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Abstract

Cluster scheduling, where processors are grouped into
clusters and the tasks that are allocated to one cluster
are scheduled by a global scheduler, has attracted at-
tention in multiprocessor real-time systems research re-
cently. In this paper, by adopting optimal global sched-
ulers within each cluster, first we investigate the worst-
case utilization bound for cluster scheduling. Specifi-
cally, for a system with m homogeneous clusters where
each cluster has k processors, we show that the worst-
case achievable system utilization is �k/α�·m+1

�k/α�+1 ·k, where
α is the maximum utilization for the periodic tasks con-
sidered. By focusing on an efficient optimal global sched-
uler, namely the boundary-fair (Bfair) algorithm, we pro-
pose a period-aware partitioning heuristic aiming at re-
ducing the scheduling overhead. Simulation results show
that the percentage of task sets that can be scheduled is
significantly improved under cluster scheduling even for
small-size clusters (e.g., k = 2). Moreover, the proposed
period-aware partitioning heuristic markedly reduces the
scheduling overhead of cluster scheduling with Bfair.

1 Introduction

The problem of scheduling periodic real-time tasks

upon multiprocessor platforms has been studied for

decades [12, 13] and there is a reviving interest due to

the emergence of multicore processors [2, 5, 11, 15, 16,

18, 19]. In this line of research, the main objective is to

find efficient scheduling algorithms that can effectively

utilize the available processors, with low run-time over-

head. In general, there are two main approaches to the

scheduling problem in multiprocessor real-time systems:

partitioned and global scheduling [12, 13].

∗This work was supported in part by NSF awards CNS-0720651,

CNS-0855247, CNS-0720647 and CAREER Award CNS-0546244.

In partitioned scheduling, each task is permanently as-

signed to a specific processor. Although well-established

uniprocessor scheduling algorithms (e.g., EDF and RMS

[20]) can be employed on each processor, finding a fea-

sible partition of tasks to processors has been shown to

be NP-hard [12, 13]. In global scheduling, on the other

hand, all ready tasks are put into a shared queue and each

idle processor fetches the next highest-priority task for

execution from the global queue. Despite its flexibility

that allows tasks to migrate and execute on different pro-

cessors, it has been shown that simple global scheduling

policies (e.g., global-EDF and global-RMS) could fail to

schedule task sets with extremely low system utilization

[13].

To fully utilize the system, several optimal global
scheduling algorithms (which can schedule any periodic

task set whose total utilization does not exceed the total

computing capacity in a feasible manner) have been pro-

posed, with varying complexity. Assuming a continuous

time domain, the T-L Plane based algorithms were stud-

ied in [10, 14]. More recently, a generalized deadline-

partitioned fair (DP-Fair) scheduling model was investi-

gated in [19]. However, those algorithms can incur high

scheduling overhead as the time allocation to tasks can

be arbitrarily small. As a well-known quantum-based

optimal global scheduling algorithm, the proportional
fair (Pfair) scheduler enforces proportional progress (i.e.,

fairness) for each task at every time unit [6]. Several so-

phisticated variations of Pfair algorithm have also been

studied, such as PD [7] and PD2 [1]. However, by

making scheduling decisions at every quantum time unit,

these algorithms could also lead to high scheduling over-

head. Observing that a periodic real-time task can only

miss its deadline at its period boundary, we have devel-

oped an optimal boundary fair (Bfair) scheduling algo-

rithm. By making scheduling decisions and ensuring

fairness for tasks only at their period boundaries, Bfair

can significantly reduce the scheduling overhead [24, 25],
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while fully utilizing all the processors.

Recently, as a hierarchical approach, cluster schedul-
ing has been investigated. In this approach, processors

are grouped into clusters and tasks are partitioned among

different clusters. For tasks that are allocated to a cluster,

different global scheduling policies (e.g., global-EDF)

can be adopted [4, 9, 23]. Note that, cluster scheduling

is a general approach, which will reduce to partitioned

scheduling when there is only one processor in each clus-

ter. For the case of a single cluster containing all the pro-

cessors, it will reduce to global scheduling.

As multicore processors will be widely employed in

modern real-time systems and processing cores on a chip

may be organized into a few groups (i.e., clusters), where

cores sharing on-chip caches (and even voltage supply

through voltage-island techniques) belong to one group

[17, 22], additional analysis of cluster scheduling is war-

ranted. Moreover, although the schedulability test and

system utilization bounds have been studied for parti-

tioned [21] and global [3, 5] scheduling approaches, such

results are not readily available for cluster scheduling.

