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University of Pittsburgh

36.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36-1
36.2 Reward-Based Task Model, Problem Formulation,

and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36-2
Reward-Based Scheduling Problem

36.3 Related Scheduling Frameworks . . . . . . . . . . . . . . . . . . . . 36-4
Imprecise Computation • Increased-Reward-with-
Increased-Service Model • Quality-of-Service-Based
Resource Allocation Model

36.4 Periodic Reward-Based Scheduling . . . . . . . . . . . . . . . . . 36-6
Mandatory-First Solutions • Optimal Solution

36.5 Power-Aware Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 36-9
Modeling Real-Time Workload and Energy on a Variable
Speed CPU • Correlating Real-Time Power-Aware
Scheduling to Reward-Based Scheduling • Determining
Optimal Speed Assignments for Periodic Real-Time Tasks
• Practical Considerations

36.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36-14

36.1 Introduction

Hard real-time systems are characterized by the utmost importance of satisfying the timing constraints
at run-time. Consequences of missing the deadlines in a hard real-time system can be very serious, even
catastrophic. Examples of real-time systems can be found in control systems of nuclear power plants,
air traffic systems, and command-and-control applications. Thus, a vast collection of research works in
hard real-time scheduling theory study the problem of guaranteeing the timely completion of tasks under
various task and system models, namely the feasibility problem (see [1]). These studies necessarily consider
worst-case scenarios when analyzing the problem, such as worst-case task execution times and minimum
task inter-arrival times.

A tacit assumption of the hard real-time scheduling framework is that a task’s output is of no value
if it is not completed by the deadline. However, in a large number of emerging applications a partial

1-58488-397-9/$0.00+$1.50
© 2004 by CRC Press, LLC 36-1



36-2 Handbook of Scheduling: Algorithms, Models, and Performance Analysis

or approximate result is acceptable as long as it is produced in a timely manner. Such applications can
be found in the areas of multimedia, image and speech processing, time-dependent planning, robot
control/navigation systems, medical decision making, information gathering, real-time heuristic search,
and database query processing. For example, given a short amount of time, an approximate (or fuzzy)
image can be produced and transmitted by a multimedia system, or a radar tracking system can compute
the approximate location of the target.

Reward-based (RB) scheduling is based on the idea of trading precision for timeliness when the available
resources are not sufficient to provide worst-case guarantees. Such a situation can also occur as a result of
transient overload and/or faults. In this framework, each task is logically decomposed into two subtasks:
the mandatory part produces a result of acceptable quality, and the optional part refines the result within
the limits of available computing capacity. A nondecreasing reward function, associated with the execution
of the optional part, captures its contribution to the overall system utility. The primary objective of RB
scheduling is thus assuring the timely completion of mandatory parts, while maximizing a performance
metric—usually the total reward accrued by the optional parts.

The apparent complexity of RB scheduling is partly due to the fact that it is a general framework
encompassing both hard and soft real-time scheduling theories. In fact, a task with no optional part
corresponds to a traditional hard real-time task, and a task with no mandatory part can model a soft
real-time task.

36.2 Reward-Based Task Model, Problem Formulation,
and Notation

A RB task Ti comprises a mandatory part Mi and an optional part Oi . Throughout the chapter, we will
denote the worst-case execution times of Mi and Oi by mi and oi , respectively. The mandatory part Mi of
a task becomes ready at task’s release time ri . The optional part Oi becomes ready for execution only when
the mandatory part Mi completes. The mandatory part must complete successfully by the task’s deadline,
whereas the optional part may be left uncompleted by the deadline if more important/urgent objectives
require so. In other words, no mandatory or optional execution can take place beyond the task’s deadline di .

During its execution, Oi refines the approximate result produced by Mi . To quantify the “utility” (or
“accuracy”) of the refinement process, we associate a reward function Ri (ti ) with the execution of the
optional part Oi , where ti is the amount of optional service time Ti receives beyond the mandatory part.

All studies in RB scheduling [2–7] assume that the reward functions are nondecreasing, which is based
on the observation that the utility of a task does not decrease by allowing it to run longer in almost every
practical application.

A schedule of RB tasks is feasible if all the mandatory parts complete in a timely fashion. A feasible
schedule is also valid if additional constraints that may be imposed by the problem definition, such as
precedence constraints or execution without preemption, are satisfied. Furthermore, a feasible and valid
schedule is optimal if the reward accrued maximizes a performance metric. The performance metric most
often considered is to maximize the (weighted) total reward of RB tasks [2–4,6,8].

An interesting question concerns the types of reward functions which represent realistic application
areas. Figure 36.1 shows the form of the most common reward function types. A linear reward function
[3,6,8–11] models the case where the benefit to the overall system increases uniformly during the optional
execution. The simplest case is to have identical linear functions, while nonidentical (or weighted) linear
functions allow us to distinguish between the importance of optional parts of different tasks.

Concave reward functions [4,5,7,12] go further by addressing the case where the greatest increase/
refinement in the output quality is obtained during the first portions of the optional execution. A function
f (x) is concave if and only if for all x, y and 0 ≤ α ≤ 1, f (αx + [1 − α]y) ≥ α f (x) + (1 − α) f (y).
Geometrically, this condition means that the line joining any two points of a concave curve may not
be above the curve. Examples of concave functions are linear functions (kx + c), logarithmic functions
(ln[kx + c]), some exponential functions (c · [1 − e−kx ]), and kth root functions (x1/k , where k ≥ 1).
Note that the first derivative of a nondecreasing concave function is nonincreasing (diminishing returns).
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FIGURE 36.1 Reward functions: (a) continuous concave, convex, and linear; (b) 0-1 constraint.

Having nondecreasing concave reward functions means that although the reward monotonically increases
beyond Mi , its rate of increase decreases or remains constant with time. Hence, linear and concave reward
functions successfully model the applications where earlier slots of optional executions are at least as
valuable as the later ones. In fact, a large number of typical applications reported in the literature can
be modeled by concave functions since they have nonincreasing marginal returns. As mentioned above,
these areas include image and speech processing, multimedia applications, time-dependent planning,
robot control/navigation systems, real-time heuristic search, information gathering, and database query
processing.

