
Energy-Constrained Scheduling for Weakly-Hard Real-Time Systems  
 

Tarek A. AlEnawy and Hakan Aydin 
Computer Science Department 

George Mason University 
Fairfax, VA 22030 

{thassan1,aydin}@cs.gmu.edu 
 

Abstract 

In this paper, we explore performance optimization problems 
for real-time systems that have to rely on a fixed energy budget 
during an operation/mission. We adopt the weakly-hard real-
time scheduling paradigm to ensure a predictable performance 
for all the tasks: Our aim is to minimize the number of dynamic 
failures (in terms of (m,k)-firm deadline constraints) while 
remaining within the energy budget. We prove that this problem 
is NP-Hard in the strong sense even for an ideal DVS 
architecture with continuous speed spectrum. We propose 
techniques to statically compute the speed of the CPU in order 
to meet the (m,k)-firm deadline constraints. We present on-line 
speed adjustment algorithms to exploit the slack time of skipped 
and completed jobs. Through extensive simulations, we show 
how the performance can be significantly improved by 
selectively dispatching jobs by considering their energy costs as 
well as their contribution to the system performance. 
 
1. Introduction 
 

With the proliferation of wireless and portable computing and 
communication devices that rely on battery power, energy-
aware system design has recently received considerable 
attention by the research community. The Dynamic Voltage 
Scaling (DVS) technique [2, 8, 20], which is based on reducing 
the supply voltage and clock frequency of the CPU on-the-fly, 
proved to be a powerful energy management tool for both 
general purpose and real-time (RT) systems. While it is possible 
to obtain significant energy savings through DVS, the CPU 
frequency/speed reduction results in an increase in response 
times. Early work on the so-called ‘RT-DVS’ problem focuses 
on providing feasibility guarantees with the reduced CPU speed 
to maximize the energy savings, for various task/system models 
and on-line/off-line scheduling algorithms [2, 18, 20, 21, 26, 
27]. Thus, these studies can be seen as part of the broader 
energy-aware computing research, where the aim is to achieve 
the performance objectives with minimum energy consumption.  

Energy-constrained real-time systems. More recently, the 
research community started to consider a different type of 
problem. In the energy-constrained settings, the energy is more 
than an important design dimension; it is a hard constraint [17]. 
The problem is to make sure that the system, with a finite energy 
budget, remains functional and delivers an acceptable 
performance during a well-defined operation/mission time. In 
the specific case of real-time operation, if the system’s energy 
budget does not allow the execution of all the jobs even with 
DVS, the best strategy may be to skip a few jobs in a controlled 
fashion without running out of energy in the middle of the 
mission. In fact, deliberately skipping some jobs reduces the 
workload, and at the same time, it allows the use of a lower CPU 
speed to meet the deadlines of the other (non-skipped) jobs to 

compound the energy savings. Thus, energy-constrained RT 
scheduling aims to maximize the system performance within 
the limits of available energy [1, 24, 25]. In [1], it is shown 
that the problem of deciding the feasibility of a task set on a 
CPU with limited energy budget and discrete speed levels is NP-
Hard.  

Most research on energy-constrained RT scheduling follows 
the reward-based task model, where it is assumed that the 
timely completion of each job will accrue a certain 
reward/value, capturing the job’s contribution to the overall 
system’s utility. Thus, existing studies focus on maximizing the 
system reward within available energy [1, 14, 24, 25]. Though 
the reward-based framework is applicable in settings where the 
reward of each job is accurately and a priori quantifiable, this 
information may not be always available to the designer. In this 
paper, we explore an alternative and more practical solution, 
through the adoption of the weakly-hard real-time scheduling 
paradigm, which is a widely-used approach to deal with 
overloaded (but not power-aware/variable-speed) RT systems.  

Weakly-hard real-time systems research is motivated by the 
observation that for many real-time applications (which are 
periodic in nature) some deadline misses are acceptable as long 
as they are spaced distantly/evenly. As indicated in [11, 12, 15], 
prevalent examples include multimedia processing, real-time 
communication and embedded control applications. A number 
of closely-related models were proposed by several research 
groups over the years. In the skip model, a task’s tolerance to 
deadline misses is characterized by the skip parameter s: in any s 
consecutive instances of the task at most one can miss its 
deadline [7, 15]. The more general (m,k)-firm deadline model 
[11, 22, 23] requires that each task meet at least m deadlines in 
every consecutive k instances. If this constraint is violated in any 
time window, the system is said to exhibit a dynamic failure 
(implying possible degradation in system performance or 
quality-of-service). Figure 1 shows a sample schedule for a 
(2,3)-firm real-time task over six consecutive periods. The third 
instance is skipped, but the task meets its (2,3)-firm deadline 
constraint in the first execution window that encompasses the 
first three task periods, thanks to the timely completion of the 
first and second task instances. The same holds for the second 
execution window. However, when the fifth instance is skipped, 
the task experiences a dynamic failure in the third window.  

In the Dynamic Window Constrained Scheduling (DWCS) 
model motivated by the real-time packet scheduling 
applications, a given task needs to complete at least m instances 
before their deadlines in every non-overlapping window of k 
instances [19, 28, 29]. In the schedule of Figure 1, with DWCS, 
there would be only two execution windows: Window 1 would 
comprise the first three task periods, while Window 2 would 
include the last three. Observe that a schedule satisfying the 
(m,k)-constraints (in the original sense) also satisfies the DWCS 
model, but the reverse is not true. Finally, Bernat and Burns 
proposed the generic weakly-hard RT scheduling model [5, 6], 



which encompasses several alternative (m,k)-firm task models. 
In this paper, we adopt the (m,k)-firm deadline model used in 
[11, 22, 23] since it is the most commonly used framework. 

 

 
Figure 1. Dynamic failures in a schedule of a (2,3)-firm RT task 

 
This work. The motivation of this research effort is to 

recognize the applicability of the weakly-hard real-time task 
model to energy-constrained applications. As opposed to the 
reward-based framework where each task/job has a statically-
assigned utility value, the weakly-hard real-time task model 
provides greater flexibility in expressing firm deadline 
requirements: The performance will remain acceptable as long 
as each task meets its (m,k)-firm deadline requirement, 
regardless of the specific jobs selected for execution. Moreover, 
it is known that the performance requirements of audio, video, 
multimedia and RT communication tasks are best expressed by 
the (m,k)-firm deadline constraints [6,29]. Since these 
applications are considered essential for emerging battery-
operated (and hence, energy-constrained) devices, the adoption 
of the weakly-hard RT system model should prove very useful 
in practice. Despite the potential prospects of the weakly-hard 
RT task model, a number of technical challenges need to be 
overcome. To start with, choosing an appropriate CPU speed to 
avoid or minimize the dynamic failures is a non-trivial problem. 
In addition, devising efficient on-line mechanisms to exploit the 
slack time of skipped and/or completed jobs is crucial to be able 
to meet the hard energy constraint of the system.  
The main contributions of this paper are as follows: 

 
• We formally characterize the energy-constrained weakly-hard 

RT scheduling problem and show that it is NP-Hard in the 
strong sense. The result remains valid even when one 
assumes that the task set is trivially schedulable when the 
energy constraint is excluded. In other words, the 
introduction of the hard energy constraint has a deep impact 
on the complexity of the problem.  

• We derive a sufficient (but not necessary) condition that 
characterizes the solution of the problem. For scarce-energy 
settings where this condition does not hold, we develop a 
solution framework that consists of: 
- Carefully selecting a mandatory workload among all the 

jobs by considering their impact on overall system 
performance in terms of minimizing the dynamic 
failures,  

- Computing a safe CPU speed to complete all the 
mandatory jobs before their deadlines, and  

- Applying dynamic/on-line speed adjustment techniques 
to aggressively reclaim the slack-time of skipped and 
completed jobs to boost the energy savings.  

• We present two main classes of algorithms: the greedy 
schemes a priori select the mandatory workload for execution 
and attempt to minimize the number of dynamic failures by 
on-line speed adjustment techniques. The energy-density 
schemes go one step further by prioritizing the mandatory 
jobs by considering their ‘energy cost’ and contributions to 
the overall system performance metric.  