In this paper, adopting optimal global schedulers to

schedule tasks within each cluster, we study the worst-

case utilization bound for cluster scheduling. Specifi-

cally, for a system with m homogeneous clusters where

each cluster has k processors, by extending the worst-

case utilization bound for the partitioned-EDF [21], we

show that the worst-case achievable system utilization for

cluster scheduling is
�k/α�·m+1
�k/α�+1 · k, where α is the max-

imum utilization for the periodic tasks under considera-

tion.

Moreover, by using the Bfair algorithm which was

shown to be an efficient optimal global scheduler [24,

25], we propose a period-aware partitioning heuristic that

exploits the harmonicity of tasks’ periods to further re-

duce scheduling overhead. The effects of cluster size
(defined as the number of processors in a cluster) and the

proposed period-aware partitioning heuristic on the per-

formance (i.e., success ratio of schedulable task sets and

scheduling overhead) of cluster scheduling with Bfair are

evaluated through extensive simulations.

To the best of our knowledge, this is the first work

that adopts optimal global schedulers in cluster schedul-

ing and analyzes its corresponding worst-case utilization

bound. The main contributions of this work are summa-

rized as follows:

• First, for cluster scheduling where optimal global

schedulers are adopted within each cluster, a worst-

case utilization bound is derived;

• Second, for cluster scheduling with Bfair, an ef-

ficient period-aware partitioning heuristic is pro-

posed;

• Third, the effects of cluster size and the proposed

period-aware partitioning heuristic on the perfor-

mance of cluster scheduling are thoroughly evalu-

ated.

The remainder of this paper is organized as follows.

Section 2 presents task and system models and states

the problem to be addressed. The optimal global sched-

uler Bfair is reviewed and the period-aware partitioning

heuristic is presented in Section 3. The worst-case uti-

lization bound for cluster scheduling is analyzed in Sec-

tion 4. Simulation results are presented and discussed in

Section 5 and Section 6 concludes the paper.

2 System Models

2.1 Task Model

In this work, we consider a set Γ of n periodic real-

time tasks: Γ = {τ1, τ2, ..., τn}. Preemption is allowed

and there is no dependency between tasks. Each task

τi is defined by a tuple (ci, pi), where ci is the task’s

worst-case execution time (WCET) and pi is its period

(which is also the relative deadline of the task). We as-

sume that both ci and pi are integers, denoting the num-

ber of time quanta. Moreover, it is assumed that tasks

are synchronous and the first task instance of each task

arrives at time 0. The j’s task instance of task τi arrives

at time (j − 1) · pi and needs to finish its execution by its

deadline at time j · pi (j ≥ 1).

The utilization (or weight) of a task τi is defined as

ui = ci

pi
and the system utilization is defined as the sum-

mation of all tasks’ utilization U =
∑n

i=1 ui. With the

assumption that a task cannot execute in parallel on more

than one processors, we have ui ≤ 1.

2.2 System Model

We consider a shared memory multiprocessor (or mul-

ticore) system with m identical processors. For schedul-

ing and other considerations (such as power manage-

ment in multicore processors [17, 22]), the processors are

grouped into mk homogeneous clusters with each cluster

having k processors. That is, we assume that m = mk ·k.

The system utilization is assumed to be U ≤ m (other-

wise, the task set will not be schedulable).

Note that it is possible for the processors to be grouped

into heterogeneous clusters where each cluster has a dif-

ferent number of processors [22]. However, exploring the

full implications of heterogeneous clusters on the worst-

case achievable utilization is beyond the scope of this pa-

per and is left for our future work.
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2.3 Problem Description

The schedulability analysis for a virtual cluster

scheduling mechanism has been addressed in [23], by

adopting global-EDF within each cluster. However, it is

well-known that global-EDF can lead to very low sys-

tem utilization [13]. In this paper, by focusing on optimal

global scheduling algorithms (such as Bfair [24]) that can

fully utilize all processors within each cluster, we investi-

gate the maximum achievable system utilization under
cluster scheduling. More specifically, we will derive a

utilization bound U bound that can be used as a schedula-

bility test in cluster scheduling. That is, any task set with

system utilization U ≤ U bound should be guaranteed to

be schedulable under cluster scheduling.

