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Abstract

In this paper, we address power-aware scheduling of peri-
odic hard real-time tasks using dynamic voltage scaling. Our
solution includes three parts: (a) a static (off-line) solution to
compute the optimal speed, assuming worst-case workload for
each arrival, (b) an on-line speed reduction mechanism to re-
claim energy by adapting to the actual workload, and (c) an on-
line, adaptive and speculative speed adjustment mechanism to
anticipate early completions of future executions by using the

average-case workload information. All these solutions still

guarantee that all deadlines are met. Our simulation results
show that the reclaiming algorithm saves a striking 50% of
the energy over the static algorithm. Further, our speculative
techniques allow for an additional approximately 20% savings
over the reclaiming algorithm. In this study, we also establish
that solving an instance of the static power-aware scheduling
problem is equivalent to solving an instance of the reward-
based scheduling problem [1, 4] with concave reward func-
tions.

1 Introduction

In the last decade, the research community has ad-
dressed the low power system design problems with a multi-
dimensional effort [7, 18]. Such on-going research has im-
portant implications for real-time systems design, simply be-
cause most of the applications running on power-limited sys-
tems inherently impose temporal constraints on the response
time (such as real-time communication in satellites).

The variable voltage scheduling (VVS) framework, which
involves dynamically adjusting the voltage and frequency
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(hence the CPU speed), has recently become a major research
area for power-aware computer systems. For real-time sys-
tems, the proposed VVS schemes focus on minimizing en-
ergy consumption in the system, while still meeting the dead-
lines. Yao et al.[23] provided a static off-line scheduling al-
gorithm, assuming aperiodic tasks and worst-case execution
times. Heuristics for on-line scheduling of aperiodic tasks
while not hurting the feasibility of periodic requests are pro-
posed in [9]. Non-preemptive power aware scheduling is in-
vestigated in [8]. Concentrating on periodic tasks with identi-
cal periods, the effects of having an upper bound on the volt-
age change rate are examined in [10], along with a heuristic
to solve the problem. Slowing down the processor whenever
there is a single task eligible for execution was explored in
{21]. Lorch and Smith addressed the variable voltage schedul-
ing of tasks with soft deadlines in [14]. The static solution for
the general periodic model where tasks have potentially differ-
ent power consumption characteristics is provided in [2].

However, most of the scheduling schemes presented in these
studies, while using exclusively worst-case execution time
(WCET) to guarantee the timeliness of the system, lack the
ability to dynamically take advantage of unused computation
time. In fact, real-time applications usually exhibit a large vari-
ation in actual execution times; for example [S] reports that the
ratio of the worst-case execution time to the best-case execu-
tion time can be as high as 10 in typical applications.

Consequently, dynamically monitoring and reclaiming the
‘unused’ computation time can be (and, as we show later in
this paper, is in fact) a powerful approach to obtain consider-
able power savings and to minimize the effects of designing
the system with WCET information, which is usually a very
conservative prediction of the actual execution time. Addi-
tional improvements are possible thanks to the statistical work-
load information,; in this paper, we investigate also aggressive
schemes where we anticipate the early completions of future
executions and speculatively reduce the CPU speed. This ap-
proach immediately raises two intertwined questions, namely,
(a) the level of aggressiveness under a given probability dis-
tribution of actual workload; and (b) the issue of guaranteeing
the timing constraints even in aggressive modes. It is obvi-
ous that the solutions to these problems should be simultane-
ously practical and efficient, in order to be applicable on-line.



It goes without saying that dynamic reclaiming and/or aggres-
sive techniques should preserve the feasibility of the task sys-
tem (i.e., no deadline should be missed), even under a worst-
case scenario that may take place after any speed adjustment
decision.

We must note that a recent study [11] addressed dynamic
energy reclaiming issues (without speculation) in power-aware
scheduling for cyclic and periodic task models, in the context
of systems with two (discrete) voltage levels. However, sys-
tems which are able to operate on a (more or less) continuous
voltage spectrum are rapidly becoming a reality thanks to ad-
vances in power-supply electronics and CPU design [6, 17].
For example, the Crusoe processor is able to dynamically ad-
just clock frequency in 33 MHz steps [22]. To the best of
our knowledge, the concept of “speculative speed reduction”
was first introduced by the authors in [16]; however, only tasks
sharing a common deadline were considered.

Paper Organization

In this paper, we identify and address three dimensions of
power-aware scheduling for real-time systems and develop ef-
ficient algorithms for the periodic task model. Effectiveness
in reducing the energy consumption can be improved only by
a simultaneous consideration of these three dimensions, since
they complement each other. Thus, we present:

1. A static (off-line) solution to compute the optimal speed
at the task level, assuming worst-case workload for each
arrival! (Section 3). In the same section, we also show
that solving an instance of the the static power-aware real-
time scheduling problem is equivalent to solving an in-
stance of the reward-based scheduling problem [1].

. An on-line speed adjustment mechanism to dynamically
reclaim energy not used by tasks that complete without
consuming their worst-case workload (Section 4).

. An on-line, adaptive and speculative speed adjustment
mechanism to anticipate and compensate probable early
completions of future executions (Section 5).

We emphasize once again that, in the context of real-time
systems, all these components should be designed not to cause
any deadlines to be missed even under the worst-case scenario:
the aim is to meet the timing constraints while simulta-
neously and dynamically reducing power consumption as
much as possible.

2 System Model and Notation

The ready time and deadline of each real-time task T'; will
be denoted by r; and d;, respectively. The indicator of the
worst-case workload in variable voltage/speed settings, that is,

1Due to the nature of VVS, the actual execution time is dependent on the
CPU speed, and therefore the worst-case number of required CPU cycles is a
more appropriate measure of the worst-case workload (see Section 2).
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the worst-case number of processor cycles required by T';, will
be denoted by C;. Note that, under a constant speed S (given
in cycles per second), the execution time of the task T'; is t; =
%i. A schedule of real-time tasks is said to be feasible if each
task T; receives at least AC; CPU cycles before its deadline,
where AC; < C; is the actual number of CPU cycles (actual
workload) of T';.

