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Abstract—In this paper, we consider the feasibility problem
of a set of real-time jobs which may be subject to a fault burst
during execution. A fault burst represents a time interval during
which multiple jobs may incur faults; hence multiple recoveries
may be needed. We show that determining the feasibility of a
real-time system, which may be subject to a fault burst that may
last at most∆ time units, is an NP-Hard problem even when the
exact position of the fault burst is known a priori. However, in a
practical system, the fault burst may occur at any arbitrary and
unpredictable time. We develop feasibility analysis by assuming
multiple recovery strategy where, in addition to the job at the end
of which the fault is detected, all preempted tasks are also re-
executed. We formally characterize the overhead that a scheduler
incurs due to a fault burst and present a generic recovery
strategy, called∆-idling, that is shown to minimize the worst-case
overhead for any priority-driven scheduling algorithm. Next, we
analyze periodic task systems. We show that the preemptive EDF
policy, when coupled with∆-idling, provides the highest possible
utilization bound 1

2
(1 − ∆

Pmin
), where Pmin is the smallest task

period. We also present an empirical evaluation of the EDF policy
with ∆-idling over synthetically generated task sets, and show
that it offers a clear improvement over the naive EDF policy
that triggers the recovery tasks as soon as an error is detected.

I. I NTRODUCTION

Real-time systems are often deployed for safety-critical
applications. The system may encounter faults during execu-
tion, which may lead to resource unavailability or incorrect
computations. Ensuring reliability for such applicationsis a
crucial objective for real-time research. The fault recovery
strategies typically take advantage of hardware [1] or temporal
redundancy [2] to ensure successful completion of workload
even in the presence of faults. In a single processor system,
temporal redundancy is the only viable option. However, the
fault management scheme must also take into account the
inherent timing constraints.

The characteristics of the fault play an important role in
determining the appropriate recovery strategy. Faults canbe
broadly categorized into two major categories -permanentand
transient. Permanent faults can only be handled with hardware
redundancy techniques such as replication [1]. Transient faults
occur more frequently [3] and can be dealt with temporal
redundancy as well [2]. In most existing fault tolerance studies,
transient faults are considered to be instantaneous. As a result,
only one job may be affected by a fault. Existing work assumes
a known fault distribution [4] or a minimum inter-arrival time
between faults [5], [6], [7].

More recently, there has been a growing interest in dealing
with scenarios where faults follow a random pattern over a
bounded time window and impose a potentially continuous
disturbance to the computational activities [8]–[11]. In that
new framework called thefault burst model, the fault distri-
bution within the interval under consideration is not known.
As a result, computations performed during the fault burst
interval are potentially unreliable. For example, short voltage
fluctuations due to power supply jitters or electromagnetic
interference (EMI) caused by short-lived atmospheric effects
(e.g., lightning strikes) may cause incorrect computations in
the core logic andbit flips in architectural registers. Other
examples may be found in automotive and avionics areas,
where the real-time system controlling a vehicle or unmanned
system may be exposed to higher EMI levels when passing
near airport radar and communication facilities [8], [10].

Existing studies assume that the upper bound on the
duration of the fault burst (∆) is available in advance [8],
[9]. This value is in general domain-specific and its derivation
may require input from domain experts. In a study from
the automotive domain, Ferreira et al. reported that90% of
errors that occurred in a CAN network resulted from bursts
with an average length of 5µsec [12]. Voltage fluctuations are
generally reported to be in the nanosecond to microsecond
ranges [13], while temperature fluctuations may last for several
milliseconds or more [14]. In addition, for a vehicle in motion,
the duration of the disturbance may be a function of the
distance to the EMI source and the vehicle’s velocity.

Fault-burst settings pose serious challenges for hard real-
time scheduling. During the fault-burst window, some contin-
uous CPU time intervals become unavailable for computation-
ally correct job executions, limiting opportunities to meet the
deadlines. A primary objective of this paper is to contribute
to the research efforts that seek tocharacterize the conditions
under which hard real-time scheduling might become feasible
under fault bursts.For example, if the analysis shows that
the maximum fault burst duration (∆) in the target operation
environment exceeds the period/relative deadline ofany task,
obviously it is impossible to give absolute deadline guarantees
– a task instance whose execution window entirely coincides
with a potential fault burst will definitely miss its deadline.

However, it is not clear what extra conditions may be
sought in order to provide feasibility guarantees for all task
instances; and those conditions will depend on the recovery
semantics as well as the scheduling policy. For example, the



jobs that are “in progress” (i.e., running or in preempted state)
at the time of fault burst occurrence may need to be re-executed
from the beginning, possibly significantly increasing the work-
load [8]. This further increases the extent of challenges to
ensure feasibility. In fact a contribution of this paper is to
show that finding a feasible schedule for a set of real-time
jobs is NP-Hard even if the fault burst interval is known a
priori. In a real system, the fault burst can occur at any time.
As the existing efforts on settings with fault bursts emphasize
[8], [9], [11] , when a fault is detected, the scheduler has no
way of knowing when exactly the burst has started. This makes
optimal recovery decisions very challenging. Timely recovery
operations are needed to meet the deadlines; but the recovery
operations might also be erroneous if they partially overlap
with an ongoing fault burst.

In the presence of fault bursts, there are two major recovery
strategies. The system can potentially invoke recovery/re-
execution tasks as fault detection tests are performed at the
end of each individual job, as needed. This is called thesingle
recoverystrategy in [8], [9]. This technique has the risk of
detecting a fault too late and deadlines can be missed, as some
jobs that are in the preempted state may have been also affected
by the burst. Another approach is to conservatively estimate
the set of jobs that are potentially affected by the fault burst
and initiate multiple recovery/re-executions as soon as a fault
is detected. This is called themultiple recoverystrategy [8]. In
this strategy, when a fault is detected, the system commits to
re-execute the faulty job and all jobs in preempted state at that
time. The multiple recovery strategy is also employed in [6]for
the instantaneous fault model. The multiple recovery strategy
typically reduces the worst-case response time and provides
greater feasibility ranges, as shown in [8]. To the best of our
knowledge, this is the first work that studies the impact of
multiple recovery strategy for a dynamic priority (EDF) based
system under a fault burst.

The main contributions of this paper are as follows.

• We show that determining the feasibility of a real-time
job set is NP-Hard undermultiple recoverystrategy,
even when the fault burst interval is known a priori.

• We formally characterize the computational overhead
of a schedule subject to a fault burst at run-time.
Based on this characterization, we provide a necessary
condition for schedulability under fault bursts.

• We discuss how standard priority-driven algorithms
can be adapted to fault burst settings. We propose a
specific recovery mechanism, called∆-idling, that is
shown to minimize the worst-case overhead when used
in conjunction with any priority-driven algorithm.

• We then turn our attention toperiodic tasks. We
obtain utilization bounds for both frame-based tasks
and general periodic tasks. We show that no priority-
driven algorithm, in general, can achieve a utilization
bound higher than12 (1 − ∆

Pmin
) where Pmin is the

minimum task period, in settings with fault bursts
and multiple recovery strategy. Finally, we show that
the preemptive EDF-∆ algorithm, which is the EDF
policy augmented by∆-idling, can achieve this bound.

