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Abstract

In this paper, we explore performance optimization problems
for real-time systems that have to rely on a fixed energy budget
during an operation/mission. We adopt the weakly-hard real-
time scheduling paradigm to ensure a predictable performance
for all the tasks: Our aim is to minimize the number of dynamic
failures (in terms of (m,k)-firm deadline constraints) while
remaining within the energy budget. We prove that this problem
is NP-Hard in the strong sense even for an ideal DVS
architecture with continuous speed spectrum. We propose
techniques to statically compute the speed of the CPU in order
to meet the (m,k)-firm deadline constraints. We present on-line
speed adjustment algorithms to exploit the slack time of skipped
and completed jobs. Through extensive simulations, we show
how the performance can be significantly improved by
selectively dispatching jobs by considering their energy costs as
well as their contribution to the system performance.

1. Introduction

With the proliferation of wireless and portable computing and
communication devices that rely on battery power, energy-
aware system design has recently received considerable
attention by the research community. The Dynamic Voltage
Scaling (DVS) technique [2, 8, 20], which is based on reducing
the supply voltage and clock frequency of the CPU on-the-fly,
proved to be a powerful energy management tool for both
general purpose and real-time (RT) systems. While it is possible
to obtain significant energy savings through DVS, the CPU
frequency/speed reduction results in an increase in response
times. Early work on the so-called ‘RT-DVS’ problem focuses
on providing feasibility guarantees with the reduced CPU speed
to maximize the energy savings, for various task/system models
and on-line/off-line scheduling algorithms [2, 18, 20, 21, 26,
27]. Thus, these studies can be seen as part of the broader
energy-aware computing research, where the aim is to achieve
the performance objectives with minimum energy consumption.

Energy-constrained real-time systems. More recently, the
research community started to consider a different type of
problem. In the energy-constrained settings, the energy is more
than an important design dimension; it is a hard constraint [17].
The problem is to make sure that the system, with a finite energy
budget, remains functional and delivers an acceptable
performance during a well-defined operation/mission time. In
the specific case of real-time operation, if the system’s energy
budget does not allow the execution of all the jobs even with
DVS, the best strategy may be to skip a few jobs in a controlled
fashion without running out of energy in the middle of the
mission. In fact, deliberately skipping some jobs reduces the
workload, and at the same time, it allows the use of a lower CPU
speed to meet the deadlines of the other (non-skipped) jobs to

compound the energy savings. Thus, energy-constrained RT
scheduling aims to maximize the system performance within
the limits of available energy [1, 24, 25]. In [1], it is shown
that the problem of deciding the feasibility of a task set on a
CPU with limited energy budget and discrete speed levels is NP-
Hard.

Most research on energy-constrained RT scheduling follows
the reward-based task model, where it is assumed that the
timely completion of each job will accrue a certain
reward/value, capturing the job’s contribution to the overall
system’s utility. Thus, existing studies focus on maximizing the
system reward within available energy [1, 14, 24, 25]. Though
the reward-based framework is applicable in settings where the
reward of each job is accurately and a priori quantifiable, this
information may not be always available to the designer. In this
paper, we explore an alternative and more practical solution,
through the adoption of the weakly-hard real-time scheduling
paradigm, which is a widely-used approach to deal with
overloaded (but not power-aware/variable-speed) RT systems.

Weakly-hard real-time systems research is motivated by the
observation that for many real-time applications (which are
periodic in nature) some deadline misses are acceptable as long
as they are spaced distantly/evenly. As indicated in [11, 12, 15],
prevalent examples include multimedia processing, real-time
communication and embedded control applications. A number
of closely-related models were proposed by several research
groups over the years. In the skip model, a task’s tolerance to
deadline misses is characterized by the skip parameter s: in any s
consecutive instances of the task at most one can miss its
deadline [7, 15]. The more general (m,k)-firm deadline model
[11, 22, 23] requires that each task meet at least m deadlines in
every consecutive k instances. If this constraint is violated in any
time window, the system is said to exhibit a dynamic failure
(implying possible degradation in system performance or
quality-of-service). Figure 1 shows a sample schedule for a
(2,3)-firm real-time task over six consecutive periods. The third
instance is skipped, but the task meets its (2,3)-firm deadline
constraint in the first execution window that encompasses the
first three task periods, thanks to the timely completion of the
first and second task instances. The same holds for the second
execution window. However, when the fifth instance is skipped,
the task experiences a dynamic failure in the third window.

In the Dynamic Window Constrained Scheduling (DWCS)
model motivated by the real-time packet scheduling
applications, a given task needs to complete at least m instances
before their deadlines in every non-overlapping window of k
instances [19, 28, 29]. In the schedule of Figure 1, with DWCS,
there would be only two execution windows: Window 1 would
comprise the first three task periods, while Window 2 would
include the last three. Observe that a schedule satisfying the
(m,k)-constraints (in the original sense) also satisfies the DWCS
model, but the reverse is not true. Finally, Bernat and Burns
proposed the generic weakly-hard RT scheduling model [5, 6],



which encompasses several alternative (m,k)-firm task models.
In this paper, we adopt the (m,k)-firm deadline model used in
[11, 22, 23] since it is the most commonly used framework.
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Figure 1. Dynamic failures in a schedule of a (2,3)-firm RT task

This work. The motivation of this research effort is to
recognize the applicability of the weakly-hard real-time task
model to energy-constrained applications. As opposed to the
reward-based framework where each task/job has a statically-
assigned utility value, the weakly-hard real-time task model
provides greater flexibility in expressing firm deadline
requirements: The performance will remain acceptable as long
as each task meets its (mk)-firm deadline requirement,
regardless of the specific jobs selected for execution. Moreover,
it is known that the performance requirements of audio, video,
multimedia and RT communication tasks are best expressed by
the (mk)-firm deadline constraints [6,29]. Since these
applications are considered essential for emerging battery-
operated (and hence, energy-constrained) devices, the adoption
of the weakly-hard RT system model should prove very useful
in practice. Despite the potential prospects of the weakly-hard
RT task model, a number of technical challenges need to be
overcome. To start with, choosing an appropriate CPU speed to
avoid or minimize the dynamic failures is a non-trivial problem.
In addition, devising efficient on-line mechanisms to exploit the
slack time of skipped and/or completed jobs is crucial to be able
to meet the hard energy constraint of the system.
The main contributions of this paper are as follows:

e We formally characterize the energy-constrained weakly-hard
RT scheduling problem and show that it is NP-Hard in the
strong sense. The result remains valid even when one
assumes that the task set is trivially schedulable when the
energy constraint is excluded. In other words, the
introduction of the hard energy constraint has a deep impact
on the complexity of the problem.