We assume that the CPU speed can be changed between
a minimum speed Spin (minimum supply voltage necessary
to keep the system functional) and a maximum speed Snqz,
and that 0 < Smin < Smaez = 1; that is, we normalize the
speed values with respect t0 Smq.. In our framework, the volt-
age/speed changes take place only at context switch time and
while state saving instructions execute. Pouwelse et al. report
in [19] that the voltage/speed change can be performed in less
than 140 ps in Strong ARM SA-1100 processor. If not negli-
gible, the ’voltage change overhead’ can be incorporated into
the worst-case workload of each task.

We assume that the process descriptor of the task 7 has
two extra fields related to speed settings, in addition to other
conventional fields. The first one, S;, denotes the current CPU
speed at which T; is executing. The other field .S; denotes the
nominal speed of T;, which is the indicator of the “default”
speed of T;. For each task that is dispatched, the operating
system sets S; = s, prior to any dynamic speed adjustment.

The power consumption of the processor under the speed S
is given by g(S), which is assumed to be a strictly increasing
convex function, represented by a polynomial of at least sec-
ond degree [10]. If the task T; occupies the processor during
the time interval [¢1, 2], then the energy consumed during this
interval is E(ty,t2) = :12 g(S(t))dt.

In our detailed analysis of periodic power-aware scheduling,
we will consider a set 7= {T1i,...,7Tn} of n periodic real-

“time tasks. The period of T is denoted by P;, which is also

equal to the deadline of the current invocation. We refer to the
4" invocation of task T as T; ;. All tasks are assumed to be
independent and ready at ¢ = 0. Hence, the ready time of T'; ;
ist;; =(j—1)- P, andits deadlineis d; ; = j - P;.

We define U, as the total utilization of the task set under
maximum speed Spaz = 1, that is, User = Y1y % Note
that the schedulability theorems for periodic real-time tasks
[12] imply that U;p: < 1 is a necessary condition to have at
least one feasible schedule; hence, throughout the paper, we

will assume that Usor = > 74 %‘ <L

3 Optimal Static Solution

3.1 The Reward-Based Approach to Power-
Aware Scheduling

Before analyzing the periodic model in depth, we cor-
relate the reward-based scheduling [1, 3] framework to the
power-aware scheduling of real-time tasks. The reward-
based scheduling framework encompasses real-time schedul-
ing models such as Imprecise Computation [13] and Increased-



Reward-with-Increased-Service [4] that exploit the timeliness
and precision trade-off. We underline that the correlation that
we prove is preserved regardless of the task model (aperi-
odic/periodic or preemptive/nonpreemptive), as long as our
aim is to reach a solution for a given (worst-case) workload.

In the reward-based scheduling framework, each real-time
task 7; comprises a mandatory part M, and an optional part
O;. The worst-case execution times of M; and O; are de-
noted by m; and o;, respectively. The mandatory part runs
first, producing an output of acceptable quality, which is sub-
sequently enhanced by the optional part within the limits of
available computational capacity. To quantify the quality im-
provement, a non-decreasing reward function F;(t;) is associ-
ated with each optional execution where t; < o; denotes the
service time O; receives. Most of the realistic applications are
best represented by concave reward functions {1, 3, 4, 20]. In
any feasible reward-based schedule, each mandatory part must
be fully executed by the task deadline d;, however, the optional
parts may remain partially executed by the deadlines. Now we
can formally define the reward-based scheduling problem.

Reward-Based Scheduling Problem: Consider the
uniprocessor scheduling of a reward-based real-time task set
T = {T1,...,T,}. Given a time point A, determine the op-
timal schedule in the interval [0, A ¢], where each mandatory
part M; complete in a timely fashion before the task deadline
d;, and each optional part receives service for t; < o; units of
time so as to maximize the total system reward ), F;i(t:).

The determination of the optimal schedule clearly involves
the computation of optimal optional service times. Noting that
the reward accrued by each optional part O; does not increase
beyond the upperbound o;, this computation can be expressed
as an optimization problem where the objective is to find ¢;
values? so as to:

maximize Fi(t:) 1

i=1
subject to 0<t;<o; i=1,...,n )
There exists a feasible schedule with {m;} and {¢; } values  (3)

On the other hand, the real-time power-aware scheduling
problem can be stated as follows.

Real-Time Power-Aware Scheduling (RT-PAS) Problem:
Consider a CPU with variable voltage/speed S (Spin < S <
Smae) facility, where the power consumption is given by a
strictly increasing convex function g{S), which is a polyno-
mial of at least second degree. Given aset T = {T,...,T,}
of real-time tasks, in which each task T’; is subject to a worst-
case workload of C'; expressed in the number of required CPU
cycles, and a time point Ay, determine the schedule and the
processor speed S(t) so as to minimize the total energy con-

sumption E(0, As) = A’ g(S(t))dt in the interval [0, A¢].

2When considering the periodic task model, the execution time of each task
instance (t;;) should be considered as a separate unknown.
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Before relating two scheduling problems, we observe that
the convexity of speed/power function allows us to deduce the
following (a formal proof can be found in [3]).

Proposition 1 One can safely commit to a constant CPU
speed during the execution of a task T’; requiring C; CPU cy-
cles, without increasing the energy consumption.

Note that the determination of .S; in the RT-PAS problem is
now effectively equivalent to determining the CPU time allo-
cation to T;, which will be denoted by z; (z; = = ) We are
now ready the establish the connection between RT-PAS and
Reward-Based Scheduling problems.