3 Cluster Scheduling: Bfair and PA-FF

There are two main steps involved in cluster schedul-

ing, which adopts a hierarchical approach. First, tasks

are partitioned among different clusters (of processors)

following a given strategy. Then, the tasks within each

cluster are scheduled by a global scheduler [4, 9, 23]. It

can be seen that, to ensure the schedulability of the tasks

within each cluster, the number and/or utilization of the

tasks that can be allocated to one cluster depend not only

on the number of processors in the cluster but also on the

global scheduling algorithm deployed within each clus-

ter.

Note that, to obtain the maximum system utilization

under the worst-case scenario, ideally optimal global

schedulers that can fully utilize all processors within each

cluster should be deployed in the second step of clus-

ter scheduling. Therefore, before discussing the parti-

tioning strategies, we first review an efficient optimal

global scheduler: the boundary-fair (Bfair) scheduling

algorithm [24], which will be adopted in this work.

3.1 An Optimal Global Scheduler: Bfair

Several optimal global scheduling algorithms for mul-

tiprocessor real-time systems have been studied, includ-

ing the T-L plane based algorithms [10, 14], the well-

known proportional-fair (Pfair) algorithm [6] and its vari-

ants [1, 7]. Although all these global schedulers can

achieve full system utilization, the T-L plane-based algo-

rithms may require scheduling decisions at any time in-

stant [10, 14]. Moreover, by making scheduling decision

at every time unit, Pfair algorithms [1, 7, 6] could incur

quite high scheduling overhead, especially for systems

with small time quantum. Therefore, in this work, we

focus on the boundary-fair (Bfair) scheduling algorithm,

which makes scheduling decisions and ensures fairness

to tasks only at tasks’ period boundaries [24].

More specifically, for a subset Γs of periodic real-

time tasks to be executed on a cluster of k proces-

sors, we can define the period boundary time points as

B = {b0, . . . , bf}, where b0 = 0 and bj < bj+1

(j = 0, . . . , f − 1). For every bj , there exist τi ∈ Γs and

an integer a, such that bj = a · pi. Moreover, due to the

periodicity of the settings, we consider only the schedule

up to the time point of LCM (least common multiple) of

all tasks’ periods. That is, bf = LCM{pi|τi ∈ Γs}. At a

boundary time point bj(∈ B), Bfair allocates processors

to tasks for the time units between bj and bj+1.

Define the allocation error for task τi(∈ Γs) at a

boundary time bj(∈ B) as δ(i, j) = Xi(bj) − bj · ui,

where Xi(bj) represents the total number of time units

that are allocated to task τi from time 0 to time bj un-

der Bfair scheduling. Bfair ensures that, for any task

τi(∈ Γs) at any boundary time bj(∈ B), |δ(i, j)| < 1
(i.e., the allocation error is within one time unit). By en-

suring this property, we have proved that all tasks can

meet their deadlines under Bfair if Us =
∑

τi∈Γs
ui ≤ k

(i.e., the system utilization is no greater than the number

of available processors) [24].

As an example, consider a task set with 6 periodic

tasks to be executed on a cluster of two processors:

Γ = {τ1(2, 5), τ2(3, 15), τ3(3, 15), τ4(2, 6), τ5(20, 30),
τ6(6, 30)}. Here, we have U =

∑6
i=1 ui = 2 and

LCM = 30. Figure 1a shows the schedule generated

by the Bfair algorithm [24], where the dotted lines in the

figure are the period boundaries of the tasks. The num-

bers in the rectangles denote that the corresponding tasks

will be executed on the specific processor during those

time units. For comparison, the schedule obtained from

the Pfair algorithm [6] is shown in Figure 1b.

From these schedules, we can see that there are only

10 scheduling points for Bfair, while the number of

scheduling points for Pfair is 30 (the number of quanta

within LCM). Our recent results showed that, compared

to Pfair, Bfair can reduce the number of scheduling points

by up to 94% [25]. Moreover, by making CPU time

allocation in groups, the execution of tasks can be ag-

gregated under Bfair scheduling and the number of con-

text switches can be significantly reduced as well. Note

that, between two consecutive scheduling points of Bfair

schedule (e.g., time 0 and time 5), processors can execute

different tasks which results in additional context switch

points (e.g., time 2, 3 and 4 for the processor at the top

and time 3 for the processor at the bottom). In this exam-

ple, there are 45 context switches in the Bfair schedule

and the number is 52 for the Pfair schedule within one

LCM. Our recent study showed that, compared to Pfair,

Bfair can reduce the number of context switches by up

to 82% [25]. For the same reasoning, the number of task

migrations under Bfair can also be reduced by up to 85%
[25]. Such reduction in context switches and task migra-
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a. The boundary fair schedule [24]
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b. The proportional fair schedule [6]

Figure 1. The schedules for the example task set Γ ={ τ1(2, 5), τ2(3, 15), τ3(3, 15), τ4(2, 6), τ5(20, 30),
τ6(6, 30)} (the dotted lines are period boundaries).

tions is critical to reduce the run-time overhead in real-

time systems.