Convex reward functions (a function f is convex if the function − f is concave) represent the case where
a considerable benefit is obtained only later during the optional execution. It should be noted that reward
functions with 0-1 constraints, where no reward is accrued unless the entire optional part is executed, have
also received interest in the literature [6,8,13]. Unfortunately, scheduling with 0-1 constraints has been
shown to be NP-Complete in [8].

Note that the reward functions must also take into account the worst-case execution time of optional
parts: no reward can be accrued by Oi beyond the upper bound oi . Throughout the chapter we will assume
that the reward function Ri (ti ) of a task Ti is given by

Ri (ti ) =
{

fi (ti ) if 0 ≤ ti ≤ oi

fi (oi ) if ti > oi

(36.1)

where ti is the amount of CPU time allocated to the optional part Oi (recall that the mandatory part Mi

must be executed fully). We will suppose that each fi above is a nondecreasing, concave and continuously
differentiable function over nonnegative real numbers, unless stated otherwise.

We are now ready to define the general RB Scheduling Problem.

36.2.1 Reward-Based Scheduling Problem

Consider a RB real-time task set T = {T1, . . . , Tn}, where each task Ti is decomposed to a mandatory part
Mi and an optional part Oi . A nondecreasing and concave reward function Ri (ti ) is associated with the
execution of each optional part Oi . Given a time point Z, determine the optimal schedule OPT in the
interval [0, Z], such that OPT is feasible and valid, and each optional part Oi receives service for ti ≤ oi

units of time so as to maximize the total system reward
∑

i Ri (ti ).
Determining the optimal schedule for RB tasks clearly involves the computation of optimal optional

service times (the ti values). Noting that the reward accrued by each optional part Oi does not increase
beyond the upper bound oi , this computation can be expressed as an optimization problem where the
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objective is to find ti values1 so as to

Maximize
n∑

i=1

Ri (ti ) (36.2)

subject to 0 ≤ ti ≤ oi , i = 1, . . . , n (36.3)

There exists a feasible and valid schedule with {mi } and {ti } values (36.4)

We reiterate that the “validity” condition in the constraint (36.4) may capture any requirements im-
posed by the task and system model (such as nonpreemptive scheduling or the existence of precedence
constraints).

36.3 Related Scheduling Frameworks

A number of research studies that appeared in real-time scheduling literature have common traits with
the RB scheduling framework introduced in Section 36.2. Below we briefly review these models and major
research studies therein.

36.3.1 Imprecise Computation

A large body of work in RB scheduling originated from Imprecise Computation model, where the study
in [9] can be considered as a starting point. In this work, the mandatory/optional semantic distinction
and the imprecise computation model were introduced. The objective of the scheduling problem was
defined as guaranteeing the timeliness of mandatory parts, while minimizing the total error. The error of
a task is the amount of optional work left uncompleted. Later, the concept was generalized to weighted
and general error functions. As a task’s optional part executes, the (precision) error decreases, according to
the specified error function. Notice that the error functions in this context are analogous to (dual of) the
reward functions of our framework: a concave reward function corresponds to a convex error function,
and vice versa.

In [14], optimal preemptive algorithms for Imprecise Computation model were first proposed using
network-flow formulation. Faster algorithms were devised later in [8] to optimally schedule n independent
tasks with identical linear reward functions (in time O(n log n)) and linear reward functions with different
weights (in time O(n2)). Subsequently, Leung, Yu, and Wei [15] gave an O(n log n + kn)-time algorithm for
a single processor, where k is the number of distinct weights. Minimizing the total error with 0-1 constraints
have been shown to be NP-hard even with identical weights in [8]. Ho, Leung, and Wei [13] proposed a
O(n2) heuristic for this last problem, along with polynomial-time algorithms for maximizing the number
of optional tasks that are entirely executed under 0-1 constraints. Note that the imprecise computation
problem with precedence constraints is not computationally harder than the one in the independent task
model, since we can first modify the ready times/deadlines of tasks to “reflect” precedence constraints and
then solve that problem [6].

More recently, the extended imprecise computation model was introduced by Feng and Liu in [16]. This
study describes several heuristics regarding the problem of assigning service times to tasks within chains.
All the tasks in a chain share a common, single temporal constraint. Each chain is composed of imprecise
computation tasks with linear precedence constraints and the input quality of each task depends upon the
output quality of its predecessor. This work assumes linear error functions.

The problem of imprecise computations for periodic tasks was first addressed in [10,17]. A more detailed
study appeared in [3] where the possible application areas are classified as “error noncumulative” and

1When considering the periodic task model, the execution time of each task instance (ti j ) should be considered as
a separate unknown (see Section 36.4).
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“error cumulative.” In “error cumulative” applications, such as radar tracking, an optional instance must
be executed completely at every (predetermined) k invocations. The authors further proved that the
case of error cumulative jobs is an NP-Complete problem. On the other hand, in “error noncumulative”
applications, errors (or optional parts left unexecuted) have no effect on the future instances of the
same task. Well-known examples of this category are image/speech processing, information retrieval, and
display tasks. For these jobs, the authors showed how to guarantee a feasible schedule by constantly favoring
mandatory parts and proposed a class of heuristics to minimize the total error through Mandatory-First
approach (see Section 36.4.1). All heuristics, except one, operate independently from the nature of error
functions.

On-line scheduling of imprecise computation tasks has been examined in [11]. The algorithms address
separately the cases where the workload consists solely of on-line tasks and of a mix of on-line and off-line
tasks. Only identical linear error functions are considered. However, Baruah and Hickey later proved [18]
that, in general, an on-line algorithm for imprecise computation tasks may perform arbitrarily badly when
compared to a clairvoyant scheduler.

Performance metrics other than maximizing the (weighted) total error have been also studied within
the imprecise computation model. In [19], two polynomial-time algorithms are presented for unit-weight
error functions to obtain a “balanced” distribution of error among imprecise computation tasks. In other
words, the aim is to minimize the maximum error. For the problem of minimizing maximum error,
Ho, Leung, and Wei [20] gave an O(n2)-time algorithm for a single processor and an O(n3log 2n)-time
algorithm for multiprocessors.