Proposition 2 Solving an instance of RT-PAS problem is
equivalent to solving an instance of Reward-Based Scheduling
problem with concave reward functions.

Proof: To prove the statement, we will first formulate the
computation of optimal speed values as an optimization prob-
lem. The total energy consumption, thanks to the constant
speed assumption per task, can now be expressed as E;o; =
Sz g(S) =Y T g(%) Further, observe that the
minimum and maximum speed bounds impose natural lower
and upper bounds on CPU allocation of T;. In other words,
the inequality s&— < z; < < should be satisfied. Hence,
the computatlon of ¢ optimal CPU ‘allocation assignments can be
formalized as an optimization problem:

n
minimize E zi - g(= (4)
subject to ﬁ:gzx—cm— i=1,...,n (5
There exists a feasible schedule with {z; } values (6)
Now, consider the variable transformation m; =
Si;z’ ti = 3 —my, 0; = S:in - 5_21_7 and E(tz) =
—(t: + Smu) (—"tr—t +_1_)

This transformation can be interpreted as follows: First, T};
must be assigned at least S—-L units of CPU time (“manda-
tory” execution). Any allocation exceeding this minimum
amount will be considered as “optional” execution, while the
toéal CPU allocation (m; + t;) can not exceed the upper bound

. Finally, the more we allocate CPU time to T by in-
crz:ansing t;, the more we increase the energy savings thanks
to the speed/power relation. It is not difficult to see that,
by using the above transformation and by re-writing the op-
timization problem given by (4), (5) and (6), one reaches once
again the formulation of the general reward-based schedul-
ing problem defined by Equations (1), (2) and (3). Further,
the reward function F;(t;) above is clearly concave, since
(ti+ 3 € _)g(—C%—) is convex. To see this, we can use the

P

result from [15] stating that if a and b are both convex func-
tions and if a is increasing, then a(b(x)) is also convex. Thus,
by setting h(t;) = ﬁc— and observing that the multipli-

Smaz

Smaz

cation by (¢; + 3———) does not affect the convexity, we justify
the concavity of F;(t;) = —g(h(t)). O



3.2 Specific Solution for Periodic Task Sets

In this section, we present the static optimal solution to
the variable voitage scheduling problem for the periodic task
model, assuming that each task presents its worst-case work-
load to the processor at every instance. We underline that one
can use the equivalence obtained in Section 3.1 and the results
from [1] to justify the proposition (as formally done in [3]);
however, one can also reach the same conclusion by using the
first principles as outlined below.

Proposition 3 The optimal speed to minimize the total energy
consumption while meeting all the deadlines is constant and
equal to S = maz{Smin, Usiot}. Moreover, when used along
with this speed S, any periodic hard real-time policy which can
Sully utilize the processor (e.g., Earliest Deadline First, Least
Laxity First) can be used to obtain a feasible schedule.

Proof: First, observe that the convex nature of the power-speed
function suggests that we should try to maintain a uniform
speed while fully utilizing the CPU to the extent it is possible.
H Usot > Smin, then using the speed S = Uy, leads clearly to
a schedule which is fuily utilized (i.e., no idle time), through
stretching out each task in equal proportions (in other words,
in this case, we are achieving a total effective task utilization
of 30, §% gf;‘i = 1). However, if Uioy < Spin, then
we should use the minimum CPU speed available, to stretch
out task executions as much as possible. In any case, using the
speed § = maz{Smin, Utot } Will result in a total effective task
utilization which is no greater than 1. Hence, any scheduling
policy which can achieve up to 100% CPU utilization (Earliest
Deadline First, Least Laxity First) can be used to complete all
the task instances before their deadlines with the speed 5. O

4 Dynamic Reclaiming Algorithm

The dynamic reclaiming algorithm is based on detecting
early completions and adjusting (reducing) the speed of other
tasks on-the-fly in order to provide additional power savings
while still meeting the deadlines. To this aim, we perform com-
parisons between the actual execution history and the canon-
ical schedule S°*™, which is the static optimal schedule on
which every instance presents its worst-case workload to the
processor and runs at the constant speed S . The CPU speed
is adjusted only at task dispatch times: thus, we should be
able to say whether the task is being dispatched earlier than
& and if so, determine the amount of additional CPU time
the dispatched task can safely use to slow down its execu-
tion; we will refer to this additional CPU time as the earli-
ness of the dispatched task. Before providing the details of our
approach, we underline that a simple approach that equates
earliness with previously unused CPU time and and blindly
slows down the processor is not a safe approach. To see
this, consider a 3-task system with the following parameters:
C] = 4,P1 = 10,02 = 4,P2 = 10,03 = G,Pg = 30. The
worst-case utilization of the task set is equal to 1.00, hence the
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optimal speed for the static version is § = Syuae = 1.00 (from
Proposition 3). If every task presents its worst-case workload
at every instance and we use EDF, then the schedule in Figure
1 (5°%™) would be obtained. Now, suppose that T'3 completes

l
:
T Ty Ty g
0 4 10 14 20 2% 30
i I |
' . .
i 1 1
T, i Ty E Ty |
0 4 8 14 18 24 28 30
T3 T3 T3
0 8 10 18 20 28 30

Figure 1. The static optimal schedule, S°*™

early at ¢t = 10, leaving an unused computation time of 4 units
before its deadline. If these 4 units of CPU time are used by
T 2 (recall that T; ; is the j** instance of task ), T2 2 will
miss its deadline, if both T’ 2 and 75 2 require their worst-case
workload.

