
On Task Period Assignment in
Multiprocessor Real-Time Control Systems

Abhishek Roy, Hakan Aydin
Department of Computer Science

George Mason University
Fairfax, VA 22030

aroy6@gmu.edu, aydin@cs.gmu.edu

Dakai Zhu
Department of Computer Science
University of Texas at San Antonio

San Antonio, TX 78249
dakai.zhu@utsa.edu

ABSTRACT
In real-time control systems, a well-known problem is the
period assignment to individual tasks, in order to minimize
the overall control cost while guaranteeing the task dead-
lines. In general, the control cost decreases in convex fashion
with decreasing periods (increasing invocation rates). Many
real-time control systems are increasingly implemented on
multiprocessor platforms due to the increased performance
requirements. In this paper, we consider the optimal pe-
riod assignment problem on a homogeneous multiprocessor
platform. The problem is intractable in nature. We ana-
lyze the performance of the approaches that first partition
the tasks, before assigning periods to optimize overall cost
on each CPU locally. Then we propose a technique which
assigns the periods optimally by reducing the problem to a
single-processor problem setting in the first step, and then
applying the partitioning algorithms in the second step. Our
experimental evaluation shows that the two variants of our
proposed technique offer significant advantage, and exhibit
a performance close to the theoretical bound achievable by
any algorithm.
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1. INTRODUCTION
Digital controllers are an integral part of many cyber-

physical and embedded systems, including those in indus-
trial control and automation, avionics, transportation, and
medical monitoring. A typical real-time control task is acti-
vated periodically, and it has to perform the sense-compute-
actuate cycle with timing guarantees. However, at design
time, there is often some flexibility for assigning the acti-
vation period (invocation rate) of a control task. Based on
the dynamics of the state variable that the control task is
associated with, the designer can derive bounds that must
be satisfied by the sampling period. This flexibility can be
used towards a better utilization of the system resources [22].
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The controller’s performance (sometimes referred to as per-
formance index) is maximum when a sampling period is set
to an ideal value (i.e., the performance of the digital con-
troller approaches that of an ideal analog controller) [17].
Decreasing the period below a limit does not further im-
prove the performance; however the performance degrades
as the period value is increased, due to the corresponding de-
crease in the frequencies of sampling and control signal. In
fact increasing the period further may cause stability prob-
lems. Hence, from the digital control point of view, there
are constraints on the minimum and maximum periods that
should be considered at design time.

In general, the computational capacity of the target sys-
tem may not be sufficient to schedule all the tasks at their
preferred (minimum) activation periods, or in other words,
at their maximum invocation rates. It may often be neces-
sary to increase the sampling periods of a number of tasks,
thereby decreasing their utilizations. Many researchers have
worked on characterizing the performance degradation (or,
control cost) as a function of the periods for a single proces-
sor system [9, 22, 23]. Seto et al. described a general class
of performance index, and showed that for a large class of
real-time control applications, the performance index can be
characterized by convex functions [22]. In other words, in
these systems the control cost increases sharply as the sam-
pling period moves further from the lower bound. Bini and
Di Natale [5] also considered convex functions, and analyzed
the problem for fixed-priority scheduling on single processor
systems.

Most of the existing research on optimal period assign-
ments in real-time control systems consider single-processor
systems. However, modern control systems are increasingly
implemented on multiprocessor platforms due to the increased
performance requirements. Hence, the main objective of this
paper is to investigate the period assignment problem for
homogeneous multiprocessor systems.

In general, multiprocessor real-time scheduling algorithms
can be divided in two categories: partitioned scheduling and
global scheduling [8]. In partitioned scheduling, tasks are
statically distributed across processors, and tasks are not
allowed to migrate during execution. In contrast, global
scheduling allows task migration. In general, global schedul-
ing allows more flexibility and optimal system utilization (for
periodic tasks) – but partitioned scheduling is known to re-
duce the run-time overhead by avoiding cache affinity and
task migration related overheads. In this paper, we focus
on partitioned scheduling: we consider the problem of as-
signing periods to individual tasks and allocating them to

151



M processors in order to minimize the overall control cost.
A solution approach for this problem is to first partition

the tasks (using one of the heuristics based on initially as-
signing each task its maximum allowable period), and then
on each processor, to make the period assignment to mini-
mize the cost locally. We call this class of algorithms local
period assignment algorithms. As we demonstrate, a limi-
tation of this approach is that the algorithm does not have
any global view of the task set and it cannot use that in-
formation towards minimizing control cost. In this paper,
we identify another approach which allows assigning the pe-
riods before the partitioning step, to find the periods that
minimize the overall cost globally. This is achieved by solv-
ing the problem on a single-processor system which is K
times faster (K ≤ M), and then attempting partitioning
with the periods obtained in that way. We call this scheme
Reduction-to-Single-Processor (RTSP) technique. We pro-
pose two variants of this approach, one which gets the pe-
riod assignments by setting K = M , and another one which
employs a binary search to find the most appropriate value
for K.

Based on the Earliest-Deadline-First (EDF) scheduling on
each processor [16], we perform an experimental evaluation
of the local algorithms and the new RTSP approach. Our
results indicate that RTSP can yield significant gains in min-
imizing the control cost compared to local algorithms, espe-
cially when the system is heavily loaded. We show that for
most of the parameter spectrum, the control cost incurred
by RTSP stays close to the theoretical lower bound. Our
technique can be applied to any system with real-time con-
trol tasks where the cost is represented by a continuous and
differentiable convex function. To the best of our knowledge,
this is the first research effort that considers the period as-
signment problem on a multiprocessor real-time control sys-
tem.