Leung and Wong investigated the problem of minimizing the number of tardy tasks for a given maximum,
tolerable error; and showed it to be NP-hard [21]. In [22], minimizing the average response time, while
keeping the total error less than a threshold has been shown to be NP-hard for almost every reasonable
model.

36.3.2 Increased-Reward-with-Increased-Service Model

The Increased-Reward-with-Increased-Service (IRIS) framework allows tasks to get increasing reward
with increasing service, without an upper bound on the execution times of the tasks and without the
separation between mandatory and optional parts [4]. A task executes for as long as the scheduler allows.
Typically, a nondecreasing concave reward function is associated with each task’s execution time. In [4,5]
the problem of maximizing the total reward in a system of independent aperiodic tasks is explored. An
optimal polynomial-time solution with static task sets (identical ready times) is presented, as well as two
extensions that include mandatory parts and on-line policies for dynamic task arrivals.

36.3.3 Quality-of-Service-Based Resource Allocation Model

A QoS-based resource allocation model has been proposed in [7,12,23,24]. In that study, the problem is to
optimally allocate multiple resources to the various applications such that they simultaneously meet their
minimum requirements along multiple QoS dimensions and the total system utility is maximized. In one
aspect, this can be viewed as a generalization of optimal CPU allocation problem in RB scheduling, to
multiple resources and multiple reward metrics (quality dimensions). Further, dependent and independent
quality dimensions are separately addressed for the first time in this work.

However, a fundamental assumption of Q-RAM model is that the resource allocation is made in terms
of utilization of resources, usually expresssed as a fraction (percentage) of the available resource capac-
ity. In the CPU allocation case for the periodic real-time tasks, this translates to identical service time
allocation assumption for each instance of a given task. The periodic RB scheduling framework we con-
sider in this chapter assumes that the reward accrued has to be computed separately over each instance
for the periodic case. In other words, we are not making the assumption that all the instances of a
periodic task will have the same CPU allocation time, which can lead to suboptimal results for some
settings.
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In [7], Rajkumar et al. addressed the case of a single resource and multiple QoS (reward) dimensions and
provided a pseudopolynomial time algorithm for continuous concave utility functions. In [12], the problem
of a single resource and two or more QoS dimensions (with one dimension being discrete and dependent
on another) is explored. The problem is proven to be NP-hard, and an approximation algorithm based
on Concave Majorant Optimization is presented. Then, the authors show that the problem of multiple
resources and single QoS dimension can be reduced to a mixed integer programming problem; they also
report the run-time of example problems when solved by commercial software packages.

Lee et al. further considered discrete QoS dimensions in [23], as opposed to the continuous
QoS dimension assumption of their previous research in [7]. They proposed two approximation al-
gorithms for the case of single resource and multiple quality dimensions. The first algorithm yields a
solution that is within a known bounded distance from the optimal solution, while the second is capable
of returning an allocation whose distance from the optimal solution can be reduced by giving more time
to the allocation routine.

Finally, the more general case of multiple resources and QoS dimensions was addressed in [24]. Due to
the intractable nature of the problem, a mixed integer programming formulation is developed to yield near-
optimal results, followed by an approximation algorithm based on local search techniques. The execution
time and quality distance to the optimal solution of these algorithms are experimentally evaluated.

36.4 Periodic Reward-Based Scheduling

Many real-time tasks are periodic in nature: Assuming that it is ready for execution at time = 0, a periodic
real-time task Ti with period Pi will generate a new task instance (job) every Pi time units. Specifically, the
j th instance of Ti (denoted by Ti j ) is invoked at t = ( j − 1) · Pi and it has to be completed by the time of
next invocation at t = j · Pi (in other words, we will assume that the relative deadline of each instance is
equal to its period).

A large number of periodic real-time applications can be modeled by the RB scheduling framework.
Well-known examples are periodic tasks that receive, process, and transmit video, audio, or compressed
images and information retrieval tasks. With the advance of multimedia and networking technologies,
this class of applications are likely to become more and more widespread. Moreover, these applications
readily admit a mandatory/optional semantic distinction: the mandatory part produces an image, frame,
or output of acceptable quality and the optional part improves on it.

The extension of the basic RB task model to the periodic execution settings is relatively simple: a schedule
of periodic RB tasks is feasible if mandatory parts meet their deadlines at every task invocation. Note that
the optional execution times of different instances belonging to a given periodic task Ti can be potentially
different.

The common performance metric [2,3] for the feasible periodic RB task schedules is the average
cumulative reward, given by

REWCUM = Pi

P

n∑
i=1

P/Pi∑
j=1

Ri (ti j ) (36.5)

where P is the hyperperiod, that is, the least common multiple of P1, P2, . . . , Pn and ti j is the amount of
CPU time assigned to the j th instance of optional part of task Ti (i.e., Oi j ). Observe that it is necessary
and sufficient to generate a schedule that maximizes the total reward during the hyperperiod P , since the
schedule will repeat itself every P time units. Also note that, in the above expression, the average reward
of Ti is computed over the number of its invocations during the hyperperiod P .

Thus, the solution to the periodic RB scheduling problem must

1. ensure that the mandatory part of each periodic task instance meets its deadline, and
2. determine the optional execution times of all the periodic task instances to maximize the perfor-

mance metric given by Equation (36.5).
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FIGURE 36.3 An optimal schedule.

36.4.1 Mandatory-First Solutions

In one of the earliest attempts attacking the periodic RB scheduling problem, Chung, Liu, and Lin [3] gave
priority to guaranteeing the feasibility constraint. To achieve this, they proposed statically assigning higher
scheduling priorities to all the mandatory parts with respect to the optional parts. In other words, in this
Mandatory-First strategy, no optional part is scheduled if there is a ready mandatory part in the system.
In their original proposal, the relative scheduling priorities of mandatory parts are determined according
to the Rate Monotonic Scheduling policy [25], but it is clear that other policies can be also used. For the
priority assignment to the optional parts, the authors proposed a number of heuristics, such as considering
the deadlines, periods, or best incremental rewards. As an example, consider an RB task set consisting of
two tasks, where P1 = 8, m1 = 2, o1 = 2, P2 = 16, m2 = 6, o2 = 10. Let the reward functions of T1

and T2 be given by f1(t1) = 8 · t1 and f2(t2) = 2 · t2. Then, an “intelligent” Mandatory-First algorithm,
considering that the reward associated by O1 is much higher than that of O2, would produce the schedule
shown in Figure 36.2 yielding a total cumulative reward of 12.