As we can see, computing and managing earliness is not a
trivial task. Due to the periodic nature of the tasks we consider,
it is clearly impractical to a priori produce and keep the entire
static optimal schedule $°*™ during the execution. In order
to simultaneously address the problems of feasibility and ef-
ficiency, while tasks execute, complete, re-arrive dynamically
and the actual schedule is produced, we choose to keep and up-
date a data structure (called «-queue) that helps to compute the
earliness of tasks when they are dispatched. At any time ¢ dur-
ing actual execution, the a-queue contains information about
tasks that would be active (i.e., running or ready) at time ¢ in
the worst-case static optimal schedule $¢¢™ (in other words,
a-queue is the ready queue of S at time ¢). We assume that
the following information can be obtained for each task from
the a-queue at any time ¢:

e 1, the identity of the task (i.e., task number),

e r; ;, the arrival time of the instance (i.e., the period bound-

ary earlier than ¢),

d; ;, the deadline of the instance (i.e., the period boundary
later than ¢), and

rem;,;(t), the remaining execution time of T ; at time ¢
in §°*™, under the static optimal speed S.

Clearly, given t, the r; ; and d; ; values can be easily com-
puted for the periodic task model. Note that the a-queue at
time ¢ contains information about all instances 7T’ ; such that
ri; <t < d;j, and rem; ;(t) > 0. The a-queue contains at
most 1 elements, since the number of tasks in the ready queue



can never exceed the total number of tasks in any schedule.
Therefore, we will omit the instance number while referring to
a-queue elements, whenever clarity is not compromised.

Our approach assumes that tasks are scheduled according
to EDF* policy. EDF* is the same as EDF (Earliest Deadline
First [12]), except that, among tasks whose deadlines are the
same, the task with the earliest arrival time has the highest pri-
ority (FIFO policy); in case that both deadline and arrival times
are equal, the task with the lowest index has the highest prior-
ity. This EDF* priority ordering is essential in our approach
because it provides a total order on the priorities. Further, we
assume that the a-queue is also ordered according to EDF* pri-
orities. We denote the EDF* priority-level of the task ¢ by d}
(low values denote high priorities).

At this point, we are ready to relate the a-queue with the
computation of earliness factor. Let w? (t) denote the remain-
ing worst-case execution time of task 7'; under the speed S at
time ¢. Further, set the nominal speed S; = & for each task T}.

Proposition 4 For any task T, which is about to execute,
any unused computation time (slack) of any task in the a-
queue having strictly higher priority than T, will contribute
to the earliness of T, along with already finished work of T,
in the actual schedule. That is, total earliness of T£ is no

less than €z (t) = 3 ;40 s TeMi(t) + rema(t) — wie(t) =
2 ijdr <az Temi(t) — wy= (t).

To understand the above result, note that when T',, is being dis-
patched, tasks with higher priority that are still in the o-queue
must be already finished in the actual schedule (since T°, cur-
rently has the highest EDF* priority), but they would have not
yet finished in $°4™.

Implementing the a-queue: The a-queue can be easily
implemented using the following rules:

R1. Initially the a-queue is empty.

R2. Upon arrival, each task T; “pushes” its worst-case execu-

tion time under nominal speed 5; = S to the a-queue in
the correct EDF* priority position (this happens only once
for each arrival, no re-push at 'return from preemptions’).

R3. As time elapses, the elements in the a-queue are updated
(consumed) accordingly: the rem; ; field at the head of a-
queue is decreased with a rate equal to that of the passage
of time. Whenever the rem; ; field of the head reaches
zero, that element is removed from a-queue and the up-
date continues with the next element. No update is done

when the a-queue is empty.

Observation 1 At time 1, the a-queue, updated according to
the rules R1, R2 and R3, contains only the tasks that would be
ready at time t in the static optimal schedule S°*™. Further, the
rem; ; field contains the remaining allotted time of each active
instance T; ; at time t in S°°™.
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Observation 1 stems from the following: (a) a-queue is or-
dered according to EDF* order, (b) every arriving task pushes
its remaining worst-case execution time (under nominal speed)
into the a-queue only once, (c) the queue is updated only at
the head, reflecting the fact that only the task with the high-
est EDF* priority would be running in $°%", and (d) a task
that would have finished in S°*™ is removed from the a-queue.
This effectively yields a dynamic image of the ready queue in
&4 at time ¢.

Note that the dynamic reduction of rem; ; in R3 above does
not need to be performed at every clock cycle; instead, for
efficiency, we perform the reduction whenever a task is pre-
empted or completes, by taking into account the time elapsed
since the last update. The above approach relies on two facts:
first, the speed adjustment decision will be taken only at ar-
rival/preemption and completion times, and it is necessary to
have an accurate a-queue only at these points (if speeds are to
be changed at other points, the update of rem; ; must reflect
that). Second, between these points, each task is effectively
executed non-preemptively.

We are now ready to present our Generic Dynamic Reclaim-
ing Algorithm, GDRA, shown in Figure 2. Procedure Speed-
Reduce(T, B, S), in Figure 3, will be used by GDRA to re-
duce the speed S of T, by allocating an extra B units of time
to T, under worst-case remaining load, subject to S con-
straint. GDRA is “generic” in the sense that the amount of
additional time allocation Y in step 5.2 is not specified, it may
assume any value between 0 and € (t) without compromising
the correctness.

The following theorem establishes that the schedules pro-
duced by GDRA are always ahead of S°°™.

Theorem 1 Ar any time t during the execution of GDRA,
wi(t) < rem;(t), for any ready task T;.

The formal proof of this theorem can be found in [3]. Focus-
ing exclusively on task completion times, the theorem implies
that in the actual schedule no task instance completes later than
its completion time in $¢*" (which is feasible), proving the
correctness of GDRA:

Corollary 1 GDRA yiélds a feasible schedule under EDF*
priority for a workload no greater than the worst-case work-
load.

