)?%/ rgg a?);elc:jsignt]%zlrﬁggtri oil\;lfilgﬁi\':ieelg [\g]h e[TO;])assmg
policy, when coupled with A-idling, provides the highest possible ! )

utilization bound 5(1 — 5>—), where P, is the smallest task Existing studies assume that the upper bound on the
period. We also present an empirical evaluation of the EDF plicy  duration of the fault burst/) is available in advance [8],
with A'|dl|ng over Synthetlca"y generated task Sets, and show [9] Th|s Value |S |n general doma|n_spec|f|c and |ts dero[at
that it. offers a clear improvement over the naive EDF policy may require input from domain experts. In a study from
that triggers the recovery tasks as soon as an error is detesd. the automotive domain, Ferreira et al. reported ®@, of
errors that occurred in a CAN network resulted from bursts
|. INTRODUCTION with an average length ofisec [12]. Voltage fluctuations are

Real-time systems are often deployed for safety-criticagenerally repor.ted to be in the nanqsecond to microsecond
applications. The system may encounter faults during exec19€s [13], while temperature fluctuations may last foesslv
tion, which may lead to resource unavailability or incotrec m|II|secon_ds or more [1.4]' In addition, for a vehicle in ot
computations. Ensuring reliability for such applicatiassa the duration of the disturbance may be a functllon of the
crucial objective for real-time research. The fault reggve distance to the EMI source and the vehicle’s velocity.
strategies typically take advantage of hardware [1] or tenalp Fault-burst settings pose serious challenges for hard real
redundancy [2] to ensure successful completion of workloadime scheduling. During the fault-burst window, some coenti
even in the presence of faults. In a single processor systerapus CPU time intervals become unavailable for computation
temporal redundancy is the only viable option. However, theally correct job executions, limiting opportunities to mdéee
fault management scheme must also take into account thgeadlines. A primary objective of this paper is to contrébut
inherent timing constraints. to the research efforts that seekdmaracterize the conditions
under which hard real-time scheduling might become feasibl

The characteristics of the fault play an important role in : :
- . under fault bursts.For example, if the analysis shows that
determining the appropriate recovery strategy. Faults man the maximum fault burst duration) in the target operation

broadly categorized into two major categoriggeermanengand . : : :

transient Permanent faults can only be handled with hardwarg Bv[ronrlnejn; e_xceeds_glhe per_lod/ rglatllve ddeaddlllnanytask,
redundancy techniques such as replication [1]. Transanits 0 V|ousky_ itis |mpos§| € o give abso .UIS ea |_ne|gumfa9_d
occur more frequently [3] and can be dealt with temporal_.al task instance whose execution window entirely coincides
redundancy as well [2]. In most existing fault toleranceligs, with a potential fault burst will definitely miss its deaddin
transient faults are considered to be instantaneous. Asudtre However, it is not clear what extra conditions may be
only one job may be affected by a fault. Existing work assumesought in order to provide feasibility guarantees for atlkta

a known fault distribution [4] or a minimum inter-arrivahte  instances; and those conditions will depend on the recovery

between faults [5], [6], [7]- semantics as well as the scheduling policy. For example, the



jobs that are “in progress” (i.e., running or in preemptedeyt EDF-A over a wider utilization spectrum, through ex-

at the time of fault burst occurrence may need to be re-egdcut tensive experiments. Our results indicate that EDF-
from the beginning, possibly significantly increasing therky is able to schedule a significantly larger proportion of
load [8]. This further increases the extent of challenges to the task sets, compared to the (naive) EDF policy.

ensure feasibility. In fact a contribution of this paper @ t . . .
show that finding a feasible schedule for a set of real-time 1he rest of the paper is organized as follows. We list
jobs is NP-Hard even if the fault burst interval is known aOur workload, fault and recovery models in Section II. In
priori. In a real system, the fault burst can occur at any timeSection 1ll we discuss the challenges faced by a real-time
As the existing efforts on settings with fault bursts emjites scheduler in the presence of fault bursts. In Section IV we
18], [9], [11] , when a fault is detected, the scheduler has ndormally characterize the overhead due to a fault bursteBas
way of knowing when exactly the burst has started. This make8" this result, we present a necessary condition for schbiul
optimal recovery decisions very challenging. Timely resxyv ity under fault bursts, a_nd derive thge worst-case qvgrhead f
operations are needed to meet the deadlines; but the rgcovetny Scheduler. In Section V, we discuss how priority-based

operations might also be erroneous if they partially oyerla fault-burst-sensitive scheduling algorithms can be desig
with an ongoing fault burst. and show that the worst-case overhead can be minimized

through theA-idling scheme for any priority-driven algorithm.

In the presence of fault bursts, there are two major recovenn Section VI, we analyze periodic tasks. In Section VII, we
strategies. The system can potentially invoke recovery/represent how the ratio of the schedulable task sets varies for
execution tasks as fault detection tests are performedeat tfEDF, with and withoutA-idling, over a wide range of system
end of each individual job, as needed. This is calledsihgle  parameters. In Section VIII, we present a summary of the-faul

recoverystrategy in [8], [9]. This technique has the risk of tolerant real-time system research that is closely reletesiir
detecting a fault too late and deadlines can be missed, a8 sofork. Finally, we conclude in Section IX.

jobs that are in the preempted state may have been alsoeaffect

by the burst. Another approach is to conservatively esémat Il PRELIMINARIES

the set of jobs that are potentially affected by the faultsbur A. Workload Model

and initiate multiple recovery/re-executions as soon asu#t f ) ) )

is detected. This is called theultiple recoverystrategy [8]. In We consider a set of real-time jobs¥ = {J1, Ja, ... Jn}
this strategy, when a fault is detected, the system commits t€Xecuting on a single processor system. The release time,
re-execute the faulty job and all jobs in preempted stathait t deadline, and the worst-case execution time of a jpkare
time. The multiple recovery strategy is also employed infgg] ~ denoted byr;, d;, andC; respectively. We assume preemptive
the instantaneous fault model. The multiple recovery styat scheduling. In the first part of the paper, we build our formal
typically reduces the worst-case response time and prsviddr@mework based on this generic real-time execution model
greater feasibility ranges, as shown in [8]. To the best af ouWhere specific arrival patterns (such as periodicity) arée no
knowledge, this is the first work that studies the impact ofconsidered. In Section VI, we focus on and analyze the
multiple recovery strategy for a dynamic priority (EDF) bds ~Periodic task model.

system under a fault burst.

. oo . B. Fault and Recovery Models
The main contributions of this paper are as follows.