Yet, it is easy to see that the optimal solution for this specific problem instance involves delaying the
execution of M2 to the favor of “valuable” O1, giving a total cumulative reward of 18 (see Figure 36.3).

We can see that the reward performance of the mandatory-first schemes is inherently limited: In the
example above, the best mandatory-first scheme could yield only 2/3 of the optimal reward. In fact, in [2] it
is proven that, in the worst-case, the relative performance of the mandatory-first schemes can be arbitrarily
bad when compared to the optimal policy (i.e., the reward ratio of the best mandatory-first scheme to the
reward of the optimal policy can be arbitrarily close to 0). It is clear that the optimal solution must be
based on principles fundamentally different from Mandatory-First heuristic.

36.4.2 Optimal Solution

The difficulty involved in the periodic RB scheduling problem stems from the fact that the feasibility
and reward maximization objectives must be achieved simultaneously. Moreover, even if we temporarily
disregard the feasibility constraint above, the optimization problem itself remains challenging: the number
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of unknowns to be determined (ti j ’s in the previous expression (36.5)) can be potentially exponential in
the number of tasks, n. Consequently, any efficient solution to the problem hinges in the first place on
being able to reduce the number of unknowns without sacrificing optimality.

The theorem below establishes that for the most common (i.e., concave and linear) reward functions,
the number of unknowns is only n (the number of tasks):

Theorem 36.1 (from [2])

If all the reward functions are concave, then the periodic RB scheduling problem has an optimal solution in
which a given task Ti receives the same optional service time at every instance, that is, ti j = tik = ti ∀ j, k.

The same study [2] also shows that, once t1, . . . , tn are determined, then any periodic real-time scheduling
policy that can achieve 100% CPU utilization may be used to obtain a feasible schedule with these assign-
ments. Examples of such policies are Earliest-Deadline-First (EDF) [25] and Least-Laxity-First (LLF) [26].

Interestingly, Theorem 36.1 extends also to the identical multiprocessor settings [2]. However, in general,
EDF and LLF cannot be used to achieve full utilization on multiprocessors. An example policy that can be
adopted for this purpose is proposed by Bertossi and Mancini in [27].

Theorem 36.1 is crucial in reducing the number of unknowns to n, but it is based on an existence
proof and the problem of computing t1, . . . , tn efficiently (in polynomial-time) is equally important. One
can obtain the following nonlinear optimization problem formulation to compute the optimal optional
service times t1, . . . , tn:

Maximize
n∑

i=1

fi (ti ) (36.6)

subject to
n∑

i=1

P

Pi
ti ≤ P −

n∑
i=1

P

Pi
mi (36.7)

0 ≤ ti ≤ oi , i = 1, . . . , n (36.8)

The constraint set (36.8) reflects that negative service times do not have a physical interpretation and
executing an optional part Oi beyond its worst-execution time oi does not increase the reward. The
constraint (36.7) encodes the fact that the sum of optional and mandatory service times cannot exceed
the total available time P (the length of the hyperperiod).

The work in [2] presents a polynomial-time algorithm to solve the problem above. Observe that if the
available time can accommodote all the optional parts in their entirety, that is, if

∑n
i=1

P
Pi

(mi + oi ) ≤ P ,
then setting ti = oi ∀i clearly maximizes the objective function. Otherwise, because of the nondecreasing
nature of reward functions, we should fully use the timeline and consider the constraint (36.7) as an
equality constraint. Thus, the algorithm in [2] temporarily ignores the inequality constraints (36.8) and
first produces a solution that only satisfies the equality constraint through Lagrange multipliers technique.
In case that the constraint set (36.8) is violated, then the solution is iteratively improved using the Kuhn-
Tucker optimality conditions [28] for nonlinear optimization problems. In [2], it is formally proven that
this iterative algorithm is guaranteed to converge to the optimal solution in time O(n2 log n).

Though the solution above addresses the most common task and reward function models, it is worth
investigating the possible extensions to different models. Clearly, Theorem 36.1 is the key, eliminating a
potentially exponential number of unknowns (the ti j values) and, arguably, it is very hard to solve the
problem without such a property. In fact, [2] also established that the result on the optimality of identical
execution times no longer holds if we assume that

1. the relative deadline of a task instance can be smaller than its period, or
2. a static-priority assignment (such as Rate-Monotonic Priority Assignment) is to be used as opposed

to EDF/LLF, or
3. the concavity assumption about the reward functions is relaxed.
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The solution to the periodic RB scheduling problem with any of the above assumptions is still open as
of this writing. Further, it was formally proven in [2] that the concavity assumption is absolutely necessary
for computational tractability, even for tasks sharing a common period and deadline:

Theorem 36.2 (from [2])

The RB scheduling problem with convex reward functions is NP-hard.

36.5 Power-Aware Scheduling

The RB scheduling framework is used when attempting to assign CPU cycles to various applications
to maximize the reward (user-perceived utility). Many of these applications do also run on embedded,
mobile, and wireless computing devices that rely on battery power. Thus, power management has been
recently elevated to a major research area in computer science and engineering. Different components of
computer systems, such as CPU, memory, disk subsystems, and network interfaces have been subject to
various energy-efficiency studies. The reader is referred to [29,30] for comprehensive surveys.

One powerful and increasingly popular technique, known as Variable Voltage Scheduling (VVS) or
Dynamic Voltage Scaling (DVS), is based on reducing CPU energy consumption through the adjustment
of the CPU speed by varying both the supply voltage and the clock frequency. The technique is motivated
by the observation that the dynamic power dissipation Pd of an on-chip system is given by the following
formula:

Pd = C f · V 2
s · f

where C f is the effective switched capacitance, Vs is the supply voltage, and f is the frequency of the clock.
Hence, in principle, it is possible to obtain significant power savings by simultaneously reducing the supply
voltage and the clock frequency. On the other hand, clearly, the response time will increase in a linear
fashion when we reduce the clock frequency. Thus, trading the speed for energy savings is the main idea
in Power-Aware Scheduling. The exact form of power/speed relation depends on the specific technology
in use, but as a rule, it is a strictly increasing convex function, specifically a polynomial of at least the
second degree. The prospects of reducing the energy consumption through DVS have been materialized
in recently-announced processors such as Transmeta’s Crusoe processor and Intel Xscale architecture.