• As our utilization bound provides only a sufficient
condition for schedulability, we also empirically eval-
uate the ratio of the task sets that are schedulable by

EDF-∆ over a wider utilization spectrum, through ex-
tensive experiments. Our results indicate that EDF-∆
is able to schedule a significantly larger proportion of
the task sets, compared to the (naive) EDF policy.

The rest of the paper is organized as follows. We list
our workload, fault and recovery models in Section II. In
Section III we discuss the challenges faced by a real-time
scheduler in the presence of fault bursts. In Section IV we
formally characterize the overhead due to a fault burst. Based
on this result, we present a necessary condition for schedulabil-
ity under fault bursts, and derive the worst-case overhead for
any scheduler. In Section V, we discuss how priority-based
fault-burst-sensitive scheduling algorithms can be designed,
and show that the worst-case overhead can be minimized
through the∆-idling scheme for any priority-driven algorithm.
In Section VI, we analyze periodic tasks. In Section VII, we
present how the ratio of the schedulable task sets varies for
EDF, with and without∆-idling, over a wide range of system
parameters. In Section VIII, we present a summary of the fault-
tolerant real-time system research that is closely relatedto our
work. Finally, we conclude in Section IX.

II. PRELIMINARIES

A. Workload Model

We consider a set ofn real-time jobsΨ = {J1, J2, ..., Jn}
executing on a single processor system. The release time,
deadline, and the worst-case execution time of a jobJi are
denoted byri, di, andCi respectively. We assume preemptive
scheduling. In the first part of the paper, we build our formal
framework based on this generic real-time execution model
where specific arrival patterns (such as periodicity) are not
considered. In Section VI, we focus on and analyze the
periodic task model.

B. Fault and Recovery Models

In this paper, we consider faults that occur in bursts [8].
A fault burst is a continuous time interval during which the
system is potentially subject to multipletransientfaults whose
exact distribution is not known. As a result, all computations
performed during this interval are potentially unreliableand
should be repeated. Our work is based on the following
assumptions as in [8], [9].

• There is an upper bound (∆) on the length of the fault
burst, which satisfies the inequality:

∆ ≤
n

min
i=1

{di − ri − Ci}

This assumption expresses that the length of the fault
burst is less than the minimum laxity of any job in
the system. This is essential because, otherwise there
is no way to guarantee the feasibility of a job with the
smallest(di − ri −Ci) value, in case that a fault burst
entirely overlaps with its execution interval.

• The system may be subject to at most one fault burst
during execution [8], [9]. In Section VI, we assume
that the periodic task set may be subject to multiple
fault bursts as long as their temporal separation is at
least equal to the hyperperiod. Tightening this result
and deriving the bounds that allow shorter intervals
between consecutive fault bursts is left as future work.
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We consider only the transient faults that affect the core
logic (e.g., bit flips in architectural registers or timing errors
in CMOS circuits) and result in incorrect computation. For
such faults, a typical mechanism is to useacceptanceor
sanity testsat the end of job executions [1], [8], [9]. The
acceptance tests exploit some expected features of the correct
output, such as whether it falls in a reasonable pre-determined
range, and for some mathematical control law computations,
whether it satisfies certain invariants [1]. Such acceptance tests
typically involve simple checks/computations and the running
time can be incorporated in the tasks WCETs. Thus we focus
on transient faults that can be detected by such acceptance
tests. We assume that memory subsystem is protected through
separate mechanisms (such as ECCs) and they are out of the
scope of this effort. In case that a fault is detected, the output
of the job is not committed to, and the system prepares for
recovery operations.

When a fault is detected, the system may have already
partially executed a number of jobs that may be currently in
preempted state. Consequently, the recovery action we assume
in this paper consists ofre-executing the faulty job along with
all partially completed (preempted) jobs at the time of fault
detection, as in [6], [8], [9]. This recovery strategy is called
multiple recoveryin [8].

Even though full re-execution is assumed as the mode of
recovery, the presented results remain valid when the recovery
involves executing some alternate job as long as the worst-
case execution time of the alternate does not exceed that of
the original. Also observe that, the timing of initiating the
recovery/re-executions and the order of re-executions depend
on the specific scheduling algorithm. Finally, as the fault
burst may also affect the recovery jobs, acceptance tests are
performed at the end of their execution as well.

C. Fault Burst Feasibility

A set of real-time jobs is said to be∆-Fault-Burst-Feasible
(FB-feasible) if there exists a schedule such that all jobs (or
their potential re-executions) can complete successfullybefore
their respective deadlines, even in the presence of a fault burst
of length not exceeding∆, occurring at any arbitrary time
during execution.

III. C HALLENGES IN THE PRESENCE OFFAULT BURSTS

Real-time scheduling in the presence of fault bursts
presents peculiar difficulties. To start with, by the time a fault
is detected, all computations that may have taken place during
a potential fault burst need to be considered as unreliable.
Instead of resuming preempted jobs and trying to discover their
status at the end of their execution (which may be too close to
the deadline), we adopt themultiple recoverystrategy and re-
execute all the preempted jobs along with the job at the end of
which an error is detected. As a result, the fault burst settings
may increase the actual workload significantly at run-time,as
several jobs may be in preempted state and completing all the
re-executions before the deadlines may be quite difficult unless
certain guarantees are made available (e.g., based on the upper
bound on the burst length and characteristics of the set of jobs).

Second, re-executions triggered by the recovery mechanism
may be also subject to the faults. Consider a system where the

upper bound on the fault burst length is given by∆ = 10.
Figure 1 shows a re-execution scenario after a fault is first
detected at timet = 28, the completion time of jobJC with
C = 8. Suppose the system immediately re-executesJC . If
the actual fault burst has started att = 22, it only affects
the original job JC and its first re-execution. As a result,
the second re-execution will be successful. However, if the
actual fault burst has just started att = 27, it spans up to the
beginning of the second re-execution, potentially causingit to
fail as well. In that case, the system may have to initiate a
third re-execution, potentially leading to deadline miss.
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Fig. 1. Possible failure of re-executions

The difficulty of the scheduling problem is not entirely
due to the uncertainty about the exact position of the fault
burst. Moreover, the existence of a continuous interval during
which all computations may potentially fail put a fundamental
constraint on the real-time schedulers. In fact, the scheduling
problem is intractable even if the exact position of the fault
burst is known in advance.

Theorem 1:The problem of determining whether a set
of real-time jobs are∆-FB-feasible is NP-Hard, even when
the fault burst is known to occur exactly in the interval
[ta, ta + ∆], a priori.

Proof: The proof is presented in the appendix.

We note that our result points only to the weakly NP-Hard
nature of the problem – showing whether it is NP-Hard in
the strong sense, and if not, investigating polynomial-time
approximation algorithms is left as future work.

IV. OVERHEAD OF A FAULT BURST

The job executions performed during a fault burst in-
terval create additional computational overhead as they are
essentially unreliable. In this section, we first characterize the
computational overheadof a fault burst known to occur in the
interval [ta, tb) in an actual scheduleS. Next, we provide a
necessary condition for feasibility using the formalism that we
developed. Then, considering that an actual scheduler willnot
know the exact fault interval at run-time, we characterize the
worst-case overheadof a fault burst that is manifested at the
first fault detection pointtx.