In this paper, we consider faults that occur in bursts [8].
job set is NP-Hard undemultiple recoverystrategy A fault purstis a contingous time interval_ during which the
even when the fault burst interval is known a prio’ri system is potgnua_lly subject to multipleansientfaults whosg
) ) " exact distribution is not known. As a result, all computasio
e We formally characterize the computational overheadyerformed during this interval are potentially unreliailed

of a schedule subject to a fault burst at run-time.should be repeated. Our work is based on the following
Based on this characterization, we provide a necessaryssumptions as in [8], [9].

condition for schedulability under fault bursts.
e We discuss how standard priority-driven algorithms
can be adapted to fault burst settings. We propose a

e We show that determining the feasibility of a real-time

There is an upper bound\j on the length of the fault
burst, which satisfies the inequality:

specific recovery mechanism, callédidling, that is A< r_I;lin{di —r; —Ci}
shown to minimize the worst-case overhead when used =1
in conjunction with any priority-driven algorithm. This assumption expresses that the length of the fault
e We then turn our attention tgeriodic tasks We burst is less than the minimum laxity of any job in
obtain utilization bounds for both frame-based tasks the system. This is essential because, otherwise there
and general periodic tasks. We show that no priority- is no way to guarantee the feasibility of a job with the
driven algorithm, in general, can achieve a utilization smallest(d; —r; — C;) value, in case that a fault burst
bound higher thar%(l _ PA) where P,;,, is the entirely overlaps with its execution interval.
minimum task period, in ‘Settings with fault bursts e The system may be subject to at most one fault burst
and multiple recovery strategy. Finally, we show that during execution [8], [9]. In Section VI, we assume
the preemptive EDRA algorithm, which is the EDF that the periodic task set may be subject to multiple
policy augmented byA-idling, can achieve this bound. fault bursts as long as their temporal separation is at
e As our utilization bound provides only a sufficient least equal to the hyperperiod. Tightening this result
condition for schedulability, we also empirically eval- and deriving the bounds that allow shorter intervals
uate the ratio of the task sets that are schedulable by between consecutive fault bursts is left as future work.



We consider only the transient faults that affect the coreupper bound on the fault burst length is given Ay= 10.
logic (e.g., bit flips in architectural registers or timinga@s  Figure 1 shows a re-execution scenario after a fault is first
in CMOS circuits) and result in incorrect computation. Fordetected at timeé = 28, the completion time of job/c with
such faults, a typical mechanism is to uaeceptanceor C = 8. Suppose the system immediately re-execukes If
sanity testsat the end of job executions [1], [8], [9]. The the actual fault burst has started iat= 22, it only affects
acceptance tests exploit some expected features of thectorr the original job J- and its first re-execution. As a result,
output, such as whether it falls in a reasonable pre-deteni the second re-execution will be successful. However, if the
range, and for some mathematical control law computationsactual fault burst has just startedtat 27, it spans up to the
whether it satisfies certain invariants [1]. Such accegdests beginning of the second re-execution, potentially cauging
typically involve simple checks/computations and the ingn fail as well. In that case, the system may have to initiate a
time can be incorporated in the tasks WCETs. Thus we focuthird re-execution, potentially leading to deadline miss.

on transient faults that can be detected by such acceptance 10

tests. We assume that memory subsystem is protected through - dc
separate mechanisms (such as ECCs) and they are out of the o ST I . J )
scope of this effort. In case that a fault is detected, thewut ... |><| re-execution | re-execution | re-execution 1~
of the job is not committed to, and the system prepares for !

recovery operations. 20 28 36 44 52

When a fault is detected, the system may have already Fig. 1. Possible failure of re-executions
partially executed a number of jobs that may be currently in
preempted state. Consequently, the recovery action wenassu
in this paper consists gé-executing the faulty job along with
all partially completed (preempted) jobs at the time of faul
detection as in [6], [8], [9]. This recovery strategy is called
multiple recoveryin [8].

The difficulty of the scheduling problem is not entirely
due to the uncertainty about the exact position of the fault
burst. Moreover, the existence of a continuous intervaingdur
which all computations may potentially fail put a fundansnt
constraint on the real-time schedulers. In fact, the scliveglu
problem is intractable even if the exact position of the tfaul
Even though full re-execution is assumed as the mode djurst is known in advance.
recovery, the presented results remain valid when the sggov

involves executing some alternate job as long as the worsa Theorem 1:The problem of determining whether a set

real-time jobs areA-FB-feasible is NP-Hard, even when
e fault burst is known to occur exactly in the interval
[ta,ta + A], @ priori.

case execution time of the alternate does not exceed that
the original. Also observe that, the timing of initiatingeth
recovery/re-executions and the order of re-executiongmlgp
on the specific scheduling algorithm. Finally, as the fault Proof: The proof is presented in the appendix.
burst may also affect the recovery jobs, acceptance tests ar

performed at the end of their execution as well We note that our result points only to the weakly NP-Hard

nature of the problem — showing whether it is NP-Hard in
I the strong sense, and if not, investigating polynomiaktim
C. Fault Burst Feasibility approximgtion algorithms is left as futgre w%rllz. g
A set of real-time jobs is said to h&-Fault-Burst-Feasible

(FB-feasible) if there exists a schedule such that all jairs ( IV. OVERHEAD OF A FAULT BURST
their potential re-executions) can complete successhdfpre
their respective deadlines, even in the presence of a fatdt b
of length not exceeding\, occurring at any arbitrary time
during execution.

The job executions performed during a fault burst in-
terval create additional computational overhead as they ar
essentially unreliable. In this section, we first charazéethe
computational overheadf a fault burst known to occur in the
interval [t,,t;) in an actual schedul§. Next, we provide a
necessary condition for feasibility using the formalisratttve

Real-time scheduling in the presence of fault burstgdeveloped. Then, considering that an actual schedulemwaill
presents peculiar difficulties. To start with, by the timeaalf ~ know the exact fault interval at run-time, we characterize t
is detected, all computations that may have taken placegluri Worst-case overheadf a fault burst that is manifested at the
a potential fault burst need to be considered as unreliabldirst fault detection point,.

Instead of resuming preempted jobs and trying to discower th
status at the end of their execution (which may be too close t&. Characterizing the Fault Burst Overhead
the deadline), we adopt thmaultiple recoverystrategy and re-

execute all the preempted jobs along with the job at the end of The overhead of a fault burst essentially captures the
which an error is detected. As a result, the fault burst regsti computation time wasted. According to theultiple recovery

may increase the actual workload significantly at run-tiaee, Stsr%e(?getphztjﬁz }Eatr:ﬁr::uttee ddSL':g':]egé;Pt?i f":élé dbt:(;sgeafe_wel
several jobs may be in preempted state and completing all tHe g P P meaee
re-executions before the deadlines may be quite difficiias  ©xecuted [8]. Letg (t1, 1>) represent the CPU time allocated
certain guarantees are made available (e.g., based onplee upto a job J; during the intervalty, t5). First, we consider all

- - “"the jobs that execute (partially or completely) during thalf
bound on the burst length and characteristics of the sebs)jo burst intervalt,., £, ). We use the et > (¢, ;) to denote those

Second, re-executions triggered by the recovery mechanisjobs:
may be also subject to the faults. Consider a system where the Y (t,,t,) = {Ji | a3 (ta,ty) > 0}