Considering its optimality (in terms of achieving full

system utilization) and low overhead (in terms of sched-

uler overhead, the number of context switches and task

migrations at run-time), in this paper, we will adopt Bfair

as the global scheduler within each cluster in cluster

scheduling. The detailed steps of the Bfair algorithm is

not shown due to space limitations and can be found in

[24]. However, we would like to point out that, the worst-

case utilization bound developed for cluster scheduling

in this work is not specific to Bfair. Any optimal global
scheduler (e.g. Pfair variants [1, 7, 6] or T-L plane algo-
rithms [10, 14]) that can fully utilize all processors within
each cluster will lead to the same utilization bound.

3.2 Period-Aware First-Fit (PA-FF)

When optimal global schedulers are adopted within

each cluster, we can allocate as many tasks as possible

to a cluster, provided that the summation of these tasks’

utilization is no more than k, the number of processors

within the cluster. That is, the partitioning phase of clus-

ter scheduling is essentially a problem of efficiently pack-

ing n items into mk bins, where the size of each item is no

more than 1 and each bin has the size of k (m = k ·mk).

However, unlike the bin-packing problem where the goal

is to minimize the number of bins to be used or to maxi-

mize the number of items to be packed, we are interested

in developing efficient partitioning heuristics to pack all
items in the bins and deriving the corresponding worst-

case utilization bound.

A number of heuristics have been studied for the par-

titioned scheduling problem with different objectives. In

this work, with the objective of maximizing the worst-

case utilization bound and minimizing the scheduling

overhead, we propose a variant of the first-fit (FF) heuris-

tic, namely the period-aware first-fit (PA-FF) partitioning

scheme.

Note that the scheduling points of Bfair within each

cluster are all the period boundaries of the tasks allo-

cated to the cluster. If we can allocate tasks with har-
monic periods to a cluster, all the period boundaries will

be determined by the tasks with the smallest period and

tasks with larger periods will not increase the number of

scheduling points for Bfair within that cluster. That is,

the harmonicity of tasks’ periods can be exploited to re-

duce the scheduling overhead in cluster scheduling with

Bfair, which is different from earlier work on exploit-

ing harmonic periods of tasks to improve the schedula-

bility under rate-monotonic scheduling [8]. Moreover,

for tasks with non-harmonic periods, by separating tasks

with small periods from the ones with large periods and

allocating them to different clusters, the effects of small

period tasks on the number of scheduling points will

be constrained within their clusters and the number of

scheduling points for clusters with large period tasks can

be significantly reduced.

Following these guidelines, the detailed steps of the

PA-FF partitioning scheme are shown in Algorithm 1.

First, the task with the smallest period are put in a har-

monic task set (HarmonicSet), which are followed by

tasks with harmonic periods in the increasing order of

tasks’ periods (lines 4 to 17). Then, all tasks in the har-
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Algorithm 1 Period-Aware First-Fit (PA-FF) Heuristic

1: Find pmax = maxn
i pi;

2: Initialize an ordered task list: LIST = ∅;

3: while (Task set Γ �= ∅ ) do
4: Find a task τx with px = min{pi|τi ∈ Γ};

5: HarmonicSet = {τx}; Γ − = {τx};

6: LCM = px; j = 1;

7: while (LCM · j ≤ pmax) do
8: if (∃τi ∈ Γ with pi = LCM · j) then
9: for all (τi with pi = LCM · j) do

10: HarmonicSet + = {τi}; Γ − = {τi};

11: end for
12: LCM = LCM · j;

13: j = 1;

14: else
15: j = j + 1;

16: end if
17: end while
18: Move all tasks in HarmonicSet in increasing pe-

riod order to LIST ;

19: end while
20: Allocate tasks in the order as in LIST to clusters

with First-Fit heuristic;

monic tast set will be added to an ordered task list in the

order of increasing tasks’ periods (line 18). The above

process is repeated until all tasks are put in the ordered

task list (lines 3 to 19). Then, in the same order as in the

ordered task list, the tasks are allocated to clusters with

the first-fit heuristic (line 20). The superiority of the new

PA-FF scheme over the simple first-fit heuristic on reduc-

ing the scheduling overhead (e.g., the number of context

switches and task migrations) of cluster scheduling with

Bfair is evaluated and illustrated in Section 5.