A. Characterizing the Fault Burst Overhead

The overhead of a fault burst essentially captures the
computation time wasted. According to themultiple recovery
strategy the jobs that execute during the fault burst, as well
as those that are in preempted state at timeta need to be re-
executed [8]. LetαS

k (t1, t2) represent the CPU time allocated
to a job Jk during the interval[t1, t2). First, we consider all
the jobs that execute (partially or completely) during the fault
burst interval[ta, tb). We use the setY S(ta, tb) to denote those
jobs:

Y S(ta, tb) = {Jk | αS
k (ta, tb) > 0}
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Also we denote the set of jobs that are in preempted state at
time ta and that do not execute in[ta, tb), by HS(ta, tb):

HS(ta, tb) = {Jk | Jk /∈ Y S(ta, tb) and

0 < αS
k (rk, ta) < Ck}

With multiple recoverystrategy, we need to re-execute all
jobs in Y S(ta, tb) and HS(ta, tb). Hence, the set of all the
jobs that require re-execution is the following:

XS(ta, tb) = Y S(ta, tb) ∪ HS(ta, tb)

The overhead of a fault burst is defined as the total
execution time consumed by these jobsoutsidethe actual fault
burst interval. We can formally define the overhead due to a
fault burst occurring at[ta, tb) as:

OS(ta, tb) =
∑

Jk∈XS(ta,tb)

αS
k (rk, ta)+

∑

Jk∈XS(ta,tb)

αS
k (tb, dk)

(1)

Observe that, the overhead consists of two terms for each job
affected by the fault burst. The first term is the CPU time used
by the jobs before the fault burst starts and the second term
represents the CPU time used after the end of the fault burst.
Note that, we consider re-execution of a job as a separate job.

���� ���� �� ��

�� ��

��

�� �� �� �� ���� �	�
 ��

��

Fig. 2. Overhead of a fault burst

Figure 2 shows an example with a fault burst occurring
in time interval [ta, tb). JB, JC , JD and JE are executed
during the fault burst. As a result they will all eventually fail.
According to our notation,Y (ta, tb) = {JB, JC , JD, JE}. JA

is preempted at timet1, but did not get a chance to execute
until t = t7, when the fault burst has already ended. So,
H(ta, tb) = {JA}. The total CPU time allocated to these jobs
beforeta and aftertb will contribute to the fault overhead. As
a result the overhead will consist of the following:

O(ta, tb) = (t1 − t0) + (t8 − t7) + (t2 − t1) + (t7 − t6)+

(ta − t2) + (t6 − tb)

B. Impact of Overhead on Feasibility

A job’s execution is considered successful if its first
invocation, or one if its re-executions, completes withouta
fault before its deadline. Obviously, the fault burst reduces
the effective computation time available for job execution.
The overhead makes the situation even more critical. We now
analyze the impact of the overhead on the feasibility.

We denote byS(A, ta, tb) the schedule generated by any
arbitrary algorithmA when the fault burst occurs in interval
[ta, tb). Next, we define the overhead of a fault burst for a

specific subset of jobs. The overhead of a fault burst for a
subset of jobsΓ is defined as:

OΓ(ta, tb) =
∑

Jk∈{X(ta,tb) ∩ Γ}

αk(rk, ta) +

∑

Jk∈{X(ta,tb) ∩ Γ}

αk(tb, dk)
(2)

Observe that, in Equation (2), we only consider the computa-
tional overhead incurred by the jobs inΓ. In (2) and below,
we omit the superscript from the related variables when the
involved schedule is clear from the context. Finally, we define
the following:

γ(t1, t2) = {Jk | rk ≥ t1 and dk ≤ t2} (3)

γ(t1, t2) denotes the jobs that must be completed successfully
within [t1, t2). Using this definition, we provide the following
necessary condition for feasibility of a job set.

Theorem 2:A job set Φ is ∆-FB-feasible, only if there
exists an algorithmA such that for every(ta, tb = ta+∆) fault
burst interval and for every(t1, t2) time interval, the following
holds for the generated scheduleS(A, ta, tb):

∑

Jk∈γ(t1,t2)

Ck + Oγ(t1,t2)(tx, ty) + (ty − tx) ≤ (t2 − t1) (4)

where,[tx, ty) denotes the time interval where the fault burst
overlaps with the(t1, t2) interval under consideration, namely,
tx = max{t1, ta} and ty = min{tb, t2}

Proof: The proof is presented in the appendix.

C. The Worst-Case Overhead of a Fault Burst

Theorem 2 provides only a necessary condition for feasi-
bility under any arbitrary occurrence time of the fault burst,
given that the schedule up to the fault burst interval is given.
Moreover, the feasibility condition depends on the overhead
of the fault burst. The overhead can be precisely computed for
any deterministic scheduling algorithm using Equation (1), if
the exact location of the fault burst is known. However, at the
time of fault detection during actual execution, the scheduler
has no way of knowing the exact start time of the fault burst.
Therefore, to ensure feasibility,the scheduler must satisfy the
feasibility condition for all possible fault burst scenarios and
must schedule the recovery jobs appropriately.

Notice that, the overhead of a fault burst also depends on
the decision made by the schedulerafter the fault has been
detected. An immediate re-execution may be also subject to
potential new faults. On the other hand, if the system is kept
idle beyond the fault burst, the system will lose valuable execu-
tion time. Therefore, we define a new metric, called theWorst-
Case Overhead(WCO) to denote the maximum overhead that
a scheduling algorithm may incur for any arbitrary fault burst
interval, when a fault is detected at a given time.

Assume that at run-time, a scheduling algorithmA detects
a fault at the completion of a certain jobJk at time tx. We
denote the schedule generated byA is S(A). Then we define
the worst-case overhead of the algorithmA by:

WCOA(tx) = max
ta∈T

{OS(A)(ta, ta + ∆)} (5)
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Here T is all possible time points where the fault burst may
have started, betweent = rk − ∆ and t = t−x .

Example: Consider a preemptive priority-based scheduling
policy which employs the multiple recovery strategy. When a
fault is detected, the system immediately starts re-executing the
failed jobs. Figure 3 shows a fault detection scenario for such
a system.JA is preempted att = 5 by a high priority jobJB,
which, in turn, is preempted att = 10 by a higher priority
job JC . A fault is detected whenJC completes att = 20.
The length of the fault burst is 12. Notice that, at that time,
the scheduler has no way of knowing the exact start time of
the fault burst. In Figure 3, we show three possible scenarios.
The fault burst may have ended before detection, as shown in
the cases when the fault burst starts att = 3 or t = 8. The
overhead for the fault burst for these cases is 8. On the other
hand, if the fault burst starts att = 15 the first re-execution
will fail as well. In that case, the overhead will be 18.
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Fig. 3. Possible overheads for different fault burst intervals

Now assume that the deadline ofJC is 48 and the fault
burst starts at time 20 right before the completion ofJC as
shown in Figure 4. Then the fault burst will last untilt = 32,
causing two re-executions to fail. The overhead for the fault
burst will be 28. The third re-execution will be fault-free,but a
deadline will be missed. Hence it is imperative to characterize
the worst-case scenarios in the feasibility analysis.
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Fig. 4. Deadline miss due to overhead of a fault burst

V. FAULT-BURST SENSITIVE SCHEDULING

A. Adapting Existing Scheduling Frameworks to Fault Burst
Settings

The precise definition of the (worst-case) overhead for
an arbitrary scheduling algorithm is critical for real-time
guarantees. However thedesignof fault burst sensitive real-
time scheduling algorithms requires additional considerations;
in particular, it requires the specification of the algorithm’s
actionsbeforeandafter the detection of the fault. Notice that
the multiple recovery settings imply that at the time of fault
detection (at the end of a jobJk), Jk along with all preempted
jobs at that time, must be re-executed from scratch. We referto

this additional workload as “recovery load” (or recovery jobs)
in the rest of the paper.