e We derive a sufficient (but not necessary) condition that
characterizes the solution of the problem. For scarce-energy
settings where this condition does not hold, we develop a
solution framework that consists of:

- Carefully selecting a mandatory workload among all the
jobs by considering their impact on overall system
performance in terms of minimizing the dynamic
failures,

- Computing a safe CPU speed to complete all the
mandatory jobs before their deadlines, and
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- Applying dynamic/on-line speed adjustment techniques
to aggressively reclaim the slack-time of skipped and
completed jobs to boost the energy savings.

e We present two main classes of algorithms: the greedy
schemes a priori select the mandatory workload for execution
and attempt to minimize the number of dynamic failures by
on-line speed adjustment techniques. The energy-density
schemes go one step further by prioritizing the mandatory
jobs by considering their ‘energy cost’ and contributions to
the overall system performance metric.

e We present simulation results evaluating the performance of
all the algorithms presented in the paper, over a wide range of
system parameters. We report that the energy-density
schemes exhibit a superior advantage, especially when the
system’s energy budget is significantly low.

2.  System Model

2.1 Power and energy consumption model

The target platform of this study is a single processor system
whose only power source is a battery. In order to remain
functional, the system’s energy level must remain in a ‘safe’
energy range [E,., E,.] at all times, where E,,,, refers to the
maximum battery capacity, and E,;, denotes the minimum
energy threshold below which safe operation is not guaranteed
[25]. Thus, the system has limited initial amount of energy,
referred to in this paper as energy budget Ej,qq. , Whose value
(when the battery is fully charged) is Epuuger = Emax = Emin- We
further assume that the system has to remain functional
throughout a time interval [0,X]; that is the total CPU energy
consumption cannot exceed Ej,q,, for X time units (in other
words, the system is subject to a hard energy constraint).
Throughout this paper, we refer to X as the system’s mission
time. We also assume that battery re-charging is not possible
during the mission.

We further assume that the system has DVS capability, where
the processor speed (frequency) and supply voltage can be
dynamically adjusted. We distinguish two modes: execution
mode and stand-by mode. In the stand-by mode, the CPU does
not execute any tasks, and consumes only the stand-by power
denoted by g*”. The CPU switches to stand-by mode if it is idle.
In the execution mode, the CPU speed can vary between a lower
bound (S,,;,) and an upper bound (S,,.,). In this case, the power
consumed is a function of the CPU speed/frequency; we denote
this dynamic power consumption by g(S). In accordance with
[2,20,26], we assume that g(S) o S°. For convenience, we
normalize the speed values with respect to S, 1.€. Sy = 1.0. In
any time interval [t;,t,], the total energy consumption is the
integral of power consumption function, which includes the
stand-by and dynamic power consumption components.. We
also assume that time and energy overheads due to CPU speed
changes are negligible.

We adopt an inter-task DVS model; that is, we assume that
the CPU speed can be changed only at task completion or
preemption points, following [2, 20, 26].

2.2 Task model

We consider a set of n independent periodic RT tasks I' =
{T, T,.., T}. Each task T; = (C;, P;, m;, k;) is characterized by



four parameters: the worst-case execution time C; under
maximum speed', a period P; and the parameters n; and k; which
specify the task’s tolerance to deadline misses. Tasks are
assumed to be (m;,k;)-firm; that is at least m; instances of task 7;
must meet their deadlines in every window of k; consecutive
instances (m; < k;). If this constraint is violated in any such
window, task 7 is said to exhibit a dynamic failure. We further
assume that the relative deadline D; is equal to the period P; .
T;; denotes the j™ instance of task 7; . We use the terms
hyperperiod and frame interchangeably to refer to the least
common multiple of all task periods: P = Icm(P;, P,,..., P,). We
assume preemptive scheduling, and that the preemption and
speed change overheads can be incorporated in C; if necessary.
The process descriptor of 7;is augmented to include two fields
related to the CPU speed: a nominal speed S;"”", which is the
default speed assigned to the task when it is about to be
dispatched, and an actual speed S;, which is the speed at which
the task is being executed at the specific time instant. Under a
constant speed S, the execution time of task 7; is C; /S. The
utilization of task 7; under CPU speed S is given by u;(S) = C;
/(P; S). Note that under maximum CPU speed (i.e. S = 1.0), u;.
(1.0) = C; /P;. The aggregate utilization of the task set (under
maximum speed) is given by U, = >; C;/P;. In this paper, we
assume that the execution time scales linearly with the CPU
speed, ignoring memory stall effects. Note that this is a
conservative but safe assumption since it overestimates the new
execution time when the CPU speed is reduced [27]. Hence, it
does not hurt the schedulability analysis.

We adopt the Earliest-Deadline-First (EDF) scheduling
policy, which is known to be optimal from the feasibility
viewpoint [16]. The goal of this paper is to study the feasibility
and performance maximization problems in the context of
energy-constrained systems (with limited CPU energy budget).
Consequently, we assume that the task set would be feasible
(schedulable) with EDF when executed at the highest CPU
speed (i.e. if Y ; C;/P; < 1), in the absence of energy constraints.

3. Energy-Constrained Weakly-Hard
Real-Time Scheduling Problem

In this section, we formulate the scheduling problem for
energy-constrained weakly-hard RT systems and discuss its
computational complexity. We also explore feasibility
conditions, define the system performance metric, and give an
overview of our general solution approach.

Consider the following problem: Given a weakly-hard real-
time system that must remain operational during a mission
interval [0,X], can all tasks meet their (m,k)-constraints (i.e.
avoid dynamic failures) while remaining within the system’s
limited energy budget? Unfortunately, this problem is
computationally intractable even assuming an ideal DVS model
with continuous CPU speed:

Theorem 1. The problem of deciding whether it is possible to
meet all the (m,k)-constraints of a set of periodic real-time tasks
within a limited energy budget is NP-Hard in the strong sense
on a DVS-enabled CPU with continuous speed.

Proof: See Appendix A.

1 .
C; can also be considered as the worst-case number of processor cycles
required by task T;.

