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Abstract

Reliability-aware power management (RAPM)
schemes, which consider the negative effects of voltage
scaling on system reliability, were recently studied to
save energy while preserving system reliability. The
existing RAPM schemes for periodic tasks may be, how-
ever, inherently unfair in that they can manage only some
tasks at the expense of the other remaining tasks. In this
work, we propose the flexible reliability-aware power
management framework, which allows the management
of all the tasks in the system, according to their assurance

requirements. Optimally solving this problem is shown
to be NP-hard in the strong sense and upper bounds
on energy savings are derived. Then, by extending the
processor demand analysis, a pseudo-polynomial-time
static scheme is proposed for the “deeply red” recovery
patterns. On-line schemes that manage dynamic slack
for better energy savings and reliability enhancement are
also discussed. The schemes are evaluated extensively
through simulations. The results show that, compared
to the previous RAPM schemes, the new flexible RAPM
schemes can guarantee the assurance requirements
for all the tasks, but at the cost of slightly decreased
energy savings. However, when combined with dynamic
reclaiming, the new schemes become as competitive
as the previous ones on the energy dimension, while
improving overall reliability.

1 Introduction

Energy has been recognized as a first-class resource in

computing systems, especially for battery-operated em-

bedded devices that have limited energy budget. As

a common strategy for saving energy, system compo-

nents are operated at low-performance (thus, low-power)

states, whenever possible. For instance, through dynamic
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voltage and frequency scaling (DVFS) [25], the supply

voltage and operating frequency of modern processors

can be scaled down to save energy. However, at low

processor operating frequencies, applications will gen-

erally take more time to complete. In the recent past,

several research studies explored the problem of mini-

mizing energy consumption while meeting all the timing

constraints for various system models [3, 18, 23], by ex-

ploiting the available static and/or dynamic slack in the

system.

More recently, the adverse effect of DVFS on sys-

tem reliability due to increased transient fault rates has

been studied [30]. With the continued scaling of CMOS

technologies and reduced design margins for higher per-

formance, it is expected that, in addition to the systems

that operate in electronics-hostile environments (such as

those in outer space), practically all digital computing

systems will be much more vulnerable to transient faults

[10]. Hence, for safety-critical real-time systems (such as

satellite and surveillance systems) where reliability is as

important as energy efficiency, reliability-cognizant en-

ergy management becomes a necessity.

Some recent studies addressed energy efficiency and

system reliability simultaneously [8, 9, 17, 19, 24, 26,

31]. However, most of the previous research either fo-

cused on tolerating a fixed number of faults [9, 17, 24, 31]

or assumed constant transient fault rate [26]. By taking

the negative impact of DVFS on system reliability (due

to increased transient fault rates at lower supply volt-

ages [30]) into consideration, we proposed and analyzed

reliability-aware power management (RAPM) schemes

for different real-time task models [27, 28, 29, 32]. Un-

like the ordinary power management schemes that ex-

ploit all the available slack for energy savings [3, 18, 23],

the central idea of RAPM is to reserve a portion of
available slack to schedule a recovery job for any job
whose execution is scaled down through DVFS [27].

The remaining slack is still used to save energy by reduc-

ing the execution frequency of the job. It should be noted

The 14th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

1533-2306/08 $25.00 © 2008 IEEE

DOI 10.1109/RTCSA.2008.48

259



f

100 20 30

time

6040 50

J J J JJ J
J

J JJ
B B B B B B B

1,1 2,1 3,1
4,1 5,1

1,2 2,2 3,2
4,2

1,3 2,3 3,3
5,2

3,32,3
B

1,33,22,21,23,12,11,1 J J J
B

a. Schedule of the task-level static RA-PM when tasks τ1, τ2 and τ3 are managed [29]

f

100 20 30

time

6040 50

J J
B B

1,1 2,1
2,11,1 J

3,1 J
4,1

B
4,1 J

5,1 J
1,2

B
1,2

J
2,2

3,2
J

B
3,2

J
4,2

J
1,3 J

2,3

B
2,3 J

3,3

B
3,3

B
5,2J

5,2

b. Selecting jobs from every task for fairness.

f

100 20 30

time

6040 50

J
1,1

1,1
B

J
2,1

B
2,1 J

3,1

B
3,1 J

4,1

B
4,1 J

5,1

B
5,1 J

1,2

B
1,2 J

2,2

B
2,2 J

3,2

B
3,2 J

1,3
J J

2,3 3,3
J J

4,2 5,2

c. The deeply-red recovery pattern.

Figure 1. Motivational Example

that the recovery jobs are invoked for execution only if

their corresponding scaled tasks fail, and they are exe-

cuted at the maximum processing speed if invoked. It

has been proved that, with the help of recovery jobs, the

RAPM scheme can guarantee to preserve (even, enhance)

the system reliability, regardless of the extent of the fault

rate increases and processing frequency reductions [27].