The rest of the paper is organized as follows: Section 2
describes the system model and assumptions. Section 3 for-
mulates the problem formally and illustrates how it can be
solved optimally on a single processor system for general
convex functions. In Section 4, we present the algorithms we
develop for the multiprocessor platforms. Section 5 presents
the experimental results. Section 6 overviews the research
area related to our work and Section 7 has our concluding
remarks.

2. MODELS AND ASSUMPTIONS
We consider a set of periodic real-time control tasks Γ =
{τ1, . . . , τn}. The worst-case execution time of task τi is de-
noted by Ci. The periods of the real-time tasks can be
selected within a given range. Specifically, the nominal
(minimum) period of τi is given by Pmini ; however its pe-
riod Pi can be increased (at the cost of increased control
cost), up to a limit Pmaxi . Pmini represents the minimum
task period for which the controller’s performance is best –
this is the point where the performance of the discrete-time
optimal controller is identical with the performance of the
continuous-time optimal controller [22]. As the task period
increases, the difference between the discrete-time controller
and continuous-time controller increases, and if it is larger
than a certain upper bound (Pmaxi ), the stability can no
longer be guaranteed. The ratio of the maximum period
to the minimum period for a given control task τi is called

the elasticity factor and is denoted by EFi: EFi ,
Pmax
i

Pmin
i

.

We consider implicit-deadline task sets where the relative
deadline of each task is equal to its assigned period Pi.

The invocation frequency fi of task τi is the inverse of
its period, that is, fi = 1

Pi
. The minimum and maxi-

mum task invocation frequencies are defined, respectively,
as fmini = 1/Pmaxi and fmaxi = 1/Pmini . The utilization of
a task is defined as the ratio of its worst-case execution time
to its assigned period. As the utilization is a function of the
assigned period, we can define the minimum and maximum
utilization of a task τi as Umini = Ci/P

max
i = Ci ∗ fmini and

Umaxi = Ci/P
min
i = Ci ∗ fmaxi , respectively.

The set of real-time tasks are scheduled upon a homoge-
neous multiprocessor system that consists of M unit-speed
processors, denoted by the set Π = {Π1, . . . ,ΠM}. We as-
sume that the tasks are partitioned over the set of available
processors, that is, migration of tasks from one processor to
another is not allowed. The tasks allocated to a given proces-
sor are scheduled by the preemptive Earliest-Deadline-First
(EDF) policy. It is known that the preemptive EDF is op-
timal for scheduling on uniprocessor systems, in that it can
generate a feasible schedule as long as the total utilization of
the tasks assigned to that CPU does not exceed 100% [16].

The control cost performance of a task decreases with its
invocation frequency. In literature, it is generally assumed
that the control performance is a convex function of the in-
vocation frequency [22]. The cost function we will use can
be any generic convex function which we denote by J(f),
where f is the invocation frequency of the task. This func-
tion is specific to each task, and the task-specific constants
can be used to formulate the function. Therefore, for a task
τi, the cost function becomes Ji(fi). We require that Ji(fi)
is convex, continuous, differentiable, and monotonically de-
creasing, as in [22]. The most common control cost function
used in the real-time systems literature is the exponential
decay function of the form Ji(fi) = αi · e−βi·fi [22]. In the
literature, other cost functions that incorporate additional
factors (such as jitter) have been proposed (e.g., [4, 15,20]),
but in this paper we are considering only the impact of the
period assignment on the controller’s performance.

Since the nominal (maximum) invocation frequency is the
most preferable setting for every task period, we assume
that the cost for a task is 0 if it is running on its maximum
frequency. Hence, Ji(f

max
i ) = 0 ∀i. In other words, for the

common exponential decay functions, we are using the form
Ji(fi) = αie

−βifi − αie−βif
max
i .

For a task set, the total (overall) cost will be the sum of
the costs associated with each task.

Jtot =
∑
τiεΓ

Ji(fi)

We note that the derivation of worst-case execution time
(WCET) figures on a multiprocessor system may be non-
trivial, due to the access to the shared resources such as the
memory and I/O subsystems. However, this timing analy-
sis aspect is outside the scope of this paper – the objective
of this paper is to find the period assignments to a set of
real-time control tasks whose timing analysis on the target
multiprocessor has been already performed. Similarly con-
sidering more general task models (such as those that allow
the specification of the precedence constraints) is left as fu-
ture work.
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3. MINIMIZING CONTROL COST

3.1 Problem Definition
The problem addressed in this paper, denoted by MIN-

COST-PARTITION, can be stated as follows:

Given M homogeneous processors and a set of periodic
real-time tasks, how can we assign the task periods and
partition the tasks among the processors such that:

1. the task set assigned to each processor can be sched-
uled in a feasible manner using the assigned fre-
quencies, and,

2. the overall control cost across all processors is min-
imized

This problem can be easily seen to be NP-Hard: Consider
a special case where the allowable minimum and maximum
periods are the same, i.e., Pmini = Pmaxi ∀i. In this case,
the period of each is task is a fixed value, and the problem
reduces to the problem of partitioning tasks with due dates
on a multiprocessor platform, which is known to be NP-Hard
in the strong sense [13]. Hence, MIN-COST-PARTITION is also
NP-Hard in the strong sense.

Before discussing efficient heuristic approaches to address
this problem, we briefly turn our attention to the single-
processor case.

