
Periodic Charging Scheme for Fixed-Priority

Real-Time Systems with Renewable Energy

Mario Bambagini1,2 and Hakan Aydin3

1Scuola Superiore Sant’Anna, Pisa, Italy e-mail: m.bambagini@sssup.it
2University of Modena and Reggio Emilia, Italy e-mail: mario.bambagini@unimore.it

3George Mason University, Fairfax, VA, USA e-mail: aydin@cs.gmu.edu

Abstract—Energy harvesting systems are gaining increasing
importance in the embedded systems domain, as they provide an
effective solution to bridge the gap between the energy supply and
demand. However, the variable nature of the energy supply rate
due to the environmental conditions creates serious challenges
for embedded real-time systems targeting predictability.

This paper presents a proactive and highly predictable frame-
work, called Periodic Charging Scheme (PCS), for fixed-priority
real-time systems with renewable energy. The main idea of
the algorithm is to plan in advance for periodic charging and
discharging of the battery to avoid energy outage, while still
meeting the timing constraints. The algorithm is specifically
designed to exploit the low-power states of modern processors,
to enable effective power state transitions when the battery is re-
charged on a periodic basis. We also offer online enhancements
to opportunistically extend the duration of charging phases and
improve the responsiveness of the potential non-real-time work-
loads without compromising feasibility. Extensive simulations
show that the proposed approach outperforms the state-of-the-
art algorithms in terms of the number of task sets that meet the
timing constraints under specified energy profiles, when a realistic
power model with state transition overheads is assumed.

I. INTRODUCTION

Resource management for real-time embedded systems, that

offer predictability in terms of timing constraints, has always

been a prime research and development area. In the last

decade, power-aware resource management and scheduling

for embedded systems has received increasing attention. One

of the major factors in this trend is the proliferation of

small footprint devices that rely on battery power, which is

fairly limited in practice. Hence, several power management

techniques to save energy at run-time and extend the lifetime

of the system before it runs out of energy were proposed.

Among these techniques are Dynamic Power Management

([1], [2], [3]) and Dynamic Voltage and Frequency Scaling

([4], [5]) approaches that exploit low-power sleep states and

low-power/low-performance active states, respectively.

More recently, there has been a growing interest in energy

harvesting systems that scavenge energy from the environ-

ment. Most commonly, the deployed systems use solar panels

and piezoelectric units, that exploit solar energy and mechani-

cal energy generated by vibrations, respectively. The harvested

This work has been supported by the European Commission under the P-
SOCRATES project (FP7-ICT-611016), and in part, by US National Science
Foundation awards CNS-1016855 – CNS-1016974

energy is stored in a re-chargeable battery or supercapacitor for

future use. With energy harvesting capability, energy becomes

a resource which can be replenished in quasi-continuous

manner. The power generation activity is typically predictable

(for example, considering the time of the day and season in the

case of solar energy); but its rate of supply is not necessarily

uniform: the system is not able to harvest solar energy at night

time, and energy harvesting rate will vary during the day. This

predictably non-uniform energy availability is characteristic

of energy harvesting systems, and adds a new dimension to

the power-aware system design. An additional complexity is

related to the limited capacity of the energy storage unit. With

energy harvesting, in theory it becomes possible to design and

build energy-neutral systems [6]: the systems that manage

their energy consumption activities in such a way that they

can perpetually sustain their operation, subject to the hardware

faults/longevity only. In an energy-neutral system, over any

time interval [0, t], the consumed energy should not exceed

the available energy, which is the harvested energy augmented

by the initial energy reserves.

In the real-time embedded systems area as well, researchers

have recently started to investigate the impact of adding energy

harvesting dimension to the existing frameworks. In those

settings, the real-time scheduling objectives have to consider

two separate resource supply dimensions simultaneously: time,

which is available at uniform rate, and energy which is

supplied by the environment at a time-varying rate. As a result,

several solutions have been proposed for both dynamic-priority

and fixed-priority systems. In general, energy-harvesting algo-

rithms apply task procrastination as the conditions warrant:

for instance, due to the current low energy level, or as a way

to proactively prevent a future energy shortage. Based on this

distinction, we can broadly divide the existing algorithms into

energy-greedy and computation-greedy classes depending on

the actions they take when the energy level is low. Under that

condition, the energy-greedy algorithms exploit the available

slack in the system by procrastinating tasks and charging the

battery as much as possible. In contrast, the computation-

greedy algorithms give priority to execute the pending work-

load, and charge the battery only when there is no sufficient

energy to execute tasks.

For fixed-priority real-time embedded systems which are

more common in practice, the two well-known algorithms

are PFPst (also called EDeg) [7] and PFPasap [8], that

represent energy-greedy and computation-greedy algorithms,

respectively. In particular, PFPasap is shown to be optimal in

[8]: any task set that can be feasibly scheduled by any other

fixed-priority energy-harvesting scheduling algorithm can be

also scheduled by PFPasap. On the other hand, the same

paper shows that in terms of the preemption numbers and

other run-time overhead metrics, PFPst has a clear advantage,

while its average feasibility performance lags behind PFPasap

by a small margin.