Although the previously proposed static task-level
RAPM schemes for periodic real-time tasks can achieve

significant energy savings while preserving system reli-

ability [29, 32], a few problems remain open. For in-

stance, the previous schemes are based on managing ex-
clusively a subset of tasks (i.e., scheduling correspond-

ing recovery tasks and scaling down the execution of all
their jobs), while leaving out the remaining tasks (and all

their jobs). An interesting question is whether managing

a subset of jobs from every task could further increase

energy savings. Moreover, considering that the reliabil-

ity of any scaled job is actually enhanced with the help

of the scheduled recovery job [27], for real-time appli-

cations (e.g., ATR with multiple-channel satellite signal

processing [22]) where the overall performance is lim-

ited by the task with the lowest quality, the investigation

of the techniques to improve the quality-of-assurance
for all the tasks simultaneously is warranted.

In this paper, considering different quality of assur-
ance requirements (e.g., reliability enhancement require-

ments) of individual tasks, we study preemptive EDF-

based flexible RAPM schemes for periodic real-time

tasks. We develop schemes to manage a subset jobs for

every task according to individual tasks’ assurance re-

quirements such that the quality of assurance for all tasks

is improved simultaneously. Simulation results show the

effectiveness of the proposed schemes on guaranteeing

the assurance requirements of all tasks while achieving

considerable amount of energy savings.

The remainder of this paper is organized as follows.

Section 2 presents a motivational example and Section 3

presents system models. Section 4 and Section 5 elabo-

rate on the static and dynamic flexible RAPM problems,

respectively. Simulation results are presented and dis-

cussed in Section 6 and Section 7 concludes the paper.

2 Motivational Example
To illustrate various trade-off dimensions in the

RAPM problem, we consider a motivational example.

Consider a task set with five periodic tasks {τ1(2, 20),
τ2(2, 20), τ3(2, 20), τ4(3, 30), τ5(3, 30)}, where the first

number associated with each task is its worst-case exe-

cution time (WCET) and the second number is the task’s

period. The system utilization is 0.5 and the spare CPU

capacity (i.e., static slack) is found to be 0.5 (i.e. 50%).

The slack can be used for both energy and reliability man-

agement. In the task-level static RAPM scheme [29], for

any task that is selected for management, a recovery task
will be created with the same timing parameters as the

managed task. That is, a separate recovery job will be

created for all the jobs of the managed tasks.

In the example, although the spare CPU capacity is

enough to create a recovery task for every task, doing so

leaves no slack for energy management and no energy

savings can be obtained. Suppose that, the static task-

level RAPM scheme selects three tasks (τ1, τ2 and τ3) for

management, after creating the required recovery tasks

and scaling down the jobs of the managed tasks [29]. Fig-

ure 1a shows the schedule in the interval of [0, 60]. In the

figures, the X-axis represents time, the Y-axis represents

CPU processing speed (e.g., cycles per time units) and

the area of the task box defines the amount of work (e.g.,

number of CPU cycles) needed to execute the task. Here,

260



30% CPU capacity is used to accommodate the newly

created recovery tasks and the remaining spare CPU ca-

pacity (which is 20%) is exploited to scale all jobs of the

three managed tasks to the frequency of 0.6fmax (fmax

is assumed to be the maximum frequency). The recov-

ery job associated with Jq,r is assumed to have the same

WCET and is denoted by Bq,r.

Note that, with the recovery tasks, all scaled jobs of

the three managed tasks have a recovery job each within

their deadlines and system reliability will be preserved

[29]. However, such a greedy task selection does not

consider different requirements of individual tasks and

the task-level selection may result in unfairness. For the

case shown in Figure 1a, although the reliability of the

three managed tasks is enhanced due to the scheduled

corresponding recovery tasks, the reliability for the other

two tasks (τ4 and τ5) remains unchanged.

Instead of managing exclusively τ1, τ2 and τ3, we can

manage two out of three jobs for these three tasks and

one out of two jobs for τ4 and τ5. Figure 1b shows the

schedule within the interval considered, after a judicious
selection of jobs to be managed for each task. Here, after

scheduling the recovery jobs, all the selected jobs are also

scaled to the frequency of 0.6fmax and the same energy

savings is obtained as in Figure 1a. Moreover, tasks are

fairly treated and the reliability figures are simultaneously
enhanced for all the tasks.

3 System Models
3.1 Application and Task Models

We consider applications with a set of independent pe-

riodic real-time tasks {τ1, . . . , τn}, where task τi (i =
1, . . . , n) is represented by its WCET ci and period

pi. We assume preemptive Earliest-Deadline-First (EDF)

policy for scheduling the periodic tasks. It is assumed

that ci is given under the maximum processing frequency

fmax, and at the scaled frequency f , the execution time

of task τi is assumed to be ci · fmax

f . The utilization of

task τi is defined as ui = ci

pi
and U =

∑n
i=1 ui is the

system utilization. The j’th job Ji,j of task τi arrives at

time (j − 1) · pi and has the deadline of j · pi (j ≥ 1).