We would like to connect this result to the related
intractability results that already appeared in the literature. First,
in [1], it is shown that the problem of deciding if all the
deadlines of a set of real-time tasks can be met subject to a
limited energy budget (i.e. feasibility under energy constraint) is
NP-Hard in the weak sense on a DVS-enabled CPU with
discrete speed levels. At first, this last problem may appear as a
special case of our problem where we set m=k (under this
condition the (m,k)-firm model reduces to the traditional hard
real-time model). However, note that Theorem 1 presents a
stronger result by showing that the problem is NP-Hard in the
strong sense even for continuous CPU speed. Second, Quan and
Hu proved that deciding whether it is possible to meet all the
(m,k)-constraints on an overloaded (but constant-speed, non-
energy-constrained) CPU is NP-Hard in the strong sense [22]. In
our settings, the system 1is not overloaded from the
computational demand point of view (in fact, all tasks can meet
their deadlines under maximum speed). However, energy is the
hard constraint and the result above implies that deciding if it is
possible to avoid dynamic failures on a DVS-enabled, energy-
constrained CPU is equally hard.

Although the problem stated in Theorem 1 is NP-Hard in the
general case, it is possible to decide some special instances
easily. Consider the specific execution pattern in which the first
m; instances of task 7; in every interval [gk;P;, (¢+1)k;P;] (Where
q is a non-negative integer) are dispatched and the remaining
k; - m; instances are skipped as illustrated in Figure 2. It is clear
that this execution pattern meets the (m,k)-constraints provided
that a suitable speed is used to meet the deadlines of al/ the
dispatched jobs. A possible CPU speed to use in this context is
the one corresponding to the total task utilization (under
maximum speed) S, = U,,, = Y,; C;/P;: this speed is known to
minimize the total energy consumption of the periodic task set
without missing any deadlines [2, 20]. Let Ej,; denote the
energy needed to execute solely the dispatched jobs in the
pattern discussed above using the speed S,,.

Proposition 1. If Eyeec = Ejjmiv then all the (m,k)-constraints
can be met by using the speed S, = U, .

Proof: By using the speed S, = U,,, it is possible to guarantee
that all deadlines in the task set will be met a priori [2, 20]. Also
recall that Ej;,; represents the energy needed at this specific
speed to execute the selected jobs in the pattern discussed above,
which readily satisfies all the (m,k)-constraints. Therefore, by
adopting this pattern and using the speed S,, all (m,k)-constraints
can be met. Note that Proposition 1 provides only a sufficient,
but not necessary condition, for meeting the (m,k)-constraints.

| minl |

Figure 2. The “deeply-red” execution pattern of a (2,3)-firm RT task

Thus, if If Epugger > Ejimir, one can find a trivial solution that
guarantees all the (m,k) constraints, and the techniques proposed
in [1] can be used to further improve the system performance. In
the remainder of this paper, we focus on the settings where
Epyiger < Ejimir and we explore strategies for maximizing the
system performance in these settings. While developing our
solutions we adopt the execution pattern, shown in Figure 2,
according to which the first m; instances in every non-
overlapping window of k; instances of any task 7; are selected,



and the remaining k; - m; instances are skipped. This pattern has
been adopted in the weakly-hard real-time scheduling literature
and is referred to as the “deeply-red” execution pattern [7, 15].
In this context, we distinguish two types of jobs: mandatory and
optional.

Definition 1. An instance T;j of a task T; is mandatory if and
only if 1 < j mod k; < m; otherwise it is optional
(for the case of m; < k). If m; = k; then all instances are
mandatory.

It is now possible to formally define Ej;,,;, as follows.

Definition 2. E;,;, is the minimum energy needed to execute all
the mandatory jobs (under worst-case conditions) using the
speed S, = Uy

Let us denote by M; the number of mandatory (non-skipped)
jobs of task T; required to meet the (m,k)-constraints in [0,X],
according to the ‘deeply-red’ execution pattern. Since the
execution time of each mandatory job of task 7; under the CPU
speed S, is C;/ S,, the total amount of time the system stays in
execution mode is >; M;C;/ S, . Considering the stand-by and
execution mode power functions and the duration of the mission
X, the sum of dynamic and stand-by (i.e. the total) energy
consumption can be computed as:

Ejir = 8(S,) - i MCy/ S, + g7 - (X - X MiCi/ S,) (1)

Observe that by adopting a ‘deeply-red’ pattern, the selected
mandatory jobs are executed early in the schedule. This helps
on-line dynamic slack reclamation since in the common case of
early completions [9], the arising slack-time can be used to
further reduce the CPU speed for the subsequent jobs and
increase the energy savings. Moreover, in our severely energy-
constrained problem settings, we opt to skip all the optional jobs
to save energy for the mandatory jobs which are critical to meet
the (m,k)-constraints .

Since it is not possible to provide a priori guarantees to meet
all the (m,k)-constraints through an efficient procedure, we
attempt to optimize the system performance subject to the
limited available energy. We measure the system performance
during the mission through the dynamic failure ratio (DFR),
which is defined as:

n
DFR=73 WiDF}/DFmaX )
i=l1

where DF; is the number of dynamic failures of task 7; during
the mission interval [0,X], DF ™ is the total number of dynamic
failures that all tasks can experience during the same interval,
and w; is the (optional) weight (0 < w; < 1) indicating the relative
impact of 7;’s dynamic failures on overall system performance.
Appropriate weight values can be chosen by the designer if
additional information is available about the application
semantics. It is relatively easy to evaluate DF;: observe that the
first dynamic failure of the task 7; can occur only at time k; P; ,
since this marks the end of the execution window of the first ;
jobs of task 7. In addition, we may have an additional dynamic
failure at every period boundary (deadline) of 7; after ¢ = kP,
by considering the last k; jobs of the (sliding) execution window.
This can be easily kept track of by the operating system.
Following the same reasoning, the maximum number of
dynamic failures that the task 7; may experience, namely
DF{™ can be computed as Max {{ X/ P; ] - k;+1, 0}. Summing
up DF"* values over all tasks yields the parameter DF ™.

In Section 4 we propose solutions to minimize the dynamic
failure ratio DFR subject to the energy budget through the
following strategies:

e We compute a single initial (nominal) speed (which is lower
than S, = U,, ) by considering solely the workload of the
mandatory jobs. Hence, the energy constraint can be
addressed more effectively.

e We greedily reclaim slack time resulting from skipped
optional jobs and early completions of mandatory jobs,
without jeopardizing the deadlines of already selected ones.
We use dynamic CPU speed slow-down to further reduce the
energy consumption and execute additional jobs, thus
improving the dynamic failure ratio.