Note that any specific algorithm should specify the exact
amount of earliness parameter Y, to use for speed reduction.
One natural choice in Rule 5.2 of Figure 2istouse Y = €,(2),
that is, to reduce the speed so as to profit from the full earliness.
We call this variation simply Dynamic Reclaiming Algorithm

(DRA).

4.1 Incorporating One
(OTE) Technique

As presented in [21], one can further slow down execution
when there is only one task in the ready queue and its worst

Task Extension



Rules for GDRA

1. Compute S (as in Section 3) and assign S; ; = SV 4, 5.
2. Initialize the a-queue to the empty-list.
3. At every new arrival, insert into the a-queue information

regarding the new task T; with rem;(t) = wf * value in the
correct EDF* order.

4. At every event (arrival/completion), consider the head of
the a-queue and decrease its rem; value by the amount of
elapsed-time since the last event. If rem; is smaller than the
time elapsed since the last event, remove the head, update
the time elapsed since the last event, and repeat the update
with the next element. This is done until all “elapsed time”
is used.

5. Whenever T is about to be dispatched at time ¢:

50. Set S, = S,.

5.1. Consult the a-queue and compute €, (t) (indicator of
the earliness amount of T;)

5.2. Reduce the speed of task T by giving T anextra Y
time units:
S; = Speed-Reduce(T:,Y,S:), where 0 < YV <
ex(t)

6. Atevery event of preemption or completion of a task, say T},
decrease the value of the remaining execution time: w,-s =
wf‘ — A:, where A is the time elapsed since the task T}
was last dispatched.

Figure 2. Generic Dynamic Reclaiming Algorithm

Procedure Speed-Reduce(T, B, S):

x.sensz=;;’%-s

2.1 Sz < Smins So = Spmin
3. return S,

Figure 3. Speed Reduction Procedure

case completion time (under the current speed) does not ex-
tend beyond the next event (next arrival/closest deadline of any
task). Since this technique can be used in conjunction with
any scheduling policy, we add a new rule 5.3 to further im-
prove (G)DRA. Let NT A be the next arrival time of any task
instance in the system after ¢, and recall that S, is the speed
from step 5.2 in (G)DRA and ¢ is the time 7, is dispatched.

5.3. If Ty is the only ready task and Z = NTA—t—w3=(t) >
0, S; = Speed-Reduce(T%, Z, S,).

In other words, reduce the speed of T',, 50 as to use the idle CPU
up to time NT'A. We call this improved technique DR-OTE.
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- where LCM is the Least Common Multiple of Py, . .

Clearly, the following holds.

Proposition 5 If all instances meet their deadlines under
DRA, they will also meet their deadlines under the algorithm
DR-OTE.

4.2 Experimental Results

In order to experimentally evaluate the performance of
DRA, we implemented a periodic scheduling simulator for
EDF* policy. We implemented the following schemes: (a)
Static uses constant speed S, and switches to power-down
mode (ie., S = Spmin) Whenever there is no ready task;
(b) OTE: Static optimal speed scheme in conjunction with
One Task Extension (but without dynamic reclaiming), and (c)
DRA, which is implemented in two variations: with or without
the OTE technique (DR-OTE and DRA, respectively).

In our experiments, we investigated the average perfor-
mance of the schemes over a large spectrum of worst-case uti-
lization (Uyo¢) and variability in actual workload. In partic-
ular, we focused on the average energy consumption of 100
task sets, each containing 30 tasks. The periods of the tasks
were chosen randomly in the interval [1000, 32000]. The min-
imum speed Siix, is set to 0.1. The nominal speed S is set to
Usot, as the optimality of this choice was shown in Section 3.
The variability in the actual workload is achieved by modifying
the EET ratio (that is, the worst-case to best-case execution
time ratio). We ran experiments where the actual execution
time follows a normal probability distribution function3. The

mean and the standard deviation are set to WCETEBOET anqg

WOET-BCET respectively, for a given WCEL as suggested

in [21]. These choices ensure that, on the average, 99.7% of
the execution times fall in the interval [BCET, WCET). For
each task set we simulated the execution up to LC'M 10 times,
., P, and
measured the average energy consumption per experiment us-
ing a cubic power/speed function [10].

One remarkable result is the following: Although the OTE
scheme provides substantial improvements over techniques
that continuously use Sy,,, during the execution without re-
claiming as shown in [21], throughout the entire spectrum, DR-
OTE only provides a marginal (less than 1%) improvement
over pure DRA. This result indicates that almost the entire
power savings are obtained by initially committing to S which
fully utilizes the CPU (static scheme) and to the dynamic re-
claiming algorithm itself. To improve the readability of the
graphs, we show below only the results of DR-OTE, since the
results for the latter are almost identical to pure DRA.

Effect of Utilization: Figure 4 shows the energy consumption
of the techniques varying with the utilization of the task set (i.e.

3The results with a uniform probability distribution function are rather
similar[3]. We also repeated the simulations with task sets having different
number of tasks. The full results can be found in [3], in the lack of space,
we only mention that the main trends remain similar to that of 30-task sys-
tem. This is expected, since the main determinant of the workload is the total
utilization and the variability in the actual workload.
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Utot), when WEEL is equal to 5. The results are normalized

with respect to Static which does not reclaim unused compu-
tation time. One can observe the following major patterns:

o The normalized energy consumption of all three schemes
are rather insensitive to the variations in Uy,;. This is due
to the fact that, for a given scheme, the use of optimal
nominal speed S results in having very similar effective
utilization, for any value of U;,. In other words, when
the utilization decreases, the speed decreases making the
CPU fully utilized.

o DRA has a definitive advantage over Static and OTE for
all utilization values: the energy consumption of a system
using DRA is only around 40% of a system which uses
Static or OTE.

e OTE performs better than Static, but the improvement is
usually less than 10%. This implies that the large power
savings reported over continuously using S 4, for some
task sets in [21] are due largely to the shutting down of the
processor when the processor is idle as the result of the
actual workload. If and when one starts with the optimal
static speed, the potential (additional) savings due to the
OTE technique itself becomes rather limited.