3.2 Optimization on a single processor with
arbitrary convex control cost functions

The problem of minimizing the overall cost on a single pro-
cessor has been considered in the seminal paper by Seto et
al. [22]. We re-visit the same problem, and show how a more
general solution can be obtained for arbitrary convex cost
functions as long as the function is continuous and differen-
tiable (the seminal work in [22] considered only exponential
decay functions). We also incorporate lower bounds on the
allowed task periods to indicate the task’s preferred (nomi-
nal/minimum) periods. Finally, we show that this problem
can be solved in polynomial-time (in the number of tasks),
for arbitrary convex functions.

As stated previously, EDF is used as the scheduling algo-
rithm for each processor. The schedulability condition for
EDF is simple: the total utilization of the task set should
not exceed 1.0. We can now formally define the problem on
a single processor (denoted by UNI-MIN-COST) as follows:

minimize
f1,..,fn

∑
τi∈Γ

Ji(fi)

subject to:
∑
τi∈Γ

Ci ∗ fi ≤ 1.0

fmini ≤ fi ≤ fmaxi

(1)

where Ji(fi) is a continuous, differentiable, and monotoni-
cally decreasing convex function.

We now define Ri(fi) = −Ji(fi). Note that Ri(fi) is a
concave, continuous, and monotonically increasing function.
Then, we define a new variable yi such that fi = yi + fmini

and a new function Qi(yi) such that

Qi(yi) = Ri(fi) = Ri(yi + fmini )

Observe thatQi() is effectively a concave and non-decreasing
reward function indicating the controller’s performance. The
transformed problem is defined as:

maximize
y1,..,yn

∑
τi∈Γ

Qi(yi)

subject to:
∑
τi∈Γ

Ci ∗ yi ≤ B

0 ≤ yi ≤ fmaxi − fmini

where B = 1.0−
∑
τi∈Γ

Ci ∗ fmini

(2)

Observe that
∑
τi∈T Ci ∗ yi has to be bounded by the

constant B. If B is large enough, then clearly assigning
yi = fmaxi − fmini ∀i would also maximize the objective
function due to the non-decreasing nature of the reward
function. Otherwise, this quantity B should be used in its
entirety since the total reward never decreases by doing so.
In this case, we obtain a constrained concave (non-linear)
optimization problem with upper and lower bounds.

maximize
y1,..,yn

∑
τi∈Γ

Qi(yi)

subject to:
∑
τi∈Γ

Ci ∗ yi = B

0 ≤ yi ≤ fmaxi − fmini

where B = 1.0−
∑
τi∈Γ

Ci ∗ fmini

(3)

This problem turns out to be an instance of the general
reward maximization problem considered in [1]. In fact, Ay-
din et al. [1] developed an iterative solution that considers
the unconstrained optimization problem without the lower
and upper bounds, and then iteratively adjusts the solution
in time O(n2 logn) to solve the constrained optimization
problem. We refer the reader to [1] for full details. Hence,
UNI-MIN-COST can be also solved in time O(n2 logn) for ar-
bitrary convex functions.

3.3 Optimization on a multiprocessor platform
As shown in Section 3.1, overall control cost minimiza-

tion on a multiprocessor setting with partitioned approach
is, in general, intractable1. The problem has two impor-
tant components, assigning periods to minimize the cost,
and generating a feasible partitioning. While there are well-
known effective partitioning algorithms (such as First-Fit
and Worst-Fit), as the following example illustrates, using a
different approach may significantly reduce the overall cost.

Example 1. Table 1 shows a task set with 5 tasks (τ1−τ5)
that are to be scheduled on a system with two identical pro-
cessors Π1 and Π2. The given task set can be partitioned
among the processors and then the UNI-MIN-COST algorithm
can be used to compute the periods to minimize the cost on
each processor. However, different partitionings will result
in different values of overall cost, as can be seen in Figure 1.
If we set all the task utilizations to their minimum possible

1It is worth mentioning that the optimal periods could be
obtained for global scheduling by replacing the overall uti-
lization bound 1.0 by M in Equation (1), and then using
an optimal global scheduler such as PFair [3]. However, the
focus of this paper is the partitioned approaches which are
known to have lower run-time overhead.
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(a) Partitioning 1 using FFD/BFD,
total cost = 3.21

(b) Partitioning 2 using WFD, total
cost = 1.66

(c) Partitioning 3, total cost = 0.70

Figure 1: Partitioning Options for Example 1

Table 1: Task set for Example 1

Name βi αi fmini [Hz] fmaxi [Hz] Ci(ms)
τ1 0.3 4.42 1.7 2.5 105
τ2 0.4 9.68 1.3 2.0 45
τ3 0.6 3.56 1.4 2.1 260
τ4 0.7 1.42 0.8 1.2 825
τ5 0.8 9.86 1.2 2.5 220

values (by using the maximum periods), and then apply a
well-known partitioning heuristic, e.g., First-Fit-Decreasing
(FFD), we obtain the partitioning in Figure 1a. After op-
timizing the frequencies on each individual processors with
UNI-MIN-COST, we get a total overall cost of 3.21. Note that,
if we had used Best-Fit-Decreasing (BFD), instead of FFD,
we would obtain the same partitioning, incurring the same
total cost. When Worst-Fit-Decreasing (WFD) is used as
the partitioning heuristic, we found the partitioning in Fig-
ure 1b, yielding a total cost of 1.66, providing 48% improve-
ment over FFD. However, there is a completely different
partitioning, shown in Figure 1c, giving an overall cost of
0.70, and 58% improvement over WFD in terms of minimiz-
ing cost. In fact, this partitioning is produced by the RTSP*
algorithm that we will develop in the next Section.