Our work is partly inspired by the observation that, despite

their theoretical importance, the existing algorithms assume

power models that do not fully comply with existing pro-

cessors: for instance, it is assumed that the CPU can be

switched to/from a low-power (sleep) state instantaneously

and without any energy overhead. Moreover, there is only

one sleep state and its power consumption is negligible.

Contemporary processors have typically multiple low-power

states, each with different power/transition overhead char-

acteristics, such as standby, idle, and deep sleep states. In

general, the lower the power consumption in a state, the higher

the transition overhead, and there is a minimum idle time

interval that must be guaranteed before switching to a low-

power state, called break-even time [9]: if the system has to

switch back to active state sooner, then the overall energy

consumption increases, negating all the benefits of low-power

states. Another objective is to develop a simple, proactive

and highly-predictable framework that seamlessly integrate the

energy-harvesting capabilities into existing and widely known

fixed-priority systems.

Paper contributions. This paper proposes a novel and highly-

predictable energy management algorithm for fixed-priority

real-time systems with renewable energy, called Periodic

Charging Scheme (PCS). The main idea consists of planning in

advance for periodically alternating charging and discharging

phases to avoid battery failures. Specifically, the task execution

is suspended periodically and for a pre-determined duration,

to allow the system to re-charge the battery. At design time,

the algorithm computes the duration of the phases, taking

into account the characteristics of tasks and the embedded

platform, as well as the break-even times of the existing

low-power states. At runtime, the algorithm opportunistically

extends the duration of the charging states whenever possible,

to further increase the energy level. Moreover, we also provide

an enhancement to increase the spare bandwidth that can

be used by non real-time aperiodic tasks, if included in the

workload, without affecting the overall feasibility.

We perform extensive simulations to compare the perfor-

mance of PCS against the state-of-the-art techniques. We

show that when realistic power parameters are considered,

PCS outperforms other techniques in terms of feasibility

ratio, which is the percentage of the task sets that are feasibly

scheduled with the given energy profiles. We also evaluate

several other performance indicators, such as the number of

preemptions and the length of the average sleep intervals.

Paper organization. Section II introduces the power and

������������������������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Environment

Harvester

Battery

Workload

Embedded
System

Real Time

E(t)Pr(t)

Fig. 1. Components involved in the energy flow.

workload models that are used in this paper. Section III gives

the details of the proposed approach. Section IV compares our

algorithm with the state-of-the-art techniques, experimentally.

In Section V, we overview the closely related work. Finally,

Section VI concludes the paper with final remarks.

II. SYSTEM MODEL

A. Power model

As depicted in Figure 1, we assume a system with energy

harvesting capability. The harvester unit is in charge of

scavenging energy from the environment and storing in the

energy storage unit (which may be a battery or supercapacitor).

The energy available to the embedded system at time t is

denoted by E(t). This energy level is bounded by C, which

is called the battery capacity. The energy is harvested at the

rate of Pr(t). As common in energy harvesting research ([6],

[10], [11]), we assume that the operation interval is divided

into equal length time slots (or, epochs): in each time slot (of

duration Tr) the energy harvesting/replenishment rate can be

assumed to be constant. For example, several papers assumed

various Tr values, ranging from 15 to 60 minutes.

The power consumption of the processor in the active state

(denoted as σ0) is given by a constant value PCPU that

accounts for both dynamic and leakage dissipation. The overall

power consumption due to the entire set of remaining system

components (e.g., I/O devices/peripherals) is denoted by Pdev .

The total power Pσ0
consumed by the system in the active state

is the sum of processor power and total power consumption of

the specific subsets of peripherals in use by the running task;

thus, at any time, PCPU ≤ Pσ0
≤ PCPU + Pdev. As in [7],

[8], we do not assume DVFS capability in the system; i.e.,

task execution takes place at a constant frequency level.

A feature provided by almost all processors consists of

a set Φ = {σ1, . . . , σm} of low-power (sleep) states, in

which the task execution is suspended and the system enters a

mode with reduced power consumption. Typically, processors

support multiple states with different nomenclature, such as

idle, standby and deep sleep states. Moreover, each low-power

state σk ∈ Φ is characterized by a power consumption level

Pσk
and a break-even time ξσk

. Specifically, the break-even

time is the length of the shortest idle interval that must be

available in the schedule to switch to, and later back from,

that specific low-power state ([3], [9]). This is necessary to

amortize the time and energy overheads associated with that

transition. In general, when the CPU is idle, the system should

try to switch to the deepest low-power state whose break-even

time is shorter than the predicted length of the idle interval.

Given the above notation, if the system remains in state σk

(which may be the active state σ0 as well as one of the low-

power states σi (i ≥ 1)) from time t1 to t2, then the battery

energy level at time t2 is expressed by:

E(t2) = min



C, E(t1) +

t2
∫

t1

(Pr(t)− Pσk
) dt



 .

B. Task model

The workload consists of a set of n real-time sporadic

independent tasks, Γ = {τ1, τ2 . . . , τn}. Each real-time task

τi consists of a infinite sequence of jobs (τi,1, τi,2, . . .) and is

characterized by a minimum inter-arrival time Ti (also called

the period), a relative deadline Di, a worst-case execution

time (WCET) Ci, and power consumption Pi. Each task τi
releases a new job τi,j sporadically at time ai,j , meaning that

the interval between two consecutive jobs arrivals is greater

than or equal to Ti: ai,j+1 ≥ ai,j+Ti. We assume the common

implicit-deadline systems in which the relative deadline is

equal to the minimum inter-arrival time: ∀τi, Di = Ti.

