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Abstract

Cluster scheduling, where processors are grouped into
clusters and the tasks that are allocated to one cluster
are scheduled by a global scheduler, has attracted at-
tention in multiprocessor real-time systems research re-
cently. In this paper, by adopting optimal global sched-
ulers within each cluster, first we investigate the worst-
case utilization bound for cluster scheduling. Specifi-
cally, for a system with m homogeneous clusters where
each cluster has k processors, we show that the worst-
case achievable system utilization is % -k, where
« is the maximum utilization for the periodic tasks con-
sidered. By focusing on an efficient optimal global sched-
uler, namely the boundary-fair (Bfair) algorithm, we pro-
pose a period-aware partitioning heuristic aiming at re-
ducing the scheduling overhead. Simulation results show
that the percentage of task sets that can be scheduled is
significantly improved under cluster scheduling even for
small-size clusters (e.g., k = 2). Moreover, the proposed
period-aware partitioning heuristic markedly reduces the
scheduling overhead of cluster scheduling with Bfair.

1 Introduction

The problem of scheduling periodic real-time tasks
upon multiprocessor platforms has been studied for
decades [12, 13] and there is a reviving interest due to
the emergence of multicore processors [2, 5, 11, 15, 16,
18, 19]. In this line of research, the main objective is to
find efficient scheduling algorithms that can effectively
utilize the available processors, with low run-time over-
head. In general, there are two main approaches to the
scheduling problem in multiprocessor real-time systems:
partitioned and global scheduling [12, 13].
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In partitioned scheduling, each task is permanently as-
signed to a specific processor. Although well-established
uniprocessor scheduling algorithms (e.g., EDF and RMS
[20]) can be employed on each processor, finding a fea-
sible partition of tasks to processors has been shown to
be NP-hard [12, 13]. In global scheduling, on the other
hand, all ready tasks are put into a shared queue and each
idle processor fetches the next highest-priority task for
execution from the global queue. Despite its flexibility
that allows tasks to migrate and execute on different pro-
cessors, it has been shown that simple global scheduling
policies (e.g., global-EDF and global-RMS) could fail to
schedule task sets with extremely low system utilization
[13].

To fully utilize the system, several optimal global
scheduling algorithms (which can schedule any periodic
task set whose total utilization does not exceed the total
computing capacity in a feasible manner) have been pro-
posed, with varying complexity. Assuming a continuous
time domain, the 7-L Plane based algorithms were stud-
ied in [10, 14]. More recently, a generalized deadline-
partitioned fair (DP-Fair) scheduling model was investi-
gated in [19]. However, those algorithms can incur high
scheduling overhead as the time allocation to tasks can
be arbitrarily small. As a well-known quantum-based
optimal global scheduling algorithm, the proportional
fair (Pfair) scheduler enforces proportional progress (i.e.,
fairness) for each task at every time unit [6]. Several so-
phisticated variations of Pfair algorithm have also been
studied, such as PD [7] and PD? [1]. However, by
making scheduling decisions at every quantum time unit,
these algorithms could also lead to high scheduling over-
head. Observing that a periodic real-time task can only
miss its deadline at its period boundary, we have devel-
oped an optimal boundary fair (Bfair) scheduling algo-
rithm. By making scheduling decisions and ensuring
fairness for tasks only at their period boundaries, Bfair
can significantly reduce the scheduling overhead [24, 25],

IEEE
computer
psoue

ty



while fully utilizing all the processors.

Recently, as a hierarchical approach, cluster schedul-
ing has been investigated. In this approach, processors
are grouped into clusters and tasks are partitioned among
different clusters. For tasks that are allocated to a cluster,
different global scheduling policies (e.g., global-EDF)
can be adopted [4, 9, 23]. Note that, cluster scheduling
is a general approach, which will reduce to partitioned
scheduling when there is only one processor in each clus-
ter. For the case of a single cluster containing all the pro-
cessors, it will reduce to global scheduling.

As multicore processors will be widely employed in
modern real-time systems and processing cores on a chip
may be organized into a few groups (i.e., clusters), where
cores sharing on-chip caches (and even voltage supply
through voltage-island techniques) belong to one group
[17, 22], additional analysis of cluster scheduling is war-
ranted. Moreover, although the schedulability test and
system utilization bounds have been studied for parti-
tioned [21] and global [3, 5] scheduling approaches, such
results are not readily available for cluster scheduling.