IIl. CHALLENGES IN THE PRESENCE OFFAULT BURSTS



Also we denote the set of jobs that are in preempted state apecific subset of jobs. The overhead of a fault burst for a

time ¢, and that do not execute iy, ), by H®(tq,t): subset of jobd" is defined as:
H(ta,ty) = {Jp | Jr & Y (ta,tp) and Or(ta,ty) = > a(resta) +
0< af(rk,ta) < Ck} Jr€{X(ta,tp) N I'} (2)
, . > ok (to, di)
With multiple recoverystrategy, we need to re-execute all e At
jobs in YS(t,,t,) and H>(t,,t,). Hence, the set of all the KE{X(tarts) N I}
jobs that require re-execution is the following: Observe that, in Equation (2), we only consider the computa-
tional overhead incurred by the jobs Inh In (2) and below,
X (ta,ty) = Y5 (ta, ty) U H(ta,ty) we omit the superscript from the related variables when the

involved schedule is clear from the context. Finally, we refi

The overheadof a fault burst is defined as the total the following:

execuj[ion time consumed by these j(ohﬂsidethe actual fault Y(t1,to) = {Jp | re > t1 and dy < t2} (3)
burst interval. We can formally define the overhead due to a )
fault burst occurring ait,, t) as: ~(t1,t2) denotes the jobs that must be completed successfully
within [t1,¢2). Using this definition, we provide the following
05 (ta, ty) = Z o (i, ta)+ necessary condition for feasibility of a job set.
Jh€XS (ta,ty) 1) Theorem 2:A job set ® is A-FB-feasible, only if there
Z af(tb dy,) exists an algorithnd\ such that for everyt,, t, = t,+A) fault

burst interval and for everft,, t2) time interval, the following
holds for the generated schedéA, ¢,, t;):

Observe that, the overhead consists of two terms for each job
affected by the fault burst. The first term is the CPU time used Z O+ Or(ar,12) (tay ty) + (ty = to) < (B2 —11) (4)
by the jobs before the fault burst starts and the second term/x€7(t1.t2)

represents the CPU time used after the end of the fault b“_rs\khere,[tz,ty) denotes the time interval where the fault burst
Note that, we consider re-execution of a job as a separate joByerlaps with the(t,, ¢,) interval under consideration, namely,

s, 1 A 1 s s Iy I 1y 4, ty, = max{t1,t,} andt, = min{t,,t2}
..... | | | | | | | | | Proof: The proof is presented in the appendix.

t t t t t t t, t, t,
° ! 2 2 4A = 7 C. The Worst-Case Overhead of a Fault Burst

J€X 5 (tasty)

Theorem 2 provides only a necessary condition for feasi-
Fig. 2. Overhead of a fault burst bility under any arbitrary occurrence time of the fault liurs
given that the schedule up to the fault burst interval is ive
~ Figure 2 shows an example with a fault burst occurringmoreover, the feasibility condition depends on the ovedhea
in time interval [t,,t). Jp, Jo, Jp and Jg are executed of the fault burst. The overhead can be precisely computed fo
during the fault burst. As a result they will all eventualbilf  any deterministic scheduling algorithm using Equation {fl)
According to our notationY (4, ) = {Jg, Jo,Jp,Je}. Ja  the exact location of the fault burst is known. However, &t th
is preempted at time,, but did not get a chance to execute time of fault detection during actual execution, the schedu
until ¢ = ¢7, when the fault burst has already ended. Sohas no way of knowing the exact start time of the fault burst.
H(ta,ty) = {Ja}. The total CPU time allocated to these jobs Therefore, to ensure feasibilitthe scheduler must satisfy the
beforet, and aftert, will contribute to the fault overhead. As feasibility condition for all possible fault burst scenasiand

a result the overhead will consist of the following: must schedule the recovery jobs appropriately.
O(ta,ty) = (t1 —to) + (ts — t7) + (t2 — t1) + (t7 — te)+ Notice that, the overhead of a fault burst also depends on
(ta — t2) + (ts — t3) the decision made by the schedubdter the fault has been

detected. An immediate re-execution may be also subject to

potential new faults. On the other hand, if the system is kept
B. Impact of Overhead on Feasibility idle beyond the fault burst, the system will lose valuablecex

tion time. Therefore, we define a new metric, called \therst-

A job’s execution is considered successful if its first Case OverheadWCO) to denote the maximum overhead that
invocation, or one if its re-executions, completes withaut a scheduling algorithm may incur for any arbitrary fault sur
fault before its deadline. Obviously, the fault burst reglic interval, when a fault is detected at a given time.
the effective computation time available for job execution . . .

The overhead makes the situation even more critical. We now ,~SSume that at run-time, a scheduling algoritimietects

analyze the impact of the overhead on the feasibility. gefr?gtlcta ?ﬁ;hsecr?gmﬁée';gge?;tae dcg';?'g (JX?C 'I?rtélr:nv?/ém (.j;‘\i/ﬁe

We denote byS(A,t,,t,) the schedule generated by any the worst-case overhead of the algoritirby:
arbitrary algorithmA when the fault burst occurs in interval S(4)
[ta,ts). Next, we define the overhead of a fault burst for a WCOA(t.) = 212%{0 W (ta,ta+A)} (5)

4



Here T is all possible time points where the fault burst maythis additional workload as “recovery load” (or recoverp$d
have started, between=r, — A andt =t . in the rest of the paper.

Example: Consider a preemptive priority-based scheduling  Priority-Driven Real-Time Scheduling Algorithms [15],
policy which employs the multiple recovery strategy. When aare well known and widely used. A priority driven algorithm,
fault is detected, the system immediately starts re-ekagtiie  at any time, schedules the ready job with the highest pyiorit
failed jobs. Figure 3 shows a fault detection scenario fehsu and does not leave the CPU idle as long as there are pending

a system.J, is preempted at = 5 by a high priority job.Jg,  jobs. Common examples are the earliest-deadline-first JEDF
which, in turn, is preempted at= 10 by a higher priority and fixed-priority algorithms.
job Jo. A fault is detected when/c: completes at = 20. In this work, we use existing priority-driven real-time

The length of the fault burst is 12. Notice that, at that time, cheduling algorithms as the basis for designing effective
the scheduler has no way of knowing the exact start time of ) nes 1o tolerate fault bursts. In particular, we assiat t
the fault burst. In Figure 3, we show three possible scesario o . . o

The fault burst may have ended before detection, as shown in - The priority assignment policy is deterministic and
the cases when the fault burst startstat 3 or ¢t = 8. The does not change at run-time.

overhead for the fault burst for these cases is 8. On the other ii.  The job that is scheduled at any time has the highest
hand, if the fault burst starts at= 15 the first re-execution priority among all ready jobs. This applies to both
will fail as well. In that case, the overhead will be 18. original jobs and recovery jobs. That is, an original
Fault job may have higher priority with respect to a recovery
Detected job as in [16], [17].
iii. On the other hand, in the post-detection part, the
Js t Jg t Je Je algorithm may choose to idle even when there are