3.2 Energy Model

We adopt the system-level power model where the
power consumption of the computing system considered
is given by [30, 31]:

P (f) = Ps + h̄(Pind + Pd) = Ps + h̄(Pind + Ceffm) (1)

Here, Ps is the static power, Pind is the frequency-
independent active power, and Pd is the frequency-
dependent active power. The effective switching capac-

itance Cef and the dynamic power exponent m (in gen-

eral, 2 ≤ m ≤ 3) are system-dependent constants [5]

and f is the frequency. h̄ = 1 when the system is active
(i.e., computation is in progress); otherwise, h̄ = 0. De-

spite its simplicity, the above power model captures the

essential power components in a system.

By setting the derivative of Equation 1 to zero, a min-

imal energy-efficient frequency fee below which DVFS

ceases to be energy-efficient, can be obtained [30]. Con-

sequently, we assume that the frequency is never reduced

below the threshold fee for energy efficiency. More-

over, normalized frequencies are used (i.e. fmax = 1.0)
and we assume that the frequency can vary continuously1

from fee to fmax.

3.3 Fault and Recovery Models

Considering that transient faults occur much more fre-

quently than permanent faults [7, 13], especially with the

continued scaling of CMOS technologies and reduced de-

sign margins [10], we focus on transient faults in this pa-

per. At the end of jobs’ execution, the transient fault is

detected using sanity (or consistency) checks [20]. For

jobs with recovery job being scheduled, should a tran-

sient fault be detected, the system’s state is restored to

a previous safe state and the recovery job is executed.

Note that this approach exploits the temporal redundancy,

falls along the lines of backward error recovery tech-

niques [20], and was adopted in previous works as well

[2, 19, 26]. The recovery job may take the form of re-
execution of the job or a functionally comparable, alter-

native recovery block [2]. The results of this paper would

remain valid, as long as the worst-case execution time of

the recovery job does not exceed that of the (main) job.

Assuming that transient faults follow Poisson distri-

bution [26], the average transient fault rate for systems

running at frequency f (and corresponding supply volt-

age) can be modeled as [30]:

λ(f) = λ0 · g(f) (2)

where λ0 is the average fault rate corresponding to the

maximum frequency fmax. That is, g(fmax) = 1. Con-

sidering the negative effect of DVFS on the transient fault

rate, in general, we have g(f) > 1 for f < fmax [30].

3.4 Problem Description

In this work, we develop a flexible RAPM frame-

work that attempts to save energy while preserving and

enhancing reliability of every task, as specified by the

quality of assurance requirements (defined as the num-

ber of jobs should be managed). Following the idea in

the skip task model [6, 16], we use a single skip param-

eter ki to present the assurance requirement for task τi.

Specifically, for the purpose of enhancing system relia-

bility, (ki − 1) out of any consecutive ki jobs of task τi

1For discrete frequency levels, we can use two adjacent levels to

emulate the execution at any frequency [12].

261



need to have recovery jobs. Here, ki can range from 1
to ∞. With higher values of ki, more jobs need recov-

eries and better reliability enhancement can be obtained

for task τi. For the case of ki = ∞, all jobs of τi must

have recovery jobs. For the example in Figure 1b, the as-

surance parameters are given as k1 = k2 = k3 = 3 and

k4 = k5 = 2.

Note that the assurance parameters for tasks can be

determined following various rules (such as design re-

quirements, importance/criticality of tasks and/or fair-

ness). However, the discussion on how to choose the

best assurance parameters for tasks is beyond the scope

of this paper and will be addressed in our future work. In

this paper, for a set of tasks with given assurance re-
quirements, we focus on the flexible RAPM schemes
that maximize energy savings while ensuring such re-
quirements.

Considering the assurance requirements of tasks, the

manageability of a task set can be defined as the existence

of a schedule in which all the required recovery jobs can

be accommodated within the timing constraints. For task

sets with system utilization U ≤ 0.5, the spare capacity

(sc = 1−U ) will be large enough to schedule a recovery

task for every task [29], regardless of different assurance

requirements for tasks.

However, without taking the assurance requirements

of tasks into consideration, scheduling a recovery task for

every task may not be the most energy efficient approach.

When more slack is used to schedule the unnecessary re-

covery jobs, less slack is left for energy savings. Define

the augmented system utilization of the task set with as-

surance requirements as:

AU = U +
n∑

i=1

(ki − 1) ∗ ci

ki ∗ pi
(3)

where the second summation term denotes the workload

from the required recovery jobs. It is easy to find out

that, if AU > 1, the spare capacity will not be enough to

schedule the required recovery jobs for all tasks and the

task set is not manageable.

Problem Statement In this work, for a set of peri-

odic real-time tasks with assurance requirements where

AU ≤ 1, the problems to be addressed are: a.) how to
effectively exploit the spare CPU capacity (i.e., static
slack) to maximize the energy savings while guaran-
teeing the assurance requirement for each task, and,
b.) how to efficiently use the dynamic slack that can
be generated at run-time, to further improve energy
savings and/or system reliability.