In this paper, adopting optimal global schedulers to
schedule tasks within each cluster, we study the worst-
case utilization bound for cluster scheduling. Specifi-
cally, for a system with m homogeneous clusters where
each cluster has k processors, by extending the worst-
case utilization bound for the partitioned-EDF [21], we
show that the worst-case achievable system utilization for
cluster scheduling is %
imum utilization for the periodic tasks under considera-
tion.

Moreover, by using the Bfair algorithm which was
shown to be an efficient optimal global scheduler [24,
25], we propose a period-aware partitioning heuristic that
exploits the harmonicity of tasks’ periods to further re-
duce scheduling overhead. The effects of cluster size
(defined as the number of processors in a cluster) and the
proposed period-aware partitioning heuristic on the per-
formance (i.e., success ratio of schedulable task sets and
scheduling overhead) of cluster scheduling with Bfair are
evaluated through extensive simulations.

To the best of our knowledge, this is the first work
that adopts optimal global schedulers in cluster schedul-
ing and analyzes its corresponding worst-case utilization
bound. The main contributions of this work are summa-
rized as follows:

- k, where « is the max-

e First, for cluster scheduling where optimal global
schedulers are adopted within each cluster, a worst-
case utilization bound is derived;

e Second, for cluster scheduling with Bfair, an ef-
ficient period-aware partitioning heuristic is pro-
posed;

e Third, the effects of cluster size and the proposed
period-aware partitioning heuristic on the perfor-
mance of cluster scheduling are thoroughly evalu-
ated.

The remainder of this paper is organized as follows.
Section 2 presents task and system models and states
the problem to be addressed. The optimal global sched-
uler Bfair is reviewed and the period-aware partitioning
heuristic is presented in Section 3. The worst-case uti-
lization bound for cluster scheduling is analyzed in Sec-
tion 4. Simulation results are presented and discussed in
Section 5 and Section 6 concludes the paper.

2 System Models
2.1 Task Model

In this work, we consider a set I' of n periodic real-
time tasks: I' = {7y, 79, ..., 7, }. Preemption is allowed
and there is no dependency between tasks. Each task
7; is defined by a tuple (c;, p;), where ¢; is the task’s
worst-case execution time (WCET) and p; is its period
(which is also the relative deadline of the task). We as-
sume that both ¢; and p; are integers, denoting the num-
ber of time quanta. Moreover, it is assumed that tasks
are synchronous and the first task instance of each task
arrives at time 0. The j’s task instance of task 7; arrives
attime (j — 1) - p; and needs to finish its execution by its
deadline at time j - p; ( > 1).

The utilization (or weight) of a task 7; is defined as
u; = ;— and the system utilization is defined as the sum-
mation of all tasks’ utilization U = """, u;. With the
assumption that a task cannot execute in parallel on more
than one processors, we have u; < 1.

2.2 System Model

We consider a shared memory multiprocessor (or mul-
ticore) system with m identical processors. For schedul-
ing and other considerations (such as power manage-
ment in multicore processors [17, 22]), the processors are
grouped into m; homogeneous clusters with each cluster
having k processors. That is, we assume that m = my, - k.
The system utilization is assumed to be U < m (other-
wise, the task set will not be schedulable).

Note that it is possible for the processors to be grouped
into heterogeneous clusters where each cluster has a dif-
ferent number of processors [22]. However, exploring the
full implications of heterogeneous clusters on the worst-
case achievable utilization is beyond the scope of this pa-
per and is left for our future work.



2.3 Problem Description

The schedulability analysis for a virtual cluster
scheduling mechanism has been addressed in [23], by
adopting global-EDF within each cluster. However, it is
well-known that global-EDF can lead to very low sys-
tem utilization [13]. In this paper, by focusing on optimal
global scheduling algorithms (such as Bfair [24]) that can
fully utilize all processors within each cluster, we investi-
gate the maximum achievable system utilization under
cluster scheduling. More specifically, we will derive a
utilization bound U?°“"? that can be used as a schedula-
bility test in cluster scheduling. That is, any task set with
system utilization U < U“"? should be guaranteed to
be schedulable under cluster scheduling.