4.  Our Solutions

The algorithms that we present in this paper generally belong
to one of the two classes: The greedy schemes (Section 4.1) take
a direct approach and attempt to execute all the mandatory jobs
as long as the system’s energy budget allows. On the other hand,
the energy-density schemes (Section 4.2), effectively prioritize
the mandatory jobs based on their energy demands and the
number of (m,k)-constraints they help to meet.

4.1 Greedy schemes

The greedy schemes start by selecting a// the mandatory jobs
of all tasks for execution, relying on the fact that completing
these jobs prior to their deadlines will enable the system to meet
the (m,k)-constraints. However, as discussed above (Section 3),
one needs to also determine the CPU speed at which the
mandatory jobs will be executed. In addition, it is extremely
crucial for the system to exploit any run-time opportunity to
reduce the CPU speed dynamically (for example by using
available slack time due to the early completions).

4.1.1 Nominal Speed Considerations and Reclaiming
the Slack of Skipped Jobs

Our solutions entail pre-computing a global nominal (or
default) speed for all the tasks statically, and applying the
dynamic reclamation / speed adjustment techniques on-line
whenever possible. At dispatch time, the speed of each job of T;
is first set to the nominal speed S"*". However, its actual speed
S; may be even lower after the application of the dynamic slack
reclamation techniques.

The nominal speed must be carefully chosen to guarantee the
deadlines of the mandatory jobs. One such safe nominal speed
that can be computed in linear-time is """ = S, = U,,,= Y; C;/P..
In fact, Proposition 1 (Section 3) implies that the deadlines of all
the mandatory jobs, consequently all the (m,k)-constraints, will
be met with the speed S, provided that £y, e = Ejji - However,
note that S, is based on somewhat conservative assumptions: it
guarantees that all the deadlines, including those of (skipped)
optional jobs, will be met. At run-time, it is possible to further
reduce the actual CPU speed, and consequently reduce the
energy consumption, by observing that the schedule has idle
intervals due to the optional jobs that are skipped. In fact, one
can consider the skipped (optional) jobs as actually dispatched

jobs with zero actual execution time. Thus, it is possible to use
this slack time for dynamic slow-down making it possible to
improve the system’s performance even when Ej e < Ejimir-



Example 1. Consider the weakly-hard real-time task set shown
in Table 1. The system must remain operational for a mission
time of X' = 60 time units. Assume that, in the execution mode
the CPU power consumption as a function of speed is g(S) = S°,
while the stand-by power is g™ = 0.025.

G| P |U | m|k;
T, |6 |60]01 |1 |1
T,19 3003 |1 |2
T; | 6 | 10 ] 0.6 |1 2

Table 1. Parameters for the task set in Example 1

Observe that for this task set S, = U,,, = 1.0. If we select all
the mandatory jobs according to the deeply-red pattern and
execute them with the speed S, = 1.0, then we obtain the
schedule shown in Figure 3. The maximum number of dynamic
failures that can occur during the mission is DF"* = 7, and the
total energy consumption of all the mandatory jobs is Ej;,; =
33.7. If Epuages = 23 (68% of Ej;), then only 75, and T3, can
complete, resulting in a total of 5 dynamic failures.
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Figure 3. A schedule obtained using greedy scheme for Example 1
using nominal speed S, without reclamation and Ep,iger = Eimir
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Figure 4. A schedule obtained using greedy scheme for Example 1
using nominal speed S, with reclamation and Ej.jee:= 68% 0f Ejimis
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Figure 5. A schedule obtained using greedy scheme for Example 1
using nominal speed S” without reclamation and Epuiger=50% of Ejinis

Looking back at the schedule shown in Figure 3, we see that
the slack time of T ,, which is skipped, can be effectively used
to reduce the CPU speed while T, ; executes. Similarly, at ¢ = 30,
the speed of 7; (whose start time is now delayed due to the
increased response time of 75) can be reduced to effectively use
the entire CPU time in the interval [30,40]. The specific
dynamic reclamation algorithm in use is DRA-OTE [1, 2] which
is shown to be effective for various DVS settings. However,
other algorithms (e.g. Pillai-Shin speed reduction technique
[20]) can be also used to exploit the slack-time of skipped jobs
with §"™" = S, The resulting schedule, shown in Figure 4,
illustrates the fact that all the (m,k)-constraints can be met with
Epygge= 23, which is 68% of Ej;,;, In this schedule, T ; runs at
speed S = 0.3 in [30,40], T, runs at speed S = 0.45 in [10,21],
and T35 runs at speed S = 0.6 in [40,50] thanks to dynamic speed
slow-down.

Note that this form of slack reclamation is possible even if all
the selected mandatory jobs take their worst-case execution time
since the optional jobs are skipped in our framework. At this
point, we can make the following important observation:
Skipping the optional jobs helps in meeting the (m,k)-constraints
of the energy-constrained systems in two ways. First, it reduces
the effective task workload, thereby saving energy for the
mandatory workload whose timely completion will help to meet
the weakly-hard timing constraints in a predictable way. Second,
it creates additional opportunities for dynamic CPU speed slow-
down at run-time by the slack time it creates through the skipped
optional jobs.

A natural question to consider is whether it is possible to
compute a better (lower) nominal speed for the mandatory jobs,
using the knowledge that the optional jobs will be skipped. This
will effectively enable the designer to compute a uniform speed
for the mandatory jobs, by incorporating the slack-time of the
skipped jobs by static analysis. In fact, this question can be
answered positively, as shown below.

Definition 3. Given a weakly-hard real-time task set whose
optional jobs are skipped at run-time, the processor demand of
the mandatory workload in the interval [ t,, t, ] is defined as
D(t; .t ) = Z; Mi(ty ,t,)-C; where Mi(t, ,t, ) is the number of
mandatory jobs of the task T; released at or after t|, and having
deadlines less than or equal to t,.

Theorem 2. All the (m,k)-constraints of a weakly-hard real-time
task set will be met, if the mandatory jobs are executed with the

speed S" =max{D(0,L)/L}.
L>0

Proof: See Appendix B.

Note that this result can be also seen as an extension of the
utilization bound proposed by Caccamo and Buttazzo for the
skip model in [7] to the more general (m,k) model.