• We present simulation results evaluating the performance of 
all the algorithms presented in the paper, over a wide range of 
system parameters. We report that the energy-density 
schemes exhibit a superior advantage, especially when the 
system’s energy budget is significantly low.  

 
2. System Model 
 
2.1 Power and energy consumption model 
 

The target platform of this study is a single processor system 
whose only power source is a battery. In order to remain 
functional, the system’s energy level must remain in a ‘safe’ 
energy range [Emin, Emax] at all times, where Emax refers to the 
maximum battery capacity, and Emin denotes the minimum 
energy threshold below which safe operation is not guaranteed 
[25]. Thus, the system has limited initial amount of energy, 
referred to in this paper as energy budget Ebudget , whose value 
(when the battery is fully charged) is Ebudget = Emax - Emin. We 
further assume that the system has to remain functional 
throughout a time interval [0,X]; that is the total CPU energy 
consumption cannot exceed Ebudget for X time units (in other 
words, the system is subject to a hard energy constraint). 
Throughout this paper, we refer to X as the system’s mission 
time. We also assume that battery re-charging is not possible 
during the mission.  

We further assume that the system has DVS capability, where 
the processor speed (frequency) and supply voltage can be 
dynamically adjusted. We distinguish two modes: execution 
mode and stand-by mode. In the stand-by mode, the CPU does 
not execute any tasks, and consumes only the stand-by power 
denoted by gstb. The CPU switches to stand-by mode if it is idle. 
In the execution mode, the CPU speed can vary between a lower 
bound (Smin) and an upper bound (Smax). In this case, the power 
consumed is a function of the CPU speed/frequency; we denote 
this dynamic power consumption by g(S). In accordance with 
[2,20,26], we assume that g(S) ∝ S3. For convenience, we 
normalize the speed values with respect to Smax; i.e. Smax = 1.0. In 
any time interval [t1,t2], the total energy consumption is the 
integral of power consumption function, which includes the 
stand-by and dynamic power consumption components.. We 
also assume that time and energy overheads due to CPU speed 
changes are negligible.  

We adopt an inter-task DVS model; that is, we assume that 
the CPU speed can be changed only at task completion or 
preemption points, following [2, 20, 26].  

 
2.2 Task model 
 

We consider a set of n independent periodic RT tasks Γ = 
{T

1
, T

2
,…, T

n
}. Each task Ti = (Ci, Pi, mi, ki) is characterized by 

Dynamic Failure 

Window 1 

Window 3 

Window 2 

Window 4 



four parameters: the worst-case execution time Ci under 
maximum speed1, a period Pi and the parameters mi and ki which 
specify the task’s tolerance to deadline misses. Tasks are 
assumed to be (mi,ki)-firm; that is at least mi instances of task Ti 
must meet their deadlines in every window of ki consecutive 
instances (mi ≤ ki). If this constraint is violated in any such 
window, task Ti is said to exhibit a dynamic failure. We further 
assume that the relative deadline Di is equal to the period Pi .  
Ti,j denotes the jth instance of task Ti . We use the terms 
hyperperiod and frame interchangeably to refer to the least 
common multiple of all task periods: P = lcm(P1, P2,…, Pn). We 
assume preemptive scheduling, and that the preemption and 
speed change overheads can be incorporated in Ci if necessary. 
The process descriptor of Ti is augmented to include two fields 
related to the CPU speed: a nominal speed Si

nom, which is the 
default speed assigned to the task when it is about to be 
dispatched, and an actual speed Si, which is the speed at which 
the task is being executed at the specific time instant. Under a 
constant speed S, the execution time of task Ti is Ci /S. The 
utilization of task Ti under CPU speed S is given by ui(S) = Ci 
/(Pi S). Note that under maximum CPU speed (i.e. S = 1.0), ui-
(1.0) = Ci /Pi. The aggregate utilization of the task set (under 
maximum speed) is given by Utot = ∑i Ci /Pi. In this paper, we 
assume that the execution time scales linearly with the CPU 
speed, ignoring memory stall effects. Note that this is a 
conservative but safe assumption since it overestimates the new 
execution time when the CPU speed is reduced [27]. Hence, it 
does not hurt the schedulability analysis.  

We adopt the Earliest-Deadline-First (EDF) scheduling 
policy, which is known to be optimal from the feasibility 
viewpoint [16]. The goal of this paper is to study the feasibility 
and performance maximization problems in the context of 
energy-constrained systems (with limited CPU energy budget). 
Consequently, we assume that the task set would be feasible 
(schedulable) with EDF when executed at the highest CPU 
speed (i.e. if ∑i Ci /Pi ≤ 1), in the absence of energy constraints.  
 
3. Energy-Constrained Weakly-Hard 
Real-Time Scheduling Problem  

 
In this section, we formulate the scheduling problem for 

energy-constrained weakly-hard RT systems and discuss its 
computational complexity. We also explore feasibility 
conditions, define the system performance metric, and give an 
overview of our general solution approach.  

Consider the following problem: Given a weakly-hard real-
time system that must remain operational during a mission 
interval [0,X], can all tasks meet their (m,k)-constraints (i.e. 
avoid dynamic failures) while remaining within the system’s 
limited energy budget? Unfortunately, this problem is 
computationally intractable even assuming an ideal DVS model 
with continuous CPU speed:  

Theorem 1. The problem of deciding whether it is possible to 
meet all the (m,k)-constraints of a set of periodic real-time tasks 
within a limited energy budget is NP-Hard in the strong sense 
on a DVS-enabled CPU with continuous speed. 

Proof: See Appendix A. 

                                                      
1 Ci can also be considered as the worst-case number of processor cycles 

required by task Ti. 

We would like to connect this result to the related 
intractability results that already appeared in the literature. First, 
in [1], it is shown that the problem of deciding if all the 
deadlines of a set of real-time tasks can be met subject to a 
limited energy budget (i.e. feasibility under energy constraint) is 
NP-Hard in the weak sense on a DVS-enabled CPU with 
discrete speed levels. At first, this last problem may appear as a 
special case of our problem where we set m=k (under this 
condition the (m,k)-firm model reduces to the traditional hard 
real-time model). However, note that Theorem 1 presents a 
stronger result by showing that the problem is NP-Hard in the 
strong sense even for continuous CPU speed. Second, Quan and 
Hu proved that deciding whether it is possible to meet all the 
(m,k)-constraints on an overloaded (but constant-speed, non-
energy-constrained) CPU is NP-Hard in the strong sense [22]. In 
our settings, the system is not overloaded from the 
computational demand point of view (in fact, all tasks can meet 
their deadlines under maximum speed). However, energy is the 
hard constraint and the result above implies that deciding if it is 
possible to avoid dynamic failures on a DVS-enabled, energy-
constrained CPU is equally hard.  

Although the problem stated in Theorem 1 is NP-Hard in the 
general case, it is possible to decide some special instances 
easily. Consider the specific execution pattern in which the first 
mi instances of task Ti in every interval [qkiPi , (q+1)kiPi] (where 
q is a non-negative integer) are dispatched and the remaining  
ki - mi instances are skipped as illustrated in Figure 2. It is clear 
that this execution pattern meets the (m,k)-constraints provided 
that a suitable speed is used to meet the deadlines of all the 
dispatched jobs. A possible CPU speed to use in this context is 
the one corresponding to the total task utilization (under 
maximum speed) Su = Utot = ∑i Ci /Pi:  this speed is known to 
minimize the total energy consumption of the periodic task set 
without missing any deadlines [2, 20]. Let Elimit denote the 
energy needed to execute solely the dispatched jobs in the 
pattern discussed above using the speed Su.  

Proposition 1. If  Ebudget ≥ Elimit, then all the (m,k)-constraints 
can be met by using the speed Su = Utot . 