Priority-Driven Real-Time Scheduling Algorithms [15],
are well known and widely used. A priority driven algorithm,
at any time, schedules the ready job with the highest priority,
and does not leave the CPU idle as long as there are pending
jobs. Common examples are the earliest-deadline-first (EDF)
and fixed-priority algorithms.

In this work, we use existing priority-driven real-time
scheduling algorithms as the basis for designing effective
schemes to tolerate fault bursts. In particular, we assume that,

i. The priority assignment policy is deterministic and
does not change at run-time.

ii. The job that is scheduled at any time has the highest
priority among all ready jobs. This applies to both
original jobs and recovery jobs. That is, an original
job may have higher priority with respect to a recovery
job as in [16], [17].

iii. On the other hand, in the post-detection part, the
algorithm may choose to idle even when there are
ready jobs, which may include recovery jobs.

We call an algorithm that satisfies all three conditions above
a Fault-Burst Sensitive Priority Drivenscheduling algorithm.
Obviously a natural fault-burst sensitive priority drivenalgo-
rithm would be based on simply using a well-known priority
driven algorithm (such as EDF), and use it in non-idling
fashion, even in the post-detection part. While this strategy
is optimal in settings where faults areinstantaneousand affect
only one job [16], it is clearly sub-optimal in fault burst
settings. The main reason is that with the fault bursts the re-
execution of the recovery jobs may be still subject to faults,
further increasing the recovery load.
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Fig. 5. Failure of re-execution for a short fault burst

In fact, a quick analysis shows that even when∆ is of short
duration, it may be necessary to execute a job 3 times (once for
original and two recoveries), in case that fault burst overlaps
partially with the first re-execution as shown in Figure 5. A
similar analysis shows that

⌈

∆
Ci

⌉

+1 re-executions of a faulty
job Ji may be needed foranynon-idling algorithm. As shown
in Figure 6, assume that the fault burst starts right beforetx,
the completion time ofJi. Then, whenCi < ∆ < 2Ci, we
will need 3 re-executions for successful completion.
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Fig. 6. Maximum re-executions required for a fault burst

Note that, considering possible re-execution of the pre-
empted jobs in the potential fault burst region would even
further increase the recovery load. Using our terminology,
we can see thatnon-idling strategies have the potential of
significantly increasing the worst-case overhead.
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B. The∆−idling Scheme

We now propose a generic fault burst sensitive priority
driven algorithm satisfying all three conditions given in Sec-
tion V-A. The algorithm, called∆−idling, is generic in the
sense that it can be used in conjunction with any standard
priority driven scheduling algorithm.

The ∆−idling scheme essentially consists ofdeliberately
leaving the CPU idle for∆ units of time(the known upper
bound on the length of the fault burst),upon detection of the
fault. At the end of this period, the scheduler continues with the
execution of the pending load (including recovery) according
to the original priority assignment.

The main rationale for this scheme is to prevent the system
from executing additional jobs in a region which may be still
affected by the fault burst. With∆-idling, the re-executions
are never subject to faults, hence each job may need at
most one re-execution before successful completion. Although
leaving the system idle for∆ time units results in loss of
some computation time, as we show shortly, it minimizes the
worst case overhead, and allows us to derive tight bounds
(not achievable by any non-idling algorithm) for schedulability
guarantees.
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Fig. 7. Overhead for the∆−idling scheme

Example: Let us consider the same example as in Sec-
tion IV-C. Figure 7 shows the schedule with∆−idling. A fault
is detected att = 20 and the length of the fault burst is 12. In
that case, the fault burst is guaranteed to end byt = 32. In fact,
∆−idling will keep the system idle untilt = 32. As a result, all
future re-executions will be successful. Therefore, irrespective
of the actual position of the fault burst, the overhead will not
exceed 20 and the deadline will be met.

We now prove the optimality of∆−idling for minimizing
the WCO for a fault burst detected at timetx. Assume that
Algorithm A is a standard priority based scheduling algorithm.
The recovery is performed with multiple recovery strategy.At
the time of fault detection, the system can use∆−idling or
any arbitrary recovery strategy. We denote the∆-idling variant
of the algorithm byA − ∆. The high level idea of the proof
is as follows. The overhead depends on the jobs that are in
preempted state at the start of the fault burst and the jobs
that execute during the fault burst. Prior to fault detection, the
schedule is the same for all recovery strategies. Therefore, the
set of jobs in preempted state at the start of the fault burst will
remain the same for all recovery strategies. By idling in the
interval [tx, tx +∆), ∆−idling prevents further increase of the
overhead.

Theorem 3:For any arbitrary scheduling algorithmA with
multiple recovery strategy,∆−idling minimizes the worst-case
overhead,WCO(tx) when a fault burst is detected at timetx,
among all algorithms that useA up to t = tx.

Proof: The proof is presented in the appendix.

VI. SCHEDULABILITY AND UTILIZATION BOUNDS FOR
PERIODIC TASKS

In this section, we consider periodic task sets that represent
many real-time applications in practice. Specifically, we have
a set of n periodic real time tasksΨ = {T1, T2, ..., Tn}.
Associated with each taskTi, there is a worst-case execution
time Ci, periodPi, and the relative deadlineDi. We assume
implicit-deadline systems whereDi = Pi. The jth job of Ti,
denoted byJi,j , is released att = Pi · (j − 1) and must be
completed by its deadline att = Pi · j. The least common
multiple (LCM) of the task periods is called thehyperperiod.

The utilization of a taskTi is defined asui = Ci

Pi
. Similarly,

the total utilization of the system is given byUtot =
∑n

i=1 ui.

For the schedulability analysis of periodic tasks with fault
bursts, we make the following assumptions.

• ∆ < Pmin. This assumption ensures that the length
of the fault burst is less than the smallest period in the
system. This assumption is necessary to analyze the
conditions for hard real-time scheduling. Otherwise,
the task with smallest period will definitely miss
deadline, when the fault burst completely overlaps
with its period.

• The two consecutive fault bursts are separated by at
least one hyperperiod.

We define utilization bound for fault burst settings as follows.

∆-Sensitive Utilization Bound: A scheduling algorithmA
is said to have the∆-sensitive utilization bound(U∆

b ), if
it can generate a feasible schedule for any periodic task set
with utilization Utot ≤ U∆

b , for any fault burst of length not
exceeding∆, occurring at any arbitrary time.

A. Frame-Based Systems

We now consider a special case of periodic tasks, called
frame-based systems, where all tasks are released at the same
time and have a common period/deadline,P . In this setting,
a natural solution is to execute all tasks one after another
according to a pre-speficied order. We call this algorithm the
Chain-Executionalgorithm. Clearly, in the absence of faults,
the task set is feasible if and only ifΣCi ≤ P .
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Fig. 8. ∆−idling for frame-based system

Note that, since all fault detections occur at the end of task
executions and there are no preemptions, the chain-execution
has a clear advantage in fault burst settings: only the faulty task
Ti will need to be re-executed. Suppose a fault is detected at
t = tx at the completion ofTi. We can now apply Equation (5)
and obtain the worst-case overhead for any chain-execution
algorithm as:

Ci ≤ WCOchain(tx) ≤ Ci + Q (6)
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whereQ ≥ 0 is the additional overhead due to task execution
(or re-executions) in[tx, tx + ∆).