3 Cluster Scheduling: Bfair and PA-FF

There are two main steps involved in cluster schedul-
ing, which adopts a hierarchical approach. First, tasks
are partitioned among different clusters (of processors)
following a given strategy. Then, the tasks within each
cluster are scheduled by a global scheduler [4, 9, 23]. It
can be seen that, to ensure the schedulability of the tasks
within each cluster, the number and/or utilization of the
tasks that can be allocated to one cluster depend not only
on the number of processors in the cluster but also on the
global scheduling algorithm deployed within each clus-
ter.

Note that, to obtain the maximum system utilization
under the worst-case scenario, ideally optimal global
schedulers that can fully utilize all processors within each
cluster should be deployed in the second step of clus-
ter scheduling. Therefore, before discussing the parti-
tioning strategies, we first review an efficient optimal
global scheduler: the boundary-fair (Bfair) scheduling
algorithm [24], which will be adopted in this work.

3.1 An Optimal Global Scheduler: Bfair

Several optimal global scheduling algorithms for mul-
tiprocessor real-time systems have been studied, includ-
ing the T-L plane based algorithms [10, 14], the well-
known proportional-fair (Pfair) algorithm [6] and its vari-
ants [1, 7]. Although all these global schedulers can
achieve full system utilization, the T-L plane-based algo-
rithms may require scheduling decisions at any time in-
stant [10, 14]. Moreover, by making scheduling decision
at every time unit, Pfair algorithms [1, 7, 6] could incur
quite high scheduling overhead, especially for systems
with small time quantum. Therefore, in this work, we
focus on the boundary-fair (Bfair) scheduling algorithm,
which makes scheduling decisions and ensures fairness
to tasks only at tasks’ period boundaries [24].

More specifically, for a subset I'y of periodic real-
time tasks to be executed on a cluster of k£ proces-
sors, we can define the period boundary time points as
B = {bg,...,bs}, where by = 0 and b; < bjt1
(j=0,...,f —1). For every b;, there exist 7, € I'; and
an integer a, such that b; = a - p;. Moreover, due to the
periodicity of the settings, we consider only the schedule
up to the time point of LCM (least common multiple) of
all tasks’ periods. Thatis, by = LCM{p;|m; € T's}. Ata
boundary time point b; (€ B), Bfair allocates processors
to tasks for the time units between b; and b; ;.

Define the allocation error for task 7;(€ T's) at a
boundary time b;(€ B) as 6(i,j) = X;(bj) — b; - uy,
where X;(b;) represents the total number of time units
that are allocated to task 7; from time 0 to time b; un-
der Bfair scheduling. Bfair ensures that, for any task
7;(€ T's) at any boundary time b;(€ B), |§(i,7)] < 1
(i.e., the allocation error is within one time unit). By en-
suring this property, we have proved that all tasks can
meet their deadlines under Bfair if U, = Zne r, Wi <k
(i.e., the system utilization is no greater than the number
of available processors) [24].

As an example, consider a task set with 6 periodic
tasks to be executed on a cluster of two processors:
I = {n(2,5), 72(3,15), 13(3,15), 74(2,6), 75(20, 30),
76(6,30)}. Here, we have U = 2?21 u; = 2 and
LCM = 30. Figure la shows the schedule generated
by the Bfair algorithm [24], where the dotted lines in the
figure are the period boundaries of the tasks. The num-
bers in the rectangles denote that the corresponding tasks
will be executed on the specific processor during those
time units. For comparison, the schedule obtained from
the Pfair algorithm [6] is shown in Figure 1b.

From these schedules, we can see that there are only
10 scheduling points for Bfair, while the number of
scheduling points for Pfair is 30 (the number of quanta
within LCM). Our recent results showed that, compared
to Pfair, Bfair can reduce the number of scheduling points
by up to 94% [25]. Moreover, by making CPU time
allocation in groups, the execution of tasks can be ag-
gregated under Bfair scheduling and the number of con-
text switches can be significantly reduced as well. Note
that, between two consecutive scheduling points of Bfair
schedule (e.g., time 0 and time 5), processors can execute
different tasks which results in additional context switch
points (e.g., time 2, 3 and 4 for the processor at the top
and time 3 for the processor at the bottom). In this exam-
ple, there are 45 context switches in the Bfair schedule
and the number is 52 for the Pfair schedule within one
LCM. Our recent study showed that, compared to Pfair,
Bfair can reduce the number of context switches by up
to 82% [25]. For the same reasoning, the number of task
migrations under Bfair can also be reduced by up to 85%
[25]. Such reduction in context switches and task migra-
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Figure 1. The schedules for the example task set I ={ 1 (2, 5), 72(3, 15), 73(3, 15), 74(2, 6), 75(20, 30),
76(6,30)} (the dotted lines are period boundaries).

tions is critical to reduce the run-time overhead in real-
time systems.