4. PROPOSED ALGORITHMS

4.1 Local period assignment algorithms
For a given processor and its assigned task set, UNI-MIN-

COST provides the optimal invocation frequencies for all tasks
within their respective upper and lower bounds. Hence, an
intuitive way to address the control cost minimization on a
multiprocessor platform is to perform task partitioning first
using some well-known partitioning heuristic, and then call
UNI-MIN-COST in order to assign periods for minimizing the
cost locally on each processor.

Some well-known partitioning heuristics are First-Fit, Worst-
Fit, and Best-Fit. In order to make the partitioning prob-
lem easier, respective minimum frequencies (maximum peri-
ods) are tentatively assigned to each task before partitioning
is performed. It is well-known that in general, the perfor-
mance of the partitioning heuristics improves if the tasks are
ordered according to decreasing utilization [18]. This yields
heuristics such as First-Fit-Decreasing (FFD), Worst-Fit-
Decreasing (WFD), Best-Fit-Decreasing (BFD). After the
partitioning phase is over, the final period values to min-
imize the cost for each processor are obtained separately.

This gives us a family of algorithms (that we call local algo-
rithms); the algorithms differ only in the special partitioning
heuristic used in the initial step. Depending on the specific
partitioning algorithm used, we obtain different local algo-
rithms called, for example, WFD-Local, FFD-Local, BFD-
Local. Hence, a local period assignment algorithm has the
following two steps:

1. Partition the given task set among the processors, by
tentatively assigning Pi = Pmaxi to all tasks, and using
a well-known heuristic such as FFD or WFD,

2. Invoke UNI-MIN-COST to assign optimal task period val-
ues in order to minimize cost on each processor, sepa-
rately.

Note that if we do not have a feasible schedule after Step 1
(with maximum periods), we can declare that the task set
is not schedulable using the local approach and the given
heuristic. Otherwise, we call UNI-MIN-COST on each proces-
sor individually to adjust the periods of all tasks to optimal
values locally. As it can be easily seen, the complexity of the
local algorithms is determined primarily by Step 2, which is
O(M · n2 · logn).

4.2 Reduction to Single Processor (RTSP)
Technique

Despite their intuitive nature, the local period assignment
algorithms suffer from an obvious deficiency: The partition-
ing step is performed in a way which is completely incog-
nizant of the specific cost functions. This is important be-
cause at the end of the partitioning, for example, tasks with
very steep cost functions may be allocated to the same pro-
cessor, limiting the potential of cost minimization on that
specific processor through the invocation of UNI-MIN-COST

algorithm.
An alternative approach that we consider is to reverse the

order of steps undertaken by the local algorithms: If we
can make the (near-)optimal period assignments in the first
step by considering the entire task set, that is very likely
to reduce the overall cost. This is, of course, based on the
assumption that a feasible partitioning will be found with
those suggested period assignments.

Specifically, in this approach, we first consider a single-
processor Π0 which is M times faster than each of the indi-
vidual (unit-speed) processors in the original problem. Ob-
serve that Π0 offers an aggregate computational capacity
which is the same as the total computational capacity of
all (unit-speed) processors in Π. The entire task set Γ is
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assigned to the faster processor Π0, and UNI-MIN-COST is
applied to get the optimal periods for all tasks. After that,
one of the partitioning heuristics, (e.g., FFD, WFD, or BFD)
can be used to partition the task set upon the original pro-
cessor set Π. Note that, instead of using maximum periods
for each task, RTSP uses the optimal periods while making
partitioning decisions.

It is possible that, due to the inherent difficulty of parti-
tioning problem, we will not be able to allocate some tasks
with the assigned optimal periods. During the partitioning
phase, the tasks that cannot be assigned to any processor
are put in a list of unassigned-tasks. Next, this list is ordered
according to decreasing value of utilization (Ci ∗ fi). From
this list, tasks are picked one after the other and put to the
processor that has the least value of normalized local cost,
which is given by (

∑
τi∈Γj

Ji(fi)/
∑
τi∈Γj

Ji(f
min
i )), where

Γj is the set of tasks already assigned to the jth proces-
sor. Finally, UNI-MIN-COST is called on each processor to
adjust the frequency for each task to preserve the feasibil-
ity with minimum cost increase. Algorithm 1 presents the
pseudocode for RTSP.

Complexity: It can be seen that the complexity of the
RTSP algorithm is dominated by the for loop in lines 20-
24. In that loop, the algorithm UNI-MIN-COST is invoked
separately for each of the M processors. Given that the
number of tasks on each processor is bounded by n and,
the complexity of UNI-MIN-COST is O(n2 · logn), the overall
complexity of the algorithm is O(M ·n2 · logn), which is the
same as that of the local algorithms.

RTSP*: The RTSP scheme has a shortcoming which is
immediately noticeable: the total utilization of the task set
after the optimal period assignment on processor Π0 is typ-
ically very close to M , the number of available unit-speed
processors in the original problem. In other words, we at-
tempt to partition a task set with total load equal to the
available multiprocessor computing capacity. This is the
hardest any partitioning problem can become. As a result,
the list of unassigned-tasks is almost never empty; and those
tasks are allocated to some processors using the minimum
normalized-cost heuristic, before invoking UNI-MIN-COST on
those processors and potentially modifying the originally as-
signed optimal period values to preserve the feasibility.