Algorithm Chain- ∆: The∆−idling scheme can be used in
conjunction with the chain execution algorithm. The resulting
algorithm is called thechain-∆ algorithm. In accordance with
the ∆−idling scheme, tasks are executed according to the
chain algorithm until a fault is detected. Then the system is
kept idle for ∆ time units. After that, the system resumes
the re-execution of the failed task and the rest of the tasks.
Figure 8 shows a schedule segment generated by the chain-∆
algorithm. The worst-case overhead for chain-∆ algorithm is

WCOchain−∆(tx) = Ci (7)

as it does not execute any task in the interval[tx, tx + ∆)
and there are no preemptions. According to Theorem 3, this
is the lower bound for the worst-case overhead for any chain-
execution based real-time scheduling algorithm with multiple
recovery strategy.

Theorem 4:A frame-based system scheduled by the
Chain-∆ algorithm is∆-FB-feasible, if and only if,

ΣiCi + Cmax ≤ P − ∆ (8)

Proof: The proof is presented in the appendix.

The result above enables us to derive the∆-Sensitive
Utilization Bound for the Chain-∆ algorithm as well. Let us
defineumax = max{Ci

P
}. By simple algebraic manipulation

on Equation (8), we get:

Utot ≤ 1 −
∆

P
− umax

Since the condition is necessary and sufficient, for any taskset
with total utilization not exceeding(1−∆

P
−umax), there exists

a feasible schedule for any arbitrary fault burst occurrence
time. Conversely, if the total utilization of a task set exceeds
(1 − ∆

P
− umax), there is no feasible schedule for some fault

burst arrival pattern(s).

Corollary 1: U∆
b = (1 − ∆

P
− umax) for the Chain-∆

algorithm and the bound is tight.

B. General Periodic Tasks

In this section, we consider the well-known preemptive
Earliest-Deadline-First (EDF) scheduling policy for general
periodic tasks, where tasks may have different periods. EDF
is known to be optimal for preemptive scheduling of real-time
tasks on a single processor system in a fault-free scenario.
However, preemptions can occur and more than one task may
be affected by a single fault burst.

We now present our analysis of the utilization bound
for periodic tasks. We first show that no scheduling algo-
rithm can achieve a∆-sensitive utilization bound higher than
1
2 (1 − ∆

Pmin
).

Theorem 5:For any arbitrary scheduling algorithmA,
U∆

b ≤ 1
2 (1 − ∆

Pmin
).

Proof: Assume that the∆-sensitive utilization bound for
an arbitrary algorithmA exceeds 1

2 (1 − ∆
Pmin

). So there
must be also a single-task system with computation time

C and P = Pmin = D and with utilization greater than
1
2 (1 − ∆

Pmin
) = 1

2 (1 − ∆
D

) that can be feasibly scheduled by
A for any arbitrary fault burst occurrence time. According to
our assumption,

C

D
>

1

2
(1 −

∆

Pmin

) (9)

Now assume that the fault burst occurs right before the
completion of the task. Then all re-execution attempts prior
to the completion of the fault burst will also fail. Therefore,
the re-executions must be performed after the fault burst has
ended. So,C + ∆ + C ≤ D = P = Pmin must hold

By simple algebraic manipulation we obtain,

C

D
≤

1

2
(1 −

∆

Pmin

) (10)

Equations (9) and (10) contradict. Therefore, the utilization
bound forA can not exceed12 (1 − ∆

Pmin
). �

Now let us consider the∆−idling scheme with the preemp-
tive EDF scheduling policy, called EDF-∆. Tasks are executed
according to the preemptive EDF policy. When a fault is
detected, the system is kept idle for∆ units of time. When the
execution resumes, the re-executions are performed according
to the EDF policy along with the original tasks.

Theorem 6:For a periodic task set scheduled by the
EDF-∆ policy, U∆

b = 1
2 (1 − ∆

Pmin
).

The proof of Theorem 6 is presented in the appendix.

Combining this result with Theorem 5, we obtain the
following corollary:

Corollary 2: EDF-∆ provides the highest utilization
bound achievable for periodic task sets.

Remark 1.While Theorem 6 is presented for periodic tasks,
the proof remains valid forsporadictasks [18], when consec-
utive instances of a given task are separated byat least the
period value. Therefore, for sporadic tasks the number of task
instances in a specific time duration, can not be higher than
the case with the strictly periodic tasks. As a result, the sum
of computational demand in any interval will be still bounded
by that of a strictly periodic task set in that interval, and the
reasoning will follow the same lines.

Remark 2.Even though EDF-∆ gives the highest possible uti-
lization bound, we underline that this does not imply that itcan
schedule any task set under agiven (specific)fault burst pattern
whenever it is possible to do so. One could imagine a scenario
where the fault burst ends just before the fault detection time,
and EDF-∆ misses a deadline due to the idling period, whereas
a non-idling algorithm could meet the deadline. Due to the
nature of uncertainty involved in the fault burst settings,an
“adversary” can always change the actual position of the
fault burst to demonstrate that the action taken by a specific
algorithm was suboptimal. EDF-∆, on the other hand, provides
the best/highest utilization bound that can be obtained by any
deterministic priority driven fault burst scheduling algorithm.
The bound for any non-idling algorithm is strictly smaller than
1
2 (1 − ∆

Pmin
). To verify this, one can consider a single-task

scenario withC = 40, D = P = 100 and∆ = 20. For EDF-
∆, the utilization bound is 0.4. Therefore the task set can be
scheduled feasibly by EDF-∆ under any fault burst pattern.
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Now consider a non-idling schedule and suppose that the fault
burst starts right before the completion of the task. As a result,
the fault burst will affect the first re-execution as well. The task
will complete att = 120 at the earliest, giving a deadline miss.
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Fig. 9. Utilization Bound

Figure 9 shows how the utilization bound varies as a
function of the minimum task period, for various fault burst
lengths. The maximum utilization bound for any task set is
0.5. If the length of the fault burst is greater than the minimum
period, no scheduling algorithm can guarantee feasibility. As
∆ → 0, the settings converge to those of the instantaneous
faults with multiple recovery strategy [6], giving the bound of
0.5. As the duration of the burst length∆ increases, a marked
decrease in the bound is observed; however, for task systems
with largerPmin values the reduction in the utilization bound
is relatively minor.

VII. E XPERIMENTAL EVALUATION

Theorem 6 in Section VI-B indicates that EDF-∆ provides
the highest utilization bound to schedule periodic task sets.
Yet, the bound provides only a sufficent condition for schedu-
lability, and is naturally derived under worst-case scenarios
over all task sets. We believe the following questions warrant
an empirical evaluation:

• For task sets with utilization greater than the bound
of 1

2 (1 − ∆
Pmin

), how does the fraction of sets that are
schedulable by EDF-∆ change, as a function of the
system parameters?

• How does the average performance of EDF-∆ com-
pare to that of the naive EDF (which triggers re-
executions immediately when a fault is detected)?