Considering its optimality (in terms of achieving full
system utilization) and low overhead (in terms of sched-
uler overhead, the number of context switches and task
migrations at run-time), in this paper, we will adopt Bfair
as the global scheduler within each cluster in cluster
scheduling. The detailed steps of the Bfair algorithm is
not shown due to space limitations and can be found in
[24]. However, we would like to point out that, the worst-
case utilization bound developed for cluster scheduling
in this work is not specific to Bfair. Any optimal global
scheduler (e.g. Pfairvariants [1, 7, 6] or T-L plane algo-
rithms [ 10, 14]) that can fully utilize all processors within
each cluster will lead to the same utilization bound.

3.2 Period-Aware First-Fit (PA-FF)

When optimal global schedulers are adopted within
each cluster, we can allocate as many tasks as possible
to a cluster, provided that the summation of these tasks’
utilization is no more than &, the number of processors
within the cluster. That is, the partitioning phase of clus-
ter scheduling is essentially a problem of efficiently pack-
ing n items into my, bins, where the size of each item is no
more than 1 and each bin has the size of k& (m = k- my).
However, unlike the bin-packing problem where the goal
is to minimize the number of bins to be used or to maxi-
mize the number of items to be packed, we are interested
in developing efficient partitioning heuristics to pack all
items in the bins and deriving the corresponding worst-
case utilization bound.

A number of heuristics have been studied for the par-
titioned scheduling problem with different objectives. In
this work, with the objective of maximizing the worst-
case utilization bound and minimizing the scheduling
overhead, we propose a variant of the first-fit (FF) heuris-
tic, namely the period-aware first-fit (PA-FF) partitioning
scheme.

Note that the scheduling points of Bfair within each
cluster are all the period boundaries of the tasks allo-
cated to the cluster. If we can allocate tasks with har-
monic periods to a cluster, all the period boundaries will
be determined by the tasks with the smallest period and
tasks with larger periods will not increase the number of
scheduling points for Bfair within that cluster. That is,
the harmonicity of tasks’ periods can be exploited to re-
duce the scheduling overhead in cluster scheduling with
Bfair, which is different from earlier work on exploit-
ing harmonic periods of tasks to improve the schedula-
bility under rate-monotonic scheduling [8]. Moreover,
for tasks with non-harmonic periods, by separating tasks
with small periods from the ones with large periods and
allocating them to different clusters, the effects of small
period tasks on the number of scheduling points will
be constrained within their clusters and the number of
scheduling points for clusters with large period tasks can
be significantly reduced.

Following these guidelines, the detailed steps of the
PA-FF partitioning scheme are shown in Algorithm 1.
First, the task with the smallest period are put in a har-
monic task set (HarmonicSet), which are followed by
tasks with harmonic periods in the increasing order of
tasks’ periods (lines 4 to 17). Then, all tasks in the har-



Algorithm 1 Period-Aware First-Fit (PA-FF) Heuristic
1: Find pra, = maxy p;;
2: Initialize an ordered task list: LIST = 0;
3. while (Task set I' # () ) do
4. Find a task 7, with p, = min{p;|; € T'};
5. HarmonicSet = {7, }; T — = {1 };
6: LCM=p,;5=1,
7.
8
9

while (LCM - j < pmaz) do
if (3r; € T with p; = LCM - j) then
: for all (r; with p; = LCM - j) do
10: HarmonicSet + ={r};I' — = {1 };

11: end for

12: LCM =LCM - j;
13: i=1

14: else

15: j=J+1

16: end if

17:  end while
18:  Move all tasks in HarmonicSet in increasing pe-
riod order to LIST,
19: end while
20: Allocate tasks in the order as in LIST to clusters
with First-Fit heuristic;

monic tast set will be added to an ordered task list in the
order of increasing tasks’ periods (line 18). The above
process is repeated until all tasks are put in the ordered
task list (lines 3 to 19). Then, in the same order as in the
ordered task list, the tasks are allocated to clusters with
the first-fit heuristic (line 20). The superiority of the new
PA-FF scheme over the simple first-fit heuristic on reduc-
ing the scheduling overhead (e.g., the number of context
switches and task migrations) of cluster scheduling with
Bfair is evaluated and illustrated in Section 5.