Note that, the periods of tasks are not determining fac-

tors for system utilization. In what follows, we can see

that the worst-case utilization bound for cluster schedul-

ing does not depend on the particular PA-FF heuristic.

More specifically, we will show that, for any reason-
able partitioning heuristic [21] that has the objective of

maximizing system utilization (such as first-fit (FF), best-
fit(BF), first-fit decreasing (FFD) and best fit decreasing
(BFD)), the same worst-case utilization bound for clus-

ter scheduling holds. Incidentally, the same bound holds

also for the PA-FF scheme, which is a variant of FF.

4 Utilization Bound for Cluster Scheduling

When optimal global schedulers are deployed within

each cluster, any subset of tasks allocated to a cluster can

be scheduled provided that the summation of these tasks’

utilization is no more than the number of processors in

that cluster. That is, the worst-case utilization bound for

cluster scheduling with an optimal global scheduler is es-

sentially determined by its partitioning scheme. In this

work, by focusing on reasonable partitioning heuristics

(e.g., FF, BF, FFD and BFD [21]), we will develop the

corresponding worst-case utilization bound, which is for-

mally defined as follows.

Definition 1 For a system with mk clusters where each
cluster has k processors, the worst-case achievable sys-

tem utilization bound for cluster scheduling with any rea-
sonable (RA) partitioning scheme (e.g., FF, BF, FFD or
BFD) and an optimal (OPT) global scheduler is defined
as a real number U bound

RA−OPT , such that:

• Any periodic task set with system utilization
U ≤ U bound

RA−OPT can be scheduled by cluster
scheduling with a reasonable partitioning scheme
on mk clusters, where each cluster has k processors
and adopts an optimal global scheduler;

• For any system utilization U ′ > U bound
RA−OPT , it is al-

ways possible to find a task set with system utiliza-
tion as U ′, and the task set cannot be scheduled by
cluster scheduling on mk clusters each with k pro-
cessors.

Note that, when each of the clusters has only one pro-

cessor (i.e., k = 1), the problem will reduce to find-

ing the utilization bound for the partitioned scheduling,

which has been derived by Lopez et. al [21]. Specifically,

for any reasonable partitioning heuristic, the utilization

bound for the partitioned-EDF is given as [21]:

Upartition−EDF (m,β) =
β · m + 1

β + 1
(1)

where m is the number of processors in the system; and

β = 	 1
α
 denotes the maximum number of tasks that can

fit in one processor if all tasks have the maximum task

utilization α(≤ 1). When α = 1, the bound reduces

to (m + 1)/2. That is, for systems with large number

of processors, partitioned-EDF can only achieve around

50% system utilization in the worst-case scenario.

For the cases where each cluster has more proces-

sors, by extending the result in Equation (1), we can have

the following theorem regarding the worst-case utiliza-

tion bound for cluster scheduling that adopts reasonable

partitioning heuristics and optimal global schedulers.

Theorem 1 For a real-time system with m processors
that are grouped into mk clusters with each cluster hav-
ing k processors (m = k · mk), if cluster scheduling
adopts a reasonable partitioning heuristic (such as FF,
BF, FFD or BFD) and an optimal global scheduler within
each cluster, the worst-case utilization bound for cluster
scheduling is:

U bound
RA−OPT (mk, k) =

k · mk + 1
k + 1

· k (2)
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Proof We will prove the theorem by transforming

the problem of cluster scheduling to that of partitioned

scheduling with EDF.

Note that, for any problem of scheduling a set of tasks

Γ = {τi|i = 1, . . . , n} on mk clusters each with k pro-

cessors under cluster scheduling, we can construct a cor-

responding partitioned scheduling problem with a set of

tasks Γ′ = {τ ′
i |i = 1, . . . , n} and mk processors each of

unit capacity, where the utilization of task τ ′
i is 1

k of that

of the task τi. That is, u′
i = ui

k for i = 1, . . . , n.

We can see that, for any partitioning heuristic, if it can

successfully partition the tasks in task set Γ′ on mk pro-

cessors without exceeding each processor’s capacity, the

same heuristic will be able to allocate the tasks in task set

Γ on mk clusters without exceeding each cluster’s capac-

ity, which is k.