For this purpose, we constructed a discrete event simulator
to check the feasibility of synthetically generated task sets
for various burst length parameters. Given a task set and
a burst of length∆, we assessed the feasibility for both
EDF-∆ and EDF, i.e.,checked whether the task set remains
feasible with these two strategies, for any burst length of
length ∆ that may start anywhere during the hyperperiod.
Obviously, simulating the execution for all possible faultburst
start points is computationally prohibitive. LetX be the set
of job completion points in the fault-free EDF schedule. We
make the following observation:

Proposition 1: For the EDF-∆ policy, to assess the feasi-
bility under a fault burst of length∆, it is sufficient to consider
the fault burst start points that immediately precede the set of
job completion pointsX .

Proposition 1 may be justified through the following ob-
servation. All fault bursts will be detected at a subsequent
job completion point. Note that there may be multiple fault
burst start points{tf} that are all detected at the same job
completion pointts > tf . For all such distinct fault scenarios,
the schedule up to timets (the first fault detection point) will
be identical. Moreover, the EDF-∆ algorithm will leave the
CPU idle in the interval(ts, ts + ∆] for all such scenarios,
effectively eliminating the possibility that some new faults
will be incurred after the fault detection pointts. Finally,
for all such fault occurrence points{tf}, the schedule after
t = ts +∆ will be identical in the EDF-∆ schedule. Thus, the
feasibility impact of all those fault scenarios can be assessed
by considering only one such scenario that leads to the fault
detection att = ts ∈ X , in particular the one that starts at
time t = t−s .

However, for naive (non-idling) EDF, the feasibility cannot
be accurately assessed by considering only the fault bursts
starting immediately before the job completion points in the
fault-free EDF schedule. This is because, naive EDF will
dispatch jobs immediately after fault detection, which may
cause additional jobs to fail and trigger recurring fault de-
tections. As a result, unlike EDF-∆, the final schedule will
depend on the subsequent jobs that are affected by the fault
burst. So, we need to consider additional fault burst intervals
which may end at different times aftert = t−s , resulting in a
different set of affected recoveries and schedules. Nevertheless,
it is possible to obtain anupper boundon the feasibility
performance of the naive EDF by considering the fault bursts
that start at timet = t−s (∀ts ∈ X). We implemented that
(optimistic) approximation in the interest of computational
time needed for simulations. Our results below indicate that
EDF-∆ outperforms even this optimistic approximation of the
naive EDF with immediate recovery.

In our evaluation, for each data point, we conduct 100
experiment. Each experiment has at least 200 task sets to
obtain simulation results within97.5% confidence interval. For
each experiment we obtained the fraction of task sets that are
feasibly scheduled (called thefeasibility ratio), by EDF-∆ and
the naive EDF, separately. As discussed above, by limiting the
fault burst start points to those immediately preceding thejob
completion points in the fault-free EDF schedule, we obtainthe
exact feasibility ratio for EDF-∆ and an (optimistic) approx-
imation of the feasibility ratio for the (naive) EDF. The task
utilization values are generated according toUUnifast scheme
[19]. The minimum and maximum allowable utilization per
task are set to 0.5 and 30% of total utilization, respectively. The
task periods are generated using the log-normal distribution,
between 25 and 1000 ms. Those values correspond to the
minimum and maximum task periods in the well-known GAP
task set from the avionics domain [20]. The execution time
each task is obtained by multiplying its period and utilization
value. By default, we considered 15 tasks in each set. For each
task set, we consider fault bursts of length not exceeding the
minimum period of the task set.

Figure 10 shows the feasibility ratio of the EDF-∆ scheme
for different task utilization and fault burst length values
on a 3-D plot. For small utilization (U ≤ 0.3) values the
feasibility ratio is very close to 1. As we increase the utilization
the feasibility drops; but even forU = 0.7 in practice the
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ratio exceeds 60% except for when the fault burst length∆
approachesPmin = 25ms. In fact for small∆ values (e.g.,
∆ = 5ms) the ratio is significantly high even whenU = 0.9.
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Fig. 10. Feasibility Ratio for EDF-∆
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Fig. 11. Impact of Utilization

We next compare the performance of EDF-∆ and naive
EDF. Fig. 11 shows how the feasibility ratios vary as a function
of the utilization for different burst lengths. We observe that
EDF-∆ outperforms EDF in the entire spectrum, for the same
fault burst length. For example, when∆ = 5ms, EDF-∆
maintains a feasibility ratio of at least 0.8 as long asU < 0.9;
whereas EDF’s performance can be as low as 0.75. Fig. 12
illustrates the same phenomenon over a continuous spectrum
of the fault burst length∆. We observe that for large∆ values,
the feasibility performance rapidly drops, but EDF-∆ exhibits
superiority over naive EDF for all values.
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Fig. 12. Impact of∆

Figure 13 shows the impact of number of tasks in each
task set on the feasibility ratio. We set the utilization to 0.7
and present the feasibility ratio for different∆ values. Notice
that the feasibility ratio increases with the number of tasks
for both schemes. The main reason is that as the number of
tasks increases for the same utilization value, we have more
job completion points and acceptance tests, leading to faster
fault detection. Again, EDF-∆ has superior performance.

In the presence of fault bursts, an important parameter
is the fault resilienceof a task set, which is defined as the
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maximum length of the fault burst the set can sustain while
still maintaining the feasibility [8]. For every task set atvarious
utilization values, we performed a binary search on the length
of the fault burst values (between0 andPmin = 25 ms) and
check the feasibility for each, to find the fault resilience of
the corresponding task set. The average of task fault resilience
values is presented in Fig. 14. At very low utilization, there is
ample slack in the system and therefore the fault resilienceis
close toPmin = 25ms. As we increase the utilization, there
is less time available for task re-executions. As a result, the
fault resilience drops and at higher utilization it approaches 0.
Notice that the fault resilience values obtained for EDF-∆ are
better than those of the naive EDF scheme.
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Fig. 16. Impact on fault resilience

In the experiments reported so far the ratio of the maximum
periodPmax to the minimum periodPmin was 1000ms

25ms
= 40.

We next consider the impact of varyingPmax from 125 ms
to 1750 ms, for both the feasibility ratio and fault resilience
in Fig. 15 and Fig. 16, respectively. We observe only minor
variations with increasingPmax values, as the most important
parameters that determine feasibility are the smallest task
periodPmin and∆ values for a given total utilization. How-
ever, increasingPmax value gives some minor leverage for
feasibility and fault resilience as the number of preemptions
that may affect the execution of short-period tasks decreases.
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VIII. C LOSELY RELATED WORKS

Fault tolerant real-time scheduling is a well-studied re-
search area. Since transient faults are more common [3],
most of the work is dedicated to tolerating transient faults.
In earlier works, faults are considered to be instantaneousand
fault arrivals were assumed to follow some known pattern.
For example in [4] faults are considered to follow Poisson
or Weibull distribution. The works in [5], [6], [7] assumed a
minimum inter-arrival time between faults. This is called the
pseudo-periodicfault model in [21]. Later works considered
tolerating a fixed number of faults during the entire execution
[16], [17]. [16] is more generalized in that it allows recovery
jobs with execution time different than the original jobs.