Note that, the periods of tasks are not determining fac-
tors for system utilization. In what follows, we can see
that the worst-case utilization bound for cluster schedul-
ing does not depend on the particular PA-FF heuristic.
More specifically, we will show that, for any reason-
able partitioning heuristic [21] that has the objective of
maximizing system utilization (such as first-fit (FF), best-
[fit(BF), first-fit decreasing (FFD) and best fit decreasing
(BFD)), the same worst-case utilization bound for clus-
ter scheduling holds. Incidentally, the same bound holds
also for the PA-FF scheme, which is a variant of FF.

4 Utilization Bound for Cluster Scheduling

When optimal global schedulers are deployed within
each cluster, any subset of tasks allocated to a cluster can
be scheduled provided that the summation of these tasks’
utilization is no more than the number of processors in
that cluster. That is, the worst-case utilization bound for

cluster scheduling with an optimal global scheduler is es-
sentially determined by its partitioning scheme. In this
work, by focusing on reasonable partitioning heuristics
(e.g., FF, BF, FFD and BFD [21]), we will develop the
corresponding worst-case utilization bound, which is for-
mally defined as follows.

Definition 1 For a system with my, clusters where each
cluster has k processors, the worst-case achievable sys-
tem utilization bound for cluster scheduling with any rea-
sonable (RA) partitioning scheme (e.g., FF, BE, FFD or
BFD) and an optimal (OPT) global scheduler is defined

as a real number U434, .., such that:

e Any periodic task set with system utilization
U<U¥snd . can be scheduled by cluster
scheduling with a reasonable partitioning scheme
on my, clusters, where each cluster has k processors
and adopts an optimal global scheduler;

e For any system utilization U’ > U4, . it is al-

ways possible to find a task set with system utiliza-
tion as U’, and the task set cannot be scheduled by
cluster scheduling on my, clusters each with k pro-
cessors.

Note that, when each of the clusters has only one pro-
cessor (i.e., k = 1), the problem will reduce to find-
ing the utilization bound for the partitioned scheduling,
which has been derived by Lopez et. al [21]. Specifically,
for any reasonable partitioning heuristic, the utilization
bound for the partitioned-EDF is given as [21]:

B-m+1
p+1

where m is the number of processors in the system; and
8 = | ] denotes the maximum number of tasks that can
fit in one processor if all tasks have the maximum task
utilization (< 1). When o = 1, the bound reduces
to (m + 1)/2. That is, for systems with large number
of processors, partitioned-EDF can only achieve around
50% system utilization in the worst-case scenario.

For the cases where each cluster has more proces-
sors, by extending the result in Equation (1), we can have
the following theorem regarding the worst-case utiliza-
tion bound for cluster scheduling that adopts reasonable
partitioning heuristics and optimal global schedulers.

(1)

Upartition—EDF(ma ﬁ) =

Theorem 1 For a real-time system with m processors
that are grouped into my, clusters with each cluster hav-
ing k processors (m = k - my), if cluster scheduling
adopts a reasonable partitioning heuristic (such as FE,
BE, FFD or BFD) and an optimal global scheduler within
each cluster, the worst-case utilization bound for cluster
scheduling is:

Ubound _ kmk+1 .

rA—OpT (MK, k) = E 1 k 2



Proof We will prove the theorem by transforming
the problem of cluster scheduling to that of partitioned
scheduling with EDF.

Note that, for any problem of scheduling a set of tasks
' ={ni = 1,...,n} on my clusters each with k pro-
cessors under cluster scheduling, we can construct a cor-
responding partitioned scheduling problem with a set of

tasks IV = {7/|¢ = 1,...,n} and my, processors each of
unit capacity, where the utilization of task 7/ is % of that
of the task 7;. That is, u; = %% fori = 1,...,n.

We can see that, for any partitioning heuristic, if it can
successfully partition the tasks in task set I'' on my, pro-
cessors without exceeding each processor’s capacity, the
same heuristic will be able to allocate the tasks in task set
I" on my, clusters without exceeding each cluster’s capac-
ity, which is k.