Returning to the motivational example, one can verify that
the processor demand of the mandatory workload is maximum
in the interval [0,30], and S" is evaluated as 21/30 = 0.7.
Running all the mandatory instances with this statically
computed speed yields the schedule shown in Figure 5, that
satisfies all the (m,k)-constraints with an energy budget as low
as 16.49 (50% of Ej;,;;). Note that this improvement is achieved
without considering any further dynamic adjustments (for
example, 7; may be able to use the interval [38.6,40] with the
simple One-Task-Extension technique [2]).

When evaluating §”, it is sufficient to consider L values that
correspond to period boundaries up to the hyperperiod P =



lem(P;, P,,..., P,). Nevertheless, despite the possible
improvements on the energy, the computation of §* may take
pseudo-polynomial time since the value of the mandatory
processor demand needs to be evaluated at every period
boundary. Observe that when running the task set with the speed
S", we no longer reclaim the slack time of skipped jobs, since
they are incorporated statically while evaluating the speed S”.

Note that the greedy schemes have aggressive nature since
they select for execution all the mandatory jobs of all tasks,
regardless of the available energy. Aggressively selecting all
mandatory jobs can then deplete the system’s energy before the
end of the mission. To ensure that the system remains
operational until the end of the mission when greedy schemes
are used, we perform a simple check: When a job is about to be
dispatched, it is executed only if the system will have enough
energy to complete the mission even if the job were to present
its worst-case workload; otherwise the job is skipped.

4.1.2 Reclaiming gain time due to early completions

If, at run-time, the mandatory jobs take less than their worst-
case execution requirements, then it is possible to exploit the
unused CPU time to improve the energy consumption by
performing dynamic speed reduction. In fact, this slow-down
can take place regardless of the choice of the nominal speed (S,
or 8. We perform dynamic speed slow-down by using the
Dynamic Reclaiming Algorithm (DRA) [2]. Originally proposed
for periodic hard real-time task sets [2], DRA has been also
recently adapted to the scheduling of aperiodic/periodic task sets
[3], and energy-constrained reward-based periodic task sets [1].

DRA detects early task completions by comparing the actual
schedule to the static optimal schedule. In this schedule, all the
jobs run at the same speed, namely the nominal speed S"",
through which all the (selected) jobs will be able to meet their
deadlines even under a worst-case workload. DRA determines
the amount of CPU time that a dispatched job can safely use to
slow down its speed. This additional CPU time is referred to as
the earliness and is used to calculate the new (lower) speed of a
dispatched job. A main feature of the scheme is to calculate the
earliness quickly, and without affecting the feasibility of already
selected tasks. The earliness is computed in such a way to allow
the low-priority tasks to use the slack-time of (completed) high-
priority tasks. The exact formula for calculating the earliness
and determining the reduced speed, as well as the details of the
DRA can be found in [2].

4.2 Energy-Density Schemes

The greedy schemes discussed in Section 4.1 are based on the
implicit assumption that all the mandatory jobs will be executed.
Though they attempt to improve the energy-efficiency of the
system through the careful selection of the nominal speed and
dynamic reclamation, they do not consider the specific energy
budget of the system. Albeit natural, in scarce-energy settings
where some dynamic failures are unavoidable, this approach
may not be the best. In fact, it may be more reasonable to
carefully select the mandatory jobs to be executed by
considering the energy budget, mission time and the energy
demands of individual jobs. The system performance can be
improved by giving preference (in energy allocation) to tasks
that have the lowest energy requirements and that can
potentially cause a large number of dynamic failures, if skipped
altogether. Hence, we give preference to tasks based on a metric
we refer to as the energy density (ED):

Definition 4. The energy density ED; of the task T; is the
weighted ratio of the energy consumption E; of the mandatory
instances of the task T; divided by the number of dynamic
failures DF™* that this task can cause during the mission time
(that iS, E])l = Ei / Wi DFimax).

In Definition 4, recall that w; is a weight indicating the
relative impact of 7;’s dynamic failures on the overall system
performance. To ensure that important tasks are given priority in
allocation of the energy needed to meet their constraints, the
designer can assign large weights to those tasks. Under a
constant speed, the energy demand E; of the mandatory jobs of a
given task is proportional to C; m; / P; k;, since the energy
consumption is proportional to the utilization, and to the ratio of
jobs selected for execution.

Thus, we sort the tasks according to the energy density
parameter ED;. The energy budget is allocated incrementally
starting with the mandatory jobs of the task with the lowest
energy density. Then, we keep augmenting the set of selected
tasks by considering the energy densities until the energy budget
is depleted. Naturally, at every step, the energy needed is
calculated using a nominal speed based on the subset of
currently selected tasks I's. This is in sharp contrast with the
greedy schemes, where the entire mandatory workload is
considered when selecting a nominal speed. Note that the two
nominal speed computation techniques, one based on the
utilization and the other one based on the processor demand
analysis, are still applicable. However, the speed will now be
determined based on the selected workload, potentially creating
opportunities for adopting a lower CPU speed.

It is still possible to perform slack time reclamation and
dynamic speed slow-down. However, to guarantee the deadlines
of the selected tasks I's only the slack time of tasks in I’y can be
reclaimed, since the nominal speed in this case is determined
based on the workload of 'y . For example, if the nominal speed
is set to the total utilization of tasks in Iy, one can safely reclaim
the slack time due to skipped or completed instances of tasks in
I's. If the nominal speed is computed using the mandatory
processor demand of selected task sets (using Theorem 2), the
slack time of skipped jobs is already incorporated to the
statically computed nominal speed, and we can reclaim only the
slack time resulting from the early completions of mandatory
tasks in T

In the context of the energy-density schemes, if there is
sufficient excess energy accumulated at run-time due to dynamic
speed slow-down, then this energy can be used to select
additional mandatory instances of tasks that have been
previously marked as unselected. By exploiting this excess
energy, one can significantly improve the system performance.
We refer to this mechanism as job promotion. However, job
promotion must be used with care to guarantee the deadlines of
the currently selected jobs. Recall that the nominal speed at
which selected tasks run is based on the workload T, and not
the total workload corresponding to the entire task set I.
Consequently, if additional tasks are added to Iy through job
promotion, the previously calculated nominal speed may be no
longer safe. To avoid this problem, we use the excess energy for
job promotion only at the beginning of a new frame
(hyperperiod). In other words, the set of selected tasks T’ is
determined for the first frame, and the corresponding nominal
speed S™" is calculated subject to the system energy budget.
Then, throughout the frame, the excess energy resulting from
dynamic slack reclamation and speed slow-down is
accumulated. At the beginning of the next frame the available



energy (including the excess energy) is used to recalculate I
and S™". The same procedure is repeated at every frame
boundary. Note that the job promotion occurring at the frame
(hyperperiod) boundaries is reminiscent of the re-chargeable
energy-aware system framework of Rusu et al. [25].