Effect of vgg gg: ratio: The simulation results confirmed our
prediction that the energy consumption would be highly depen-
dent on the variability of actual workload. The (normalized)
average energy consumption of the task sets, as a function of
WCEL ratio (with Usey = 0.6) is shown in Figure 5. In terms
of shape and percentage difference, the curves for other uti-
lization values are fairly similar. From these experiments we

arrived at the following conclusions:

e When vgg gg: = 1, there is no CPU time to reclaim dy-
namically, and thus the energy consumption is the same

101

120 T T T T T

100

Normalized Energy Consumption
@
2
T

1 2 3 4 5 6 7 8 9 10
'WCET/BCET ratio

Figure 5. Effect of variability in actual workioad (30 tasks);
load = 60%

for all three techniques, as expected. However, once
the actual workload starts decreasing (that is, increasing
‘gg g% ), OTE and DRA are able to reclaim unused com-

putation time and they are able to save additional energy.

e The DRA is capable of providing considerably higher
power savings than OTE; and the difference increases

rapidly with ‘gg 577: ratio. For instance, the savings of

DRA even for Vgg 517: = 1.1 is better than the perfor-
mance of OTE throughout the entire spectrum.

e WCET :
* Once we increase the Fs5= beyond 4, power savings of

DRA continue to increase, but the improvement is not as
impressive as the case where that ratio is < 4. This is
because the expected workload of the system converges
rapidly to 50% of the worst-case workload with increas-
ing ‘gg g;": ratio (remember that the mean of our proba-
bility distribution js WCELEBCET),

5 Aggressive Speed Reduction

The DRA and DR-OTE algorithms provide sound dynamic
speed reclaiming mechanisms, however they guarantee feasi-
bility by always being ’ahead’ of the static worst-case optimal
schedule $¢°™ (i.e., tasks never actually start or finish after the
scheduled time in $°°7). S°*™ is feasible at any time, yet it is
optimal only under the assumption that all future instances will
present their worst-case workload. Whenever, under constant
speed, the actual execution times of a task’s instances exhibit
large variation, starting a task with this assumption can be too
conservative. Instead, whenever the current system state sug-
gests, we may assume speculatively that the current and fu-
ture instances will most probably present a computational
demand which is lower than the worst-case. Hence, we can
adopt an “aggressive” approach based on reducing the speed



of the running task under certain conditions to a level which is
even lower than the one suggested by DR-OTE. But this spec-
ulative move might shift the task’s worst-case completion time
to a point later than the one in $°*™ under an actual high work-
load. And if this pessimistic scenario turns out to be true, we
should be ready to increase the CPU speed beyond S later
to guarantee feasibility of future tasks. This would hamper
significant power savings since the convexity of power/speed
curve suggests a uniform speed to achieve a given average
speed value over any interval of time. On the other hand, in
case that the actual workload turns out to be lower than the
worst-case, the actual schedule will still be ahead of S¢*™, even
with the low speed, thereby achieving even higher power sav-
ings.

A powerful system design principle is to make the com-
mon case more efficient. This translates (in settings where the
worst-case workload occurs only rarely) into having a power-
efficient schedule for average or close to average cases, which
can be achieved by reducing further the CPU speed. After hav-
ing presented the rationale of aggressive speed management
techniques, we should address and provide solutions for two
important issues.

The first one is feasibility: when we reduce the speed of
T, aggressively, we should be ready to guarantee the timing
constraints of T'; and that of any other task, since the schedule
may no longer be "ahead’ of $°*”. The second issue is the de-
termination of the aggressiveness level: even though it may
be possible to show the existence of a feasible schedule (under
a very aggressive speed reduction for T';), if such a move is
not justified by the expected workload of the system, it may
be reasonable to adopt a more conservative speed reduction, to
decrease the probability of speed increases which cause high
energy consumption. A natural solution is to use a pre-defined
speed reduction bound (Sb) below which we never attempt to
decrease the CPU speed during an aggressive speed adjust-
ment. Observing that the ”average workload” is an appropriate
estimator for the actual computational demand, we choose to
parameterize the aggressiveness level with respect to the opri-
mal speed under an average workload (S optavg). More specif-
ically, Soptavg is the optimal speed for the workload where
each instance requires exactly its average computational de-
mand (determined by a probability distribution function). Gen-
erally, we may set Sb to k - S,ptavgy, Where k is a constant such
that Spin < Sb < Spas (0 554 <k < gnee). Ob-
serve that changing k in this range provides a complete spec-
trum of “aggressive techniques”. At one end of the spectrum,
k= Sfpz;ug (which is usually much smaller than 1.0) corre-
sponds to the “extreme aggressiveness” where we attempt to
obtain the lowest speed level for the running task; this is only
subject to feasibility which might be achieved later only by ex-
ecuting the following tasks with very high speeds (i.e., by this
choice, we are supposing that the current workload will be well
below the worst-case workload). At the other end of the spec-
trum, setting k = $2mea— reflects the DR-OTE algorithmitself.

optavy
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Another main point in the spectrum is the scheme which lim-
its the aggressiveness speed bound by exactly S optavg, that is,
k = 1; this reflects the view that slowing down the CPU below
Soptavg Will hurt the aggregate power savings in the long run.