Proof: By using the speed Su = Utot, it is possible to guarantee 
that all deadlines in the task set will be met a priori [2, 20]. Also 
recall that Elimit represents the energy needed at this specific 
speed to execute the selected jobs in the pattern discussed above, 
which readily satisfies all the (m,k)-constraints. Therefore, by 
adopting this pattern and using the speed Su, all (m,k)-constraints 
can be met. Note that Proposition 1 provides only a sufficient, 
but not necessary condition, for meeting the (m,k)-constraints. 

 
Figure 2. The “deeply-red” execution pattern of a (2,3)-firm RT task 

 
Thus, if If Ebudget > Elimit, one can find a trivial solution that 

guarantees all the (m,k) constraints, and the techniques proposed 
in [1] can be used to further improve the system performance. In 
the remainder of this paper, we focus on the settings where 
Ebudget < Elimit and we explore strategies for maximizing the 
system performance in these settings. While developing our 
solutions we adopt the execution pattern, shown in Figure 2, 
according to which the first mi instances in every non-
overlapping window of ki instances of any task Ti are selected, 



and the remaining ki - mi instances are skipped. This pattern has 
been adopted in the weakly-hard real-time scheduling literature 
and is referred to as the “deeply-red” execution pattern [7, 15]. 
In this context, we distinguish two types of jobs: mandatory and 
optional. 

Definition 1. An instance Ti,j of a task Ti is mandatory if and 
only if 1 ≤ j mod ki ≤ mi; otherwise it is optional  
(for the case of mi < ki). If mi = ki then all instances are 
mandatory. 

It is now possible to formally define Elimit as follows. 

Definition 2. Elimit is the minimum energy needed to execute all 
the mandatory jobs (under worst-case conditions) using the 
speed Su = Utot. 

Let us denote by Mi the number of mandatory (non-skipped) 
jobs of task Ti required to meet the (m,k)-constraints in [0,X], 
according to the ‘deeply-red’ execution pattern. Since the 
execution time of each mandatory job of task Ti under the CPU 
speed Su is Ci / Su , the total amount of time the system stays in 
execution mode is ∑i MiCi / Su . Considering the stand-by and 
execution mode power functions and the duration of the mission 
X, the sum of dynamic and stand-by (i.e. the total) energy 
consumption can be computed as: 

Elimit = g(Su) ⋅ ∑i MiCi / Su + gstb ⋅ (X - ∑i MiCi / Su) (1) 

Observe that by adopting a ‘deeply-red’ pattern, the selected 
mandatory jobs are executed early in the schedule. This helps 
on-line dynamic slack reclamation since in the common case of 
early completions [9], the arising slack-time can be used to 
further reduce the CPU speed for the subsequent jobs and 
increase the energy savings. Moreover, in our severely energy-
constrained problem settings, we opt to skip all the optional jobs 
to save energy for the mandatory jobs which are critical to meet 
the (m,k)-constraints .  

Since it is not possible to provide a priori guarantees to meet 
all the (m,k)-constraints through an efficient procedure, we 
attempt to optimize the system performance subject to the 
limited available energy. We measure the system performance 
during the mission through the dynamic failure ratio (DFR), 
which is defined as:  

max

1
DFDFwDFR

n

i
ii∑

=
=  (2) 

where DFi is the number of dynamic failures of task Ti during 
the mission interval [0,X], DF max is the total number of dynamic 
failures that all tasks can experience during the same interval, 
and wi is the (optional) weight (0 ≤ wi ≤ 1) indicating the relative 
impact of Ti’s dynamic failures on overall system performance. 
Appropriate weight values can be chosen by the designer if 
additional information is available about the application 
semantics. It is relatively easy to evaluate DFi: observe that the 
first dynamic failure of the task Ti can occur only at time ki Pi , 
since this marks the end of the execution window of the first ki 
jobs of task Ti. In addition, we may have an additional dynamic 
failure at every period boundary (deadline) of Ti after t = kiPi, 
by considering the last ki jobs of the (sliding) execution window. 
This can be easily kept track of by the operating system. 
Following the same reasoning, the maximum number of 
dynamic failures that the task Ti may experience, namely 
DFi

max,, can be computed as Max {X / Pi  - ki +1, 0}. Summing 
up DFi

max values over all tasks yields the parameter DF max .   

In Section 4 we propose solutions to minimize the dynamic 
failure ratio DFR subject to the energy budget through the 
following strategies: 
• We compute a single initial (nominal) speed (which is lower 

than Su = Utot ) by considering solely the workload of the 
mandatory jobs. Hence, the energy constraint can be 
addressed more effectively. 

• We greedily reclaim slack time resulting from skipped 
optional jobs and early completions of mandatory jobs, 
without jeopardizing the deadlines of already selected ones. 
We use dynamic CPU speed slow-down to further reduce the 
energy consumption and execute additional jobs, thus 
improving the dynamic failure ratio. 

 
4. Our Solutions 

 
The algorithms that we present in this paper generally belong 

to one of the two classes: The greedy schemes (Section 4.1) take 
a direct approach and attempt to execute all the mandatory jobs 
as long as the system’s energy budget allows. On the other hand, 
the energy-density schemes (Section 4.2), effectively prioritize 
the mandatory jobs based on their energy demands and the 
number of (m,k)-constraints they help to meet.  

 
4.1 Greedy schemes 
 

The greedy schemes start by selecting all the mandatory jobs 
of all tasks for execution, relying on the fact that completing 
these jobs prior to their deadlines will enable the system to meet 
the (m,k)-constraints. However, as discussed above (Section 3), 
one needs to also determine the CPU speed at which the 
mandatory jobs will be executed. In addition, it is extremely 
crucial for the system to exploit any run-time opportunity to 
reduce the CPU speed dynamically (for example by using 
available slack time due to the early completions).  
 
4.1.1 Nominal Speed Considerations and Reclaiming 
the Slack of Skipped Jobs 

 
Our solutions entail pre-computing a global nominal (or 

default) speed for all the tasks statically, and applying the 
dynamic reclamation / speed adjustment techniques on-line 
whenever possible. At dispatch time, the speed of each job of Ti 
is first set to the nominal speed S nom. However, its actual speed 
Si may be even lower after the application of the dynamic slack 
reclamation techniques.  

The nominal speed must be carefully chosen to guarantee the 
deadlines of the mandatory jobs. One such safe nominal speed 
that can be computed in linear-time is S nom = Su = Utot= ∑i Ci /Pi. 
In fact, Proposition 1 (Section 3) implies that the deadlines of all 
the mandatory jobs, consequently all the (m,k)-constraints, will 
be met with the speed Su , provided that Ebudget ≥ Elimit . However, 
note that Su is based on somewhat conservative assumptions: it 
guarantees that all the deadlines, including those of (skipped) 
optional jobs, will be met. At run-time, it is possible to further 
reduce the actual CPU speed, and consequently reduce the 
energy consumption, by observing that the schedule has idle 
intervals due to the optional jobs that are skipped. In fact, one 
can consider the skipped (optional) jobs as actually dispatched 
jobs with zero actual execution time. Thus, it is possible to use 
this slack time for dynamic slow-down making it possible to 
improve the system’s performance even when Ebudget < Elimit.  



Example 1. Consider the weakly-hard real-time task set shown 
in Table 1. The system must remain operational for a mission 
time of X = 60 time units. Assume that, in the execution mode 
the CPU power consumption as a function of speed is g(S) = S3, 
while the stand-by power is gstb = 0.025. 

  Ci Pi Ui mi ki 

T1 6 60 0.1 1 1 

T2 9 30 0.3 1 2 

T3 6 10 0.6 1 2 

Table 1. Parameters for the task set in Example 1 

Observe that for this task set Su = Utot = 1.0. If we select all 
the mandatory jobs according to the deeply-red pattern and 
execute them with the speed Su = 1.0, then we obtain the 
schedule shown in Figure 3. The maximum number of dynamic 
failures that can occur during the mission is DFmax = 7, and the 
total energy consumption of all the mandatory jobs is Elimit = 
33.7. If Ebudget = 23 (68% of Elimit), then only T2,1 and T3,1 can 
complete, resulting in a total of 5 dynamic failures.  