5. Experimental Results

We experimentally evaluated our proposed schemes using a
discrete-event simulator implemented in C++. In our simulation
experiments we measured the dynamic failure ratio DFR as a
function of three parameters:

o System energy budget Ej, ., is represented as a percentage of
the total energy Ej;,; required to execute all the mandatory
jobs. Ej,.. is calculated assuming that all tasks run at the
nominal speed S, (the lowest speed guaranteed to meet all
deadlines without considering energy budget) throughout the
mission time. Ej, g, 1S @ measure of how energy-constrained
the system is, and as it decreases it becomes more important
to carefully manage the available energy to reduce the
dynamic failure ratio.

e Execution_time ratio ER is the ratio of best-case execution
time to worst-case execution time. It controls the variability of
the actual workload compared to the worst-case.

o Total system utilization U, =>; C;/ P;.

The workload in our experiments comprised 15 tasks all of
which had the same (2,3)-constraints. We generated 1000
generic task sets, and then for each task set we ran 100
experiments to generate actual execution requirements for each
task instance (job). We varied the above three parameters over
the following ranges: U ranged from 0.1 to 1.0 in increments of
0.1, Epaee (as a percentage of Ej,,;,) ranged from 10% to 100%
in increments of 10%, ER ranged from 0.1 to 1.0 in increments
of 0.1. The mission time X was 4 times the hyperperiod P. Task
periods were generated through a uniform probability
distribution, and the ratio of maximum period to minimum
period was 20. Similarly, the actual execution time AET of any
given task under maximum speed was generated uniformly
between ER*WCET and WCET, where WCET is the worst-case
execution time under maximum speed. We assumed that all
tasks have equal weights. We assumed that the CPU power
consumption varies as a cubic function of the CPU speed
[2,3,18,26,27] and that S,,;,, = 0.1. We underline that the
experiments with discrete speed models and different (m,k)
parameters yield similar patterns, but those results are not
included due to the space limitations.

5.1 Experimental results for greedy schemes

The greedy schemes operate by initially selecting all the
mandatory jobs of all tasks for execution. We implemented four
different greedy schemes that differ in the nominal speed used
and whether dynamic reclamation is adopted.

e Static—S,: Mandatory jobs run with speed S, and slack-time
reclamation is not performed.

e Static-S": Mandatory jobs run with speed S” and slack-time
reclamation is not performed.

e Dynamic-S,: Mandatory jobs run with speed S, and slack-
time is reclaimed.

¢ Dynamic-S": Mandatory jobs run with speed S* and slack-
time is reclaimed.

We compared the performance of all four schemes through
simulations under both worst-case and actual workload
conditions. For the sake of completeness, we compare the
performance of our proposed solutions against a well-known
scheduling algorithm that has been traditionally used for
scheduling (m,k)-firm RT tasks, namely the Distance-Based
Priority (DBP) algorithm [11]. DBP is a (non-power-aware)
priority-based scheduling heuristic that gives higher priority to
tasks that are closer to the state of dynamic failure. To use DBP
in such settings, one must carefully choose a nominal CPU
speed to reduce the energy consumption without causing a
significant number of deadline misses. We performed extensive
simulations to evaluate the performance of DBP under various
nominal speed assignments, but we opted to omit these results
due to space limitation. In this paper, we include the results for
DBP with the CPU speed = 0.5, which yielded consistently the
best results for the simulation settings under consideration.

5.1.1 Results under worst-case workload conditions

If the worst-case workload conditions do occur at run-time,
the reclamation of slack time due to early completions is not
applicable. However, it is still possible to reclaim slack time of
skipped optional jobs if the nominal speed S, is used. Recall that
reclaiming slack time of skipped optional jobs is not performed
with the nominal speed S~ (in order to preserve the timing
constraints of mandatory jobs as discussed in Section 4.1).
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Figure 6. Effect of energy budget on greedy schemes under worst-
case (left) and actual (right) workload conditions

Figure 6 (left) presents the effect of Ej, 4., (at Uy, = 0.7) on
the dynamic failure ratio DFR for all four greedy schemes and
DBP under worst-case workload (i.e. ER = 1.0) for (2,3)-firm
constraints. As expected, for all the schemes, increasing Ejp, g
tends to decrease the dynamic failure ratio. At £y, 4., = 100% the
greedy schemes do not exhibit any dynamic failures because the
system has sufficient energy to meet all the (m,k)-constraints.
On the other hand, even with Ej,4., = 100% DBP yields a
dynamic failure ratio of about 38% due to its sub-optimal
priority assignment. Among the greedy schemes, Static—S" and
Dynamic-S” have identical performance (since reclamation is
not possible for worst-case workloads), and are the best among
all greedy schemes. The next best scheme is Dynamic—S, with
comparable performance thanks to its ability to reclaim slack
time of optional jobs. Static—S, has the worst performance
among all greedy schemes since it uses a conservative speed and
does not reclaim slack time of skipped jobs.

5.1.2 Results under actual workload conditions
(effects of reclamation)

In most cases, the actual workload is usually significantly
lower than the worst-case, providing room for improving system
performance through dynamic reclamation of slack time. Under



such conditions, in addition to reclamation of slack time of
skipped optional jobs, another form of reclamation can be
exploited. Namely, slack time resulting from early completions
of selected mandatory jobs can be reclaimed. This can occur
regardless of the choice of the nominal speed without
compromising the deadlines of selected jobs.