Note that, for every task τi ∈ Γ, we have ui ≤ 1(i =
1, . . . , n). Therefore, the maximum task utilization for

tasks in Γ′ will be α′ = max{u′
i|i = 1, . . . , n} =

max{ui

k |i = 1, . . . , n} ≤ 1
k . From Equation (1), we

know that, for any of the reasonable partitioning heuris-

tics (e.g., FF, BF, FFD and BFD), the task set Γ′ can

be successfully allocated on mk processors if the sys-

tem utilization of Γ′ is U ′ =
∑n

i u′
i ≤ �(1/α′)�·mk+1

�(1/α′)�+1 =
k·mk+1

k+1 .

Hence, for the original task set Γ, any reasonable par-

titioning heuristic can allocate all tasks on mk clusters

each with k processors if the system utilization U =∑n
i ui = k

∑n
i u′

i = k · U ′ ≤ k·mk+1
k+1 k, which con-

cludes the proof.

Following the same reasoning, if the maximum task

utilization of the tasks in task set Γ is α(≤ 1), the utiliza-

tion bound can be generalized as:

U bound
RA−OPT (mk, k, β) =

β · mk + 1
β + 1

· k (3)

where β = 	k/α
 denotes the maximum number of tasks

that can fit in one cluster of k processors if all tasks have

utilization as α.

Note that, if the cluster size is one (i.e., k = 1 and

mk = m), the bounds given in the above two equa-

tions are reduced to the worst-case utilization bounds for

partitioned-EDF studied by Lopez et al. in [21]. More-

over, if all processors belong to one cluster (i.e., mk = 1
and k = m), the utilization bound will be m, the num-

ber of processors in the system, which coincides with the

assumption that the optimal global scheduler can sched-

ule any task set with system utilization not exceeding the

number of processors.

From the above equations, we can also see that, for a

system with a given number of processors, the organiza-

tion of the clusters (i.e., size and number of clusters) has

a direct effect on the worst-case utilization bound. As
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Figure 2. Utilization bounds for a 64-
processor system.

a concrete example, Figure 2 shows the bound for a 64-

processor system for different organizations of the clus-

ters. The Y-axis depicts the normalized utilization bound

(that is, U bound
RA−OPT /64).

As expected, for a given value of the maximum task

utilization α, the utilization bound increases when the

number of processors in each cluster increases and fewer

clusters are organized. For instance, if the processors are

organized as 4 clusters each having 16 processors, the

normalized utilization bound is 0.95, while the bound is

only 0.8 for the organization of 16 clusters each with 4
processors. The reason comes from the fact that, with

larger size clusters, the utilization waste due to fragmen-

tation of partitioning becomes less significant. Moreover,

the effect of α on the utilization bound is more prominent

for smaller clusters.

However, as shown in Section 5, it could be beneficial

to organize the processors as smaller clusters in terms of

reducing scheduling overhead. That is, for smaller clus-

ters, there will be relatively fewer number of tasks and

the number of scheduling points (i.e., period boundaries)

can be significantly reduced within each cluster, leading

to less scheduling overhead.

5 Evaluations and Discussions

Note that the utilization bounds given in Equations

(2) and (3) correspond to the worst-case scenario. Thus,

task sets with system utilization larger than the derived

bounds could still be schedulable under cluster schedul-

ing. In this section, focusing on the success ratio
of schedulable task sets and scheduling overhead, we

will empirically evaluate the effects of cluster size and

the proposed period-aware first-fit (PA-FF) partitioning

heuristic on the performance of cluster scheduling with

Bfair through extensive simulations. For comparison, the
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Figure 3. Success ratios for cluster scheduling and partitioned FF-EDF.

simple first-fit (FF) heuristic is also considered.

In the simulations, synthetic task sets are generated

from a set of parameters: task set system utilization Utot,

the maximum task utilization α, the minimum task period

Pmin and the maximum task period Pmax. In this paper,

we consider systems with 16 (i.e., m = 16) and 64 pro-

cessors (i.e., m = 64), respectively. Moreover, we define

the normalized system utilization as Utot

m , which will vary

from 0.75 to 1.0. The maximum task utilization α has the

range of [0.2, 1.0]. Unless specified otherwise, when gen-

erating the periods of tasks, we considered Pmin = 10
and Pmax = 100.

For a given setting, the period and utilization of a task

are first generated within the range of [Pmin, Pmax] and

(0, α], respectively, following the uniform distribution.

Then, to ensure the integer property of the task’s worst-

case execution time (WCET), its utilization is adjusted

so as not to exceed α. More tasks are generated repeat-

edly provided that the summation of their utilization is no

greater than Utot, the target system utilization. When the

difference between Utot and the summation utilization of

generated tasks is less than α, the last task takes its uti-

lization as the difference (i.e., the system utilization of

the task set is exactly Utot).