To overcome this shortcoming, we propose an improved
version of RTSP, called RTSP*. Similar to RTSP, RTSP*
also assumes a hypothetical processor which is x times faster
than a unit-speed processor. But now, x is chosen as the
largest value ≤ M for which the task set can be feasibly
partitioned among the M processors, with the suggested
periods. After the partitioning has been completed, UNI-

MIN-COST is called individually on each processor to further
reduce the cost, in case there is some idle capacity on cer-
tain processors. The value of x is determined using binary
search. The search space ranges from L =

∑
τi∈Γ U

min
i to

the total capacity of the system, M . The value of the lower
bound L is determined by considering that even if all the
tasks are assigned their maximum periods (minimum uti-
lizations), they cannot be possibly scheduled on a platform
which offers a computational capacity less than the total uti-
lization

∑
τi∈Γ U

min
i . The binary search algorithm continues

to shrink the search space until the difference between the
upper and lower bound comes within a pre-specified error-
value, ε. Algorithm 2 presents the pseudocode. In fact,

Algorithm 1 RTSP

1: Input: Task set (Γ), Processor Set (Π)
2: Output: Task assignments and frequencies
3: speed up←M
4: for all τi ∈ Γ do
5: Ci ← Ci/speed up
6: fi ← fmini

7: end for
8: if

∑ Ci
fi
> 1 then

9: return failure
10: end if
11: Call UNI-MIN-COST to get optimal frequencies {f∗i } for

all tasks in Γ
12: for all τi ∈ Γ do
13: Ci ← Ci ∗ speed up
14: end for
15: Apply partitioning scheme, (e.g., FFD) to partition Γ

upon Π with the {f∗i } frequencies, put infeasible tasks
to unassigned list

16: Order unassigned list by decreasing value of Ci ∗ fi
17: for all τi ∈ unassigned list do
18: Assign τi to the processor with the least value of∑

τiεΓj
Ji(fi)/

∑
τiεΓj

Ji(f
min
i ), where Γj is the set of

tasks already assigned to the jth processor
19: end for
20: for all processors Πi ∈ Π do
21: Call UNI-MIN-COST to get optimal frequencies {f∗i } for

all tasks on processor Πi

22: if UNI-MIN-COST fails to return frequencies then
23: return failure
24: end if
25: end for
26: return task-to-processor assignments {Γ∗i } and fre-

quency assignments {f∗i }

in Example 1, the best partitioning shown in Figure 1c was
obtained using RTSP*.

Complexity: In each of the binary search iterations from
line 6 to line 36, first UNI-MIN-COST is called for the entire
task set, which takes time O(n2 logn) for a given speed up
value. To calculate the number of iterations that the binary
search takes before it converges to a value within ε of the
actual value (or, fails), we divide the speedup value range
into equal chunks, each of size ε, which is a configurable
search parameter. Let the total number of chunks be k,
then k = (M −

∑
τiεΓ

Umini )/ε, so the binary search would

complete in at most O(log k) iterations. By factoring also
the complexity of FFD in line 18, the overall complexity of
RTSP* is found as O(M · n2 logn · log k) which is slightly
higher than that of RTSP.

5. EVALUATIONS AND DISCUSSIONS
We developed a discrete-event simulator to evaluate the

proposed schemes. By varying various system parameters,
the proposed schemes are evaluated through extensive simu-
lations with synthetic tasks. In the simulator, the following
schemes are implemented.

WFD-local: Based on their minimum activation rates, tasks
are first partitioned to CPUs according to the well-known
heuristic WFD (Worst-Fit Decreasing). Then, the UNI-MIN-
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Algorithm 2 RTSP*

1: Input: Task set (Γ), Processor Set (Π)
2: Output: Task assignments and frequencies
3: upper ←M
4: lower ←

∑
τiεΓ

Umini

5: speed up← lower
6: loop
7: for all τi ∈ Γ do
8: Ci ← Ci/speed up
9: fi ← fmini

10: end for
11: if

∑ Ci
fi
> 1 then

12: return failure
13: end if
14: Call UNI-MIN-COST to get optimal frequencies {f∗i } for

all tasks in Γ
15: for all τi ∈ Γ do
16: Ci ← Ci ∗ speed up
17: end for
18: Apply partitioning scheme, (e.g., FFD) to partition Γ

upon Π with the {f∗i } frequencies
19: if a feasible partitioning is obtained then
20: lower ← speed up
21: if upper − lower ≤ ε then
22: for all processors Πi ∈ Π do
23: Call UNI-MIN-COST to get optimal frequencies

{f∗i } for all tasks on processor Πi

24: end for
25: return task-to-processor assignments
26: else
27: speed up← (upper + lower)/2
28: end if
29: else
30: if speed up = lower then
31: return failure
32: end if
33: upper ← speed up
34: speed up← (upper + lower)/2
35: end if
36: end loop

COST problem is solved to minimize the cost on each CPU.
We note that we also implemented other local algorithms
such as FFD and BFD; but they were consistently outper-
formed by WFD which tends to distribute tasks more evenly
across processors and thereby providing better opportunities
for minimizing the total cost. Hence, in the evaluation sec-
tion, we consider WFD as the representative of the local
algorithms.

RTSP: The proposed Reduction-to-Single-Processor (RTSP)
scheme, where a hypothetical processor with the speed of
M is adopted to first optimize the activation rates for tasks.
Then, based on the resulting optimal activation rates, tasks
are partitioned upon M unit-speed CPUs according to the
well-known heuristics (such as FFD, BFD and WFD). In
what follows, we show only the results for FFD when used
in conjunction with RTSP, because BFD and WFD perform
similar or worse. Again, once tasks are mapped to CPUs,
the activation rates for tasks are further adjusted by solving
the UNI-MIN-COST problem on each CPU (See Algorithm 1).