T1

T2

T3
200 40 606 26 46

6 15

26 2715 20

Su = 1.0

 
Figure 3. A schedule obtained using greedy scheme for Example 1 
using nominal speed Su without reclamation and Ebudget = Elimit 

210 40 606 27 50

6 21

27

10

30 40

S = 0.3

S = 0.45

S = 0.6

 
Figure 4. A schedule obtained using greedy scheme for Example 1 
using nominal speed Su with reclamation and Ebudget = 68% of  Elimit 

21.50 40 608.6 30 48.6

21.58.6

30 38.6

S* = 0.6

 
Figure 5. A schedule obtained using greedy scheme for Example 1 
using nominal speed S* without reclamation and Ebudget = 50% of Elimit 

Looking back at the schedule shown in Figure 3, we see that 
the slack time of T3,2, which is skipped, can be effectively used 
to reduce the CPU speed while T2,1 executes. Similarly, at t = 30, 
the speed of T1 (whose start time is now delayed due to the 
increased response time of T2) can be reduced to effectively use 
the entire CPU time in the interval [30,40]. The specific 
dynamic reclamation algorithm in use is DRA-OTE [1, 2] which 
is shown to be effective for various DVS settings. However, 
other algorithms (e.g. Pillai-Shin speed reduction technique 
[20]) can be also used to exploit the slack-time of skipped jobs 
with Snom = Su. The resulting schedule, shown in Figure 4, 
illustrates the fact that all the (m,k)-constraints can be met with 
Ebudget= 23, which is 68% of Elimit. In this schedule, T1,1 runs at 
speed S = 0.3 in [30,40], T2,1 runs at speed S = 0.45 in [10,21], 
and T3,5 runs at speed S = 0.6 in [40,50] thanks to dynamic speed 
slow-down. 

Note that this form of slack reclamation is possible even if all 
the selected mandatory jobs take their worst-case execution time 
since the optional jobs are skipped in our framework. At this 
point, we can make the following important observation: 
Skipping the optional jobs helps in meeting the (m,k)-constraints 
of the energy-constrained systems in two ways. First, it reduces 
the effective task workload, thereby saving energy for the 
mandatory workload whose timely completion will help to meet 
the weakly-hard timing constraints in a predictable way. Second, 
it creates additional opportunities for dynamic CPU speed slow-
down at run-time by the slack time it creates through the skipped 
optional jobs.  

 A natural question to consider is whether it is possible to 
compute a better (lower) nominal speed for the mandatory jobs, 
using the knowledge that the optional jobs will be skipped. This 
will effectively enable the designer to compute a uniform speed 
for the mandatory jobs, by incorporating the slack-time of the 
skipped jobs by static analysis. In fact, this question can be 
answered positively, as shown below.  

Definition 3. Given a weakly-hard real-time task set whose 
optional jobs are skipped at run-time, the processor demand of 
the mandatory workload in the interval [ t1, t2 ] is defined as  
D(t1 ,t2 ) = Σi Mi(t1 ,t2)⋅Ci, where Mi(t1 ,t2 ) is the number of 
mandatory jobs of the task Ti released at or after t1, and having 
deadlines less than or equal to t2.  

Theorem 2. All the (m,k)-constraints of a weakly-hard real-time 
task set will be met, if the mandatory jobs are executed with the 
speed ( ){ }LLDS

L
,0max

0
*

≥
= . 

Proof: See Appendix B.  
Note that this result can be also seen as an extension of the 
utilization bound proposed by Caccamo and Buttazzo for the 
skip model in [7]  to the more general (m,k) model. 

Returning to the motivational example, one can verify that 
the processor demand of the mandatory workload is maximum 
in the interval [0,30], and S* is evaluated as 21/30 = 0.7. 
Running all the mandatory instances with this statically 
computed speed yields the schedule shown in Figure 5, that 
satisfies all the (m,k)-constraints with an energy budget as low 
as 16.49 (50% of Elimit). Note that this improvement is achieved 
without considering any further dynamic adjustments (for 
example, T1 may be able to use the interval [38.6,40] with the 
simple One-Task-Extension technique [2]).  

When evaluating S*, it is sufficient to consider L values that 
correspond to period boundaries up to the hyperperiod P = 



lcm(P1, P2,…, Pn). Nevertheless, despite the possible 
improvements on the energy, the computation of S* may take 
pseudo-polynomial time since the value of the mandatory 
processor demand needs to be evaluated at every period 
boundary. Observe that when running the task set with the speed 
S*, we no longer reclaim the slack time of skipped jobs, since 
they are incorporated statically while evaluating the speed S*. 

Note that the greedy schemes have aggressive nature since 
they select for execution all the mandatory jobs of all tasks, 
regardless of the available energy. Aggressively selecting all 
mandatory jobs can then deplete the system’s energy before the 
end of the mission. To ensure that the system remains 
operational until the end of the mission when greedy schemes 
are used, we perform a simple check: When a job is about to be 
dispatched, it is executed only if the system will have enough 
energy to complete the mission even if the job were to present 
its worst-case workload; otherwise the job is skipped. 

 
4.1.2 Reclaiming gain time due to early completions 
 

If, at run-time, the mandatory jobs take less than their worst-
case execution requirements, then it is possible to exploit the 
unused CPU time to improve the energy consumption by 
performing dynamic speed reduction. In fact, this slow-down 
can take place regardless of the choice of the nominal speed (Su 
or S*). We perform dynamic speed slow-down by using the 
Dynamic Reclaiming Algorithm (DRA) [2]. Originally proposed 
for periodic hard real-time task sets [2], DRA has been also 
recently adapted to the scheduling of aperiodic/periodic task sets 
[3], and energy-constrained reward-based periodic task sets [1]. 

DRA detects early task completions by comparing the actual 
schedule to the static optimal schedule. In this schedule, all the 
jobs run at the same speed, namely the nominal speed Snom, 
through which all the (selected) jobs will be able to meet their 
deadlines even under a worst-case workload. DRA determines 
the amount of CPU time that a dispatched job can safely use to 
slow down its speed. This additional CPU time is referred to as 
the earliness and is used to calculate the new (lower) speed of a 
dispatched job. A main feature of the scheme is to calculate the 
earliness quickly, and without affecting the feasibility of already 
selected tasks. The earliness is computed in such a way to allow 
the low-priority tasks to use the slack-time of (completed) high-
priority tasks. The exact formula for calculating the earliness 
and determining the reduced speed, as well as the details of the 
DRA can be found in [2]. 

  
4.2 Energy-Density Schemes 
 

The greedy schemes discussed in Section 4.1 are based on the 
implicit assumption that all the mandatory jobs will be executed. 
Though they attempt to improve the energy-efficiency of the 
system through the careful selection of the nominal speed and 
dynamic reclamation, they do not consider the specific energy 
budget of the system. Albeit natural, in scarce-energy settings 
where some dynamic failures are unavoidable, this approach 
may not be the best. In fact, it may be more reasonable to 
carefully select the mandatory jobs to be executed by 
considering the energy budget, mission time and the energy 
demands of individual jobs. The system performance can be 
improved by giving preference (in energy allocation) to tasks 
that have the lowest energy requirements and that can 
potentially cause a large number of dynamic failures, if skipped 
altogether. Hence, we give preference to tasks based on a metric 
we refer to as the energy density (ED):  

Definition 4. The energy density EDi of the task Ti is the 
weighted ratio of the energy consumption Ei of the mandatory 
instances of the task Ti divided by the number of dynamic 
failures DFi

max that this task can cause during the mission time 
(that is, EDi = Ei / wi DFi

max).  

In Definition 4, recall that wi is a weight indicating the 
relative impact of Ti’s dynamic failures on the overall system 
performance. To ensure that important tasks are given priority in 
allocation of the energy needed to meet their constraints, the 
designer can assign large weights to those tasks. Under a 
constant speed, the energy demand Ei of the mandatory jobs of a 
given task is proportional to Ci mi / Pi ki, since the energy 
consumption is proportional to the utilization, and to the ratio of 
jobs selected for execution.  