Pi represents the power consumed to execute a job of τi, in-

cluding both the processor and the peripherals (PCPU ≤ Pi ≤
PCPU+Pdev). The overall worst-case energy required by each

job of τi is denoted as Ei and it is computed as Ei = Pi × Ci.

Note that two tasks having the same WCET may consume

different energy if they use different peripherals. H denotes

the hyperperiod of the task set, computed as the least common

multiple of all the periods: H = lcm(T1, . . . , Tn).
Finally, the real-time tasks are executed according to the

Rate Monotonic scheduling policy. Tasks are indexed in de-

creasing priority order, so that τ1 is the highest priority task.

III. PROPOSED APPROACH

The proposed approach is based on a periodic scheme which

alternates between active and inactive phases of the processor:

the first one is in charge of executing the pending workload,

while the second one replenishes energy until the next active

phase.

The inactive phase is implemented by adding a new hypo-

thetical periodic task (τs) that puts the processor in a low-

power state for an interval Cs in every period Ts, in order to

charge the battery continuously, without any interruption by

other tasks. To this aim, the highest priority in the system

is assigned to τs; implying that whenever it is ready, the

system will be put in a low-power state and continuous re-

charging will be enforced in a predictable and periodic fashion.

Moreover, its “execution time” Cs is chosen in such a way

that the system will be able to exploit the deepest possible

low-power state offered by the platform, by considering the

break-even times of the existing states, while still guaranteeing

the deadlines of real-time tasks. In other words, our periodic

charging scheme (PCS) provides both a predictable harvest-

ing mechanism and an ability to comply with the requirements

of the low-power states of the processor, in terms of the

overhead amortization.

According to this framework, the problem can be reformu-

lated as finding a valid pair of Cs and Ts which avoid deadline

misses and energy failures while executing τs at the highest-

priority level. Note that the assignment of the highest priority

to τs is critical to enforce its “non-preemptive” execution, to

enable the system to enter a low-power state effectively.

In systems with renewable energy, the concept of feasibility

is extended to consider also battery (or, energy) failures ([7],

[8]). Specifically, in addition to guaranteeing task completions

no later than their respective deadlines, in order to ensure fea-

sibility, the algorithm must also guarantee that the battery level

never drops below a certain threshold Elow: ∀t, E(t) > Elow.

Without loss of generality, we consider the case of Elow = 0;

for higher thresholds, the battery capacity can be downsized

accordingly and the problem can be re-stated as an instance

with Elow = 0. Note that, if an energy failure happens, it may

not immediately lead to a deadline miss as the required time

to charge the battery may not violate real-time constraints.

Our adopted definition is stricter than this interpretation: our

proactive approach treats any energy underflow as a failure

condition, which may indeed introduce unpredictability in real-

time embedded system design.

Compared to the existing energy-greedy and computation-

greedy energy harvesting algorithms (Section I), PCS is

conceptually much simpler and easier to implement with low

online complexity. Moreover, thanks to its design principles, it

explicitly considers the time/energy overheads involved in the

processor state transitions, through the explicit analysis of the

break-even times. In contrast, the energy-greedy algorithms

(e.g., PFPst [7]) involve online computation of the existing

slack to re-charge the battery, which is, in general, of pseudo-

polynomial complexity. Similarly, the computation-greedy al-

gorithms (e.g., the theoretically optimal PFPASAP) result in

very frequent invocation and processor state transitions with

prohibitive costs on real systems that have non-zero transition

overheads.

An example of our approach is illustrated in Figure 2,

showing how the battery level varies while executing the

instances of τs and the workload. For the sake of simplicity,

the replenishment function has been assumed constant and all

tasks consume the same power. Since τs runs at the highest

priority (in order to guarantee a non-preemptive execution),

any time an instance of τs is released, the actual running job

is preempted, the processor enters into a low-power state, and

the battery is replenished. Then, the workload execution is

resumed when τs instance completes its execution, running

for at most Ts − Cs time units before next instance arrives.

We first present the details of the proposed algorithm in

Section III-A. Then, a sufficient condition is provided to test

the system feasibility at design time (Section III-B). Finally,

for workloads that may include non real-time components,

an online enhancement is introduced in Section III-C to

improve the responsiveness of such tasks, without affecting

the feasibility of the real-time workload.

τ1 τ1τ1τ1 τ2 τ2τ2τ2 τ3 τ3τ3τ3

τs

t

C

Cs
Ts

E0

E(t)

Γ

Ω

∆E ≥ 0

Fig. 2. Example of algorithm execution.

A. Algorithm

This section gives the details of the proposed algorithm:

Periodic Charging Scheme (PCS). Specifically, at design time,

the algorithm computes the period Ts and charging time Cs

which lets τs execute periodically in a non-preemptive fashion.