5.1 Feasibility for Aggressive Schemes

As mentioned above, when we attempt to aggressively re-
duce the CPU speed, we risk exceeding worst-case completion
times of $°°™ in the current schedule, both for the running,
ready and yet-to-arrive tasks. In general, to check the conse-
quences of such an aggressive decision is a non-trivial problem
(linked with response-time analysis complications of EDF), es-
pecially if it is to be addressed in a dynamic fashion, at run-
time. In this study, we adopt a simple approach that restricts
the aggressive power management to occur only when we can
limit their effects upto the next event (arrival/deadline of any
task). As the results in Section 5.4 below indicate, the aggres-
sive schemes have the potential of providing additional power
savings, even with this conservative feasibility test with limited
horizon.

Whenever we can predict that the completion time of the
currently ready task T, will not extend beyond the next event
(arrival/deadline), we can speculatively reduce the speed of T',.
while guaranteeing that it will still complete before the next
event (which is, by definition, earlier than or equal to the dead-
line of T;). However, care must still be taken in order to guar-
antee the timely completions of other ready tasks which are
waiting on the ready queue at a lower priority level than 7',
since the execution/completion of these tasks will be delayed
until 7, completes.

A possible way to guarantee the feasibility in this case is to
increase the speed of another suitable and ready task 7', which
will run after T;. This is effectively equivalent to increasing the
time allocation of T, while decreasing the time allocation of
T, by the same amount. Clearly, from this point on, the system
cannot blindly decrease the speed of T’y to its original :9; G.e.,

we should also change 3‘; for that instance).

One can even generalize this with the following: if
Ty,T5, ..., T, are ready tasks that are guaranteed to run con-
secutively and all to complete before the next task arrival time
(NT A) even under worst-case workload, we can arbitrarily
swap CPU time allocations among them (in particular to reduce
the speed of T while increasing the speeds of one or more of
Ty, ..., T,). In fact, if it exists, even the highest priority ready
task that is nor guaranteed to complete before NT A (namely
T'-+1) may provide a portion of its time allocation under certain
conditions. However, we must still guarantee that T, 75, ..., T,
will complete before NT A and T'.,; will complete no later
than before the time allocation swapping, under the worst-case
scenario. Further, in all these computations, we should take
into account the slack-time of already completed tasks in the
a-queue (with EDF* priority lower than T';) that may con-
tribute to the worst-case CPU allocation of T3, ..., T, Tr41 in



the future through dynamic reclaiming. Finally, all these speed
adjustments should adhere to S;,n, Smaez and Sb bounds.

To incorporate the aggressive speed reduction technique, we
add a new rule 5.4, to the previous algorithm, thereby obtaining
the new algorithm Aggressive-DR:

54. IfZ = NTA—t— ws=(t) > 0 and there are other ready
task_s in addition to T, call Aggressive-Speed-
Adjustment.

Procedure Speed-Increase (Figure 7) increases the speed S
of T, so as to remove at most H units of time allocation un-
der worst-case remaining workload of T',. with respect to the
speed S, subject to Syuq.- In procedure Aggressive-Speed-
Adjustment, whenever T4 transfers slack-time from T, we

perform the speed increase for T';, increasing S;, the nomi-
nal speed of T;. Whenever T is about to be dispatched, its

current speed will be set to 3’: by rule 5.0; rules 5.1 and 5.2
should consider this new (increased) speed when trying to re-
duce speed due to a (possible) earliness detection. Finally, T';

should assume the new nominal speed TS'; when it returns from
preemption, since this is the lowest speed known to guaran-
tee a feasible schedule in the case where every task presents
its worst-case load to the processor after aggressive speed ad-
justments. However, we underline that the nominal speed S;
of future instances of T; are unchanged and equal to S. A
formal proof regarding the correctness of the Aggressive-

Speed-Adjustment routine is provided in [3].

5.2 [Evaluation of the Aggressive Scheme

We conducted experiments to assess the performance of the
aggressive scheme (abbreviated by AGR), in the same settings
as Section 4.2. The speed bound Sb for the speculative speed
adjustment is equal to Soptaug, that is, the aggressiveness fac-
tor k is set to 1. In Figure 8, the relative energy consumption
of AGR with respect to DRA is shown, for 30-task sets and
normal distribution, as a function of the utilization. The results
show a consistent advantage of AGR over DRA throughout the
spectrum (around 15%). The improvement decreases as the
utilization approaches 100%, where all tasks assume a nom-
inal (default) speed S = 1.0 and aggressive speed reduction
at the expense of increasing the speed of others is not always
possible.

The effect of variability in actual workload is shown in Fig-
ure 9. Again, AGR provided better performance than DRA
with various ‘gg gg: ratios. Increasing this ratio improves the
relative performance of AGR, since the speculative moves are
justified more frequently.

5.3 More on Speed Bound Restrictions

Another possible approach for using the aggressive scheme
is to adhere to the ’parameterized speed bound’ even when
reducing the speed in Step 5.2 through dynamic reclaim-
ing. This approach assumes that reducing the speed below
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Procedure Aggressive-Speed-Adjustment
Notation: The algorithm is invoked at time ¢. The ready task with
the highest EDF* priority is denoted by T1. The other tasks that
are ready, or that are completed but have their unused computa-
tion time in the a-queue with EDF* priority lower than that of
T4, are denoted by T3, ...,Tm, 2 < m < n, in decreasing or-
der of priorities. Throughout the algorithm, at the cost of a slight
abuse of notation, we will also use the expression wis" (¢) to refer
to Rem;(t) value of any completed task T; in the a-queue at time
t. The current speed assignments are denoted by Si, ..., Sm, and
the next task arrival after ¢ will occur at time NT'A.