Note that in its simplest form, the power/speed relation can be exploited by using the maximum CPU
speed when executing tasks and shutting down the CPU whenever the system is (likely to stay) idle for an
acceptably long period. However, this predictive shutdown technique remains inefficient and suboptimal
even for a scheduler with perfect knowledge of idle intervals, due to the convex dependence between the
speed and the power consumption: a better approach is to reduce the CPU speed while executing tasks.

Early works on DVS focused on task systems with no explicit deadlines. Weiser et al. adopted an
approach where time is divided into 10–50 msec intervals, and the CPU clock speed (and the supply
voltage) is adjusted using predictions based on processor utilization in recent intervals [31]. Govil, Chan,
and Wasserman proposed and evaluated several predictive and nonpredictive approaches for voltage
changes [32].

In real-time systems, where tasks have to meet their timing constraints, one cannot arbitrarily reduce
the CPU speed. Thus, the real-time power-aware scheduling (RT-PAS) problem2 can be stated as follows:
Determine the CPU speed to minimize the total energy consumption while still meeting all the dead-
lines. Observe that, the solution to the RT-PAS problem depends on the task model under consideration

2Alternative names that appeared in the literature for the same framework include real-time dynamic voltage scaling
(RT-DVS) and real-time variable voltage scheduling (RT-VVS).
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(aperiodic/periodic/hybrid task sets or preemptive/nonpreemptive scheduling). Further, clearly, the opti-
mal CPU speed in the solution may be a function of the time and/or identity of the running task.

RT-PAS research can be traced back to the important work of Yao, Demers, and Shenker [33], where
the authors provided a polynomial-time algorithm to compute the optimal speed assignments assuming
aperiodic tasks and worst-case execution times. Other works in this area include heuristics for extended
task and system models, such as on-line scheduling of aperiodic and periodic tasks [34], nonpreemptive
RT-PAS [35], and RT-PAS with upper bound on the voltage change rates [36].

36.5.1 Modeling Real-Time Workload and Energy on a Variable
Speed CPU

Traditional real-time scheduling theory mandates the consideration of the worst-case workload, which
translates to worst-case execution times under a fixed CPU speed. On a variable speed CPU, it is clear that
the execution time of a task is dependent on both the number of CPU cycles required, and the CPU speed.
Consequently, the worst-case number of CPU cycles is adopted as the measure of the worst-case workload.

On a variable speed CPU, the processor speed S (expressed in the number of CPU cycles per time
unit) can be changed between a lower bound Smin and an upper bound Smax. We will assume that the
speed can be varied continuously over the range [Smin, Smax] and that the supply voltage is also adjusted
in accordance with the speed. We will normalize the speed values with respect to Smax; that is, at any time,
0 ≤ Smin ≤ S ≤ Smax = 1.

We will denote by Ci the number of CPU cycles required by the task Ti . If a task executes with constant
speed S, then its worst-case execution time is given by Ci /S. Observe that, since Smax = 1.0, the worst-case
execution time of the task Ti under the maximum speed is Ci time units.

In current processor arcitectures implemented in CMOS technology, the CPU power consumption of
task Ti executing at the speed S is given by a strictly increasing and convex function gi (S). In general,
gi (S) can be represented by a polynomial of the second or the third degree [33,36]. If the task Ti occupies
the processor during the interval [t1, t2] and if the processor speed changes according to a function S(t),
then the energy consumed in this interval is E (t1, t2) = ∫ t2

t1
gi (S(t))dt. Note that the last expression simply

becomes E (t1, t2) = gi (S) · (t2 − t1) if the speed S is constant during the interval.

36.5.2 Correlating Real-Time Power-Aware Scheduling
to Reward-Based Scheduling

Before addressing the specific case of periodic tasks, in this section, we correlate the general RB scheduling
problem given by (36.2), (36.3), and (36.4) in Section 36.2 to general RT-PAS problem. We underline
that the relation we prove is preserved regardless of the specific task model (preemptive/nonpreemptive
scheduling, independent/dependent task sets) or the number of the processors as long as we make the same
assumptions for both RB Scheduling and RT-PAS problems. First, we state the general RT-PAS Problem.

36.5.2.1 Real-Time Power-Aware Scheduling Problem

Consider a CPU with variable voltage/speed S(Smin ≤ S ≤ Smax) facility, and a set T = {T1, . . . , Tn}
of hard real-time tasks, in which each task Ti is subject to a worst-case workload of Ci expressed in the
number of required CPU cycles. The power consumption of the task Ti is given by a strictly increasing
convex function gi (S), which is a polynomial of at least the second degree. Given a time point Z, determine
the energy-optimal schedule (EOS) and the processor speed S(t) in the interval [0, Z], such that EOS is
feasible and valid, and the total energy consumption E (0, Z) = ∫ Z

0 gi (S(t))dt is minimized.
A major difficulty with the real-time power-aware scheduling (RT-PAS) problem lies in the possibility of

having a nonconstant speed in the optimal solution: determining the exact form of S(t) for every point in
the interval [0, Z] may be a serious challenge. Fortunately, the convexity assumption about gi (S) makes
possible to prove the following helpful property (see [37] for a formal proof).
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Proposition 36.1

A task Ti requiring Ci CPU cycles can be executed with a constant speed Si , without increasing the energy
consumption or the completion time.

That is, we can assume that the CPU speed will not change while executing a given task (task instance
for the periodic task model), without compromising the optimality or feasibility. However, note that
the optimal speed may be different for different tasks. We can now formulate the general RT-PAS as an
optimization problem where the aim is to determine the speeds S1, . . . , Sn so as to

Minimize
n∑

i=1

Ci

Si
· gi (Si ) (36.9)

subject to Smin ≤ Si ≤ Smax, i = 1, . . . , n (36.10)

There exists a feasible and valid schedule with {Si } values (36.11)

The expression Ci

Si
· gi (Si ) in the objective function (36.9) quantifies the energy consumption of task Ti

when run at the speed Si . The constraint set (36.10) encodes the lower and upper bounds on the speed,
whereas the constraint (36.11) enforces the feasibility and validity.