Figure 6 (right) shows the effect of Ej, e (at U, = 0.7 and
ER = 0.4) on the dynamic failure ratio DFR for all four greedy
schemes and DBP under actual workload for (2,3)-firm
constraints. Comparing the performance of all schemes to worst-
case workload conditions presented in Figure 6(left), one notices
a clear improvement in performance under actual workload
since the effective energy consumption is now significantly
lower. There is a change in the order of best performing
schemes, however. The two best performing schemes are the
ones that employ reclamation, namely Dynamic-S* and
Dynamic—S,. The results indicate that the use of reclamation is
more important than the choice of the nominal speed for greedy
schemes, since Dynamic—S, outperforms Static—S* which uses a
lower nominal speed but without reclamation.
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Figure 7. Effect of utilization (left) and execution time ratio (right)
under actual workload on greedy schemes

Figure 7 (left) shows the effect of utilization for Ej,qq., =
E}iniU,,=0.3) and ER = 0.4 under actual workload conditions.
Unlike the other figures where Ej,qq, is recalculated as a
percentage of Ej,;, (which is also a function of the total
utilization Uy, ), in this set of experiments £y, 4., is set to a fixed
value, namely, to the energy required to meet all the mandatory
deadlines when U, = 0.3 (i.e. Epugper = Ejimi(Us=0.3)). When
U,y < 0.3 the system has enough energy budget to meet all
mandatory deadlines (i.e. Epygger = Ejimir) and our greedy schemes
yield zero dynamic failure ratio, while we observe again DBP’s
unpredictable performance. As U,,, increases from 0.3 to 1.0, the
system becomes effectively more energy-constrained and the
performance of all schemes degrades resulting in higher
dynamic failures. The top performing schemes are Dyn—S” and
Dyn-S, followed by Static—S".

The effect of execution time ratio ER (i.e. workload
variability) on the dynamic failure ratio DFR is shown in Figure
7 (right) for Uy, = 0.7, and Ej, e, = 40%. The lower the value of
ER, the more significant the performance improvement due to
the reclamation. Therefore, at small ER values (ER < 0.4), the
schemes that use reclamation, namely Dynamic-S~ and
Dynamic-S,, practically avoid all dynamic failures and
outperform other schemes. However, as ER increases the
performance gap shrinks.

5.2 Experimental results for energy-density
schemes

The energy-density schemes carefully select the mandatory
jobs to be executed by considering the energy budget, mission
time, and the energy demands of individual jobs. We
implemented four energy-density schemes that differ in the

selection of the nominal speed and the use of dynamic

reclamation. All four schemes use job promotion at frame

boundaries to utilize the excess energy accumulated in the

previous frame. Specifically:

e ED-S,: Nominal speed computed through the utilization of
the selected tasks, no reclamation

e ED-S": Nominal speed computed through the processor
demand of the selected tasks, no reclamation

e EDR-S,: Nominal speed computed through the utilization of
the selected tasks, uses reclamation

e EDR-S": Nominal speed computed through the processor
demand of the selected tasks, uses reclamation

In this section we present experimental results for energy-

density schemes under both worst-case and actual workload

conditions. For comparison, we also include the best performing

greedy scheme, Dynamic—S".

5.2.1 Results under worst-case workload conditions

Under worst-case workload conditions, the only possible
form of slack time reclamation is the one due to the skipped
optional jobs. Figure 8 (left) presents the effect of Ej,q,., (at U,
= 0.7) on the dynamic failure ratio DFR for all four energy-
density schemes under worst-case workload (i.e. ER = 1.0) for
(2,3)-firm constraints. The order of schemes based on
performance is similar to that of the greedy schemes (Figure 6,
left). The best performing energy-density schemes are EDR—S*
and ED-S" (which have identical performance since reclamation
is not possible under worst-case workload when S,,,,, = ). ED—
S, has the worst performance among the energy-density
schemes. One important observation is that the performance of
the energy-density schemes is significantly better than the
greedy schemes, represented by Dyn—S” in this figure, especially
at low to medium Ej, 4., values, thanks to the low CPU speed
they are able to adopt. H*owever, when Ej, e is at least 70%, the
performance of Dyn-S improves significantly and becomes
comparable to the energy-density schemes, since in this region
the system is less energy-constrained and aggressively selecting
all mandatory tasks for execution helps.
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Figure 8. Effect of energy budget on energy-density schemes under
worst-case (left) and actual (right) workload conditions

5.2.2 Results under actual workload conditions (effect
of reclamation)

Figure 8 (right) shows the effect of Ej, e (at Uy, = 0.7 and
ER = 0.4) on the dynamic failure ratio DFR for all four energy-
density schemes under actual workload for (2,3)-firm
constraints. There is a noticeable performance improvement,
particularly for the schemes EDR-S* and EDR-S, that use
reclamation, over the results under worst-case workload



conditions presented in (Figure 8, left), since the effective
workload is now significantly lower. There is also a change in
the order of best performing schemes. Unlike the case of the
greedy schemes (Figure 6, right), the two best performing
schemes are EDR—-S* and ED-S" which use the nominal speed
S”. Thus, for energy-density schemes the use of a low nominal
speed has a more significant impact on performance than the
use of dynamic slack reclamation.

Figure 9 (left) shows the effect of utilization for Ep,gee =
EjiniU,,=0.3) and ER = 0.4 under actual workload conditions.
Similar to Figure 7(left) for the greedy schemes, Ej, ., here is
set to a fixed value, namely the energy required to meet all the
mandatory deadlines when U,, = 0.3 (i.e. Ej;,i{U,=0.3) ).
When U, < 0.3 the system has enough energy to meet all
mandatory deadlines (i.e. Ejugeer > Ejmi) and there are no
dynamic failures. As U,, increases from 0.3 to 1.0, the system
becomes effectively more energy-constrained and the
performances of all the schemes degrade resulting in higher
dynamic failure ratios. The top performing schemes are EDR—
S* and ED-S" followed by EDR-S,. All energy-density
schemes significantly outperform the best greedy scheme.

The effect of execution time ratio ER (i.e. workload
variability) on the dynamic failure ratio DFR is shown in Figure
9 (right) for U,,,=0.7 and Ep,44e, = 40%. As ER gets smaller, the
effective workload to be executed decreases, and so does the
energy needed to execute this workload, resulting in reduced
dynamic failures. However, this improvement in performance is
less emphasized in the results of the energy-density schemes,
when compared to the greedy schemes, since DFR is already
rather low with energy-density schemes. Note also that the
energy-density schemes significantly outperform the best greedy
scheme for medium to large ER values (i.e. ER > 0.6). Only
when the effective workload is small (i.e. ER < 0.5) does the
greedy scheme perform competitively.
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under actual workload on energy-density schemes

6. Conclusion

To the best of our knowledge, this research effort is the first
to explore the energy-constrained scheduling problem for
weakly-hard real-time systems. We showed that the problem is
NP-Hard in the strong sense even assuming continuous CPU
speed. We provided a comprehensive framework that consists in
selecting a mandatory workload and an appropriate CPU speed
to meet the (m,k)-firm deadlines using the processor demand
analysis. We presented two classes of solutions. The “greedy”
algorithms attempt to select the entire mandatory workload a
priori, while “energy-density” algorithms further prioritize the
jobs in the mandatory workload by considering their energy cost
and the total number of (m,k)-firm deadlines they help to meet.
We further explored the effects of the nominal speed selection
and on-line slack reclamation techniques. Our results indicate

that the energy-density algorithms dominate over the greedy
algorithms when the system is significantly energy-constrained.
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Appendix A (Proof of Theorem 1)

We first formally state the energy-constrained weakly-hard scheduling
problem.