Then, at runtime, the algorithm opportunistically compacts idle

intervals and τs execution, to further extend battery phases and

exploit deeper low-power states.

First, let us consider the design-time step. The shortest

period among the real-time tasks is assigned to Ts in order

to let τs have the highest priority and run in a non-preemptive

way. The computational time Cs is assigned according to

the sensitivity analysis proposed by Bini et al. [12], which

computes the highest spare utilization that τs can have, without

causing deadline misses among the lower priority tasks. In

this case, lower priority tasks correspond to the entire orig-

inal task set Γ. Although the sensitivity analysis considers

fully-preemptive tasks, the non-preemptive execution of τs
is automatically guaranteed by its highest priority, without

invalidating the analysis. Moreover, the specific low-power

state σk to which the system switches during the τs’s execution

is chosen as the deepest sleep state whose break-even time is

shorter than or equal to Cs. The corresponding pseudocode is

presented in Algorithm 1.

On the other hand, the runtime component of PCS is exe-

cuted whenever the ready queue becomes empty. Specifically,

when the processor is idle, the algorithm first computes earliest

possible next arrival time of any periodic task (next arrival),
which can be easily computed given the minimum inter-arrival

time information of the tasks. Then, it re-adjusts the next

arrival time of τs to coincide with next arrival. In this

way, the system enters an extended charging phase from the

Algorithm 1 PCS: Design-Time Algorithm

1: function PCS AT DESIGN TIME(Γ)

2: Ts = min
τi∈Γ

Ti

3: Cs = ∆Cs /* From sensitivity analysis [12] */

4: Γ← Γ ∪ {τs}
5: k = max

σi ∈Φ∧ξσi
≤Cs

i

6: end function

current time until next arrival+Cs, potentially enabling the

exploitation of even deeper low-power states simultaneously.

To prove that the schedulability is not affected by re-

adjusting the next invocation time of τs arrival, let us assume

a generic task set whose feasibility is statically guaranteed.

Recall that τs has the highest priority in the system. Accord-

ing to the well-known fixed-priority schedulability analysis

techniques, the response time of any task is maximized when

its job arrives simultaneously with the jobs of higher-priority

tasks [12]. Since the task set is deemed feasible at the static

phase, the response time of any task does not exceed its

deadline even in that critical instant, by definition. Hence, by

aligning the next invocation time of τs with the next arrival,
other deadlines cannot be compromised. Then, forcing τs to

arrive at the same time lets us obtain a configuration equivalent

to the critical instant, whose feasibility is already assumed in

the static analysis.

The pseudocode in Algorithm 2 gives the details of the

runtime component of PCS, which computes the actual

charge length (Tcharge), adjusts τs’s next invocation time as,j
and selects the deepest low-power state to use during that

specific charge step.

An example is reported in Figure 3, representing the

Algorithm 2 PCS: Runtime Algorithm

1: function PCS AT RUNTIME (t) ⊲ t: CPU becomes idle

2: t1 = next arrival
3: Tcharge = Cs + (t1 − t)
4: as,j = t1
5: k′ = max

σi∈Φ∧ ξσi
≤Tcharge

i

6: end function

schedules without and with the runtime component of PCS.

Specifically, when the runtime component is enabled, it is

invoked at t (when the CPU becomes idle) and, computing

the next arrival time in Γ as t1, τs’s execution and the idle

interval are compacted to form a single longer interval (of

duration Cs + (t1 − t)). With longer intervals, the algorithm

gains the ability to potentially exploit deeper low-power states.

Without Runtime Adjustment With Runtime Adjustment

tt t1t1

τs

Γ

P

Fig. 3. Schedule examples without and with the PCS runtime component.

At runtime, the introduced complexity for the scheduler

is negligible as the algorithm only requires to schedule the

additional task τs. The complexity of the static (design-time)

component is pseudo-polynomial with respect to the number

of tasks due to the sensitivity analysis. Finally, the runtime

component of PCS has also low complexity: assuming the

earliest next arrival time can be evaluated in constant time,

then the overall complexity is linear with respect to the number

of low-power states, which is O(m).

B. A Sufficient Condition for Schedulability

In PCS, the feasibility in terms of timing constraints

is explicitly guaranteed through the sensitivity analysis. On

the other hand, providing a simple necessary and sufficient

condition to check whether a given system configuration, with

a certain initial energy budget and harvesting profile is feasible

or not, is not trivial.

Nevertheless, a sufficient condition to guarantee execution

without energy failures can be derived, for design-time (of-

fline) analysis. The condition is based on guaranteeing that,

even in the worst-case scenario, the difference between the

harvested energy and the consumed energy during one period

Ts of τs is not negative. If this holds, due to the periodic

nature of τs’s invocations, the energy level of the system will

never decrease in the long run, guaranteeing feasibility.

Specifically, the difference in the energy levels at the

beginning of two consecutive invocations of τs is given by:

∆E = (Pr − Pσk
) · Cs − (Pact − Pr) · (Ts − Cs) ≥ 0, (1)

where Pact is the maximum task power consumption in the

active state (Pact = max
τi

Pi) and σk is the low-power state

selected by the offline phase of PCS.