Proposition 36.2

Solving an instance of RT-PAS problem is equivalent to solving an instance of RB Scheduling problem with
concave reward functions.

Proof
Observe that determining Si is effectively equivalent to determining the CPU time allocation of Ti , which
will be denoted by Xi (Xi = Ci /Si ). In addition, the minimum and maximum speed bounds impose
explicit bounds on Xi . Specifically, for any task Ti , the CPU allocation Xi should lie in the interval
[Xmin, Xmax], where Xmin = Ci

Smax
and Xmax = Ci

Smin
. Thus, we can rewrite RT-PAS as to determine the CPU

time allocations {Xi } so as to

Minimize
n∑

i=1

Xi · gi

(
Ci

Xi

)
(36.12)

subject to
Ci

Smax
≤ Xi ≤ Ci

Smin
i = 1, . . . , n (36.13)

There exists a feasible and valid schedule with {Xi } values (36.14)

That is, Ti must receive service for at least Xmin units, which can be considered as a mandatory execution.
Depending on the specific speed assignment Si , Ti can receive an additional service of up to Xmax − Xmin,
which can be seen as an optional execution. Moreover, the lower the speed Si , the longer the “optional”
execution beyond Xmin and the lower the energy consumption (see Figure 36.4). In addition, minimizing
the energy consumption is equivalent to maximizing energy savings. Thus, consider the following variable
substitutions:

mi = Ci

Smax

ti = Xi − mi

oi = Ci

Smin
− Ci

Smax

Ri (ti ) = −
(

ti + Ci

Smax

)
gi

(
Ci

ti + Ci

Smax

)
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Xmin

Xmax

Energy Consumption

T i

FIGURE 36.4 Energy consumption as a function of CPU allocation.

Using this transformation, we obtain a new form for the RT-PAS problem:

Maximize
n∑

i=1

Ri (ti ) (36.15)

subject to 0 ≤ ti ≤ oi i = 1, . . . , n (36.16)

There exists a feasible and valid schedule with {mi } and {ti } values (36.17)

The final formulation is an instance of the general RB scheduling problem defined in Section 36.2 by
Equations (36.2), (36.3), and (36.4). Further, the reward function Ri (ti ) above is concave, since

(
ti + Ci

Smax

)
gi

(
Ci

ti + Ci

Smax

)

is convex. To see this, we can use the result from [28] stating that if a and b are both convex functions and
if a is increasing, then a(b(x)) is also convex. Thus, by setting

h(ti ) = Ci

ti + Ci

Smax

and observing that the multiplication by (ti + Ci

Smax
) does not affect the convexity, we justify the concavity

of Ri (ti ) = −gi (h(ti )).

36.5.3 Determining Optimal Speed Assignments for Periodic
Real-Time Tasks

In this section, we focus on the most common type of real-time task models, namely, periodic task sets.
Thus, we consider a set T = {T1, . . . , Tn} of n periodic real-time tasks. As in Section 36.4, the period of
Ti is denoted by Pi , which is also equal to the deadline of the current invocation. All tasks are assumed to
be independent and ready at t = 0. The worst-case number of CPU cycles required by each instance3 of

3Note that we restrict our power-aware scheduling discussion to hard real-time tasks that must be executed in their
entirety. That is, we do not address the case where each task can be decomposed to a mandatory and optional part.
The reader is referred to a recent study [38] for the power-aware scheduling of RB tasks.



Periodic Reward-Based Scheduling and Its Application 36-13

Ti is denoted by Ci . We will assume that tasks can be preempted during the execution and the overhead
of changing voltage/speed is negligible.

We define U as the total utilization of the task set under maximum speed Smax = 1, that is, U = ∑n
i=1

Ci

Pi
.

Note that the schedulability theorems for periodic real-time tasks [25] imply that U ≤ 1 is a necessary
condition to have at least one feasible schedule.

Thus, periodic RT-PAS problem can be stated as: Given a set of periodic tasks, determine the optimal
speed assignments of all the task instances to minimize total energy consumption while still meeting all the
deadlines.

Note that the optimal solution needs to consider the possibility of assigning different speeds to different
instances of a given task. Fortunately, using Proposition 36.2 that established the equivalence between RB
(but constant-speed) scheduling problem and RT-PAS problem, and Theorem 36.1, we can immediately
assert that in the optimal solution, all the instances of a given task will have the same CPU allocation,
thus the same speed. Moreover, the polynomial-time solution of the periodic RB scheduling problem [2]
can be adopted to compute the optimal speed assignments (refer to [39] for details). Finally, thanks to
Theorem 36.1, we can state that EDF and LLF policies may be used to obtain a feasible schedule with these
speed assignments.

Moreover, if the power consumption functions of all the tasks can be assumed to be identical (a realistic
assumption in many systems), that is, if gi (S) = g j (S) = g (S) ∀i, j , a stronger result can be proven
[40]:

Proposition 36.3

If task power consumption functions are identical, then the optimal CPU speed to minimize the total energy
consumption while meeting all the deadlines of the periodic hard real-time task set is constant and equal to
Sopt = max{Smin, U }, where U = ∑n

i=1
Ci

Pi
.

In other words, the optimal speed with identical power consumption functions is equal to the utilization
of the task set under maximum speed (namely, U ), subject to the Smin constraint. Observe that this speed
choice results in an effective utilization of

∑n
i=1

Ci

Sopt · Pi
= 1.0 (a fully utilized timeline), assuming that the

lower bound on the CPU speed is not violated. Thus, the optimal solution consists in “stretching out” the
CPU allocations of all task instances in equal proportions.