WEAK-EC: Consider a set I" of n periodic weakly-hard real-time tasks
for which a feasible schedule exists when executed with the maximum
CPU speed in the absence of hard energy constraint. Is it possible to
satisfy the (m,k)-constraints during a mission time X, with a limited
energy budget Ejqeer, and a DVS-enabled CPU?

Consider the problem 3-PARTITION which is known to be NP-Hard in
the strong sense [10]:

3-PARTITION: Given 3k integers a;, a; ,....., ayx and two additional
integers k, B, such that X; a; = kB and B/4 < a; < B/2 Vi, is it possible to
partition these 3k integers into & groups in such a way that the sum of
elements in each group is exactly B?

Suppose that WEAK-EC admits a polynomial-time solution. We will
show that, using this solution, it is possible to transform any given
instance of 3-PARTITION to an instance of WEAK-EC in polynomial-
time and provide an answer. Given an instance of 3-PARTITION, we
construct the corresponding instance of WEAK-EC as follows: We have
3k periodic real-time tasks 77,..., T, each having (1,k)-firm deadline
constraint and period B. T;’s worst-case execution time C; is given as
a;/ k. The mission time X = kB and Epygee; = B/ i

First, observe that, in the non-energy-constrained case (with the
maximum CPU speed) each instance of every task will be able to meet
its deadline (since U, = Zi a; / kB = 1.0), trivially satisfying the
(1,k)-constraints. For the energy-constrained case, notice that a
necessary condition to meet the (1,k)-constraints of all the tasks during
the mission time is to be able to execute exactly one instance of each
task in the interval [0,kB] (since there are k invocations of each task
during the mission interval). A lower bound on the energy needed to
complete exactly one instance of each task during the mission time can
be computed by considering that using a constant speed S to execute a
given workload in an interval minimizes the energy consumption. Thus,
this constant speed S can be computed as: S =X C;/ kB = Zi a; / B =
1/k

In fact, using this (optimal) constant speed will be necessary for this
particular instant of WEAK-EC, since assuming a power consumption of
g(S) = $*and g"= 0, we will need a minimum energy of %; (a; / kS) S* =
B /I, which happens to be the same as Epuqg in this problem instance.
But with speed S = 1 / k, the execution time of each task 7; becomes

exactly a;. Thus, the instance of WEAK-EC admits a positive answer if
and only if it is possible to schedule exactly one instance of each task 7;
(with the increased execution time a; and period/relative deadline B) in
interval [0,kB]. This last statement, on the other hand, is true, if and only
if the original 3-PARTITION instance admits a YES answer (since
Y a; = kB ); proving the claim.

The reader should note that it is straightforward to re-write the proof
for other types of power consumption functions; it suffices to choose an
energy budget to force the system to adopt a continuous speed of 1/k
with the corresponding power function. ]

Appendix B (Proof of Theorem 2)

A fundamental result in real-time scheduling theory establishes the
necessary and sufficient condition for feasibility through the processor
demand function.

Theorem 3 [4, 13]. 4 set of preemptive real-time jobs I can be
scheduled (by EDF) if and only if D(t1,t;) < t, - t| for all intervals [t,t2],
where D(t,t,) denotes the total execution time of jobs in I that arrive at
or after t;, and having deadlines less than or equal to t, (also known as
the “processor demand ” function,).

Observe that in a weakly-hard periodic RT task set where all the
optional jobs are skipped and the mandatory jobs are executed with
constant speed S, D(t,,,) is simply X M(¢,t2)-C;/S.

Corollary 1. The mandatory jobs of a weakly-hard RT task set will meet
their deadlines by EDF and with the CPU speed S if and only if:
ZiMi(t,t)-Ci < (- t1) S, for all intervals [t,t2].

A well-known result of the RT scheduling theory indicates that we
can restrict our attention to the intervals starting at a task release time,
and ending at a task deadline [4]. Moreover, we can prove the following:

Proposition 2. In a schedule where the mandatory jobs of task T; are
dispatched according to the “deeply-red” pattern:
MO,L) 2Mt;, t,+L) Vt,, L.

Combining Corollary 1 and Proposition 2, we get Proposition 3,
implying Theorem 2:

Proposition 3. The mandatory jobs of a weakly-hard RT task set will
meet their deadlines by EDF, if they are executed with the speed S, such
that: S 2 maxy s { Z; Mi(0,L)-C;/ L}.

Proof of Proposition 2:

In interval [0,L] there are exactly y = LL/ P; ] instances of T:.. Note that
the total number of 7;’s instances in [#,, ¢,+L] cannot exceed y in any
way. Thus, for a given ¢, and L, locate the smallest the L, > L such that
there are exactly y instances in the interval [¢;, ¢, + L;]. We will show
that M;(0,L) = My(t,,t; +L;), implying that M;(0,L) = M;(t,t; + L) since
Mt t;+ Ly) 2 My(t,,t;+ L) (considering that L,> L).

Suppose that the task 7; is supposed to meet m; deadlines in every k;
consecutive invocations. Then, y can be written as y = g.k; + r in a
unique way, where ¢ and r are integers and 0 < r < k; — 1. The following
two properties are instrumental in the remainder of the proof.

Property 1. In a deeply-red schedule, there are exactly m; mandatory
jobs among any consecutive k; jobs of T;.

Property 2. Among any consecutive y = q.k; + r instances of T;, the
number of mandatory jobs cannot exceed q.m; + 1.

We now finalize the proof by distinguishing two cases for 7:

e < m; In this case, in interval [0,L] we will first have g.m; mandatory
jobs in interval (0, g.k:.P;) followed by » mandatory jobs. Thus, in this
case: M;(0,L) = g.m; + r 2 M;(t,,t;+ L;) (from Property 2)

e > m;: In this case, the interval [0,L] ends with some optional jobs.
Hence, M;(0,L) = g.m; + m;. Further, since LL; / P; 1= yv=qk +r,
Mt t; + L) < g.m; + r (Property 2). This implies that M;(0,L) >
Mi(t,t;+ Ly) (since r < k; < m;), proving the claim. ]