An intuitive example is shown in Figure 4, illustrating how

the battery level E varies while executing τs and real-time

tasks. The first term in Eq. (1), (Pr −Pσk
) ·Cs, gives the net

energy gain during the charging phase, while the second term

(Pact −Pr) · (Ts−Cs) corresponds to the energy loss during

the discharging phase.

τs

Γ

E(t)

E0

∆E ≥ 0

Ts

Cs

Fig. 4. Energy level changes during one period of τs

Eq. (1) can be reformulated with respect to Cs, as:

Cs ≥
Pact − Pr

Pact − Pσk

Ts, (2)

Note that this condition is pessimistic, because it is assumed

that the system is always in active state (σ0), executing the task

with the maximum power consumption characteristics, when

τs is not running (i.e., during the discharge phase of length

Ts − Cs). However, it provides a simple formula that can be

checked in constant time, regardless of the initial energy level.

In the rest of the paper, we refer to this version of PCS which

checks feasibility at design time by using Eq. (2), as PCS∗.

C. Enhancing the Algorithm for Mixed Workloads

In some cases, thanks to a favorable scenario, the energy

stored in the battery may reach the capacity, leading to a

waste of energy. Although battery overflows do not represent

a problem for neither real-time nor energy constraints, the

scheduler may optimize the use of resources, such as energy

and CPU time.

In fact, such an optimization may be quite useful for

mixed workloads that contain both sporadic real-time and

aperiodic non-real-time (NRT) tasks. For mixed workloads, the

traditional objective is to meet the hard deadlines of the real-

time tasks, while improving the responsiveness (i.e., average

response time) of NRT tasks [13]. Hence, in our settings,

some instances of τs may be skipped, making available its

allocated computation time to NRT tasks. Figure 2, at the

bottom schedule, illustrates the execution of an NRT task Ω
during the idle intervals of the PCS schedule. If the third job

of τs is discarded, the response time of Ω can be shortened

without causing any energy failure.

However, skipping too many instances of τs may hurt

feasibility in the long term; in particular, as the harvesting rate

Pr changes at the end of each epoch Tr, typically of length 15-

30 minutes, one should still try to maximize the battery energy

level as much as possible by the end of the current epoch.

Consequently, our proposed enhancement is based on skipping

one instance of τs out of j +1 consecutive instances (j ≥ 1),

while ensuring maximization of the battery level by the end

of epoch. Specifically, by denoting the initial energy level at

the beginning of the epoch as E0, the net energy harvested

until the end of the current epoch has to be no less than the

available capacity (C − E0) in the battery:

N ·∆E∗ ≥ C − E0 ≥ 0, (3)

Above, N is the number of skipped instances during the

current epoch
(

N =
⌊

Tr

(j+1)·Ts

⌋)

and ∆E∗ is the difference

between harvested and consumed energy in a time interval of

length (j + 1) · Ts:

∆E∗ = j·(Pr−Pσk
)·Cs−(Pact−Pr)·(j·Ts−j·Cs +Ts) ≥ 0.

(4)

Since Tr>>Ts, we can approximate N as Tr

(j+1)·Ts
. From

Eqs (3) and (4), we can derive a lower bound for j:

j ≥
(Pact − Pr) · Ts +

C−E0

Tr
Ts

(Pact − Pσk
) · Cs − (Pact − Pr) · Ts −

C−E0

Tr
Ts

, (5)

The value of j must be set as the smallest integer that

satisfies Eq. (5) – a higher value of j may decrease the

responsiveness of the NRT workload, while wasting energy

that cannot be stored in the battery. This enhanced version of

PCS, denoted by PCSNRT , is invoked whenever an epoch

starts and has constant-time complexity (O(1)), as only Eq (5)

needs to be solved.

IV. EXPERIMENTAL RESULTS

In this section, we provide the results of simulation experi-

ments that we carried out in order to evaluate the performance

of our proposed algorithms under different system parameters.

We considered an embedded system equipped with an NXP

LPC1768 [14] processor (ARM Cortex M3 [15]), powered by

a battery with capacity C = 500mAh and two solar panels,

each providing a maximum of 500mW . The power consump-

tion of the processor in active state, without considering the

peripherals, is PCPU ≈ 690mW . When all peripherals are

activated, the overall power consumption is around 1W , giving

Pdev = 310mW . Two low-power states are considered: idle

(σ1) and sleep (σ2). Their power consumption and break-even

times are Pσ1
= 490mW , ξσ1

≈ 0ms, Pσ2
= 290mW and

ξσ2
= 15ms. Observe that, although the sleep state consumes

least power, its break-even time is not negligible.

The synthetic task sets used in the tests are composed of 10

tasks randomly generated using the UUniFast algorithm [16],

where each period Ti is uniformly distributed in the range

of [40, 500]ms. In our simulations, we generated 4000 task

sets (200 for each utilization value under consideration). The

power consumption Pi of each job of task τi is computed as:

Pi = PCPU + xi · Pdev,

where 0 < xi ≤ 1.0 is a real number generated randomly. By

choosing different xi values, we are able to model the case of

tasks consuming different amount of power per time unit of

execution.