......... ready jobs, which may include recovery jobs.

re-execution

We call an algorithm that satisfies all three conditions @&bov

0 5 10 20 30
T‘T4 a Fault-Burst Sensitive Priority Driverscheduling algorithm.
? 1 Obviously a natural fault-burst sensitive priority drivaigo-
12 rithm would be based on simply using a well-known priority
FT,T driven algorithm (such as EDF), and use it in non-idling

fashion, even in the post-detection part. While this sgyate

is optimal in settings where faults airestantaneousind affect

only one job[16], it is clearly sub-optimal in fault burst
Now assume that the deadline 8§ is 48 and the fault settings. The main reason is that with the fault bursts the re

burst starts at time 20 right before the completionJgf as  execution of the recovery jobs may be still subject to faults

shown in Figure 4. Then the fault burst will last unti= 32,  further increasing the recovery load.

causing two re-executions to fail. The overhead for thetfaul

Fig. 3. Possible overheads for different fault burst intervals

burst will be 28. The third re-execution will be fault-frdmyt a J; J; J;
deadline will be missed. Hence it is imperative to charamter .. |><| re-execution | re-execution | =
the worst-case scenarios in the feasibility analysis.
Fault K
Detected d.=48 Fig. 5. Failure of re-execution for a short fault burst
wtant o s s s Deadline In fact, a quick analysis shows that even wheiis of short
duration, it may be necessary to execute a job 3 times (omce fo
| | | re-execution| re-execution| re-execution| "™ original and two recoveries), in case that fault burst ayesl
0 5 10 20 30 40 50 partially with the first re-execution as shown in Figure 5. A
FT’T similar analysis shows tha{tc% + 1 re-executions of a faulty
job J; may be needed faany non-idling algorithm. As shown
Fig. 4. Deadline miss due to overhead of a fault burst in Figure 6, assume that the fault burst starts right befgre
V. F B S S the completion time of/;. Then, whenC; < A < 2C;, we
+ PAULT-BURST SENSITIVE SCHEDULING will need 3 re-executions for successful completion.
A. Adapting Existing Scheduling Frameworks to Fault Burst A
Settings J; J; J; J;
The precise definition of the (worst-case) overhead for ™ |><|’e'e"e°"“°“ re-execution | re-execution | "
an arbitrary scheduling algorithm is critical for real-8m t,

guarantees. However ttaesignof fault burst sensitive real-
time scheduling algorithms requires additional consitiena;
in particular, it requires the specification of the algarith Note that, considering possible re-execution of the pre-
actionsbeforeand after the detection of the fault. Notice that empted jobs in the potential fault burst region would even
the multiple recovery settings imply that at the time of faul further increase the recovery load. Using our terminology,
detection (at the end of a jaly,), Ji along with all preempted we can see thahon-idling strategies have the potential of
jobs at that time, must be re-executed from scratch. We tefer significantly increasing the worst-case overhead

Fig. 6. Maximum re-executions required for a fault burst



B. TheA—idling Scheme VI. SCHEDULABILITY AND UTILIZATION BOUNDS FOR

We now propose a generic fault burst sensitive priority PERIODIC TASKS

driven algorithm satisfying all three conditions given iacS In this section, we consider periodic task sets that reptese
tion V-A. The algorithm, calledA—idling, is generic in the many real-time applications in practice. Specifically, wavé
sense that it can be used in conjunction with any standard set ofn periodic real time tasksl = {Ty,T5,...,T,}.
priority driven scheduling algorithm. Associated with each task;, there is a worst-case execution
The A—idling scheme essentially consists aéliberately time C;, period P;, and the relative deadhn@il. We assume
leaving the CPU idle forA units of time(the known upper MPlicit-deadline systems wher; = P,. The j*" job of T,
bound on the length of the fault bursgjpon detection of the denoted ble-_,j,_ IS relea§ed at = F ',(j — 1) and must be
fault. At the end of this period, the scheduler continuehb tie completed by its deadline at=F; - j. The least common
execution of the pending load (including recovery) acangdi MUltiPle (LCM) of the task periods is called tigyperperiod

to the original priority assignment The utilization of a tasK’, is defined asi; = &:. Similarly,

n

The main rationale for this scheme is to prevent the systerthe total utilization of the system is given B, = > ; u;.
gggt?éegu“tnhgea}gﬂ'ltt'obnuarlsjto?:ﬁ;&iéﬁr?'or;hvé hlrg-]eT:guEgn?" For the schedulability analysis of periodic tasks with faul
y the y 9 . bursts, we make the following assumptions.
are never subject to faults, hence each job may need at

most one re-execution before successful completion. Atgjho e A < P,i,. This assumption ensures that the length
leaving the system idle foA time units results in loss of of the fault burst is less than the smallest period in the
some computation time, as we show shortly, it minimizes the system. This assumption is necessary to analyze the
worst case overhead, and allows us to derive tight bounds conditions for hard real-time scheduling. Otherwise,
(not achievable by any non-idling algorithm) for schedillgb the task with smallest period will definitely miss
guarantees. deadline, when the fault burst completely overlaps
Fault with its period.
Detected d.=48 e The two consecutive fault bursts are separated by at
¢ least one hyperperiod.
Jy T Jg T Je Je
12 re-execution] = We define utilization bound for fault burst settings as foio
0 5 10 20 30 40 50 A-Sensitive Utilization Bound: A scheduling algorithmA
o is said to have theA-sensitive utilization boundUp), if
Fig. 7. Overhead for theA—idling scheme it can generate a feasible schedule for any periodic task set

Example: Let us consider the same example as in SeCWith uti!ization Utot = UbA' for any fault _burst of length not
tion IV-C. Figure 7 shows the schedule with—idling. A fault ~ €XceedingA, occurring at any arbitrary time.
is detected at = 20 and the length of the fault burst is 12. In
that case, the fault burst is guaranteed to entlby32. Infact, A, Frame-Based Systems
A—idling will keep the system idle until = 32. As a result, all

future re-executions will be successful. Therefore, pezsive We now consider a special case of periodic tasks, called
of the actual position of the fault burst, the overhead wilt n frame-based systems, where all tasks are released at tiee sam
exceed 20 and the deadline will be met. time and have a common period/deadlii, In this setting,

a natural solution is to execute all tasks one after another
We now prove the optimality ofA—idling for minimizing  according to a pre-speficied order. We call this algorithe th
the WCO for a fault burst detected at timg. Assume that Chain-Executioralgorithm. Clearly, in the absence of faults,
Algorithm A'is a standard priority based scheduling algorithm.the task set is feasible if and only ¥C; < P.
The recovery is performed with multiple recovery stratedy.
the time of fault detection, the system can use-idling or FDael::cted
any arbitrary recovery strategy. We denote thédling variant
of the algorithm byA — A. The high level idea of the proof T, T, T ,
is as follows. The overhead depends on the jobs that are in A _
preempted state at the start of the fault burst and the jobs| [ | ™ < re-execution | ™
that execute during the fault burst. Prior to fault detettithe t,
schedule is the same for all recovery strategies. Therettoee , .
set of jobs in preempted state at the start of the fault buitst w Fig. 8. A—idling for frame-based system
remain the same for all recovery strategies. By idling in the  Note that, since all fault detections occur at the end of task
interval[t,, t, +A), A—idling prevents further increase of the executions and there are no preemptions, the chain-erecuti
overhead. has a clear advantage in fault burst settings: only theyfaartk
Theorem 3:For any arbitrary scheduling algorith&with T; will need to be re.-executed. Suppose a fault is de_tected at
multiple recovery strategyl—idling minimizes the worst-case t =1 at t_he completion of ;. We can now apply quatlon (5).
overhead)V CO(t,) when a fault burst is detected at time and (_Jbtaln t.he worst-case overhead for any chain-execution
among all algorithms that us& up tot = t,. algorithm as:

Proof: The proof is presented in the appendix. Ci S WCOchain(tz) < Ci +Q (6)

T

|




where@ > 0 is the additional overhead due to task executionC' and P = P,,;,, = D and with utilization greater than
(or re-executions) ift,, t, + A). 5(1—2-) = 4(1—5) that can be feasibly scheduled by
A for any arbitrary fault burst occurrence time. According to

our assumption,

Algorithm Chain- A: The A—idling scheme can be used in
conjunction with the chain execution algorithm. The rasglt A
algorithm is called thehain-A algorithm. In accordance with D > 3 D ) 9)
the A—idling scheme, tasks are executed according to the men
chain algorithm until a fault is detected. Then the system ifNow assume that the fault burst occurs right before the
kept idle for A time units. After that, the system resumescompletion of the task. Then all re-execution attemptsrprio
the re-execution of the failed task and the rest of the taskdgo the completion of the fault burst will also fail. Thereéor
Figure 8 shows a schedule segment generated by the ghainthe re-executions must be performed after the fault burst ha

1(1_

algorithm. The worst-case overhead for chairalgorithm is
WCOchain—A(tw) = Cz (7)

as it does not execute any task in the interftal ¢, + A)

and there are no preemptions. According to Theorem 3, this

ended. SoC +A+C < D= P = P,;, must hold
By simple algebraic manipulation we obtain,
C A
)

1
~ <
Pmin

1—
D_2(

(10)

is the lower bound for the worst-case overhead for any chaingquations (9) and (10) contradict. Therefore, the utiicrat

execution based real-time scheduling algorithm with rpidti
recovery strategy.

Theorem 4:A frame-based system scheduled by the
ChainA algorithm is A-FB-feasible, if and only if,

EZO’L + Cmaz S P—-A (8)

Proof: The proof is presented in the appendix.

The result above enables us to derive theSensitive
Utilization Bound for the ChaimA algorithm as well. Let us
define u,,qr = max{%}. By simple algebraic manipulation
on Equation (8), we get:

Utot S 1- E — Umaz

Since the condition is necessary and sufficient, for any sask
with total utilization not exceedinfl — % —Umaz ), there exists

a feasible schedule for any arbitrary fault burst occureenc
time. Conversely, if the total utilization of a task set exde
(1- % — Umaz ), there is no feasible schedule for some fault
burst arrival pattern(s).

Corollary 1: U® = (1 — 5 — Umas) for the ChainA
algorithm and the bound is tight.

A

B. General Periodic Tasks

In this section, we consider the well-known preemptive
Earliest-Deadline-First (EDF) scheduling policy for geale

A
Prin ). D

Now let us consider th& —idling scheme with the preemp-
tive EDF scheduling policy, called EDBA- Tasks are executed
according to the preemptive EDF policy. When a fault is
detected, the system is kept idle fArunits of time. When the
execution resumes, the re-executions are performed angord
to the EDF policy along with the original tasks.

bound forA can not exceed (1 —

Theorem 6:For a periodic task set scheduled by the
EDF-A policy, Ut = (1 — 52-).

The proof of Theorem 6 is presented in the appendix.

Combining this result with Theorem 5, we obtain the
following corollary:

Corollary 2: EDF-A provides the highest utilization
bound achievable for periodic task sets.

Remark 1.While Theorem 6 is presented for periodic tasks,
the proof remains valid fosporadictasks [18], when consec-
utive instances of a given task are separatechbjeastthe
period value. Therefore, for sporadic tasks the numbersi ta
instances in a specific time duration, can not be higher than
the case with the strictly periodic tasks. As a result, the su
of computational demand in any interval will be still boudde
by that of a strictly periodic task set in that interval, ahe t
reasoning will follow the same lines.

Remark 2Even though EDFA gives the highest possible uti-
lization bound, we underline that this does not imply thagib

periodic tasks, where tasks may have different periods. EDEchedule any task set undegiaen (specificjault burst pattern

is known to be optimal for preemptive scheduling of realdim

whenever it is possible to do so. One could imagine a scenario

tasks on a single processor system in a fault-free scenari/nere the fault burst ends just before the fault detectiore fi

However, preemptions can occur and more than one task m@ﬁd

be affected by a single fault burst.

We now present our analysis of the utilization bound

EDFA misses a deadline due to the idling period, whereas
a non-idling algorithm could meet the deadline. Due to the
nature of uncertainty involved in the fault burst settings,

“adversary” can always change the actual position of the

for periodic tasks. We first show that no scheduling algofault burst to demonstrate that the action taken by a specific

rithm can achieve a\-sensitive utilization bound higher than
%(1 - P’rfin )-
Theorem 5:For any arbitrary scheduling algorithr,
URA<i(1-+2).
b = 2 Prnin
Proof: Assume that theA-sensitive utilization bound for
an arbitrary algorithmA exceeds%(l — PA). So there

algorithm was suboptimal. EDEs, on the other hand, provides
the best/highest utilization bound that can be obtainedryy a
deterministic priority driven fault burst scheduling atdglom.
The bound for any non-idling algorithm is strictly smallaah
3(1 — 52-). To verify this, one can consider a single-task
scenario withC' = 40, D = P = 100 and A = 20. For EDF-

A, the utilization bound is 0.4. Therefore the task set can be

must be also a single-task system with”computation timescheduled feasibly by EDE- under any fault burst pattern.



Now consider a non-idling schedule and suppose that theé faul Proposition 1 may be justified through the following ob-
burst starts right before the completion of the task. As altes servation. All fault bursts will be detected at a subsequent
the fault burst will affect the first re-execution as well.€lfask  job completion point. Note that there may be multiple fault
will complete att = 120 at the earliest, giving a deadline miss. burst start points{¢;} that are all detected at the same job
completion pointt, > ¢¢. For all such distinct fault scenarios,

08 T T aloms! the schedule up to timg, (the first fault detection point) will
0 L A5 ms be identical. Moreover, the EDE- algorithm will leave the

CPU idle in the interval(ts,ts + A] for all such scenarios,
0al - IR effectively eliminating the possibility that some new fzsul
will be incurred after the fault detection point,. Finally,

for all such fault occurrence pointg;}, the schedule after

t = t,+ A will be identical in the EDFA schedule. Thus, the
P 20 0 20 0 o0 10 feasibility impact of all those fault scenarios can be assgs
P (Ms) by considering only one such scenario that leads to the fault
detection att = ¢s; € X, in particular the one that starts at

timet=1¢;.