4 Static Flexible RAPM Schemes

Note that, there are two steps involved in the static
flexible RAPM problem. First, for each task, considering

the assurance requirements, the subset of jobs to which

recovery jobs will be allocated needs to be determined.

If all the required recovery jobs can be accommodated

within the timing constrains, we say that the task set is

schedulable with such job selection. Second, for a given

schedulable job selection, the scaled frequencies need to

be determined for the jobs with recoveries to save energy.

Here, we can see that the schedulability (as well as the

potential energy savings) of a task set directly depends

on, for each task, the selection of jobs to which recovery

jobs will be allocated.

4.1 Definitions

Recovery Patterns: Given a real-time task τi (i =
1, . . . , n) with the assurance requirement ki, the recov-
ery pattern is defined as a binary string of length ki:

RPi(ki) =“r0r1 · · · rki−1”. Here, the value of rj (j =
0, . . . , ki−1) is either 0 or 1, and

∑
rj = ki−1. Consider

the first ki jobs of task τi. If rj−1 = 1 (j = 1, . . . , ki),

then the j’th job Ji,j of task τi needs a recovery; other-

wise, if rj−1 = 0, no recovery is needed for Ji,j . For

simplicity, we assume that the recovery pattern will be

repeated for the remaining jobs of task τi. That is, the

(j + q · ki)’th job of task τi has the same recovery re-

quirement as job Ji,j , where q is a positive integer. By

repeating the recovery pattern, the assurance requirement

of a task will be satisfied.

For the example in Figure 1b, the recovery patterns

for the five tasks are: RP1(3) =“110”, RP2(3) =“101”,

RP3(3) =“011”, RP4(2) =“10” and RP5(2) =“01”.

Note that, in that example, these recovery patterns pro-

vide the best energy management opportunity and lead

to the maximum energy savings. However, as shown in

Section 4.2, finding such recovery patterns and the corre-

sponding optimal execution frequencies is not trivial.

Augmented Processor Demand: For a set of given re-

covery patterns for tasks with assurance requirements, as

the first step, we need to find out whether the task set

is manageable (i.e., the required recovery jobs can be

scheduled within timing constraints) or not. For such

purpose, we first re-iterate the concept of processor de-
mand and the fundamental result in the feasibility anal-

ysis of periodic task systems scheduled by preemptive

EDF [4, 15]. Then, the analysis is extended to the flexible

RAPM framework.

Definition 1 The processor demand of a real-time job set
Φ in an interval [t1, t2], denoted as hΦ(t1, t2), is the sum
of computation times of all jobs in Φ with arrival times
greater than or equal to t1 and deadlines less than or
equal to t2.

Theorem 1 ([4, 15]) A set of independent real-time jobs
Φ can be scheduled (by EDF) if and only if hΦ(t1, t2) ≤
t2 − t1 for all intervals [t1, t2].
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For a set of tasks with assurance requirements and

given recovery patterns RPi(ki) (i = 1, . . . , n), by incor-

porating the workload from the required recovery jobs,

the augmented processor demand in the interval [t1, t2]
can be formally defined as:

APD(t1, t2) =
n∑

i=1

b∑
j=a

(1 + rx(i,j))ci (4)

where

a =
⌈

t1
pi

⌉
+ 1 (5)

b =
⌊

t2
pi

⌋
(6)

x(i, j) = (j − 1) mod ki (7)

That is, the augmented processor demand APD(t1, t2)
includes the workload of all jobs of the tasks, as well as

the required recovery jobs, with arrival times greater than

or equal to t1 and deadlines less than or equal to t2.

The recovery jobs introduce additional computational

demand that must be taken into consideration when as-

sessing the feasibility. Following similar reasoning as in

[2], we can obtain the following result.

Theorem 2 For a set of real-time tasks with assurance
requirements and given recovery patterns RPi(ki) (i =
1, . . . , n), all jobs and the required recovery jobs of the
tasks can be scheduled by preemptive EDF if and only if
APD(t1, t2) ≤ t2 − t1 for all the intervals [t1, t2].

Define the super-period of the task set SP as

LCM(k1p1, . . . , knpn), where the LCM() function de-

notes the least common multiple (LCM) of its arguments.

It is easy to see that the recovery patterns of tasks may

cross LCM(p1, . . . , pn) and all recovery patterns will re-

peat after the super-period SP . Therefore, to check the

schedulability of a set of real-time tasks with assurance

requirements and given recovery patterns, according to

Theorem 2, we need to check APD(t1, t2) ≤ t2 − t1 for

all intervals [t1, t2] where 0 ≤ t1, t2 ≤ SP . It is neces-

sary and sufficient to evaluate this function only at time

points that are period boundaries of tasks [2, 4].

If the workload is feasible with the given recovery pat-

terns, additional slack may still exist in the schedule and

this can be exploited to scale down the jobs with recov-

eries to save energy. In addition, jobs without statically
scheduled recoveries will have the default speed of fmax,

but these too can reclaim dynamic slack at run time for

reliability preservation and energy savings (Section 5).