We report the results of our experiments in three parts. The

first set evaluates the effectiveness of the proposed algorithms

in terms of the ratio of the task sets that are scheduled in

feasible manner (called the feasibility ratio), with respect

to both timing and energy constraints. The second set of

experiments assess several online metrics, such as average

sleep interval length and preemption count, and the last set

analyzes the spare CPU bandwidth that is made available to

potential non-real-time tasks.

A. Feasibility ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Utilization

PFPst

PFPasap

PCS∗

PCS

Bound
F

ea
si

b
il

it
y

ra
ti

o

Fig. 5. Feasibility ratio vs. Utilization (ξσ1
= 0, Pσ1

= 0W , Pr = 70%).

To evaluate the feasibility ratio under different system

configurations, we implemented the following algorithms in

our discrete-event simulator:

• PFPasap: the computation-greedy algorithm whose opti-

mality for fixed-priority systems with renewable energy,

but only under negligible state transition overheads as-

sumption, was formally proven in [8];

• PFPst (also called EDeg, from [7]): the energy-greedy

algorithm whose feasibility performance was shown to

lag slightly behind PFPasap in [8];

• PCS∗ that evaluates only the sufficient condition given

by Eq. (2) at design time, to guarantee the feasibility;

• PCS – presented in Section III-A;

• Bound that represents a theoretical limit on the feasibility

performance of any scheduling algorithm.

The executions of PFPasap, PFPst and PCS are simu-

lated, assuming an initial energy level of E0 = 0 (the worst-

case scenario) and checking for any deadline misses or battery

failures during the hyperperiod H . To implement Bound, we

adopted a methodology similar to the one suggested by Pagani

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Utilization

PFPst

PFPasap

PCS∗

PCS

Bound
F

ea
si

b
il

it
y

ra
ti

o

(a) Pr = 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Utilization

PFPst

PFPasap

PCS∗

PCS

Bound

F
ea

si
b
il

it
y

ra
ti

o

(b) Pr = 70%.

Fig. 6. Feasibility ratio vs. Utilization for non-negligible transition overhead and sleep power.

and Chen [17], by transforming the problem into another

one where tasks have identical release times and identical

deadlines (equal to the hyperperiod H of the original task

set) while keeping task utilizations the same. Specifically, the

battery capacity limit is ignored, and the longest possible

charging interval within the hyperperiod is considered. In these

ideal settings, the entire workload with utilization U can be

procrastinated for (1 − U) · H time units and the system is

feasible if and only if the energy harvested in (1− U) ·H is

higher than or equal to the energy consumed in U · H time

units of execution.

Since PFPasap and PFPst were developed assuming neg-

ligible state transition overheads, they have been updated to in-

corporate a simple mechanism to deal with those overheads at

run-time. Specifically, PFPasap, which procrastinates only to

harvest the energy necessary to execute the next computational

unit, chooses the deepest sleep state whose break-even time is

not longer than the required time to harvest the missing energy

amount. Similarly, PFPst, which exploits the whole available

slack to charge the battery when it becomes empty, selects

the deepest low-power state whose break-even time is shorter

than or equal to the target procrastination delay. In addition,

both algorithms are enhanced by putting the processor to

the deepest low-power state which lets the system be fully

operational by the next job arrival, when the CPU is idle.

In Figure 5, we first report the results for a system with

“ideal” settings, that is, the one with a negligible power

dissipation and zero break-even time associated with the sleep

state (i.e., ξσ2
= 0ms and Pσ2

= 0W). The harvesting rate

Pr is set to 70% of the maximum system power consumption

(PCPU + Pdev).

As expected, in this scenario with no overheads, PFPasap’s

optimality is demonstrated: it yields a feasibility ratio higher

than PFPst and PCS. Also, in accordance with what is

experimentally shown in [8], PFPst is a close second – in fact,

its performance almost coincides with that of PFPasap. PCS
comes next, showing that putting periodically the processor

in sleep state is not the best approach on systems with zero

transition overhead and zero sleep power.

However, when a realistic set of low-power states is con-

sidered, the picture changes entirely. The results are reported

in Figure 6(a) and Figure 6(b), for Pr = 50% and 70% of the

maximum power consumption (PCPU + Pdev), respectively.

Our approach outperforms PFPst and PFPasap as it

periodically guarantees replenishment phases which last longer

than the sleep state’s break-even time, overcoming the limita-

tions due to short idle intervals. For instance, when Pr = 70%,

PFPasap’s performance degrades when U = 0.35, while

PCS successfully schedules all the task sets up to U = 0.45.

The performance of PFPasap drops because it is able to

exploit only shallow low-power states. The difference between

PCS∗ and PCS is entirely due to the pessimistic nature of

the offline test. Finally, although PFPst’s performance is close

to PCS, its online complexity is pseudo-polynomial whereas

our simple algorithm has a linear complexity at runtime.

Figure 7 presents the impact of the relative harvesting rate

(Pr/(PCPU + Pdev)) on the feasibility ratio when U = 0.4.

In other words, this analysis shows the minimum required

harvesting rate that guarantees schedulability. Again, PCS
offers the best performance (besides Bound, which gives the

theoretical limit): it guarantees the feasibility for the lowest

harvesting power.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.55 0.6 0.65 0.7

PFPst

PFPasap

PCS∗

PCS
Bound

Pr/(PCPU + Pdev)

F
ea

si
b
il

it
y

ra
ti

o

Fig. 7. Feasibility ratio vs. Harvesting rate (U = 0.4).