Note that the solution presented above is static in the sense that it assumes a worst-case work-
load for each periodic task instance. This is necessary because any solution for hard real-time systems
must provision for the worst-case scenarios. However, in practice, many real-time applications com-
plete before presenting their worst-case workload [41]. Thus, at run-time, the static optimal CPU speed
can be further reduced when early completions do occur. A class of dynamic scheduling techniques
to adjust the speed to the actual workload were investigated in depth in recent years (see [40,42,43]
as representative studies). A crucial consideration in dynamic power-aware scheduling is to avoid deadline
misses when reducing the speed and reclaiming unused computation times (slack). Thus, the proposed
dynamic techniques differ in their ability to exploit slack while preserving the feasibility.

If the actual workload is likely to differ from the worst-case, then additional energy gains can be
achieved through a speculative strategy. In this approach, the CPU speed is aggressively reduced in
anticipation of early completions. Clearly, such a speculative strategy risks violating the timing con-
straints if the actual workload of tasks turns out to be higher than predicted. Consequently, the scheduler
must guarantee that all the deadlines will be met by adopting a high speed in the later parts of the
schedule, should there be a need. The idea of speculative speed reduction was first introduced in [44]
for tasks sharing a common period. The works in [40,42,45] provide representative research on spec-
ulative scheduling policies for general periodic real-time tasks. Finally, the study in [46] presents a
detailed performance comparison of state-of-the-art dynamic and speculative dynamic voltage scaling
techniques.
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36.5.4 Practical Considerations

In this section, we look at two issues that must be carefully considered in any practical real-time system
that uses Dynamic Voltage Scaling. The first one is the delay overhead involved in performing the speed
and supply voltage reductions. This overhead may be particularly significant especially for the dynamic
scheduling schemes that change the CPU speed at run-time upon detecting early completions.

While Namgoong, Yu, and Meg reported the time taken to reach steady state at the new voltage level
as under 6 ms/V as of 1996 [47], Burd et al. indicate that this delay is limited by 70 µs in the new ARM
V4 processor based system, including frequency transition [48]. For the Low-Power lpARM processor,
clock frequency transitions take approximately 25 µs [49]. In a study based on StrongARM SA-1100
processor operating under constant supply voltage, this delay is reported to be less than 150 µs [50]. When
modifying the supply voltage and the clock frequency of the StrongARM SA-1100 processor, Pouwelse,
Langendoen, and Sips have found that the voltage and speed increase is rapidly handled (40 µs), but the
decrease can take up to 5.5 ms [51]. A full voltage transition can be performed in less than 300 µs in
the Transmeta Crusoe 5400 processor [52]. Thus, the technology trends are toward even more efficient
DVS-enabled processors and it can be claimed that the overhead involved can be ignored in many cases,
especially when the speed changes occur only at context switch time. In case that this overhead is not
negligible, it can be incorporated into the worst-case workload of each task [53].

The second issue is related to the fact that, unlike the assumptions of this section’s framework where the
CPU speed can be changed continuously in the interval [Smin, Smax], current technologies support only a
finite number of speed levels [52], though the number of available speed levels is likely to increase in the
future. The solutions obtained for the continuous speed model can be always adopted to these settings
by choosing the lowest speed level that is equal to or greater than the value suggested by the algorithms.
Our preliminary experimental results indicate that this simple approach results in an energy overhead of
15–17% with respect to continuous speed settings, when the number of available speed levels is only 5.
When the number of speed levels exceeds 30, the difference reduces to 3%. More comprehensive recent
studies that address this issue and other overhead sources in dynamic voltage scaling can be found in [43,54].

36.6 Conclusion

In this chapter, we introduced the RB and the RT-PA Scheduling frameworks, and we established the
relationship between these two models. RB scheduling is a general framework which unifies hard and
soft real-time scheduling theories by addressing feasibility and maximum utility issues simultaneously.
Assuring timely completion of mandatory parts guarantees an acceptable overall performance, while op-
timal scheduling of optional parts maximizes the total user-perceived utility (reward). RB scheduling
promotes graceful degradation and resource utilization where worst-case guarantees cannot be given
due to faults, overload conditions and for applications that admit an intratask mandatory/optional di-
vision. However, simultaneously achieving feasibility and optimality is not a trivial problem, since the
reward functions associated with the optional parts bring another dimension to the traditional scheduling
framework.

After introducing various research works and models that can be classified as part of the RT-RB Schedul-
ing, we focused on RB scheduling for periodic real-time tasks. According to a main result due to [2], when
the reward functions are linear and/or concave (the most common case), it is always possible to find
an optimal schedule where the service time of a given task remains constant from instance to instance.
This, in turn, implies that well-known scheduling policies such as EDF and LLF can be used to meet all
the timing constraints with these optimal assignments. Moreover, it is possible to compute these opti-
mal service times in polynomial time by solving iteratively a non-linear optimization problem. Finally,
we briefly commented on the existing difficulties when one attempts to extend these results to different
models.

RT-PAS has recently become a major research area with ever increasing emphasis on energy saving
strategies for portable and embedded devices that rely on battery power. Thanks to Dynamic Voltage
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Scaling technology, it is possible to obtain considerable energy savings by simultaneously reducing the
CPU speed and the supply voltage. However, this is accompanied by a linear increase in response time, which
may compromise the correctness of hard real-time systems. Thus, RT-PAS solutions focus on minimizing
the total energy consumption (through speed reduction) while still meeting all the deadlines.

We have shown that the RT-PAS problem can be solved within the framework of RB scheduling, through
an appropriate transformation. For the most common, periodic real-time task model, it turns out that
the optimal speed to meet all the deadlines while minimizing the energy consumption is constant and
equal to the utilization (load) of the task set under maximum speed, if the power consumption of CPU is
independent of the running task.
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[2] H. Aydin, R. Melhem, D. Mossé, and P.M. Alvarez. Optimal reward-based scheduling for periodic
real-time tasks. IEEE Transactions on Computers, 50(2): 111–130, February 2001.

[3] J.-Y. Chung, J. W.-S. Liu, and K.-J. Lin. Scheduling periodic jobs that allow imprecise results. IEEE
Transactions on Computers, 19(9): 1156–1173, September 1990.

[4] J. K. Dey, J. Kurose, D. Towsley, C.M. Krishna, and M. Girkar. Efficient on-line processor scheduling
for a class of IRIS (increasing reward with increasing service) real-time tasks. Proceedings of ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems, May 1993.