Many et al. proposed thefault burst model [8] to handle
faults that occur in quick succession over a continuous time
interval with an unknown distribution. In [8], the authors
considered fixed-priority systems such asRate Monotonic
(RM) [22] or Deadline Monotonic(DM) [23] scheduling
and computed the worst-case response time for a task in
the presence of a fault burst. Using the worst-case response
time the authors proposed a technique for evaluating the
feasibility of a task set. In [11], the authors extended their
work to determine the maximum length of the fault burst to
guarantee feasibility, again for fixed-priority systems. Aysan
et al. [24] considered a probabilistic fault burst model for
the fixed priority systems and obtained probabilistic feasibility
guarantees. Finally, in [9], the authors considered theEarliest-
Deadline-First (EDF) policy. The work in [9] computes the
worst-case increase in processor demand during an interval.
Using this result, the authors presented the minimum resource
augmentation required to ensure feasibility. In [9] the authors
also presented a necessary condition for the feasibility ofa
periodic EDF system under fault burst. The work in [9] and
our paper differ in that we considermultiple recoverystrategy,
while [9] considerssingle recoverystrategy.

In [10], the authors considered a quantile-based approach to
obtain stochastic schedulability guarantees for a system under
a random burst of errors. Instead of considering a fault burst
interval, the authors considered arbitrary arrival of multiple
errors. Given a probabilistic error model, [10] provides a bound
for the number of faults that a system should tolerate in order
to achieve an arbitrary reliability target.

Utilization bounds provide efficient tests to check the
feasibility of periodic tasks. For preemptive EDF, in the fault
free scenario, the utilization bound is proved to be 1 [22].
The same utilization bound holds for sporadic tasks [18]. For
RMS, the utilization bound approachesln 2 ≃ 0.69 for large
number of tasks [22]. However, in the presence of a fault, the
utilization bound decreases significantly. For RMS, even ifthe
fault is instantaneous, the utilization bound reduces to 0.5 [6].

IX. CONCLUSIONS

In this paper, we considered the feasibility analysis of real-
time jobs under fault burst with multiple recovery strategy.
We first addressed a generic real-time system with a set of
distinct jobs. We showed that determining the feasibility of
such a system is NP-Hard even when the exact position of
the fault burst is known. The difficulty of the problem only
increases for a real system as the fault burst interval is not

known precisely. We proposed a solution called the∆−idling
scheme, which minimizes the worst-case waste of execution
time (overhead) with multiple recovery strategy. Then we
considered two special but common periodic task systems.
We derived an utilization bound for the frame-based system,
where all jobs have a common deadline. Finally, we considered
general periodic tasks systems. We showed that the utilization
bound to guarantee feasibility for EDF when augmented by
∆-idling scheme is1

2 (1 − ∆
Pmin

). We also proved that no
scheduling algorithm for periodic tasks can achieve a higher
utilization bound. Finally, we presented an empirical evaluation
with synthetically generated task sets, showing that EDF with
∆-idling gives a significant improvement on the ratio of the
schedulable task sets when compared to the naive EDF. In the
future, we plan to extend this work by considering multiple
fault bursts that can occur during the execution of the aperiodic
job sets, and fault bursts that may be separated by an interval
shorter than the hyperperiod, for periodic task sets. In addition,
we plan to explore the problem on multicore systems where
the individual cores or a group of cores are simultaneously
affected by a fault burst.
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faults for aperiodic tasks in hard real-time systems,”IEEE Transactions
on Computers, vol. 49, no. 9, pp. 906–914, 2000.

[18] S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” inProc. of 11th IEEE
Real-Time Systems Symposium, 1990, pp. 182–190.

[19] E. Bini and G. C. Buttazzo, “Measuring the performance of schedulabil-
ity tests,” Journal of Real-Time Systems, vol. 30, no. 1-2, pp. 129–154,
2005.

[20] C. D. Locke, D. R. Vogel, and T. J. Mesler, “Building a predictable
avionics platform in ada: a case study,” inProc. of the 12th IEEE Real-
Time Systems Symposium, 1991.

[21] S. Punnekkat, “Schedulability analysis for fault tolerant real-time sys-
tems,” Ph.D. dissertation, York University, UK, 1997.

[22] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,”Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[23] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, “Real-
time scheduling: the deadline-monotonic approach,” inProc. of IEEE
Workshop on Real-Time Operating Systems and Software, 1991.

[24] H. Aysan, R. Dobrin, S. Punnekkat, and R. Johansson, “Probabilistic
schedulability guarantees for dependable real-time systems under error
bursts,” in Proc. of the 10th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications, 2011.

[25] M. R. Garey and D. S. Johnson,Computers and Intractability. New
York: Freeman, 1979.

APPENDIX

A. Proof of Theorem 1

Theorem 1:The problem of determining whether a set of real-
time jobs are∆-FB-feasible (the problemFB-feasibility) is NP-Hard,
even when the fault burst is known to occur in the exact interval
[ta, ta + ∆] a priori.

Proof: We will reduce the the well-known NP-Hard problem
Partition [25] to FB-feasibility. The input to the problem is a set
of n integersS = {s1, . . . , sn} where

Pn

i=1 si = 2X. The problem
is to determine whether there exist2 disjoint subsets ofS such that
the sum of integers in each set is equal to exactlyX. The union of
two sets together must include all the elements inS.
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Fig. 17. ReducingPartition to FB-feasibility

We can reduce any given instance of thePartition problem to
an instance of theFB-feasibility problem as follows. We construct
a set ofn jobs. The worst-case execution time of theithth job, Ci,
is set equal tosi . The release times of all the jobs are equal to0.
Similarly, all the deadlines are the same and equal2X + ∆, where
∆ is the length of the fault burst in theFB-feasibility instance. In
the FB-feasibility instance, the fault burst is set to occur the interval
[X, X + ∆). Figure 17 shows the position of the fault burst with
respect to the common deadline. Jobs can be executed in any order
as they have a common deadline. Notice that the selection of job

parameters implies that there is a feasible schedule if and only if no
job execution partially overlaps with the fault burst and the system
does not remain idle at any time before and beyond the fault burst.
A partial overlap with the fault burst would require the re-execution
of the preempted job at the end of fault burst, for which thereis no
sufficient time.

Therefore the integers corresponding to the jobs executed prior
to the fault burst will form the first subset and the rest will form
the second subset in thePartition instance. Thus the outcome of the
FB-feasibility instance will determine the outcome of thePartition
instance, completing the proof.�

B. Proof of Theorem 2

Theorem 2:A job set Φ is ∆-FB-feasible, only if there exists
an algorithmA such that for every(ta, tb = ta + ∆) fault burst
interval and for every(t1, t2) time interval, the following holds for
the generated scheduleS(A, ta, tb):

X

Jk∈γ(t1,t2)

Ck + Oγ(t1,t2)(tx, ty) + (ty − tx) ≤ (t2 − t1) (11)

where, [tx, ty) denotes the time interval where the fault burst over-
laps with the (t1, t2) interval under consideration, namely,tx =
max{t1, ta} and ty = min{tb, t2}

Proof: Suppose,Φ is ∆-FB-feasible. Then, there exists an algo-
rithm A that generates a feasible schedule for any fault burst up to
length∆.

Assume that the fault burst occurs at[ta, tb) andA generates the
feasible scheduleS(A, ta, tb). We now show that, for any arbitrary
[t1, t2), the claim holds forS(A, ta, tb). We first consider the case
where the interval[t1, t2) does not overlap with the fault burst. Then
the overhead due to fault burst will be0, and the feasibility condition
becomes,

X

Jk∈γ(t1,t2)

Ck ≤ t2 − t1

which is trivially true for any feasible scheduleS, as we must execute
all jobs in γ(t1, t2) before their deadlines.