Next, we analyze how the performance changes as a func-

tion of the different break-even times associated with the

sleep state, in Figure 8(a) and Figure 8(b), for PCS∗ and

PCS, respectively. The results are obtained for Pr = 65%,

and the minimum period value of 40ms. As expected, the

results show that the longer the break-even time, the lower the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Utilization

0ms

15ms

75ms

135ms

225ms

300ms

F
ea

si
b
il

it
y

ra
ti

o

(a) Under PCS∗.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Utilization

0ms

15ms

75ms

135ms

225ms

300ms

F
ea

si
b
il

it
y

ra
ti

o

(b) Under PCS.

Fig. 8. Feasibility ratio vs. Utilization under different break-even times for Pr = 65%.

feasibility ratio. However, PCS is less affected than PCS∗

by the changes in the break-even time: this is because, it

opportunistically manages to compact inactive intervals at

runtime.

B. Online metrics

This subsection considers some online metrics that are rel-

evant to characterize the algorithms’ performance at runtime:

• average time spent in sleep state: this metric shows

the capability to exploit the deepest low-power state for

as long as possible. In generally, the longer the sleep

intervals, the higher the harvested energy and the higher

the probability to execute the workload without battery

failures;

• number of preemptions: this metric shows the total num-

ber of preemptions experienced by each algorithm. Obvi-

ously, an algorithm with prohibitive number of preemp-

tions is not desirable, considering the overhead associated

with each preemption;

• average battery energy level: this metric highlights the

success of the algorithms in effectively harvesting energy,

while executing the workload.

The comparisons in this section involve only PCS and

PFPst, due to the fact that the results in [8], that are in line

with ours, clearly show that PFPst outperforms PFPasap by

a significant margin when considering these online metrics.

First, we analyze the average length of the sleep intervals

for PFPst and PCS in Figure 9. We observe that PCS
guarantees longer sleep intervals on the average; however

their lengths tend to decrease with increasing utilization (the

time assigned to τs becomes shorter). Conversely, the average

sleep interval length for PFPst first remains constant with

the utilization (due to the feasibility constraint and reaching

the battery capacity during recharging), before dropping. It

is worth noting that for PFPst, the total length of the idle

intervals is comparable to that of the sleep intervals. Note

that some values are not reported for certain data points

whenever the corresponding algorithm does not generate a

feasible solution for that utilization value.

When the absolute time spent in low-power states

(idle + sleep) is considered instead of the average duration,

 25

 50

 75

 100

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Utilization

PCS, Pr = 50%

PCS, Pr = 60%

PCS, Pr = 70%

PFPst , Pr = 50%

PFPst , Pr = 60%

PFPst , Pr = 70%

A
v
er

ag
e

sl
ee

p
in

te
rv

al
s

(m
s)

Fig. 9. Average sleep interval vs. Utilization under PCS and PFPst.

PCS and PFPst have similar trends. Specifically, the differ-

ence is around only 5% of the entire hyperperiod during which

PFPst puts the system in the idle state rather than the sleep

state, due to the break-even time considerations.

Next, in Figure 10, we show the number of preemptions of

PCS, normalized with respect to PFPst’s. PCS has the side

effect of introducing a higher preemption count than PFPst

as the system executes the additional charging task τs with the

period set to the minimum period value. However, except for

very low utilization values, the increase is only around 50%
compared to PFPst during the hyperperiod. The preemption

ratio is not reported for utilization values where PFPst or

PCS does not generate feasible values.

 130

 140

 150

 160

 170

 180

 190

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Utilization

PCS, Pr = 50%

PCS, Pr = 60%

PCS, Pr = 70%

P
re

em
p
ti

o
n

ra
ti

o
(p

er
ce

n
ta

g
e)

Fig. 10. Ratio of preemption number in PCS to that in PFPst (percentage).

Finally, in Figure 11, we analyze the average battery level,

normalized to the battery capacity, within a hyperperiod.

We observe that both PCS and PFPst guarantee a similar

average battery level, even though, charging principles and

timing are different. In general, the higher the utilization, the

lower the average battery level as the available time to charge

the battery is shorter. In addition, the higher the harvesting

rate Pr, the higher the average battery level as the charging

process is more effective. Despite similar performance trends,

we note that the online component of PFPst has pseudo-

polynomial time complexity (due to the computation of the

maximum slack at runtime), while PCS has linear complexity.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Utilization

PCS, Pr = 50%

PCS, Pr = 60%

PCS, Pr = 70%

PFPst , Pr = 50%

PFPst , Pr = 60%

PFPst , Pr = 70%

A
v
g

b
at

te
ry

le
v
el

/
C

ap
ac

it
y

Fig. 11. Average battery level vs. Utilization under PCS and PFPst.

C. Effective spare CPU bandwidth

Finally, we undertake an experimental analysis of PCSNRT

(Section III-C) which targets allocating as much CPU band-

width as possible to non-real-time (NRT) tasks in order to

improve their responsiveness. Recall that under PCSNRT ,

effectively additional CPU bandwidth is reserved by skipping

an instance of τs out of j+1 consecutive instances, where j is

computed statically at the beginning of each epoch, to preserve

feasibility in terms of deadlines and energy constraints.