Utilization Bound

0.2

Fig. 9. Utilization Bound

Figure 9 shows how the utilization bound varies as However, for naive (non—idIing)lEDl_:, the feasibility carino
%e accurately assessed by considering only the fault bursts

function of the minimum task period, for various fault burst starting immediatelv before the iob completion points ie th
lengths. The maximum utilization bound for any task set is 9 Y J P P

: . fault-free EDF schedule. This is because, naive EDF will
0.5._Ifdthe Iengﬁhdoflf[he fa}ult blﬁrSt Is greater than tfhe mgmmumdispatch jobs immediately after fault detection, which may
period, no scheduling algorithm can guarantee feasibility L X : . ’

A — 0, the settings converge to those of the instantaneou| ause additional jobs to fail and trigger recurring fault de

faults with multiple recovery strategy [6], giving the baliaf ections. As a result, unIike_EDE—, the final schedule will
0.5. As the dura?ion of the lgurst Ier?éﬂg i]ngreasges a marked depend on the subsequent_Jobs th"’.‘t. are affected by_ the fault
g ' rst. So, we need to consider additional fault burst iratsrv

decrease in the bound is observed; however, for task systensv%ich mav end at different times after— i~ resulting in a
with larger P,,;,, values the reduction in the utilization bound diff y f aff d . d - hsa | n%m

is relatively minor. different set of affected recoveries and schedules. Neekess,
it is possible to obtain arupper boundon the feasibility

performance of the naive EDF by considering the fault bursts
VII. EXPERIMENTAL EVALUATION that start at timet = ¢, (Vt; € X). We implemented that
) ] o ) (optimistic) approximation in the interest of computa@bn

Theorem 6 in Section VI-B indicates that EDkprovides  time needed for simulations. Our results below indicate tha

the highest utilization bound to schedule periodic tasls.set EDF-A outperforms even this optimistic approximation of the
Yet, the bound provides only a sufficent condition for schedunaive EDF with immediate recovery.

lability, and is naturally derived under worst-case scirsar

over all task sets. We believe the following questions warra ~ In our evaluation, for each data point, we conduct 100
an empirical evaluation: experiment. Each experiment has at least 200 task sets to

. o obtain simulation results withii7.5% confidence interval. For
e For task sets with utilization greater than the boundeach experiment we obtained the fraction of task sets tieat ar
of 3(1 — 5-—), how does the fraction of sets that are feasibly scheduled (called ttieasibility ratic), by EDF-A and
schedulable by EDR change, as a function of the the najve EDF, separately. As discussed above, by limitieg t
system parameters? fault burst start points to those immediately precedingjtite
e How does the average performance of ERFeom-  completion points in the fault-free EDF schedule, we obtiaé
pare to that of the naive EDF (which triggers re- exact feasibility ratio for EDFA and an (optimistic) approx-
executions immediately when a fault is detected)? imation of the feasibility ratio for the (naive) EDF. The kas
utilization values are generated accordindgJidnifastscheme
For this purpose, we constructed a discrete event simulatdf9]. The minimum and maximum allowable utilization per
to check the feasibility of synthetically generated tasks se task are set to 0.5 and 30% of total utilization, respectivithe
for various burst length parameters. Given a task set anthsk periods are generated using the log-normal distabuti
a burst of lengthA, we assessed the feasibility for both between 25 and 1000 ms. Those values correspond to the
EDF-A and EDF, i.e.checked whether the task set remainsminimum and maximum task periods in the well-known GAP
feasible with these two strategies, for any burst length otask set from the avionics domain [20]. The execution time
length A that may start anywhere during the hyperperiod each task is obtained by multiplying its period and utiliaat
Obviously, simulating the execution for all possible faulrst  value. By default, we considered 15 tasks in each set. Fdr eac
start points is computationally prohibitive. Léf be the set task set, we consider fault bursts of length not exceedieg th
of job completion points in the fault-free EDF schedule. Weminimum period of the task set.

make the following observation:
g Figure 10 shows the feasibility ratio of the EQ¥xscheme

Proposition 1: For the EDFA policy, to assess the feasi- for different task utilization and fault burst length vatue
bility under a fault burst of length, it is sufficient to consider on a 3-D plot. For small utilizationl{ < 0.3) values the
the fault burst start points that immediately precede thhiete feasibility ratio is very close to 1. As we increase the métion
job completion pointsX . the feasibility drops; but even foi/ = 0.7 in practice the



ratio exceeds 60% except for when the fault burst lengyth
approaches’,,;, = 25ms. In fact for smallA values (e.g., [ " o=
A = bms) the ratio is significantly high even whdi = 0.9. g e
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Fig. 11. Impact of Utilization . . .
9 P izat maximum length of the fault burst the set can sustain while

We next compare the performance of EDFand naive  still maintaining the feasibility [8]. For every task setvairious
EDF. Fig. 11 shows how the feasibility ratios vary as a fumeti  utilization values, we performed a binary search on thetleng
of the utilization for different burst lengths. We obserbatt  of the fault burst values (betweéhand P,,;,, = 25 ms) and
EDF-A outperforms EDF in the entire spectrum, for the samecheck the feasibility for each, to find the fault resiliende o
fault burst length. For example, whe\ = 5ms, EDF-A  the corresponding task set. The average of task faulteasi
maintains a feasibility ratio of at least 0.8 as longlas< 0.9;  values is presented in Fig. 14. At very low utilization, thés
whereas EDF’s performance can be as low as 0.75. Fig. 1@mple slack in the system and therefore the fault resiliemce
illustrates the same phenomenon over a continuous spectrugiose to P,,;, = 25ms. As we increase the utilization, there
of the fault burst lengti\. We observe that for largA values, is less time available for task re-executions. As a reshé, t
the feasibility performance rapidly drops, but EXFexhibits  fault resilience drops and at higher utilization it appioes 0.
superiority over naive EDF for all values. Notice that the fault resilience values obtained for ERFare
better than those of the naive EDF scheme.
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Fig. 12. Impact of A
In the experiments reported so far the ratio of the maximum

Figure 13 shows the impact of number of tasks in eadberiodeaz to the minimum period?,,, was 1900ms — 40,

task set on the feasibility ratio. We set the utilization t@ 0 : : :

and present e feasiy ratio for aiferedt values. Notice 15 SN0 e impact o g e 125 T
that the feasibility ratio increases with the number of 1saski Fig. 15 a’nd Fig. 16, respectively. We observe only minor
e e et 25 e et Shratons wih ncreasins,.. values, as the most mportant