Considering the scaled execution of managed jobs, the

augmented processor demand can be written as:

EAPD(t1, t2) =
n∑

i=1

b∑
j=a

(
1

fi,j
+ rx(i,j)

)
ci (8)

where fi,j is the processing frequency for job Ji,j . Here,

the energy consumption of job Ji,j will be E(i, j) =
P (fi,j) ci

fi,j
, in which P (f) is defined as in Equation (1).

With these definitions, the static flexible RAPM prob-

lem considered in this work can be formally stated as: for

a set of real-time tasks with assurance requirements, find

the recovery patterns and the scaled frequencies so as to:

Minimize
∑

i∈[1,n],j∈[1,SP/pi]

E(i, j) (9)

subject to

ki−1∑
j=0

rj ≥ ki − 1, i = 1, . . . , n (10)

fi,j = fmax, if rx(i,j) = 0 (11)

fi,j ≤ fmax, if rx(i,j) = 1 (12)

EAPD(t1, t2) ≤ t2 − t1, ∀t1, t2 ∈ [0, SP ] (13)

where the first condition corresponds to the quality of

assurance requirements expressed through recovery pat-

terns, the second and third condition state that only jobs

with recoveries can be scaled down; and the last condi-

tion ensures that, with the recovery patterns and scaled

frequencies, the task set should be schedulable.

4.2 Intractability of the Static Problem

For a real-time task τi with assurance requirement ki,

there are ki different recovery patterns. Therefore, the

number of different combinations of tasks’ recovery pat-

terns is
∏n

i=1 ki, for a given task set with n tasks. To

find the optimal solution that maximizes energy savings,

all these combinations of recovery patterns for tasks need

to be examined, and scaled frequencies need to be deter-

mined. In fact, finding the optimal solution for the static

flexible RAPM problem turns out to be intractable:

Theorem 3 For a periodic real-time task set where tasks
have individual assurance requirements, the static flexi-
ble RAPM problem is NP-hard, in the strong sense.

Due to the space limitations, the proof of the theorem

is omitted and can be found in [33]. Moreover, the re-

port contains more deliberation and detailed comparison

of this result to other related intractability results [16, 21].

We underline that, due to this result, finding the optimal

solution even in pseudo-polynomial time seems to be un-

likely (unless NP = P ).

4.3 Upper Bounds on Energy Savings

For a task set with system utilization U and spare
capacity sc = 1 − U , suppose that the utilization for
the managed workload is X (≤ min{U, sc}). After
accommodating the required recovery jobs, the remain-
ing spare capacity (i.e., sc − X) could be used to scale
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down the managed workload to save energy. Consid-
ering the convex relation between energy and process-
ing frequency [5], to minimize the energy consumption,
the managed workload should be scaled down uniformly
(if possible) and the scaled frequency will be f(X) =
max{fee,

X
X+(sc−X)}= max{fee,

X
sc}. Without consid-

ering the energy consumed by recovery jobs (which are
only executed when the corresponding scaled jobs fail
with a very small probability), the amount of total fault-
free energy consumption of the task set within LCM can
be calculated as:

E(X) = LCM · Ps + LCM(U − X)(Pind + Cef · fm
max)

+LCM · X

f(X)
(Pind + Cef · f(X)m) (14)

where the first part is the energy consumption due to

static power, the second part captures the energy con-

sumption of unscaled workload, and the third part repre-

sents the energy consumption of the managed workload.

An Absolute Upper Bound As shown in [29], by dif-

ferentiating Equation (14), E(X) is minimized when

Xopt = min

{
U, sc ·

(
Pind + Cef

m · Cef

) 1
m−1

}
(15)

Therefore, without considering the assurance require-

ments for individual tasks, the absolute upper bound on

the energy savings will be:

ESabs−upper = E(0) − E(Xopt). (16)

where E(0) denotes the energy consumption when no

task is managed (i.e., all tasks are executed at fmax). This

bound actually provides an upper limit on energy savings

for all possible RAPM schemes.

K-Upper Bound with Assurance Parameters Taking

the assurance parameters of tasks into consideration, we

can get a tighter upper bound on the energy savings for

the flexible scheme. Note that, for a task set where each

task has its assurance requirement, the workload for the

jobs that need recoveries is:

Uassurance =
n∑

i=1

(ki − 1) ∗ ci

ki ∗ pi
(17)

Assuming that, after accommodating the required recov-

ery jobs, all such jobs are scaled down uniformly using

the remaining slack, a tighter upper bound on the energy

savings within LCM can be given as:

ESk−upper = E(0) − E(Uassurance) (18)

4.4 Deeply-Red Recovery Pattern

In the real-time scheduling literature addressing the

skip model, the “deeply-red” execution pattern has been

frequently adopted [6, 16]. In fact, if a task set is

schedulable under the deeply-red execution pattern, it

will be schedulable for any other execution patterns.

Also, with the deeply-red pattern, only the intervals that

start at time 0 and end at a time instance no larger than

LCM(pi, . . . , pn) need to be considered for processor

demand evaluation (as opposed to the super-period SP ).