5.1 Success Ratio

For task sets with different system utilization, we first

evaluate the number of task sets that can be success-

fully scheduled under cluster scheduling with PA-FF and

Bfair. For this purpose, we define the success ratio as the

number of task sets that are schedulable under a given

scheduling algorithm over the total number of the gener-

ated task sets. With the maximum task utilization being

fixed as α = 1.0, 1, 000, 000 task sets are generated for

each setting following the above steps.

Figures 3(a) and 3(b) show the success ratio of the

generated task sets for systems with 16 and 64 proces-

sors, respectively. Here, the X-axis shows the normalized

system utilization (i.e., Utot

m ) of the task sets generated.

For cluster scheduling, only the results for cluster size of

k = 2 and k = 4 are presented. For larger clusters with

more processors, the success ratio under cluster schedul-

ing is almost 1 even for very high system utilization. For

comparison, the success ratio of schedulable task sets un-

der partitioned scheduling with first-fit heuristic and EDF

(FF-EDF) [21] is also shown.

From the results, we can see that, for the system with

16 processors (m = 16), even with clusters of the small-

est size (i.e., k = 2), the cluster scheduling can success-

fully schedule almost all task sets when the normalized

system utilization does not exceed 0.94. Not surprisingly,

the cluster scheduling performs better with larger clus-

ters as the wasted utilization fragmentation becomes rel-

atively less. For instance, for the case where each cluster

has four processors (i.e., k = 4), the normalized sys-

tem utilization limit can reach 0.98 while almost all task

sets are still schedulable. In comparison, the partitioned

FF-EDF can only schedule almost all task sets when the

normalized system utilization does not exceed 0.81.

When the maximum task utilization becomes smaller

(e.g., α = 0.5), better success ratios are achieved by both

schemes. In that case, cluster scheduling still outper-

forms partitioned FF-EDF (the details are omitted due to

space limitations). Moreover, for systems with more pro-

cessors, more clusters can be formed and tasks have more

chance to fit into one of them. As shown in Figure 3(b)

for systems with 64 processors, both cluster scheduling

and partitioned FF-EDF perform better and can schedule

more task sets with higher normalized system utilization.

5.2 Scheduling Overhead

Although cluster scheduling with larger clusters can

successfully schedule more task sets with higher system

utilization, larger clusters could lead to higher scheduling
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Figure 4. Time overhead of cluster-Bfair at each scheduling point within a cluster.

overhead. With more tasks being allocated to each clus-

ter, there will be more scheduling points for the global

scheduler Bfair and the interval between adjacent period

boundaries can become smaller. Therefore, in addition to

the time overhead for invoking Bfair at each scheduling

point (which largely depends on the number of tasks in

a cluster), the generated schedule can require more con-

text switches and task migrations due to shorter execution

of tasks within each interval between period boundaries

[24, 25].

For systems where the processors are organized as dif-

ferent size of clusters, the scheduling overhead of cluster

scheduling with Bfair is also evaluated through extensive

simulations. Here, to ensure that most of the generated

task sets are schedulable, we set the normalized system

utilization to Utot

m = 0.95. Moreover, we fix Pmin = 10
and Pmax = 100. The value of the maximum task uti-

lization α is varied from 0.2 to 1.0. With fixed system

utilization, varying α effectively affects the number of

tasks in the task sets under consideration, where smaller

values of α mean more tasks for each task set. For each

data point in the following figures, 100 schedulable task

sets are generated and the average result is reported.

Time Overhead: For cluster scheduling with different

cluster sizes, Figures 4(a) and 4(b) first show the invoca-

tion time of the Bfair algorithm at each scheduling point

for 16-processor and 64-processor systems, respectively.

Here, the algorithms are implemented in C and run on

a Linux machine with an Intel 2.4GHz processor. Note

that, when all processors in a system form a single cluster

(i.e., k = m), the cluster scheduling essentially becomes

to be the global Bfair [24], which is labeled as “Global”

and used for comparison.

As shown in [24, 25], the time overhead of Bfair at

each scheduling point depends largely on the number of

tasks to be scheduled together. For cluster scheduling,

after partitioning tasks to clusters, the scheduling deci-

sions of Bfair for each cluster can be made independently.