RTSP*: This is the enhanced RTSP scheme. The speed

of the hypothetical processor that ensures the feasible par-
titioning of all tasks is determined through binary search.
See Algorithm 2 for details. Again, we use FFD to parti-
tion tasks. For binary search error threshold, we adopted
ε = 0.01, which leads to acceptable running time and rea-
sonable accuracy for the results.

Bound: By assuming that all tasks run on a single hy-
pothetical processor with the speed of M , we obtain the
optimal activation rates of tasks by solving the UNI-MIN-

COST problem, which lead to the lowest possible total cost
for all tasks. Basically, Bound can be considered as a yard-
stick algorithm to illustrate how well other schemes perform;
because it does not consider the challenges of partitioning
while keeping total computational capacity the same as the
original M -processor system. No feasible partitioning on an
M -processor system can yield an overall cost lower than the
one provided by Bound, in other words, it represents the
lower bound on the total cost that any algorithm can have.

Simulation Settings. In the simulations, we vary the fol-
lowing system parameters: the number of tasks in each task
set n, the number of CPUs M , and tasks’ elasticity factors.
As the computational capacity of a multiprocessor system
increases with the number of processors M , we represent
the system load as relative to the maximum computational
capacity on a given multiprocessor platform. This quantity
representing the system load is called normalized utilization
(UNtot) , and is defined as the ratio of the total utilization to

the number of processors, that is, UNtot =
∑
Umax

i
M

.

For a given set of n, M , and UNtot, the synthetic tasks are
generated as follows. First, the total system utilization is
found as Utot = UNtot ∗M . Then, the RandFixedSum algo-
rithm in [11] is adopted to generate the maximum utilization
Umaxi for each task τi such that: (1) the utilization is ran-
domly chosen between 0 and 1 following a uniform distribu-
tion; and (2) the summation of the utilization values for all
tasks in the set is exactly equal to the total utilization Utot.
Next, the minimum period Pmini for each task τi is randomly
selected within the range of [10, 100] following a log-uniform
distribution. A uniform elasticity factor, EF , is chosen for
all tasks in a task set, where Pmaxi = EF ·Pmini . The inverse
of minimum and maximum periods give maximum and min-
imum task frequencies (fmaxi and fmini ), respectively. Fi-
nally, worst-case execution time (WCET) for each task can
be calculated based on its minimum period and maximum
utilization as Ci = Umaxi ∗ Pmini (See Section 2).

In our evaluations, we use the exponential decay functions
[22] that have the form of Ji(fi) = αie

−βifi − αie−βif
max
i .

The constant term αie
−βifmax

i guarantees that Ji(f
max
i ) = 0.

We distinguish four different cost functions.

• Type-0: For all tasks in a task set, αi is set to 1, and
βi is set to 0.1 statically (Uniform cost functions).

• Type-1: For any task in a task set, the weight α is
chosen randomly from a uniform distribution between
1 to 10. β is set to a constant value of 0.1 for all
tasks (Uniform weight - different decay parameter cost
functions).

• Type-2: For all tasks in a task set, the weight α is
statically set to 1, while β is randomly chosen within
the range of (0.0, 0.25] following a uniform distribu-
tion (Different weight - uniform decay parameter cost
functions).
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Figure 2: Normalized cost for different schemes with varying system utilization; EF = 1.5

• Type-3: For any task in a task set, the weight α is
randomly chosen between 1 to 10, and β between 0.0
to 0.25, both following a uniform distribution (hetero-
geneous cost functions).

We first report results obtained with Type-1 cost functions
in the evaluations. Later we comment on results with other
types of cost functions. The performance of each scheme
is reported as the normalized cost, which is defined as the
ratio of the total cost incurred by the scheme to the total
cost of Bound. Recall that Bound represents the scheme
that assigns the periods by fully utilizing the total compu-
tational capacity of all M processors by ignoring the parti-
tioning aspect; hence, it represents the upper bound on the
performance of any partitioning-based algorithm. By defi-
nition, the normalized cost can never be smaller than 1.0.
For each data point in the result plots, 25,000 synthetic task
sets are generated and the average result of these task sets
is reported.

Impact of System Utilization. Figure 2 shows the achieved
normalized cost as a function of the utilization under dif-
ferent schemes for systems with different number of CPUs.
We can see that the performance levels of both RTSP and
RTSP* are better than that of WFD-local. The reason
is that, compared to RTSP and RTSP* where tasks are
mapped to processors based on their global optimal acti-
vation rates, WFD-local maps tasks to CPUs based on their
minimum activation rates, which limits the opportunities for
tasks to exploit the entire system computing capacity for op-
timal activation rates. RTSP, while doing better than WFD
in general, is outperformed by RTSP*. This comes from the
fact that RTSP, in order to schedule the infeasible tasks, al-
locates them on certain processors based on a heuristic rule,
and the activation rates of all tasks on those processors need
to be reduced, increasing the overall cost.

As another observation we can see that as the the system
load (i.e., the normalized utilization) increases, the normal-
ized cost for all schemes gradually approaches to the level of
Bound, even though different schemes converge at different
rates. In contrast, with modest load (e.g., less than 1.1),
the normalized cost of the schemes (with respect to Bound)
increases sharply.