In a similar vein, in this work, we will adopt the

“deeply-red” recovery patterns. Specifically, a deeply-

red recovery pattern is defined as the one with leading 1’s

followed by a single 0. Following the same line of rea-

soning as in [6, 16], and using the augmented processor

demand function APD() defined in Equation (4), we can

obtain:

Theorem 4 For a real-time task set, if all tasks with as-
surance requirements adopt the deeply-red recovery pat-
tern, the task set can be scheduled by preemptive EDF
if and only if APD(0, L) ≤ L for ∀L, 0 ≤ L ≤
LCM(p1, . . . , pn).

Define the manageable workload for a set of tasks

with assurance requirements in the interval [t1, t2] as:

MW (t1, t2) =
n∑

i=1

b∑
j=a

rx(i,j)ci (19)

where a, b and x(i, j) are the same as defined in Equa-

tions (5), (6) and (7), respectively. If APD(0, L) < L,

additional slack exists and it can be used to scale down

the execution of the jobs with recoveries to save energy.

Assuming that all manageable jobs are scaled down uni-

formly [1], the scaled frequency fdr can be calculated as:

fdr = max
{

MW (0, L)
MW (0, L) + (L − APD(0, L))

}
(20)

where 0 < L ≤ LCM(p1, . . . , pn). Note that, when

evaluating fdr, it is sufficient to consider L values that

correspond to period boundaries of tasks, which will re-

sult in pseudo-polynomial time complexity.

In the example shown in Figure 1c where the deeply-

red recovery pattern is used for every task, the scaled fre-

quency can be calculated as 9
11 . Here, we can see that,

although the deeply-red recovery pattern simplifies the

feasibility test, the required recovery jobs may “clash” in

time (i.e. may need to be scheduled during the same time

interval). The performance of this simplified scheme is

evaluated and compared to the upper bounds on energy

savings in Section 6.

5 Dynamic Online RAPM Schemes

Note that, the statically scheduled recovery jobs are

executed only if their corresponding scaled jobs fail. Oth-

erwise, the CPU time reserved for those recovery jobs
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is freed and becomes dynamic slack at run-time. More-

over, it is well-known that real-time tasks typically take

a small fraction of their WCETs [11]. Therefore, sig-

nificant amount of dynamic slack can be expected at run

time, which should be exploited to further save energy

and/or enhance system reliability.

In [29], an effective dynamic slack management

mechanism, called wrapper-task approach, has been

studied for periodic tasks. In that scheme, wrapper tasks

are used to represent dynamic slack generated at run-

time. A primary feature of the scheme is that the slack

reserved for recovery blocks is preserved across preemp-

tion points during the execution of the slack reclaiming

algorithm: this is essential for reliability preservation in

every RAPM scheme.

We have extended the wrapper task approach to the

flexible RAPM framework. The detailed discussion of

the algorithm is omitted due to space limitations and the

interested readers are referred to [29, 33] for more details.

However, we would like to emphasize that the dynamic

slack reclamation through the management of wrapper

tasks will not cause any timing constraint violation.

6 Simulation Results and Discussions
To evaluate the performance of the proposed schemes,

we developed a discrete event simulator using C++.

In the simulations, we implemented the flexible static

RAPM scheme (Flexible) where all tasks have the

deeply-red recovery pattern. For simplicity, if a task set

is not manageable with the deeply-red recovery pattern,

we assume that no recovery jobs will be scheduled and

no power management will be applied (i.e., all tasks will

be executed at fmax). The dynamic RAPM scheme is

also implemented. In addition, we consider two different

schemes for comparison. First, the scheme of no power

management (NPM), which does not schedule any recov-

ery job and executes all tasks/jobs at fmax while putting

system to sleep states when idle, is used as the baseline.

Second, as an example to the task-level static RAPM

scheme, we consider the one with smaller-utilization-

task-first (SUF) heuristic, which is shown to have very

good performance [29].

The parameters employed in the simulations are sim-

ilar to the ones used in [29]. Focusing on active power

and assuming Ps = 0, Pind = 0.05, Cef = 1 and

m = 3, the energy efficient frequency can be calculated

as fee = 0.29 [30]. Moreover, the transient faults are

assumed to follow the Poisson distribution with an aver-

age fault rate of λ0 = 10−6 at the maximum frequency

fmax (and corresponding supply voltage). For the fault

rates at lower frequencies/voltages, we adopt the expo-

nential fault rate model g(f) = λ010
d(1−f)
1−fee and assume

that d = 2 [30]. That is, the average fault rate is 100
times higher at the lowest frequency fee (and correspond-

ing supply voltage).

We consider synthetic real-time task sets where each

task set contains 10 periodic tasks. The periods of tasks

(p) are uniformly distributed within the range of [10, 20].
The WCET (c) of a task is uniformly distributed in the

range of 1 and its period. Finally, the WCETs of tasks are

scaled by a constant such that the desired system utiliza-

tion is reached [18]. For the assurance requirements of

tasks, we consider two different settings. In the first set-

ting, all tasks have the same assurance requirement (e.g.,

k = 2). In the second setting, the assurance parame-

ters of tasks are randomly generated within the range of

[2, 10]. For each run of the simulation, approximately 20
million jobs are executed. Moreover, each result point in

the graphs corresponds to the average of 100 runs.