Thus, we sort the tasks according to the energy density 
parameter EDi. The energy budget is allocated incrementally 
starting with the mandatory jobs of the task with the lowest 
energy density. Then, we keep augmenting the set of selected 
tasks by considering the energy densities until the energy budget 
is depleted. Naturally, at every step, the energy needed is 
calculated using a nominal speed based on the subset of 
currently selected tasks Γs. This is in sharp contrast with the 
greedy schemes, where the entire mandatory workload is 
considered when selecting a nominal speed. Note that the two 
nominal speed computation techniques, one based on the 
utilization and the other one based on the processor demand 
analysis, are still applicable. However, the speed will now be 
determined based on the selected workload, potentially creating 
opportunities for adopting a lower CPU speed.  

It is still possible to perform slack time reclamation and 
dynamic speed slow-down. However, to guarantee the deadlines 
of the selected tasks Γs only the slack time of tasks in Γs can be 
reclaimed, since the nominal speed in this case is determined 
based on the workload of Γs . For example, if the nominal speed 
is set to the total utilization of tasks in Γs , one can safely reclaim 
the slack time due to skipped or completed instances of tasks in 
Γs. If the nominal speed is computed using the mandatory 
processor demand of selected task sets (using Theorem 2), the 
slack time of skipped jobs is already incorporated to the 
statically computed nominal speed, and we can reclaim only the 
slack time resulting from the early completions of mandatory 
tasks in Γs . 

In the context of the energy-density schemes, if there is 
sufficient excess energy accumulated at run-time due to dynamic 
speed slow-down, then this energy can be used to select 
additional mandatory instances of tasks that have been 
previously marked as unselected. By exploiting this excess 
energy, one can significantly improve the system performance. 
We refer to this mechanism as job promotion. However, job 
promotion must be used with care to guarantee the deadlines of 
the currently selected jobs. Recall that the nominal speed at 
which selected tasks run is based on the workload Γs , and not 
the total workload corresponding to the entire task set Γ. 
Consequently, if additional tasks are added to Γs through job 
promotion, the previously calculated nominal speed may be no 
longer safe. To avoid this problem, we use the excess energy for 
job promotion only at the beginning of a new frame 
(hyperperiod). In other words, the set of selected tasks Γs is 
determined for the first frame, and the corresponding nominal 
speed Snom is calculated subject to the system energy budget. 
Then, throughout the frame, the excess energy resulting from 
dynamic slack reclamation and speed slow-down is 
accumulated. At the beginning of the next frame the available 



energy (including the excess energy) is used to recalculate Γs 
and Snom. The same procedure is repeated at every frame 
boundary. Note that the job promotion occurring at the frame 
(hyperperiod) boundaries is reminiscent of the re-chargeable 
energy-aware system framework of Rusu et al. [25]. 

 
5. Experimental Results 
 

We experimentally evaluated our proposed schemes using a 
discrete-event simulator implemented in C++. In our simulation 
experiments we measured the dynamic failure ratio DFR as a 
function of three parameters:  
• System energy budget Ebudget is represented as a percentage of 

the total energy Elimit required to execute all the mandatory 
jobs. Elimit is calculated assuming that all tasks run at the 
nominal speed Su (the lowest speed guaranteed to meet all 
deadlines without considering energy budget) throughout the 
mission time. Ebudget is a measure of how energy-constrained 
the system is, and as it decreases it becomes more important 
to carefully manage the available energy to reduce the 
dynamic failure ratio. 

• Execution time ratio ER is the ratio of best-case execution 
time to worst-case execution time. It controls the variability of 
the actual workload compared to the worst-case.  

• Total system utilization Utot = ∑i Ci / Pi . 
 
The workload in our experiments comprised 15 tasks all of 

which had the same (2,3)-constraints. We generated 1000 
generic task sets, and then for each task set we ran 100 
experiments to generate actual execution requirements for each 
task instance (job). We varied the above three parameters over 
the following ranges: U ranged from 0.1 to 1.0 in increments of 
0.1, Ebudget (as a percentage of Elimit) ranged from 10% to 100% 
in increments of 10%, ER ranged from 0.1 to 1.0 in increments 
of 0.1. The mission time X was 4 times the hyperperiod P. Task 
periods were generated through a uniform probability 
distribution, and the ratio of maximum period to minimum 
period was 20. Similarly, the actual execution time AET of any 
given task under maximum speed was generated uniformly 
between ER*WCET and WCET, where WCET is the worst-case 
execution time under maximum speed. We assumed that all 
tasks have equal weights. We assumed that the CPU power 
consumption varies as a cubic function of the CPU speed 
[2,3,18,26,27] and that Smin = 0.1. We underline that the 
experiments with discrete speed models and different (m,k) 
parameters yield similar patterns, but those results are not 
included due to the space limitations.  

 
5.1 Experimental results for greedy schemes 
 

The greedy schemes operate by initially selecting all the 
mandatory jobs of all tasks for execution. We implemented four 
different greedy schemes that differ in the nominal speed used 
and whether dynamic reclamation is adopted.  
• Static–Su: Mandatory jobs run with speed Su  and slack-time 

reclamation is not performed.  
• Static–S*: Mandatory jobs run with speed S* and slack-time 

reclamation is not performed. 
• Dynamic–Su: Mandatory jobs run with speed Su  and slack-

time is reclaimed. 
• Dynamic–S*: Mandatory jobs run with speed S* and slack-

time is reclaimed. 
 

We compared the performance of all four schemes through 
simulations under both worst-case and actual workload 
conditions. For the sake of completeness, we compare the 
performance of our proposed solutions against a well-known 
scheduling algorithm that has been traditionally used for 
scheduling (m,k)-firm RT tasks, namely the Distance-Based 
Priority (DBP) algorithm [11]. DBP is a (non-power-aware) 
priority-based scheduling heuristic that gives higher priority to 
tasks that are closer to the state of dynamic failure. To use DBP 
in such settings, one must carefully choose a nominal CPU 
speed to reduce the energy consumption without causing a 
significant number of deadline misses. We performed extensive 
simulations to evaluate the performance of DBP under various 
nominal speed assignments, but we opted to omit these results 
due to space limitation. In this paper, we include the results for 
DBP with the CPU speed = 0.5, which yielded consistently the 
best results for the simulation settings under consideration.  
 
5.1.1 Results under worst-case workload conditions 
 

If the worst-case workload conditions do occur at run-time, 
the reclamation of slack time due to early completions is not 
applicable. However, it is still possible to reclaim slack time of 
skipped optional jobs if the nominal speed Su is used. Recall that 
reclaiming slack time of skipped optional jobs is not performed 
with the nominal speed S* (in order to preserve the timing 
constraints of mandatory jobs as discussed in Section 4.1). 

0 20 40 60 80 100
0

20

40

60

80

100

Energy Budget (% of Energy Limit)

D
yn

am
ic

 F
ai

lu
re

 R
at

io
 (

%
) DBP

Stat−S
u

Dyn−S
u

Stat−S*
Dyn−S*

 
0 20 40 60 80 100

0

20

40

60

80

100

Energy Budget (% of Energy Limit)
D

yn
am

ic
 F

ai
lu

re
 R

at
io

 (
%

) DBP
Stat−S

u
Dyn−S

u
Stat−S*
Dyn−S*

 
Figure 6. Effect of energy budget on greedy schemes under worst-
case (left) and actual (right) workload conditions  

 
Figure 6 (left) presents the effect of Ebudget (at Utot = 0.7) on 

the dynamic failure ratio DFR for all four greedy schemes and 
DBP under worst-case workload (i.e. ER = 1.0) for (2,3)-firm 
constraints. As expected, for all the schemes, increasing Ebudget 
tends to decrease the dynamic failure ratio. At Ebudget = 100% the 
greedy schemes do not exhibit any dynamic failures because the 
system has sufficient energy to meet all the (m,k)-constraints. 
On the other hand, even with Ebudget = 100% DBP yields a 
dynamic failure ratio of about 38% due to its sub-optimal 
priority assignment. Among the greedy schemes, Static–S* and 
Dynamic–S* have identical performance (since reclamation is 
not possible for worst-case workloads), and are the best among 
all greedy schemes. The next best scheme is Dynamic–Su with 
comparable performance thanks to its ability to reclaim slack 
time of optional jobs. Static–Su has the worst performance 
among all greedy schemes since it uses a conservative speed and 
does not reclaim slack time of skipped jobs.  
 