This is because, when the normalized utilization exceeds
1.0 only by a small margin, Bound is able to guarantee

the feasibility by increasing the periods only by very small
amounts, yielding a total cost very close to zero. While the
absolute cost of other schemes is also quite low in that re-
gion, the normalized cost increases given that Bound’s cost
is close to zero. As the utilization increases the cost incurred
by Bound also increases quickly and the normalized cost of
the schemes improves.

With more (e.g., 8) processors in the system, there will
be fewer number of tasks per CPU, and the performance
difference of the schemes becomes much more pronounced.
However, the performance of RTSP* is, even at medium
loads, is very close to Bound; even on 8-processor systems,
the difference is less than 20% as soon as the load exceeds
1.07, and becomes less than 5% at the increased load values.

Impact of Elasticity Factor. Next we consider the im-
pact of different elasticity factors, which indicate the flexi-
bility for assigning tasks’ activation rates (i.e., periods), on
the normalized cost of the system. Figures 3 and 4 show
the results for two different system loads UNtot = 1.2 and
UNtot = 1.4, respectively.

As the elasticity factor increases, we have more flexibility
in terms of assigning larger periods, and the absolute total
cost for all schemes tends to decrease. We can see that RTSP
and RTSP* are, in most cases, able to maintain their nor-
malized cost performance with increased elasticity factor;
implying that the cost improvement due to the increased
maximum period values is reflected in those schemes in the
same proportion as in Bound. In fact, the absolute cost of
WFD-Local monotonically decreases with increasing elas-
ticity factor as well; however, the rate of decrase is smaller
compared to that of Bound – that is why we are observing
an increase in normalized cost. in the plots.

We note that for small elasticity factor (e.g., EF < 1.5
for the case of UNtot = 1.4), RTSP can perform slightly worse
than WFD-local. The reason is that, for such inflexible task
sets, RTSP cannot take much advantage of the global op-
timality and the WFD-local scheme tends to perform well.
But, by virtue of using the globally assigned activation rates
and the exact speedup ratio for making partitioning deci-
sions, RTSP* can still outperform WFD-local. These plots
again confirm that RTSP* stays within 5% of Bound for
most of the spectrum. RTSP, performing close to Bound
most of the time, drifts away for small EF values.
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Figure 3: Impact of the elas-
ticity factor; UNtot = 1.2
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Figure 4: Impact of the elas-
ticity factor; UNtot = 1.4
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Figure 5: Impact of the num-
ber of tasks; UNtot = 1.2
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Figure 6: Impact of the num-
ber of tasks; UNtot = 1.4

Impact of Number of Tasks. Figures 5 and 6 further
show the normalized cost of tasks under different schemes
when the number of tasks varies for systems with 8 CPUs.
Here, we can see that, for a given system load (UNtot = 1.2 or
UNtot = 1.4), the normalized cost for tasks under all schemes
decreases as the number of tasks increases. The reason is
that, with more tasks, the size (i.e., utilization) of each task
gets smaller. With the smaller granularity of task sizes,
partitioning tasks to CPUs becomes relatively easier, even
with small periods. When there are more than 60 tasks on
a system with 8 CPUs, each CPU, on the average, can get
more than 7 tasks, which enables RTSP and RTSP* to get
very close to Bound (within 2%).

On the other hand, when there are fewer number of tasks,
both RTSP and RTSP* start to drift away from Bound, but
they still perform better than WFD-local when the system
has more than 40 tasks. However, when the system has only
20 tasks, where each CPU has around 2-3 tasks, RTSP can
perform even worse than WFD-local for the case of Utot =
1.2 due to the increased granularity of tasks. For the case
of slightly higher system load (Utot = 1.4), WFD-local can
perform as good as RTSP for 30 tasks (Figure 6). Therefore,
we can conclude that, the granularity of tasks affects the
performance of RTSP the most, followed by WFD-local and
RTSP*. However, RTSP* is quite close to Bound, except for
the case of small number of tasks (20) when the difference
is maximum (around 20%).

Impact of Cost Functions. When tasks have different
types of cost functions, Figure 7 shows the normalized cost
for tasks under different schemes when EF = 1.5, with vary-
ing system load. For all the types of cost functions con-
sidered in the evaluations, RTSP* performs the best and
has performance level close to that of Bound (except when
Utot ≤ 1.1). Moreover, the different types of exponential
cost functions have similar impacts on the performance of
the proposed schemes regarding the normalized cost of tasks.
In particular, as shown in Figure 2 for Type-1 tasks, RTSP
is gradually outperformed by WFD with the increased load,
with Type-0, Type-2 and Type-3 cost functions as well.

Comparison with the Optimal Solution. An interest-
ing question is the relative performance of RTSP schemes
with respect to the optimal partitioning-based algorithm.
Obviously, since the problem is in general intractable, the
optimal solution cannot be obtained in polynomial time.
However, we implemented an exhaustive-search based solu-
tion that computes the optimal solution by enumerating all
possible task-to-processor assignments, computing the best

frequency assignments for each possible partitioning, and
then picking up the best solution at the end. Due to the pro-
hibitive computation time, the experiments were performed
only for small number of tasks (6-12) running on relatively
small number of processors (4). Each data points we show
represents the average of 500 runs.

In Figures 8 and 9, we show the impact of the utiliza-
tion and the impact of the number of tasks, respectively, on
RTSP, RTSP* and Optimal scheme, with respect to Bound.
It can be observed that RTSP* follows very closely the Op-
timal scheme even for medium normalized utilization and
small number of tasks. It is also worth observing that even
the performance of Optimal partitioning scheme starts to de-
viate significantly from that of Bound at low load or small
number of tasks cases.