) . . T Earameters that determine feasibility are the smalles tas
job comple_tlon points and acceptance tests, leading tﬁ’rfaStperiod Pin and A values for a given total utilization. How-
fault detection. Again, EDFA has superior performance. ever, increasing?,,., value gives some minor leverage for

In the presence of fault bursts, an important parametefeasibility and fault resilience as the number of preemio
is the fault resilienceof a task set, which is defined as the that may affect the execution of short-period tasks deeseas




VIIl. CLOSELY RELATED WORKS known precisely. We proposed a solution called theidling
scheme, which minimizes the worst-case waste of execution
ime (overhead) with multiple recovery strategy. Then we
onsidered two special but common periodic task systems.
We derived an utilization bound for the frame-based system,
where all jobs have a common deadline. Finally, we consttlere
general periodic tasks systems. We showed that the uidizat
bound to guarantee feasibility for EDF when augmented by
A-idling scheme isi(1 — 2—). We also proved that no
scheduling algorithm for periodic tasks can achieve a highe
utilization bound. Finally, we presented an empirical aaéibn
with synthetically generated task sets, showing that EDi wi
A-idling gives a significant improvement on the ratio of the
schedulable task sets when compared to the naive EDF. In the
Many et al. proposed thtault burstmodel [8] to handle future, we plan to extend this work by considering multiple
faults that occur in quick succession over a continuous timéault bursts that can occur during the execution of the apléi
interval with an unknown distribution. In [8], the authors job sets, and fault bursts that may be separated by an ihterva
considered fixed-priority systems such BRate Monotonic shorter than the hyperperiod, for periodic task sets. Initizaid
(RM) [22] or Deadline Monotonic(DM) [23] scheduling Wwe plan to explore the problem on multicore systems where
and computed the worst-case response time for a task iiie individual cores or a group of cores are simultaneously

Fault tolerant real-time scheduling is a well-studied re-
search area. Since transient faults are more common [3
most of the work is dedicated to tolerating transient faults
In earlier works, faults are considered to be instantanaods
fault arrivals were assumed to follow some known pattern
For example in [4] faults are considered to follow Poisson
or Weibull distribution. The works in [5], [6], [7] assumed a
minimum inter-arrival time between faults. This is calléget
pseudo-periodidault model in [21]. Later works considered
tolerating a fixed number of faults during the entire examuti
[16], [17]. [16] is more generalized in that it allows recoye
jobs with execution time different than the original jobs.

the presence of a fault burst. Using the worst-case responséfected by a fault burst.

time the authors proposed a technique for evaluating the
feasibility of a task set. In [11], the authors extended rthei
work to determine the maximum length of the fault burst to
guarantee feasibility, again for fixed-priority systemgsan
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the fixed priority systems and obtained probabilistic fledisy
guarantees. Finally, in [9], the authors consideredEhdiest-
Deadline-First (EDF) policy. The work in [9] computes the
worst-case increase in processor demand during an interval
Using this result, the authors presented the minimum resour [q]
augmentation required to ensure feasibility. In [9] thehaus

also presented a necessary condition for the feasibilita of [2]
periodic EDF system under fault burst. The work in [9] and
our paper differ in that we considenultiple recoverystrategy,

while [9] considerssingle recoverystrategy. 3]

In [10], the authors considered a quantile-based appra@ach t
obtain stochastic schedulability guarantees for a systedeu
a random burst of errors. Instead of considering a faulttburs
interval, the authors considered arbitrary arrival of riplet
errors. Given a probabilistic error model, [10] providesoaibd [5]
for the number of faults that a system should tolerate inorde

to achieve an arbitrary reliability target. (6]

Utilization bounds provide efficient tests to check the
feasibility of periodic tasks. For preemptive EDF, in thelfa 71
free scenario, the utilization bound is proved to be 1 [22].
The same utilization bound holds for sporadic tasks [18}. Fo
RMS, the utilization bound approachis2 ~ 0.69 for large [8]
number of tasks [22]. However, in the presence of a fault, the
utilization bound decreases significantly. For RMS, evehef
fault is instantaneous, the utilization bound reduces 50[6)- ]

IX. CONCLUSIONS

[10]
In this paper, we considered the feasibility analysis of-rea

time jobs under fault burst with multiple recovery strategy
We first addressed a generic real-time system with a set of
distinct jobs. We showed that determining the feasibilify o [
such a system is NP-Hard even when the exact position cﬁz]
the fault burst is known. The difficulty of the problem only
increases for a real system as the fault burst interval is not

10
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APPENDIX
A. Proof of Theorem 1

Theorem 1:The problem of determining whether a set of real-
time jobs areA-FB-feasible (the problerRB-feasibility) is NP-Hard,
even when the fault burst is known to occur in the exact imterv
[ta,ta + A] @ priori.

Proof: We will reduce the the well-known NP-Hard problem
Partition [25] to FB-feasibility. The input to the problem is a set
of n integersS = {s1,...,sn} where}_" | s; = 2X. The problem
is to determine whether there existdisjoint subsets of5 such that
the sum of integers in each set is equal to exaéilyThe union of
two sets together must include all the elements'in

D
A
A J 5| J,
0 X X+A 2X+A

Fig. 17. ReducingPartition to FB-feasibility

We can reduce any given instance of tRartition problem to
an instance of thé-B-feasibility problem as follows. We construct
a set ofn jobs. The worst-case execution time of tH&th job, C;,
is set equal tos; . The release times of all the jobs are equabto
Similarly, all the deadlines are the same and equdl+ A, where
A is the length of the fault burst in thEB-feasibility instance. In

the FB-feasibility instance, the fault burst is set to occur the interval

[X,X + A). Figure 17 shows the position of the fault burst with
respect to the common deadline. Jobs can be executed in day or
as they have a common deadline. Notice that the selectiomtof |
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parameters implies that there is a feasible schedule if ahdibno
job execution partially overlaps with the fault burst an@ tystem
does not remain idle at any time before and beyond the fauitbu
A partial overlap with the fault burst would require the peseution
of the preempted job at the end of fault burst, for which therao
sufficient time.

Therefore the integers corresponding to the jobs executied p
to the fault burst will form the first subset and the rest wikrh
the second subset in theartition instance. Thus the outcome of the
FB-feasibility instance will determine the outcome of tRartition
instance, completing the prodf]

B. Proof of Theorem 2

Theorem 2:A job set ® is A-FB-feasible, only if there exists
an algorithmA such that for every(t.,t, = to + A) fault burst
interval and for every(t1,t2) time interval, the following holds for
the generated schedul A, t., ts):

> Crt Oy g (tasty) + (ty —ta) < (2 —t1) (1)

Jr€v(t1,t2)

where, [tz, t,) denotes the time interval where the fault burst over-
laps with the (t1,t2) interval under consideration, namels
max{t1,t,} andt, = min{ty,t2}

Proof: Suppose® is A-FB-feasible. Then, there exists an algo-
rithm A that generates a feasible schedule for any fault burst up to
length A.