[5] J. K. Dey, J. Kurose, and D. Towsley. On-line scheduling policies for a class of IRIS (increasing reward
with increasing service) real-time tasks. IEEE Transactions on Computers, 45(7):802–813, July 1996.

[6] J. W.-S. Liu, K.-J. Lin, W.-K. Shih, A. C.-S. Yu, C. Chung, J. Yao, and W. Zhao. Algorithms for
scheduling imprecise computations. IEEE Computer, 24(5): 58–68, May 1991.

[7] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek. A resource allocation model for QoS
management. In Proceedings of 18th IEEE Real-Time Systems Symposium, December 1997.

[8] W.-K. Shih, J. W.-S. Liu, and J.-Y. Chung. Algorithms for scheduling imprecise computations to
minimize total error. SIAM Journal on Computing, 20(3), July 1991.

[9] K.-J. Lin, S. Natarajan, and J. W.-S. Liu. Imprecise results: utilizing partial computations in real-time
systems. In Proceedings of 8th IEEE Real-Time Systems Symposium, December 1987.

[10] J. W.-S. Liu, K.-J. Lin, and S. Natarajan. Scheduling real-time, periodic jobs using imprecise results.
In Proceedings of 8th IEEE Real-Time Systems Symposium, December 1987.

[11] W.-K. Shih and J. W.-S. Liu. On-line scheduling of imprecise computations to minimize error. SIAM
Journal on Computing, October 1996.

[12] C. Lee, R. Rajkumar, J. P. Lehoczky, and D. P. Siewiorek. Practical solutions for QoS-based resource
allocation problems. In Proceedings of 19th IEEE Real-Time Systems Symposium, December 1998.

[13] K.I.J. Ho, J.Y.T. Leung, and W.D. Wei. Scheduling imprecise computations with 0/1 constraint.
Discrete Applied Math., 78, 117–132, 1997.

[14] W.-K. Shih, J. W.-S. Liu, J.-Y. Chung, and D.W. Gillies. Scheduling tasks with ready times and
deadlines to minimize average error. ACM Operating Systems Review, July 1989.

[15] J. Y. T. Leung, V. K. M. Yu, and W. D. Wei. Minimizing the weighted number of tardy task units.
Discrete Applied Math., 51, 307–316, 1994.

[16] W. Feng and J.W.-S. Liu. Algorithms for scheduling real-time tasks with input error and end-to-end
deadlines. IEEE Transactions on Software Engineering, 23(2): 93–106, February 1997.

[17] J.-Y. Chung and J. W.-S. Liu. Algorithms for scheduling periodic jobs to minimize average error. In
Proceedings of 9th IEEE Real-Time Systems Symposium, December 1988.

[18] S. K. Baruah and M. E. Hickey. Competitive on-line scheduling of imprecise computations. IEEE
Transactions on Computers, 47(7): 1027–1033, September 1998.

[19] W.-K. Shih and J. W.-S. Liu. Algorithms for scheduling imprecise computations with timing con-
straints to minimize maximum error. IEEE Transactions on Computers, 44(3):466–471, March 1995.



36-16 Handbook of Scheduling: Algorithms, Models, and Performance Analysis

[20] K. I. J. Ho, J. Y. T. Leung, and W. D. Wei. Minimizing maximum weighted error for imprecise
computation tasks. Journal of Algorithms, 16, 431–452, 1994.

[21] J. Y. T. Leung and C. S. Wong. Minimizing the number of late tasks with error constraint. Information
and Computation, 106, 83–108, 1993.

[22] J. Y. T. Leung, T. W. Tam, C. S. Wong, and G. H. Young. Minimizing mean flow time with error
constraint. Algorithmica, 20, 101–118, 1998.

[23] C. Lee, R. Rajkumar, J. P. Lehoczky, and D. P. Siewiorek. On quality of service optimization with
discrete QoS options. In Proceedings of the IEEE Real-Time Technology and Applications Symposium,
June 1998.

[24] C. Lee, J. P. Lehoczky, D. P. Siewiorek, R. Rajkumar, and J. Hansen. A scalable solution to the
multi-resource QoS problem. In Proceedings of 20th IEEE Real-Time Systems Symposium, December
1999.

[25] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in hard real-time envi-
ronment. Journal of ACM 20(1), 1973.

[26] A. K. Mok. Fundamental Design Problems of Distributed systems for the Hard Real-Time Environment.
Ph.D. Dissertation, MIT, 1983.

[27] A. Bertossi and L. Mancini. Scheduling algorithms for fault-tolerance in hard real-time systems.
Real Time Systems Journal, 7, 1994.

[28] D. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, Reading Massachusetts, 1984.
[29] R. GrayBill and R. Melhem (editors). Power Aware Computing, Series in Computer Science. Kluwer

Academic/Plenum Publishers, May 2002.
[30] P. J. M. Havinga and G. J. M. Smith. Design techniques for low-power systems. Journal of Systems

Architecture, 46(1): 1–21, January 2000.
[31] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU energy. In USENIX

Symposium on Operating Systems Design and Implementation, 13–23, 1994.
[32] K. Govil, E. Chan, and H. Wasserman. Comparing algorithms for dynamic speed-setting of a

low-power CPU. In ACM International Conference on Mobile Computing and Networking, 13–25,
1995.

[33] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. IEEE Annual
Foundations of Computer Science, 374–382, 1995.

[34] I. Hong, M. Potkonjak, and M. B. Srivastava. On-line scheduling of hard real-time tasks on variable
voltage processor. In Computer-Aided Design, ICCAD’98, 653–656, 1998.

[35] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. Srivastava. Power optimization of variable voltage
core-based systems. In Design Automation Conference, 1998.

[36] I. Hong, G. Qu, M. Potkonjak, and M. Srivastava. Synthesis techniques for low-power hard real-time
systems on variable voltage processors. In Proceedings of 19th IEEE Real-Time Systems Symposium,
RTSS’98, Madrid, December 1998.

[37] H. Aydin. Enhancing Performance and Fault Tolerance in Reward-Based Scheduling. Ph.D. Disserta-
tion, University of Pittsburgh, August 2001.
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