6.1 Performance of the Static Schemes

Reliability: Note that, under RAPM schemes, the re-

liability of any task that assumes recovery jobs will be

improved [27]. Define the probability of failure (i.e.,

1−reliability) PoFi(S) of a task τi under any scheme

S as the ratio of the number of failed jobs over the to-

tal number of jobs executed. By considering the NPM

scheme as the baseline, the reliability improvement of a

task τi under a scheme S can be defined as:

RIi(S) =
PoFi(NPM)

PoFi(S)
=

# of failed jobs under NPM

# of failed jobs under S

That is, larger RIi(S) values indicate better reliability

improvement. Moreover, to quantify the fairness on reli-

ability improvement to tasks, following the idea in [14],

the fairness index of a scheme S is defined as:

FI(S) =
(
∑

i RIi(S))2

n
∑

i RIi(S)2
(21)

From this equation, we can see that, the value of fairness

index has the range of (0, 1], and the higher values mean

that tasks are treated more fairly.

In the first set of experiments, we consider task sets

with 10 tasks that have the same assurance parameter k.

Figure 2 shows the reliability improvements and the fair-

ness index for the static schemes. In the figures, “Flex-

ible:k=i” means that all tasks have the same assurance

parameter k = i in the static flexible RAPM problem.

The X-axis represents the system utilization.

For applications where the system reliability is deter-

mined by the task with lowest reliability, Figure 2a shows

the minimum reliability improvement among all the tasks.

Here, as mentioned before, larger numbers mean better

improvement. From the figure, we can see that, when the

system utilization is low (e.g., U ≤ 0.4), the task-level

static scheme SUF manages all the tasks and performs

better than the flexible scheme. However, when the sys-

tem utilization is large (e.g., U ≥ 0.4), at least one task

will not be managed and its reliability will not have any
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Figure 2. Reliability improvement and fairness index for the static schemes.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

no
rm

al
iz

ed
 e

ne
rg

y 
co

ns
um

pt
io

n

system utilization (U)

Flexible
K-UPPER

SUF
ABS-UPPER

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

no
rm

al
iz

ed
 e

ne
rg

y 
co

ns
um

pt
io

n

system utilization (U)

Flexible
K-UPPER

SUF
ABS-UPPER

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

no
rm

al
iz

ed
 e

ne
rg

y 
co

ns
um

pt
io

n

system utilization (U)

Flexible
K-UPPER

SUF
ABS-UPPER

a. k = 2 b. k = 4 c. k ∈ [2, 10]

Figure 3. Normalized energy consumption for the static schemes.

improvement. For the flexible scheme, the minimum re-

liability improvement of the tasks is rather stable and di-

rectly related to the assurance parameter k. For example,

when k = 4, only 1 out of 4 jobs will not have a recovery

job for each task and, compared to NPM, the reliability

improves approximately by a factor of 4. The same re-

sult is obtained for the case of k = 2. However, for large

system utilization (e.g., U ≥ 0.6), the flexible RAPM

scheme cannot always guarantee the assurance require-

ments for all the tasks (e.g., when AU > 1).

If the overall system reliability depends on the total

number of successfully executed jobs in the entire task

set, Figure 2b shows that the average reliability improve-

ment of the tasks under SUF is better than the flexible

RAPM scheme. Indeed, while SUF always tries to man-

age as many jobs as possible up to the workload Xopt, the

manageable jobs under flexible scheme are limited by the

assurance parameters of tasks. Figure 2c further shows

the fairness index of the tasks under different system uti-

lizations. Here, we can see that, with the same assurance

parameter, the flexible scheme provides excellent fairness

to tasks. From the results, we conclude that the task-level

SUF scheme should be used if the overall system reliabil-

ity depends on the average behavior of tasks. However,

if the system reliability is limited by the task with lowest

reliability improvement, or fairness is targeted for tasks,

the flexible scheme should be employed.

Energy Savings: For different settings of the assur-

ance requirements for tasks, Figure 3 shows the normal-

ized energy consumption for the static flexible RAPM

scheme. For comparison, the energy consumption for

SUF and the upper bounds is also shown. Here, “K-

UPPER” denotes the upper bound that considers the as-

surance requirements of tasks and “ABS-UPPER” is for

the absolute upper bound. Note that, higher energy con-

sumption means less energy savings.

From the results, we can see that the energy consump-

tion of SUF is very close to the absolute bound (ABS-

UPPER), which coincides with our previous results [29].