Assume that the fault burst occurs|at, t,) and A generates the
feasible schedul&'(A,tq,t). We now show that, for any arbitrary
[t1,t2), the claim holds forS(A,t4,t,). We first consider the case
where the intervalt,,t2) does not overlap with the fault burst. Then
the overhead due to fault burst will e and the feasibility condition

becomes,
Z Crp <ta—11
Jp€v(t1,t2)

which is trivially true for any feasible schedufg as we must execute
all jobs in~(t1,t2) before their deadlines.

Now, assume that the intervigl , t2) overlaps with the fault burst.
Then [t.,ty) denotes the time interval when the system is under
fault burst in intervalt1,t2). Job executions that partially overlap
with the fault burst, as well as jobs that remain in preempstede,
are unreliable as well. In schedul(A, t.,ts) if the execution of
a job in~(t1,t2) is affected by the fault burst durinf., ¢,), the
execution time consumed by such jobs outside[thet, ) is given by
O~ (14 12 (t, ty). Therefore the effective computation time available
during [t1,t2) is,

(t2 —t1) = (ty = ta) = Ox(ty t5) (tas ty) 12)

Hence, the following must hold:
D Cr < (ta—t1) = (ty — ta) — Osey ) (tas ty)
Jp€v(t1,t2)

By simple algebraic manipulation we obtain

Cr + O’Y(ﬁ th)(tﬁhty) + (ty - tw) < (t2 - tl) (13)

Jp€v(t1,t2)

Therefore theorem 2 holds for any arbitrary intenval, ¢2) in
S(A,ta,tb). |



C. Proof of Theorem 3

Theorem 3:For any arbitrary scheduling algorithAwith multi-
ple recovery semantica\—idling minimizes the worst-case overhead,
WCO(t,) when a fault burst is detected at tintg, among all
algorithms that usé\ up tot,.

Proof: Suppose a fault burst is detected at time at the
completion of J;. For any schedule5(A) generated by algorithm
A,

max
ri—A<tqa<ty

WCOa(t:) = {05 (L, ta + A)}

We can rewritelW CO4(t.) as follows,
05Dt ta + )},

{0 (ta, ta + A)}}

max
i—A<te<tzp—

WCOA(ts) = max{
' (14)

max
ty— A<t <ty
Equation (14) represents the worst case overhead as thenomaxi
overhead among the maximum overhead of two intervals. Tlsé
interval considers all the scenarios when the fault burshpietes

fir

For chainA algorithm, the maximum overhead occurs when the task
with maximum execution time encounters the fault burst.ther
there are no preemptions and the system deliberately awigs
menting the overhead by remaining idle after the fault deirc So

the worst-case overhead (%,,..., giving:

Eci+cmaz SP—A
Consequently, Equation (15) is the necessary and sufficiamt
dition for chainA algorithm.
E. Proof of Theorem 6
Theorem 6:For a periodic task set scheduled by the EDNF-
policy, Us* = $(1 — )

Pryin

Proof: We use a proof by contradiction. Suppose, there exists a
periodic task set witf/;o; < 3(1— ﬁ) for which EDFA misses
a deadline, when subject to a fault'blirst of length at rdost

Consider the first deadline miss at tirdg, when a job.J; ; of

prior to ¢.. The second interval considers the cases when the faulfask7; misses deadline. We can identify the earliest job releass po

burst includes ... We will consider each interval separately.

Case 1ir; — A < t, <t — A. The fault burst has ended before
t,. Therefore, during the fault burst both and A-A has the same
schedule. Therefore, the overhead will be the same.

Veimactacto—a OF N (ta,te + A) = 05" (1, + A)

Case 2:t, — A < t, < t;. The fault burst includes, and

possibly spans beyond. Note that, the set of jobs in preempted state

will be the same for all recovery strategies. Due to the idieiqal,
A-A will not execute any job during the fault burst after, while
A may execute some additional job. Therefore? (A=) (¢, t, +
A) C X5 (t,.t, + A) and for any jobJ; € X542 (¢, ¢, +
A), J; will not execute any time after,. Therefore,an*A)(ta +
A7 dz) = 0. So,

Vo actocts O (ta ta + A) > 05 AN (1, 1, + A)

From case 1 and 2 we can conclude that,
WCOA-A(tz) < WCOA(tz)

for any scheduling algorithm based énup to fault detection point
t, and any arbitrary occurrence of the fault bufst.

D. Proof of Theorem 4

Theorem 4:A frame-based system scheduled by the chain-
algorithm is A-FB-feasible, if and only if,

EzCz + Cmaw S P-A (15)

Proof: If part: Assume that Equation (15) holds. Now, we
construct a feasible schedule for the task set using then<hai
algorithm. All tasks are executed according to the predifipecorder
until a fault is detected. The chaifr-algorithm will idle for A units
and then re-execute faulty task. All other tasks will be exed only
once. As a result, the total execution time needed is bourjed
(XCi 4+ Chmaz) Which is no larger than the available execution time
P — A. Therefore, chaimA will be able to feasibly schedule the task
set for any fault burst of length at moat.

re < r; such that the system is continuously executing jobs with
deadline equal ta; or earlier. Note that in this interval EDE-can
idle only for at mostA units upon the detection of a fault (if there is
a fault burst in this interval). At all other times, it sholdé executing
jobs with deadlinel; or earlier according to EDF priority. Hence, the
sum of required computations (jobs with deadliresl;) during this
interval should be larger than the available computatiometi The
available CPU time is at leastl; — r,) — A.

Note that, in EDFA, the re-execution starts only after the delay.
By that time, the fault burst is guaranteed to end. As a resolt
re-execution will fail. So, EDFA executes each job at most twice.

During interval [d;, ) each taskl, may have at mos d;—’a

k
instances. Thus, the total computational demand is boubged

" dz —Ta
2
M= (16)
k=1
Since J;,; misses deadline, the following must hold,
2x7zl di — Ta Cr > (di —ra) — A (17)
Py
k=1
We can perform algebraic manipulation as follows.
"\ di — 1, " Cy, A
=2x) B Cn > (di—7a)—A = 2XZH e —
k=1 k=1
= 2X Ut > 1— ‘é’/‘
Sincer, < 75, di — T4 > Pmin. Thus we obtain,
1 A
o —(1-— 18
= Utor > 5 sz_n) (18)

Equation (18) contradicts with our assumption. Therefahe, as-
sumption is not valid. So, a feasible schedule exists fortask set
with total utilization not exceeding (1 — +2—). By definition of

Pryin
the A-sensitive utilization bound, we find/; 11— 52—) for
the EDFA policy. O

Only if part: Since all tasks are released at the same time and has

a common deadline, the necessary condition according toréhe2
can be written as,

NC; 4+ 05N b+ A)+ A< P
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