5.1.2 Results under actual workload conditions 
(effects of reclamation) 
 

In most cases, the actual workload is usually significantly 
lower than the worst-case, providing room for improving system 
performance through dynamic reclamation of slack time. Under 



such conditions, in addition to reclamation of slack time of 
skipped optional jobs, another form of reclamation can be 
exploited. Namely, slack time resulting from early completions 
of selected mandatory jobs can be reclaimed. This can occur 
regardless of the choice of the nominal speed without 
compromising the deadlines of selected jobs.  

Figure 6 (right) shows the effect of Ebudget (at Utot = 0.7 and 
ER = 0.4) on the dynamic failure ratio DFR for all four greedy 
schemes and DBP under actual workload for (2,3)-firm 
constraints. Comparing the performance of all schemes to worst-
case workload conditions presented in Figure 6(left), one notices 
a clear improvement in performance under actual workload 
since the effective energy consumption is now significantly 
lower. There is a change in the order of best performing 
schemes, however. The two best performing schemes are the 
ones that employ reclamation, namely Dynamic–S* and 
Dynamic–Su. The results indicate that the use of reclamation is 
more important than the choice of the nominal speed for greedy 
schemes, since Dynamic–Su outperforms Static–S* which uses a 
lower nominal speed but without reclamation.  

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Utilization

D
yn

am
ic

 F
ai

lu
re

 R
at

io
 (

%
)

DBP
Stat−S

u
Dyn−S

u
Stat−S*
Dyn−S*

  0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Execution Time Ratio (ER)

D
yn

am
ic

 F
ai

lu
re

 R
at

io
 (

%
) DBP

Stat−S
u

Dyn−S
u

Stat−S*
Dyn−S*

 
Figure 7. Effect of utilization (left) and execution time ratio (right) 
under actual workload on greedy schemes   

Figure 7 (left) shows the effect of utilization for Ebudget = 
Elimit(Utot=0.3) and ER = 0.4 under actual workload conditions. 
Unlike the other figures where Ebudget is recalculated as a 
percentage of Elimit (which is also a function of the total 
utilization Utot ), in this set of experiments Ebudget is set to a fixed 
value, namely, to the energy required to meet all the mandatory 
deadlines when Utot = 0.3 (i.e. Ebudget = Elimit(Utot=0.3)). When 
Utot ≤ 0.3 the system has enough energy budget to meet all 
mandatory deadlines (i.e. Ebudget ≥ Elimit) and our greedy schemes 
yield zero dynamic failure ratio, while we observe again DBP’s 
unpredictable performance. As Utot increases from 0.3 to 1.0, the 
system becomes effectively more energy-constrained and the 
performance of all schemes degrades resulting in higher 
dynamic failures. The top performing schemes are Dyn–S* and 
Dyn–Su followed by Static–S*. 

The effect of execution time ratio ER (i.e. workload 
variability) on the dynamic failure ratio DFR is shown in Figure 
7 (right) for Utot = 0.7, and Ebudget = 40%. The lower the value of 
ER, the more significant the performance improvement due to 
the reclamation. Therefore, at small ER values (ER ≤ 0.4), the 
schemes that use reclamation, namely Dynamic–S* and 
Dynamic–Su, practically avoid all dynamic failures and 
outperform other schemes. However, as ER increases the 
performance gap shrinks.  

 
5.2 Experimental results for energy-density 
schemes 
 

The energy-density schemes carefully select the mandatory 
jobs to be executed by considering the energy budget, mission 
time, and the energy demands of individual jobs. We 
implemented four energy-density schemes that differ in the 

selection of the nominal speed and the use of dynamic 
reclamation. All four schemes use job promotion at frame 
boundaries to utilize the excess energy accumulated in the 
previous frame. Specifically: 
• ED–Su: Nominal speed computed through the utilization of 

the selected tasks, no reclamation  
• ED–S*: Nominal speed computed through the processor 

demand of the selected tasks, no reclamation 
• EDR–Su: Nominal speed computed through the utilization of 

the selected tasks, uses reclamation 
• EDR–S*: Nominal speed computed through the processor 

demand of the selected tasks, uses reclamation 
In this section we present experimental results for energy-
density schemes under both worst-case and actual workload 
conditions. For comparison, we also include the best performing 
greedy scheme, Dynamic–S*.  
 
5.2.1 Results under worst-case workload conditions 
 

Under worst-case workload conditions, the only possible 
form of slack time reclamation is the one due to the skipped 
optional jobs. Figure 8 (left) presents the effect of Ebudget (at Utot 
= 0.7) on the dynamic failure ratio DFR for all four energy-
density schemes under worst-case workload (i.e. ER = 1.0) for 
(2,3)-firm constraints. The order of schemes based on 
performance is similar to that of the greedy schemes (Figure 6, 
left). The best performing energy-density schemes are EDR–S* 
and ED–S* (which have identical performance since reclamation 
is not possible under worst-case workload when Snom = S*). ED–
Su has the worst performance among the energy-density 
schemes. One important observation is that the performance of 
the energy-density schemes is significantly better than the 
greedy schemes, represented by Dyn–S* in this figure, especially 
at low to medium Ebudget values, thanks to the low CPU speed 
they are able to adopt. However, when Ebudget is at least 70%, the 
performance of Dyn–S* improves significantly and becomes 
comparable to the energy-density schemes, since in this region 
the system is less energy-constrained and aggressively selecting 
all mandatory tasks for execution helps.  
 

0 20 40 60 80 100
0

10

20

30

40

50

Energy Budget (% of Energy Limit)

D
yn

am
ic

 F
ai

lu
re

 R
at

io
 (

%
) Dyn−S*

ED−S
u

EDR−S
u

ED−S*
EDR−S*

  0 20 40 60 80 100
0

10

20

30

40

50

Energy Budget (% of Energy Limit)

D
yn

am
ic

 F
ai

lu
re

 R
at

io
 (

%
) Dyn−S*

ED−S
u

EDR−S
u

ED−S*
EDR−S*

 
Figure 8. Effect of energy budget on energy-density schemes under 
worst-case (left) and actual (right) workload conditions  

 
 
5.2.2 Results under actual workload conditions (effect 
of reclamation) 
 

Figure 8 (right) shows the effect of Ebudget (at Utot = 0.7 and 
ER = 0.4) on the dynamic failure ratio DFR for all four energy-
density schemes under actual workload for (2,3)-firm 
constraints. There is a noticeable performance improvement, 
particularly for the schemes EDR–S* and EDR–Su that use 
reclamation, over the results under worst-case workload 



conditions presented in (Figure 8, left), since the effective 
workload is now significantly lower. There is also a change in 
the order of best performing schemes. Unlike the case of the 
greedy schemes (Figure 6, right), the two best performing 
schemes are EDR–S* and ED–S* which use the nominal speed 
S*. Thus, for energy-density schemes the use of a low nominal 
speed has a more significant impact on performance than the 
use of dynamic slack reclamation.  

Figure  9 (left) shows the effect of utilization for Ebudget = 
Elimit(Utot=0.3) and ER = 0.4 under actual workload conditions. 
Similar to Figure 7(left) for the greedy schemes, Ebudget here is 
set to a fixed value, namely the energy required to meet all the 
mandatory deadlines when Utot = 0.3 (i.e. Elimit(Utot=0.3) ). 
When Utot ≤ 0.3 the system has enough energy to meet all 
mandatory deadlines (i.e. Ebudget ≥ Elimit) and there are no 
dynamic failures. As Utot increases from 0.3 to 1.0, the system 
becomes effectively more energy-constrained and the 
performances of all the schemes degrade resulting in higher 
dynamic failure ratios. The top performing schemes are EDR–
S* and ED–S* followed by EDR–Su. All energy-density 
schemes significantly outperform the best greedy scheme. 