Now, assume that the interval[t1, t2) overlaps with the fault burst.
Then [tx, ty) denotes the time interval when the system is under
fault burst in interval[t1, t2). Job executions that partially overlap
with the fault burst, as well as jobs that remain in preemptedstate,
are unreliable as well. In scheduleS(A, ta, tb) if the execution of
a job in γ(t1, t2) is affected by the fault burst during[tx, ty), the
execution time consumed by such jobs outside the[tx, ty) is given by
Oγ(t1 ,t2)(tx, ty). Therefore the effective computation time available
during [t1, t2) is,

(t2 − t1) − (ty − tx) − Oγ(t1,t2)(tx, ty) (12)

Hence, the following must hold:

X

Jk∈γ(t1,t2)

Ck ≤ (t2 − t1) − (ty − tx) − Oγ(t1 ,t2)(tx, ty)

By simple algebraic manipulation we obtain

X

Jk∈γ(t1,t2)

Ck + Oγ(t1,t2)(tx, ty) + (ty − tx) ≤ (t2 − t1) (13)

Therefore theorem 2 holds for any arbitrary interval[t1, t2) in
S(A, ta, tb). �
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C. Proof of Theorem 3

Theorem 3:For any arbitrary scheduling algorithmA with multi-
ple recovery semantics,∆−idling minimizes the worst-case overhead,
WCO(tx) when a fault burst is detected at timetx, among all
algorithms that useA up to tx.

Proof: Suppose a fault burst is detected at timetx at the
completion ofJi. For any scheduleS(A) generated by algorithm
A,

WCOA(tx) = max
ri−∆≤ta≤tx

{OS(A)(ta, ta + ∆)}

We can rewriteWCOA(tx) as follows,

WCOA(tx) = max{ max
ri−∆≤ta<tx−∆

{OS(A)(ta, ta + ∆)},

max
tx−∆≤ta≤tx

{OS(A)(ta, ta + ∆)}}
(14)

Equation (14) represents the worst case overhead as the maximum
overhead among the maximum overhead of two intervals. The first
interval considers all the scenarios when the fault burst completes
prior to tx. The second interval considers the cases when the fault
burst includestx. We will consider each interval separately.

Case 1:ri −∆ ≤ ta < tx −∆. The fault burst has ended before
tx. Therefore, during the fault burst bothA and A-∆ has the same
schedule. Therefore, the overhead will be the same.

∀ri−∆≤ta<tx−∆ O
S(A)(ta, ta + ∆) = O

S(A−∆)(ta, ta + ∆)

Case 2: tx − ∆ ≤ ta ≤ tx. The fault burst includestx and
possibly spans beyondtx. Note that, the set of jobs in preempted state
will be the same for all recovery strategies. Due to the idle period,
A-∆ will not execute any job during the fault burst aftertx, while
A may execute some additional job. Therefore,XS(A−∆)(ta, ta +
∆) ⊆ XS(A)(ta, ta + ∆) and for any jobJi ∈ XS(A−∆)(ta, ta +

∆), Ji will not execute any time aftertx. Therefore,αS(A−∆)
i (ta +

∆, di) = 0. So,

∀tx−∆≤ta≤tx
O

S(A)(ta, ta + ∆) ≥ O
S(A−∆)(ta, ta + ∆)

From case 1 and 2 we can conclude that,

WCOA−∆(tx) ≤ WCOA(tx)

for any scheduling algorithm based onA up to fault detection point
tx and any arbitrary occurrence of the fault burst.�

D. Proof of Theorem 4

Theorem 4:A frame-based system scheduled by the chain-∆
algorithm is∆-FB-feasible, if and only if,

ΣiCi + Cmax ≤ P − ∆ (15)

Proof: If part: Assume that Equation (15) holds. Now, we
construct a feasible schedule for the task set using the chain-∆
algorithm. All tasks are executed according to the pre-specified order
until a fault is detected. The chain-∆ algorithm will idle for ∆ units
and then re-execute faulty task. All other tasks will be executed only
once. As a result, the total execution time needed is boundedby
(ΣCi + Cmax) which is no larger than the available execution time
P −∆. Therefore, chain-∆ will be able to feasibly schedule the task
set for any fault burst of length at most∆.

Only if part: Since all tasks are released at the same time and has
a common deadline, the necessary condition according to Theorem 2
can be written as,

ΣCi + O
S(chain−∆)(tx, tx + ∆) + ∆ ≤ P

For chain-∆ algorithm, the maximum overhead occurs when the task
with maximum execution time encounters the fault burst. Further,
there are no preemptions and the system deliberately avoidsaug-
menting the overhead by remaining idle after the fault detection. So
the worst-case overhead isCmax, giving:

ΣCi + Cmax ≤ P − ∆

Consequently, Equation (15) is the necessary and sufficientcon-
dition for chain-∆ algorithm.�

E. Proof of Theorem 6

Theorem 6:For a periodic task set scheduled by the EDF-∆
policy, U∆

b = 1
2
(1 − ∆

Pmin
).

Proof: We use a proof by contradiction. Suppose, there exists a
periodic task set withUtot ≤

1
2
(1− ∆

Pmin
) for which EDF-∆ misses

a deadline, when subject to a fault burst of length at most∆.

Consider the first deadline miss at timedi, when a jobJi,j of
taskTi misses deadline. We can identify the earliest job release point
ra ≤ ri such that the system is continuously executing jobs with
deadline equal todi or earlier. Note that in this interval EDF-∆ can
idle only for at most∆ units upon the detection of a fault (if there is
a fault burst in this interval). At all other times, it shouldbe executing
jobs with deadlinedi or earlier according to EDF priority. Hence, the
sum of required computations (jobs with deadlines≤ di) during this
interval should be larger than the available computation time. The
available CPU time is at least(di − ra) − ∆.

Note that, in EDF-∆, the re-execution starts only after the delay.
By that time, the fault burst is guaranteed to end. As a resultno
re-execution will fail. So, EDF-∆ executes each job at most twice.
During interval [di, ra) each taskTk may have at most

j

di−ra

Pk

k

instances. Thus, the total computational demand is boundedby,

2 ×
n

X

k=1

—

di − ra

Pk

�

Ck (16)

SinceJi,j misses deadline, the following must hold,

2 ×
n

X

k=1

—

di − ra

Pk

�

Ck > (di − ra) − ∆ (17)

We can perform algebraic manipulation as follows.

⇒ 2×

n
X

k=1

di − ra

Pk

Ck > (di−ra)−∆ ⇒ 2×

n
X

k=1

Ck

Pk

> 1−
∆

di − ra

⇒ 2 × Utot > 1 −
∆

di − ra

Sincera ≤ ri, di − ra ≥ Pmin. Thus we obtain,

⇒ Utot >
1

2
(1 −

∆

Pmin

) (18)

Equation (18) contradicts with our assumption. Therefore,the as-
sumption is not valid. So, a feasible schedule exists for anytask set
with total utilization not exceeding1

2
(1 − ∆

Pmin
). By definition of

the ∆-sensitive utilization bound, we findU∆
b = 1

2
(1 − ∆

Pmin
) for

the EDF-∆ policy. �
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