Therefore, as we can see from Figure 4(a), when cluster

size becomes smaller, the time overhead at a scheduling

point for a cluster can be significantly reduced. The rea-

son comes from the fact that fewer tasks are allocated

to a smaller cluster. Moreover, as α becomes smaller,

more tasks will be contained in each task set. That is,

more tasks will be allocated to each cluster, and the time

overhead of Bfair at each scheduling point generally in-

creases. However, the effect of α is more prominent for

larger clusters, especially for the global Bfair where there

is only one cluster and all tasks are handled together. For

systems with more processors (Figure 4(b)), there are

more tasks can be scheduled and the time overhead at

each scheduling point becomes larger, which is consis-

tent with our previous results reported in [24, 25].

Context Switches and Task Migrations: Next, we

evaluate the schedules generated by cluster scheduling

with different sizes of clusters in terms of the required

number of context switches and task migrations. Here,

the maximum task utilization is fixed as α = 1.0 and the

normalized system utilization is set as Utot

m = 0.95. With

fixed Pmax = 100, we vary Pmin from 10 to 90 and eval-

uate the effects of tasks’ periods on cluster scheduling

with Bfair. The proposed period-aware first-fit (PA-FF)

partitioning heuristic is evaluated against the simple first-

fit (FF) partitioning heuristic where tasks are randomly

ordered. For easy comparison, those of the schedule gen-

erated by the global Bfair (i.e., with cluster size k = m)

are used as a baseline and normalized results are reported.

Figures 5(a) and 5(b) show the normalized number of

context switches for the schedules generated by cluster

scheduling for systems with 16 and 64 processors, re-

spectively. From the results, we can see that, compared to

that of the schedule generated by the global Bfair where
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Figure 5. Normalized number of context switches
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Figure 6. Normalized number of task migrations

all tasks are scheduled together, the number of context

switches in the schedule generated by cluster scheduling

decreases drastically as cluster size becomes smaller. For

instance, when the cluster size is k = 2, the number of

context switches can be reduced by more than 90%. The

reason is that, with fewer tasks in a smaller cluster, the

scheduling points that are the tasks’ period boundaries

become fewer, which in turn provides more opportuni-

ties for tasks to run for more consecutive time units and

thus to reduce the number of context switches. Moreover,

by allocating harmonic tasks together, the proposed PA-

FF partitioning scheme can further reduce the number of

context switches significantly when compared to that of

the simple FF heuristic, especially for the ones with large

size clusters and systems with more processors.

Furthermore, as Pmin increases while Pmax is fixed

as 100, more tasks are likely to have the same period.

That is, the number of scheduling points becomes less for

both global Bfair and cluster scheduling for each cluster.

However, the reduction in scheduling points is more sig-

nificant for global Bfair algorithm, which leads to a much

reduced number of context switches [24, 25]. Therefore,

for the simple FF heuristic, the normalized number of

context switches for the schedules generated by cluster

scheduling increases slightly as Pmin increases. How-

ever, for the proposed PA-FF partitioning scheme that al-

locates tasks with harmonic periods together, the normal-

ized number of context switches stays roughly the same.

Figures 6(a) and 6(b) further show the normalized

number of task migrations for the schedules generated by

cluster scheduling with Bfair. Due to the similar reasons,

the number of task migrations is also reduced under clus-

ter scheduling, especially with smaller clusters and the

PA-FF partitioning scheme.

6 Conclusions

In this paper, with an optimal global scheduler be-

ing adopted within each cluster, we studied the worst-

case utilization bound for cluster scheduling (where pro-

cessors are grouped into clusters and tasks allocated to
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one cluster are scheduled by a global scheduler). For a

system where processors are grouped into m homoge-

neous clusters with each cluster having k processors, we

proved that the worst-case achievable system utilization

is
�k/α�·m+1
�k/α�+1 · k, where α is the maximum utilization

of the periodic tasks considered. Focusing on an effi-

cient optimal global scheduler, the boundary-fair (Bfair)
scheduling, we also proposed a period-aware partitioning

heuristic that attempts to allocate tasks with harmonic pe-

riods together in order to to reduce scheduling overhead.

The simulation results showed that, compared to that

of the partitioned scheduling, the success ratio of schedu-

lable task sets can be significantly improved under cluster

scheduling even with small size clusters (e.g., k = 2).

Moreover, when compared to global Bfair scheduling,

cluster scheduling can drastically reduce the scheduling

overhead (such as execution time of the scheduler, and

the number of context switches and task migrations for

the generated schedules), especially for the cases with the

proposed period-aware partitioning heuristic and small

size clusters (i.e., k = 2 or k = 4).
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