The effect of execution time ratio ER (i.e. workload 
variability) on the dynamic failure ratio DFR is shown in Figure 
9 (right) for Utot = 0.7 and Ebudget = 40%. As ER gets smaller, the 
effective workload to be executed decreases, and so does the 
energy needed to execute this workload, resulting in reduced 
dynamic failures. However, this improvement in performance is 
less emphasized in the results of the energy-density schemes, 
when compared to the greedy schemes, since DFR is already 
rather low with energy-density schemes. Note also that the 
energy-density schemes significantly outperform the best greedy 
scheme for medium to large ER values (i.e. ER > 0.6). Only 
when the effective workload is small (i.e. ER < 0.5) does the 
greedy scheme perform competitively.  

 

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

Utilization

D
yn

am
ic

 F
ai

lu
re

 R
at

io
 (

%
) Dyn−S*

ED−S
u

EDR−S
u

ED−S*
EDR−S*

   0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

Execution Time Ratio (ER)

D
yn

am
ic

 F
ai

lu
re

 R
at

io
 (

%
) Dyn−S*

ED−S
u

EDR−S
u

ED−S*
EDR−S*

 
Figure 9. Effect of utilization (left) and execution time ratio (right) 
under actual workload on energy-density schemes  

 
6. Conclusion 
 

To the best of our knowledge, this research effort is the first 
to explore the energy-constrained scheduling problem for 
weakly-hard real-time systems. We showed that the problem is 
NP-Hard in the strong sense even assuming continuous CPU 
speed. We provided a comprehensive framework that consists in 
selecting a mandatory workload and an appropriate CPU speed 
to meet the (m,k)-firm deadlines using the processor demand 
analysis. We presented two classes of solutions. The “greedy” 
algorithms attempt to select the entire mandatory workload a 
priori, while “energy-density” algorithms further prioritize the 
jobs in the mandatory workload by considering their energy cost 
and the total number of (m,k)-firm deadlines they help to meet. 
We further explored the effects of the nominal speed selection 
and on-line slack reclamation techniques. Our results indicate 

that the energy-density algorithms dominate over the greedy 
algorithms when the system is significantly energy-constrained.  
References 
 
[1] T. A. AlEnawy and H. Aydin. On Energy-Constrained Real-Time 
Scheduling. Proceedings of the 16th EuroMicro Conference on Real-
Time Systems (ECRTS'04), Catania, Italy, June 2004. 
[2] H. Aydin, R. Melhem, D. Mosse and P.M. Alvarez. Power-aware 
Scheduling for Periodic Real-time Tasks. IEEE Transactions on 
Computers, vol. 53, no. 5, pp. 584-600, May 2004. 
[3] H. Aydin and Q. Yang. Energy-Responsiveness Tradeoffs for Real-
Time Systems with Mixed Workload. Proceedings of the 10th IEEE 
Real-time and Embedded Technology and Applications Symposium 
(RTAS'04), Toronto, Canada, May 2004. 
[4] S. Baruah, R. Howell, and L. Rosier. Algorithms and Complexity 
Concerning the Preemptive Scheduling of Periodic, Real-time Tasks on 
One Processor. Real-Time Systems, vol 2, no. 4, pp. 301 – 324, Nov 
1990. 
[5] G. Bernat and A. Burns. Combining (n,m)-hard deadlines and dual 
priority scheduling. Proceedings of the 18th IEEE Real-Time System 
Symposium (RTSS’97), San Francisco, CA, Dec. 1997. 
[6] G. Bernat, A. Burns, and A. Llamosi. Weakly Hard Real-time 
Systems. IEEE Transactions  on Computers, vol. 50, no. 4, pp. 308 – 
321, Apr. 2001. 
[7] M. Caccamo and G. C. Buttazzo. Exploiting Skips in Periodic Tasks 
for Enhancing Aperiodic Responsiveness. Proceedings of the 18th IEEE 
Real-Time System Symposium (RTSS'97), San Francisco, CA, Dec. 1997. 
[8]http://developer.intel.com/design/intelxscale/benchmarks.htm 
[9] R. Ernest and W. Ye. Embedded Program Timing Analysis Based on 
Path Clustering and Architecture Classification. International 
Conference on Computer-Aided Design (ICCAD’97), 1997. 
[10] M.R. Garey and D.S. Johnson. Computers and Intractability: A 
Guide to the Theory of NP-Completeness. 1979. 
[11] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment 
technique for streams with (m,k)-firm deadlines. IEEE Transactions on 
Computers, vol. 44, no. 5, pp. 1443 – 1451, Dec. 1995. 
[12] D. Isovic and G. Fohler. Quality aware MPEG-2 stream adaptation 
in resource constrained systems. Proceedings of the 16th EuroMicro 
Conference on Real-Time Systems (ECRTS'04), Catania, Italy, June 
2004. 
[13] K. Jeffay and D. L. Stone. Accounting for Interrupt Handling Costs 
in Dynamic Priority Task Systems. Proceedings of IEEE Real-Time 
Systems Symposium (RTSS’93),Raleigh-Durham, NC, Dec. 1993. 
[14] D. Kang, S. Crago, and J. Suh. A Fast Resource Synthesis 
Technique for Energy-Efficient Real-time Systems. Proceedings of the 
23rd IEEE Real-Time Systems Symposium (RTSS’02), Austin, TX, Dec. 
2002. 
[15] G. Koren and D. Shasha. Skip-Over: algorithms and complexity for 
overloaded systems that allow skips. Proceedings of the 16th IEEE Real-
Time Systems Symposium (RTSS’95), Pisa, Italy, Dec. 1995. 
[16] C.L. Liu and J.W. Layland. Scheduling algorithms for 
multiprogramming in a hard-real time environment, Journal of the ACM, 
vol. 20, no 1, pp.  46 – 61, Jan. 1973. 
[17] J. Liu, P.H. Chou, N. Bagherzadeh, and F. Kurdahi. Power-aware 
scheduling under timing constraints for mission-critical embedded 
systems.  Proceedings of the 39th Design Automation Conference, Las 
Vegas, NV, June 2001. 
[18] Y. Liu and A. Mok. An Integrated Approach for Applying Dynamic 
Voltage Scaling to Hard Real-Time Systems. Proceedings of the 9th 
IEEE Real-Time and Embedded Technology and Applications 
Symposium (RTAS’03), Washington D.C., May 2003. 
[19] A.K. Mok and W. Wang. Window-constrained real-time periodic 
task scheduling. Proceedings of the 21st IEEE Real-Time Systems 
Symposium (RTSS’00), Orlando, FL, Nov. 2000. 
[20] P. Pillai and K.G. Shin. Real-time dynamic voltage scaling for low 
power embedded operating systems. Proceedings of the 18th ACM 
Symposium on Operating Systems Principles (SOSP’01), Banff, Canada, 
Oct. 2001. 
[21] A. Qadi, S. Goddard, and S. Farritor. A Dynamic Voltage Scaling 
Algorithm for Sporadic Tasks. Proceedings of the 24th IEEE Real-Time 
Systems Symposium (RTSS’03), Cancun, Mexico, Dec. 2003.  