Note that, for every task 7; € T', we have u; < 1(i =

1,...,n). Therefore, the maximum task utilization for
tasks in IV will be o/ = max{ujli = 1,...,n} =
max{%|i = 1,...,n} < . From Equation (1), we

know that, for any of the reasonable partitioning heuris-
tics (e.g., FF, BE, FFD and BFD), the task set I can
be successfully allocated on my, processors if the sys-

.- . . ; n [(1/a)) | mp+1
t:m lirtllhzatlon of IMisU' = > uj < a/en41 =
-
TRl

Hence, for the original task set I', any reasonable par-
titioning heuristic can allocate all tasks on my, clusters
each with k& processors if the system utilization U =
Stu; = kY ful = k- U < EmeH g which con-

k+1
cludes the proof. -

Following the same reasoning, if the maximum task
utilization of the tasks in task set I" is (< 1), the utiliza-
tion bound can be generalized as:

B'mk'f‘]-'k
B+1

where 8 = | k/a| denotes the maximum number of tasks
that can fit in one cluster of k processors if all tasks have
utilization as a.

Note that, if the cluster size is one (i.e., kK = 1 and
my, = m), the bounds given in the above two equa-
tions are reduced to the worst-case utilization bounds for
partitioned-EDF studied by Lopez et al. in [21]. More-
over, if all processors belong to one cluster (i.e., my = 1
and £ = m), the utilization bound will be m, the num-
ber of processors in the system, which coincides with the
assumption that the optimal global scheduler can sched-
ule any task set with system utilization not exceeding the
number of processors.

From the above equations, we can also see that, for a
system with a given number of processors, the organiza-
tion of the clusters (i.e., size and number of clusters) has
a direct effect on the worst-case utilization bound. As
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Figure 2. Utilization bounds for a 64-
processor system.

a concrete example, Figure 2 shows the bound for a 64-
processor system for different organizations of the clus-
ters. The Y-axis depicts the normalized utilization bound
(that is, US4, r /64).

As expected, for a given value of the maximum task
utilization «, the utilization bound increases when the
number of processors in each cluster increases and fewer
clusters are organized. For instance, if the processors are
organized as 4 clusters each having 16 processors, the
normalized utilization bound is 0.95, while the bound is
only 0.8 for the organization of 16 clusters each with 4
processors. The reason comes from the fact that, with
larger size clusters, the utilization waste due to fragmen-
tation of partitioning becomes less significant. Moreover,
the effect of v on the utilization bound is more prominent
for smaller clusters.

Howeyver, as shown in Section 5, it could be beneficial
to organize the processors as smaller clusters in terms of
reducing scheduling overhead. That is, for smaller clus-
ters, there will be relatively fewer number of tasks and
the number of scheduling points (i.e., period boundaries)
can be significantly reduced within each cluster, leading
to less scheduling overhead.

5 Evaluations and Discussions

Note that the utilization bounds given in Equations
(2) and (3) correspond to the worst-case scenario. Thus,
task sets with system utilization larger than the derived
bounds could still be schedulable under cluster schedul-
ing. In this section, focusing on the success ratio
of schedulable task sets and scheduling overhead, we
will empirically evaluate the effects of cluster size and
the proposed period-aware first-fit (PA-FF) partitioning
heuristic on the performance of cluster scheduling with
Bfair through extensive simulations. For comparison, the
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Figure 3. Success ratios for cluster scheduling and partitioned FF-EDF.

simple first-fit (FF) heuristic is also considered.

In the simulations, synthetic task sets are generated
from a set of parameters: task set system utilization Uy,
the maximum task utilization ¢, the minimum task period
P,,i»n and the maximum task period P,,,,. In this paper,
we consider systems with 16 (i.e., m = 16) and 64 pro-
cessors (i.e., m = 64), respectively. Moreover, we define
the normalized system utilization as % which will vary
from 0.75 to 1.0. The maximum task utilization « has the
range of [0.2, 1.0]. Unless specified otherwise, when gen-
erating the periods of tasks, we considered P,,;, = 10
and P,,,, = 100.

For a given setting, the period and utilization of a task
are first generated within the range of [P,,,in, Pmas] and
(0, a], respectively, following the uniform distribution.
Then, to ensure the integer property of the task’s worst-
case execution time (WCET), its utilization is adjusted
so as not to exceed «v. More tasks are generated repeat-
edly provided that the summation of their utilization is no
greater than Uy, the target system utilization. When the
difference between U;,; and the summation utilization of
generated tasks is less than «, the last task takes its uti-
lization as the difference (i.e., the system utilization of
the task set is exactly Uyy).