6. RELATED WORK
In their seminal work, Seto et al. [22] presented a model

where the periods of real-time control tasks could be changed
up to a limit, in order to optimize some control performance
index. They showed that in some industrial control applica-
tions, an exponential decay function can be used to model
the tasks’ performance indices. Seto formulated the problem
as a non-linear programming problem and solved it using
the Lagrange multipliers technique. Bini and Di Natale [5]
suggested a generalized framework for maximizing various
objective functions in the context of fixed-priority schedul-
ing. They defined the set of all period assignments that can
produce feasible schedules as the optimization domain and
then used mathematical properties of the objective function
to find the optimal assignment. They used Time-Demand
Analysis technique to assess the feasibility in a single pro-
cessor environment. Our work is different in terms of the
problem settings: we use dynamic priority scheduler (EDF)
and we target multiprocessor platforms.

Buttazzo et al. [7] proposed a scheduling framework (called
elastic scheduling) in which periodic tasks can change their
rates in order to tackle the overload conditions. For each
task, their model has a minimum period, a maximum period
and an elasticity coefficient. When the system is overloaded,
the tasks can increase their periods (compressing); and when
the system is underloaded, the task periods can be reduced
(decompressing). The authors developed an efficient algo-
rithm where they modeled each task as a spring with min-
imum and maximum length and a rigidity coefficient. This
model proved useful for supporting both multimedia and
control applications in which execution rates of some compu-
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Figure 7: Impact of utilization on different types of task sets (30 tasks) on 8 CPUs

tational activities have to be dynamically tuned as a function
of the current system state. However, their work does not
consider arbitrary control cost functions, and is developed
for single-processor systems. Marinoni et al. [19] incorpo-
rated DVS technique to the elastic task model.
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Chantem et al. [10] considered a setting where task periods
and deadlines are chosen in order to improve the schedulabil-
ity. Later, the same research group explored a setting similar
to ours where minimum and maximum allowable periods are
associated with each task, and a performance index is opti-
mized [9]. Their performance index is a quadratic function
of utilization of each task. They focused on uni-processor
system settings. Wu et al. also used a quadratic cost func-
tion as their performance loss index which depends on the
period of the tasks [24]. Fontanelli et al. [12] explored simi-
lar problem settings associated with real-time control tasks
and cost functions, but their results were obtained under
stochastic model. Tian et al. [23] leveraged the elasticity
of tasks to improve the quality of control in applications
using a utilization-based quadratic cost function. Kim et
al. [14] proposed a task model for automotive systems called
rhythmic tasks where period and worst-case execution time
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Figure 9: Impact of number of tasks - Comparison to
Exhaustive-Search Based Optimal Solution; UNtot = 1.2

of each task can vary continuously based on some external
event. They did not use any performance index, rather, their
main goal was to improve schedulability. In a recent paper,
Buttazzo et al. [6] extended the idea and proposed rate-
adaptive tasks where period, worst-case execution time and
deadline can vary according to the angular velocity of the
crank-shaft. However, their main objective was to improve
schedulability, not optimizing any performance index. Ra-
jkumar et al. [21] proposed a model called Q-RAM where
each real-time application are assigned resources to maxi-
mize overall system utility along multiple and discrete QoS
dimensions, for single-processor systems. After resources
are allocated, each application can choose its own period,
WCET and deadline.

Several heuristics have been proposed and analyzed for
partitioning real-time tasks efficiently in a near optimal way
[2,8,18]. These heuristics order tasks according to some cer-
tain criteria (e.g., decreasing utilization) and typically allo-
cate tasks by using one of the well-known rules such as First-
Fit, Best-Fit or Worst-Fit [18]. Lopez et al. [18] derived uti-
lization bounds for partitioned scheduling on homogeneous
multiprocessor systems when each processor uses EDF and a
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Reasonable Allocation Decreasing (RAD) algorithm is used
to distribute the tasks. RAD algorithms includes FFD, BFD
and WFD, which happen to share the same worst-case uti-
lization bound. Carpenter et al. [8] classified the scheduling
approaches on multiprocessor systems based on the complex-
ity of the priority assignment of the tasks, and the degree
of migration allowed. More recently, Baruah [2] used the
metric called speedup factor to compare the performances
of various allocation schemes for partitioned scheduling on
multiprocessors. Pointing out the ineffectiveness of the uti-
lization bound for partitioned scheduling, Baruah suggested
that the speedup factor provides a deeper insight into the
behavior of partitioning techniques and derived the speedup
bounds for various RAD algorithms.

7. CONCLUSIONS
Period assignment to real-time control tasks can make im-

portant difference in terms of control performance. While
several studies considered the problem for uniprocessor set-
tings and scheduling models, in this work, we considered
multiprocessor platforms that are increasingly used in view
of the performance requirements. We assumed partitioned
EDF scheduling and arbitrary convex control cost functions.

Finding optimal solution to this problem on a multipro-
cessor platform is, in general, computationally intractable.
We identified local period assignment algorithms as the ones
that first partition the tasks and then optimize the peri-
ods on each processor locally. To address the limitations of
the local approaches, we proposed the Reduction-to-Single-
Processor (RTSP) technique which first assigns tentative op-
timal periods by considering all the tasks at once on a hy-
pothetical faster single processor, and then attempts parti-
tioning with those period values. We developed two variants
of the algorithm that differ on the way they determine the
speedup factor for the hypothetical faster single processor.
Our experimental results indicate that the RTSP technique
generally outperforms the local algorithms, and follows the
theoretical upper bound on the control performance closely.
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