Algorithm:
o If S1 < maz{Smin, k- Soptavg} return; (that is, we should
not decrease the speed any further)
e Determine the maximum amount of additional CPU time,

Q, that can be assigned to 71, subject to Spin and the ag-
gressiveness level constraints:

S1

— 1w
maz(smin; k ‘ Soptavg) 1]wl (t)

Q = |

e Adjust Q in order not to extend beyond NT A:
if NTA—t—w{'(t) < QthenQ = NTA —t — w (¢).
e Q, = 0 (already transferred slack amount).
o Ifwy?(t) > Qthen {r =1;Z =0}
else find the largestr (2 < r < m)
suchthat Z = 37, wii(t) < Q.
o Increase the speed of 13, ..., Thin(m,~+1) While reducing
the speed of T1:

- j=2
- while (j < min(m,r + 1) and Q. < Q)
% if (j < r + 1) then Eztratime = Q — Q.
else Extra_time=Q — Z
* if T} is ready then:
- §; = Speed-Increase(7;, Extra_time, 5‘})
S, 5;
. B:(gf—l)-wjJ
- S; = Sj (that is, commit to the new S; as
the default speed of that instance)
* if T; is completed but is in the a-queue then
B = min(Extra_time, Rem;)
* j=3j+1
Qa = Qa + B
* §1 = Speed-Reduce(T1, B, S1)

*

Figure 6. Aggressive Speed Adjustment Procedure

k - Soptavg Will hurt the total performance in the long run, and
prevents doing so even when the earliness factor would jus-
tify doing so. To distinguish two variations of the aggressive
scheme, we will denote the original scheme and the new varia-
tion by Aggressive-DR-1 and Aggressive-DR-2, respectively
(or, AGR1 and AGR?2, for short).

The correctness of the new scheme follows from the cor-



Procedure Speed-Increase(1;, H,.S)
S

1S, =2td

2.If Sz > Spmaz then Sy = Sz ;

3. return S,

Figure 7. Speed Increase Procedure
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rectness of AGRI1, since AGR2 never slows down the proc.es-
sor more than AGRI.

5.4 Evaluation of AGR1 and AGR2

In this section, we present results of simulations performed
to compare algorithms AGR-1 and AGR-2. The simulation set-
tings are identical to those of Section 4.2. When the utilization
or the vgg E;E ratio is changed, the performance of AGR1 and
AGR? are hardly distinguishable [3].

Nommalized Energy Consumption with respect to Static

8
WCET/BCET ratio

Figure 9. Effect of variability in actual workload (load = 60%)

. T WCET . .
However, unlike the utilization and “z+ ratio, changing

the aggressiveness level deeply affects the results, as shown
in Figure 10. The curves shown are for 60% utilization and
WCET — 5, other parameter settings have very similar behav-
ior. The performances of DRA and Static are insensitive to the
parameter k. The maximum power savings is are obtained with
algorithm AGR?2 typically when k¥ = 0.9. This represents a
further 5% improvement over k = 1, yielding a net advantage
of 20% over DRA. AGRI1 reaches its minimum energy con-
sumption usually with k& = 1. Further, the curve suggests that
unbounded or extreme aggressiveness (small values of k) hin-
ders the power savings: for instance, both schemes consume
60% more energy than DRA for k < 0.2.

Yet, as we increase the value of k& and move towards more
"balanced’ aggressiveness levels, the aggressive schemes be-
come preferable to DRA: AGR1 and AGR2 outperforms DRA,
for k > 0.75 and &k > 0.7, respectively. After the power
savings reach their maximum at £ = 0.9 (for AGR2) and
k = 1.0 (for AGR1), the performance starts to degrade. Re-
markably, for £ > 1.1, AGR2 consumes considerably higher
energy than AGRI1: this is due to the fact that when the algo-
rithm is run with large values of k, the algorithm is reluctant
to reclaim or transfer CPU-time, even when the speed is higher
than Soptavg- AGR1 does not suffer from this effect, since it
automatically uses the earliness information to perform an ini-
tial speed reduction and considers the speed bound Sb only
when aggressively reducing speed. Hence, even for large val-
ues of k£, AGRI remains better than DRA, and is guaranteed
to converge to it for k = z—=— = m%_m—_- which is 1.66

optavg WCET
for this example. On the other hand, AGR2 converges to OTE
(not shown in Figure 10) for the same value; this is because
the actual speed starts with S, and the aggressive or dynamic
reclaiming is never possible since Sb = S. In this case, CPU

" speed is reduced only through OTE.
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In summary, keeping k in the range [0.9, 1] and committing
to an aggressiveness level which aims to achieve very close to
Soptavg produces best results, yielding additional (i.e., beyond
DRA or DR-OTE) energy savings which may be as high as
20%.

6 Conclusions

In this paper we presented techniques for power-aware real-
time computing through variable voltage scheduling. Our so-
lution comprised three parts (a) a static solution to compute the
optimal speed based on the worst-case workload, (b) an on-line
speed adjustment mechanism that reclaims unused time based
on the actual workload, and (c) a speculative speed adjustment
mechanism based on the expected workload. To our knowl-
edge, this is the first time that aggressive and provenly safe
techniques are used to anticipate and provision for the early
completions in periodic real-time scheduling.

Our simulation results show that the reclaiming algorithm
saves a striking 50% of the energy over the static algorithm,
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which takes into account the load in the system. This quite sig-
nificant result shows that the lifetime of mobile or other battery
operated devices can be extended on average to twice the levels
of static sotutions. Considering also the data presented in our
previous work [16], we conclude that batteries can be extended
to last up to one order of magnitude longer over no power man-
agement schemes.

Further, our preliminary aggressive techniques allow for an
additional 20% savings over the reclaiming algorithm. We
conclude that, being too aggressive or not aggressive enough
causes the algorithms to perform rather poorly. We are cur-
rently studying less conservative approaches (that is, not stop-
ping the aggressiveness by the “next event”) that we believe
will lead to further energy savings.
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