5.1 Swuccess Ratio

For task sets with different system utilization, we first
evaluate the number of task sets that can be success-
fully scheduled under cluster scheduling with PA-FF and
Bfair. For this purpose, we define the success ratio as the
number of task sets that are schedulable under a given
scheduling algorithm over the total number of the gener-
ated task sets. With the maximum task utilization being
fixed as a = 1.0, 1,000, 000 task sets are generated for
each setting following the above steps.

Figures 3(a) and 3(b) show the success ratio of the
generated task sets for systems with 16 and 64 proces-

sors, respectively. Here, the X-axis shows the normalized
system utilization (i.e., %) of the task sets generated.
For cluster scheduling, only the results for cluster size of
k = 2 and k = 4 are presented. For larger clusters with
more processors, the success ratio under cluster schedul-
ing is almost 1 even for very high system utilization. For
comparison, the success ratio of schedulable task sets un-
der partitioned scheduling with first-fit heuristic and EDF
(FF-EDF) [21] is also shown.

From the results, we can see that, for the system with
16 processors (m = 16), even with clusters of the small-
est size (i.e., k = 2), the cluster scheduling can success-
fully schedule almost all task sets when the normalized
system utilization does not exceed 0.94. Not surprisingly,
the cluster scheduling performs better with larger clus-
ters as the wasted utilization fragmentation becomes rel-
atively less. For instance, for the case where each cluster
has four processors (i.e., k = 4), the normalized sys-
tem utilization limit can reach 0.98 while almost all task
sets are still schedulable. In comparison, the partitioned
FF-EDF can only schedule almost all task sets when the
normalized system utilization does not exceed 0.81.

When the maximum task utilization becomes smaller
(e.g., a = 0.5), better success ratios are achieved by both
schemes. In that case, cluster scheduling still outper-
forms partitioned FF-EDF (the details are omitted due to
space limitations). Moreover, for systems with more pro-
cessors, more clusters can be formed and tasks have more
chance to fit into one of them. As shown in Figure 3(b)
for systems with 64 processors, both cluster scheduling
and partitioned FF-EDF perform better and can schedule
more task sets with higher normalized system utilization.

5.2 Scheduling Overhead

Although cluster scheduling with larger clusters can
successfully schedule more task sets with higher system
utilization, larger clusters could lead to higher scheduling
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Figure 4. Time overhead of cluster-Bfair at each scheduling point within a cluster.

overhead. With more tasks being allocated to each clus-
ter, there will be more scheduling points for the global
scheduler Bfair and the interval between adjacent period
boundaries can become smaller. Therefore, in addition to
the time overhead for invoking Bfair at each scheduling
point (which largely depends on the number of tasks in
a cluster), the generated schedule can require more con-
text switches and task migrations due to shorter execution
of tasks within each interval between period boundaries
[24, 25].

For systems where the processors are organized as dif-
ferent size of clusters, the scheduling overhead of cluster
scheduling with Bfair is also evaluated through extensive
simulations. Here, to ensure that most of the generated
task sets are schedulable, we set the normalized system
utilization to U;;‘ = 0.95. Moreover, we fix P,,;, = 10
and P,,,, = 100. The value of the maximum task uti-
lization « is varied from 0.2 to 1.0. With fixed system
utilization, varying « effectively affects the number of
tasks in the task sets under consideration, where smaller
values of v mean more tasks for each task set. For each
data point in the following figures, 100 schedulable task
sets are generated and the average result is reported.

Time Overhead: For cluster scheduling with different
cluster sizes, Figures 4(a) and 4(b) first show the invoca-
tion time of the Bfair algorithm at each scheduling point
for 16-processor and 64-processor systems, respectively.
Here, the algorithms are implemented in C and run on
a Linux machine with an Intel 2.4GHz processor. Note
that, when all processors in a system form a single cluster
(i.e., k = m), the cluster scheduling essentially becomes
to be the global Bfair [24], which is labeled as “Global”
and used for comparison.