[22] G. Quan and X. Hu. Enhanced fixed-priority scheduling with (m,k)-
firm guarantee. Proceedings of the 21st IEEE Real-Time Systems 
Symposium (RTSS’00), Orlando, FL, Nov. 2000. 
[23] P. Ramanathan. Overload management in real-time control 
applications using (m, k)-firm guarantee. IEEE Transactions on Parallel 
and Distributed Systems, vol. 10, no. 6, pp. 549 – 559, June 1999. 
[24] C. Rusu, R. Melhem and D. Mosse. Maximizing the system value 
while satisfying time and energy constraints. Proceedings of 23rd IEEE 
the Real-Time Systems Symposium (RTSS’02), Austin, TX, Dec. 2002. 
[25] C. Rusu, R. Melhem, and D. Mosse. Multi-Version Scheduling in 
Rechargeable Energy-Aware Real-time Systems. Proceedings of the 15th 
Euromicro Conference on Real-Time Systems (ECRTS'03), Porto, July 
2003. 
[26] S. Saewong and R. Rajkumar. Practical Voltage-Scaling for Fixed-
Priority Real-time Systems. Proceedings of the 9th IEEE Real-Time and 
Embedded Technology and Applications Symposium (RTAS’03), 
Washington D.C., May 2003. 
[27] K. Seth, A. Anantaraman, F. Mueller and E. Rotenberg. FAST: 
Frequency-Aware Static Timing Analysis. Proceedings of the 24th IEEE 
Real-Time Systems Symposium (RTSS’03), Cancun, Mexico,  Dec. 2003. 
[28] R. West and C. Poellabauer. Analysis of a window-constrained 
scheduler for real-time and best-effort packet streams. Proceedings of 
the 21st IEEE Real-Time Systems Symposium (RTSS'00), Orlando, FL, 
Nov. 2000. 
[29] R. West, Y. Zhang, K. Schwan, and C. Poellabauer. Dynamic 
window-constrained scheduling of real-time streams in media servers. 
IEEE Transactions on Computers, vol. 53, no. 6, pp. 744 – 759, June 
2004. 
 
Appendix A (Proof of Theorem 1) 
 
We first formally state the energy-constrained weakly-hard scheduling 
problem. 
WEAK-EC: Consider a set Γ of n periodic weakly-hard real-time tasks 
for which a feasible schedule exists when executed with the maximum 
CPU speed in the absence of hard energy constraint. Is it possible to 
satisfy the (m,k)-constraints during a mission time X, with a limited 
energy budget Ebudget , and a DVS-enabled CPU?  

Consider the problem 3-PARTITION which is known to be NP-Hard in 
the strong sense [10]:  

3-PARTITION: Given 3k integers a1, a2 ,….., a3k and two additional 
integers k, B, such that Σi ai = kB and B/4 < ai < B/2 ∀i; is it possible to 
partition these 3k integers into k groups in such a way that the sum of 
elements in each group is exactly B? 

Suppose that WEAK-EC admits a polynomial-time solution. We will 
show that, using this solution, it is possible to transform any given 
instance of 3-PARTITION to an instance of WEAK-EC in polynomial-
time and provide an answer. Given an instance of 3-PARTITION, we 
construct the corresponding instance of WEAK-EC as follows: We have 
3k periodic real-time tasks T1,…, T3k; each having (1,k)-firm deadline 
constraint and period B. Ti’s worst-case execution time Ci is given as     
ai / k. The mission time X = kB and Ebudget = B / k2. 

First, observe that, in the non-energy-constrained case (with the 
maximum CPU speed) each instance of every task will be able to meet 
its deadline (since Utot = Σi ai / kB = 1.0), trivially satisfying the      
(1,k)-constraints. For the energy-constrained case, notice that a 
necessary condition to meet the (1,k)-constraints of all the tasks during 
the mission time is to be able to execute exactly one instance of each 
task in the interval [0,kB] (since there are k invocations of each task 
during the mission interval). A lower bound on the energy needed to 
complete exactly one instance of each task during the mission time can 
be computed by considering that using a constant speed S to execute a 
given workload in an interval minimizes the energy consumption. Thus, 
this constant speed S can be computed as: S = Σi Ci / kB = Σi ai / k2B =   
1 / k. 

In fact, using this (optimal) constant speed will be necessary for this 
particular instant of WEAK-EC, since assuming a power consumption of 
g(S) = S3 and gstb= 0, we will need a minimum energy of Σi (ai / kS) S3 = 
B / k2, which happens to be the same as Ebudget in this problem instance. 
But with speed S = 1 / k, the execution time of each task Ti becomes 

exactly ai. Thus, the instance of WEAK-EC admits a positive answer if 
and only if it is possible to schedule exactly one instance of each task Ti 
(with the increased execution time ai and period/relative deadline B) in 
interval [0,kB]. This last statement, on the other hand, is true, if and only 
if the original 3-PARTITION instance admits a YES answer (since       
Σi ai = kB ); proving the claim.  

The reader should note that it is straightforward to re-write the proof 
for other types of power consumption functions; it suffices to choose an 
energy budget to force the system to adopt a continuous speed of 1/k 
with the corresponding power function.  ■ 
 
Appendix B (Proof of Theorem 2)  
 
A fundamental result in real-time scheduling theory establishes the 
necessary and sufficient condition for feasibility through the processor 
demand function.  

Theorem 3 [4, 13]. A set of preemptive real-time jobs Γ can be 
scheduled (by EDF) if and only if D(t1,t2) ≤ t2 - t1 for all intervals [t1,t2], 
where D(t1,t2) denotes the total execution time of jobs in Γ that arrive at 
or after t1 , and having deadlines less than or equal to t2 (also known as 
the “processor demand” function). 

Observe that in a weakly-hard periodic RT task set where all the 
optional jobs are skipped and the mandatory jobs are executed with 
constant speed S, D(t1,t2) is simply Σi Mi(t1,t2)⋅Ci /S. 

Corollary 1. The mandatory jobs of a weakly-hard RT task set will meet 
their deadlines by EDF and with the CPU speed S if and only if: 
Σi Mi(t1,t2)⋅Ci ≤ (t2 - t1) S, for all intervals [t1,t2]. 

A well-known result of the RT scheduling theory indicates that we 
can restrict our attention to the intervals starting at a task release time, 
and ending at a task deadline [4]. Moreover, we can prove the following: 

Proposition 2. In a schedule where the mandatory jobs of task Ti are 
dispatched according to the “deeply-red” pattern: 
Mi(0,L) ≥ Mi(t1 , t1 + L) ∀ t1 , L. 

Combining Corollary 1 and Proposition 2, we get Proposition 3, 
implying Theorem 2: 

Proposition 3. The mandatory jobs of a weakly-hard RT task set will 
meet their deadlines by EDF, if they are executed with the speed S, such 
that: S ≥ maxL ≥ 0 { Σi Mi(0,L)⋅Ci / L}. 

Proof of Proposition 2:  

In interval [0,L] there are exactly y = L / Pi  instances of Ti. Note that 
the total number of Ti’s instances in [t1 , t1+L] cannot exceed y in any 
way. Thus, for a given t1 and L, locate the smallest the L2 ≥ L such that 
there are exactly y instances in the interval [t1 , t1 + L2]. We will show 
that Mi(0,L) ≥ Mi(t1,t1 +L2), implying that Mi(0,L) ≥ Mi(t1,t1 + L) since 
Mi(t1,t1 + L2) ≥ Mi(t1,t1 + L) (considering that L2 ≥ L). 

Suppose that the task Ti is supposed to meet mi deadlines in every ki 
consecutive invocations. Then, y can be written as y = q.ki + r in a 
unique way, where q and r are integers and 0 ≤ r ≤ ki – 1. The following 
two properties are instrumental in the remainder of the proof. 

Property 1. In a deeply-red schedule, there are exactly mi mandatory 
jobs among any consecutive ki jobs of Ti. 

Property 2. Among any consecutive y = q.ki + r instances of Ti , the 
number of mandatory jobs cannot exceed q.mi + r. 

We now finalize the proof by distinguishing two cases for r: 
• r ≤ mi: In this case, in interval [0,L] we will first have q.mi mandatory 

jobs in interval (0, q.ki.Pi) followed by r mandatory jobs. Thus, in this 
case: Mi(0,L) = q.mi + r ≥ Mi(t1,t1 + L2) (from Property 2) 

• r > mi: In this case, the interval [0,L] ends with some optional jobs. 
Hence, Mi(0,L) = q.mi + mi. Further, since L2 / Pi  = y = q.ki + r , 
Mi(t1,t1 + L2) ≤ q.mi + r (Property 2). This implies that Mi(0,L) ≥ 
Mi(t1,t1 + L2) (since r < ki ≤ mi), proving the claim.  ■ 

                                                               