For the flexible RAPM scheme, its energy performance

is almost the same as that of K-UPPER at low system

utilization (e.g., U ≤ 0.3) since all manageable jobs are

scaled down to the same frequency (e.g., fee). However,

at high system utilization, due to the scheduling conflicts

of the required recovery jobs under deeply-red recov-

ery patterns, the scaled frequency of the flexible scheme

is higher than that of K-UPPER (which assumes all re-

maining static slack can be used by DVFS) and thus con-

sumes more energy. Moreover, when compared to SUF,

as shown in Figure 3a, the flexible RAPM scheme per-

forms worse with k = 2 due to limited number of man-

ageable jobs. For larger values of k (Figures 3b and 3c),

the energy performance difference between the flexible

RAPM scheme and SUF becomes smaller.

Therefore, we can conclude that the flexible static

RAPM scheme can guarantee such quality of assurance

requirements and/or provide fairness to tasks, but at the

cost of slightly increased energy consumption. Moreover,
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Figure 4. Energy and reliability improvement with dynamic schemes at U = 0.5.

we can see that, when choosing the assurance require-

ments for tasks, in addition to satisfying tasks’ reliability

requirements, to maximize the energy savings, the over-

all manageable workload should consider Xopt and use it

as a reference.

6.2 Dynamic Schemes
In this section, we evaluate the dynamic schemes for

their energy savings and reliability enhancements over

static schemes. Here, the augmented dynamic algorithm

[29] is applied on top of the static flexible scheme (re-

ferred as “Flexible+DYN”) as well as the static task-level

SUF scheme (referred as “SUF+DYN”).

To emulate the run-time behaviors of real-time

tasks/jobs, the variability of a task’s workload is con-

trolled by the ratio of WCET
BCET (that is, the worst-case

to best-case execution time ratio), where larger values

of the ratio imply more dynamic slack can be expected

from the early completion of tasks/jobs. At run time, the

actual execution time of a real-time job follows a nor-

mal distribution with mean and standard deviation being
WCET+BCET

2 and WCET−BCET
6 , respectively [3].

Figure 4 shows the performance improvement of the

dynamic scheme over static schemes on both energy and

reliability, when U = 0.5. Similar results are obtained

for other utilization values and are omitted due to space

limitation. Note that, even if the ratio WCET
BCET = 1 (i.e.,

there is no variation in the execution time of tasks), dy-

namic slack is still available at run time due to the on-

line removal of statically scheduled recovery jobs when

there is no error during the execution of their correspond-

ing scaled jobs. From Figures 4a and 4b (which cor-

respond to tasks having the same assurance requirement

k = 4 and tasks with different assurance requirements

randomly generated between [2, 10], respectively), we

can see that the dynamic scheme can significantly im-

prove the energy performance over static schemes (up to

33% for the flexible scheme and 20% for SUF). How-

ever, the performance improvement is rather stable after
WCET
BCET ≥ 3. This is because, with larger values of the

ratio, excessive dynamic slack is available from jobs’ the

early completion and almost all jobs can reclaim the slack

and run at the frequency fee.

Moreover, we can see that the difference of the energy

performance between the static schemes (from 10% to

15% for the cases considered) has effectively disappeared

with the dynamic extension (only around 2%). The rea-

son is that, although the managed jobs and their scaled

frequency are limited under the flexible RAPM scheme,

the slack generated from the removal of statically sched-

uled recovery jobs under the dynamic algorithm can be

re-used to manage more jobs and/or to further scale down

the execution of managed jobs for more energy savings.

Therefore, although the static flexible RAPM scheme it-

self may perform worse than task-level SUF scheme in

terms of energy savings, the dynamic version can recu-

perate its energy inefficiency while still guaranteeing the

individual assurance requirements of tasks statically.

For the case of randomly generated assurance require-

ments for tasks, Figure 4c shows the overall probability

of failure (i.e., 1−reliability) of the system under differ-

ent schemes considered. From the results, we can see

that, by allowing the statically unscaled jobs (which have

no recovery job initially) to reclaim dynamic slack, addi-

tional recovery jobs can be scheduled online and the dy-

namic algorithm can further improve system reliability.

For larger values of WCET
BCET , the actual execution time of

jobs becomes shorter and the reliability for all schemes

increases slightly.

7 Conclusion

In this paper, we presented a flexible reliability-aware

power management (RAPM) framework for periodic

tasks with variable assurance requirements. Extending

the existing RAPM frameworks (that manage all the jobs

of the selected tasks at the expense of some other un-

selected tasks), the main tenet of the work is to pro-

vide quality of assurance guarantees to all the tasks by

considering their individual assurance requirements. We

showed that the problem, in general, is NP-Hard in the

strong sense. Then, we proposed static and dynamic

schemes that are experimentally shown to perform suc-

cessfully to achieve energy savings and improve reliabil-

ity.

267



References

[1] T. AlEnawy and H. Aydin. Energy-constrained scheduling

for weakly-hard real-time systems. In Proc. of The 26rd

IEEE Real-Time Systems Symposium, Dec. 2005.
[2] H. Aydin. Exact fault-sensitive feasibility analysis of real-

time tasks. IEEE Trans. on Computers, 56(10):1372–

1386, 2007.
[3] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez.
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