As shown in [24, 25], the time overhead of Bfair at
each scheduling point depends largely on the number of
tasks to be scheduled together. For cluster scheduling,

after partitioning tasks to clusters, the scheduling deci-
sions of Bfair for each cluster can be made independently.
Therefore, as we can see from Figure 4(a), when cluster
size becomes smaller, the time overhead at a scheduling
point for a cluster can be significantly reduced. The rea-
son comes from the fact that fewer tasks are allocated
to a smaller cluster. Moreover, as « becomes smaller,
more tasks will be contained in each task set. That is,
more tasks will be allocated to each cluster, and the time
overhead of Bfair at each scheduling point generally in-
creases. However, the effect of « is more prominent for
larger clusters, especially for the global Bfair where there
is only one cluster and all tasks are handled together. For
systems with more processors (Figure 4(b)), there are
more tasks can be scheduled and the time overhead at
each scheduling point becomes larger, which is consis-
tent with our previous results reported in [24, 25].

Context Switches and Task Migrations: Next, we
evaluate the schedules generated by cluster scheduling
with different sizes of clusters in terms of the required
number of context switches and task migrations. Here,
the maximum task utilization is fixed as & = 1.0 and the
normalized system utilization is set as Yot = 0.95. With
fixed P4, = 100, we vary P,,;, from 10 to 90 and eval-
uate the effects of tasks’ periods on cluster scheduling
with Bfair. The proposed period-aware first-fit (PA-FF)
partitioning heuristic is evaluated against the simple first-
fit (FF) partitioning heuristic where tasks are randomly
ordered. For easy comparison, those of the schedule gen-
erated by the global Bfair (i.e., with cluster size k = m)
are used as a baseline and normalized results are reported.

Figures 5(a) and 5(b) show the normalized number of
context switches for the schedules generated by cluster
scheduling for systems with 16 and 64 processors, re-
spectively. From the results, we can see that, compared to
that of the schedule generated by the global Bfair where
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all tasks are scheduled together, the number of context
switches in the schedule generated by cluster scheduling
decreases drastically as cluster size becomes smaller. For
instance, when the cluster size is £ = 2, the number of
context switches can be reduced by more than 90%. The
reason is that, with fewer tasks in a smaller cluster, the
scheduling points that are the tasks’ period boundaries
become fewer, which in turn provides more opportuni-
ties for tasks to run for more consecutive time units and
thus to reduce the number of context switches. Moreover,
by allocating harmonic tasks together, the proposed PA-
FF partitioning scheme can further reduce the number of
context switches significantly when compared to that of
the simple FF heuristic, especially for the ones with large
size clusters and systems with more processors.
Furthermore, as P,,;, increases while P, is fixed
as 100, more tasks are likely to have the same period.
That is, the number of scheduling points becomes less for
both global Bfair and cluster scheduling for each cluster.
However, the reduction in scheduling points is more sig-
nificant for global Bfair algorithm, which leads to a much

reduced number of context switches [24, 25]. Therefore,
for the simple FF heuristic, the normalized number of
context switches for the schedules generated by cluster
scheduling increases slightly as P,,;, increases. How-
ever, for the proposed PA-FF partitioning scheme that al-
locates tasks with harmonic periods together, the normal-
ized number of context switches stays roughly the same.

Figures 6(a) and 6(b) further show the normalized
number of task migrations for the schedules generated by
cluster scheduling with Bfair. Due to the similar reasons,
the number of task migrations is also reduced under clus-
ter scheduling, especially with smaller clusters and the
PA-FF partitioning scheme.

6 Conclusions

In this paper, with an optimal global scheduler be-
ing adopted within each cluster, we studied the worst-
case utilization bound for cluster scheduling (where pro-
cessors are grouped into clusters and tasks allocated to



one cluster are scheduled by a global scheduler). For a
system where processors are grouped into m homoge-
neous clusters with each cluster having & processors, we
proved that the worst-case achievable system utilization
% - k, where « is the maximum utilization
of the periodic tasks considered. Focusing on an effi-
cient optimal global scheduler, the boundary-fair (Bfair)
scheduling, we also proposed a period-aware partitioning
heuristic that attempts to allocate tasks with harmonic pe-
riods together in order to to reduce scheduling overhead.

The simulation results showed that, compared to that
of the partitioned scheduling, the success ratio of schedu-
lable task sets can be significantly improved under cluster
scheduling even with small size clusters (e.g., & = 2).
Moreover, when compared to global Bfair scheduling,
cluster scheduling can drastically reduce the scheduling
overhead (such as execution time of the scheduler, and
the number of context switches and task migrations for
the generated schedules), especially for the cases with the
proposed period-aware partitioning heuristic and small
size clusters (i.e., k = 2 or k = 4).
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