In these experiments, the utilization of the real-time task

set is set to 0.5, potentially leaving 50% of the CPU time to

non-real-time tasks, regardless of τs’s configuration. Figure 12

shows the effective spare CPU bandwidth that is left for the

NRT workload, by considering also τs’s invocations, as a

function of the harvesting rates and initial battery level E0. In

this first simulation, the battery capacity is C = 500mAh and

the average τs utilization is 0.4. When the online enhancement

is not able to skip any τs instance (mainly due to low initial

battery level E0, or scarce harvested power Pr), the CPU

bandwidth allocated to NRT tasks is around 10%, which

is equivalent to the static slack (0.5 − 0.4). As soon as

more favorable execution scenarios occur (either thanks to

the higher initial battery level E0 or higher harvesting rate

Pr), several of τs’s jobs can be skipped without hurting the

feasibility. Specifically, in the best case, the effective spare

CPU bandwidth goes from 10% to 30%, meaning that the

actual utilization of τs is 0.2 (an instance is skipped out of 2).

In Figure 13, the same analysis is repeated, this time for

a system with lower battery capacity, C = 250mAh. Since

 0.1

 0.15

 0.2

 0.25

 0.3

 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

E0 = 0

E0 = C/4

E0 = C/2

E0 = 3C/4
E0 = C

Pr/(PCPU + Pdev)

S
p
ar

e
C

P
U

b
an

d
w

id
th

Fig. 12. Effective spare CPU bandwidth vs. Pr/(PCPU + Pdev) for C =
500mAh.

the maximum amount of energy that can be stored is lower,

the upper bound on the effective spare CPU bandwidth is now

reached sooner.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

E0 = 0

E0 = C/4

E0 = C/2

E0 = 3C/4
E0 = C

Pr/(PCPU + Pdev)

S
p
ar

e
C

P
U

b
an

d
w

id
th

Fig. 13. Effective spare CPU bandwidth vs. Pr/(PCPU + Pdev) for C =
250mAh.

V. RELATED WORK

Rakhmatov and Vrudhula [18] addressed the problem of

minimizing the energy consumption, while guaranteeing a

common deadline and avoiding battery failure for real-time

tasks. Their first algorithm decides how to schedule the tasks

by considering the precedence constraints and battery charac-

teristics. Then, when the system restarts after a battery failure,

the algorithm is invoked to exploit idle states or modulate the

processing speed.

Chetto et al. [7] considered the real-time scheduling problem

under the Rate Monotonic policy for systems with renewable

energy. They proposed five reactive heuristics, which are exe-

cuted whenever the battery becomes empty. The first heuristic

keeps the processor in sleep state for a predefined fixed interval

x, while the second extends the inactive period until the charge

level reaches a certain threshold. The third one (called EDeg,

later labeled as PFPst in [8]) uses the entire available slack

time. The fourth heuristic stops charging when the battery is

completely charged. Another fifth algorithm is invoked when

the battery energy level drops below a predefined lower bound.

El Ghor et al. [19] proposed an algorithm under the EDF

policy that applies task procrastination to the energy harvesting

problem. Specifically, the pending jobs are executed if there

is enough energy to complete them, otherwise the available

slack time is exploited to charge the battery.

Abdeddaı̈m et al. [8] proposed an optimal algorithm, called

PFPasap. The algorithm puts the processor in sleep state for

the shortest time interval that still guarantees to harvest the

required energy for executing only the next computational unit

of the highest priority task (which is equivalent to the first

heuristic in [7] by considering x = 1). Despite the algorithm’s

optimality, the paper shows that PFPasap introduces a signif-

icant number of state transitions and preemptions. Moreover,

the overhead associated with transitions to/from low-power

states is not considered.

Kooti et al. [20] proposed an algorithm which divides the

analysis operation interval (one day) into a set of frames (30

minutes each) without any correlation with the task periods.

They assume no more than n out of m consecutive jobs of

a task miss their deadlines. At design time, an ILP solver

computes for each frame the allocated energy and the number

of hard real-time and best-effort jobs. Then, within each frame,

the online step executes the hard real-time tasks while the best-

effort tasks are executed only if there is enough energy.

Moser et al. [21] defined a 3-layered solution for energy

harvesting systems: Application Rate Control, Service Level

Allocation, and Real-Time Scheduling. For the first two layers,

a long-term analysis is conducted to guarantee an average

high performance level. For the real-time scheduling phase, an

algorithm called Lazy Scheduling Algorithm (LSA) is proposed.

Specifically, by using the EDF policy, the algorithm sets the

start time of a job equal to its deadline minus the total

harvested energy divided by the power consumption. In this

way, idle intervals that can be used to recharge the battery are

introduced in the schedule. However, the transition overheads

associated with low-power states are not considered. The idea

is further followed in [22], which provides a admission con-

dition that considers the energy demand and supply functions.

VI. CONCLUSIONS

In this paper, we addressed the energy management problem

for fixed-priority real-time systems with renewable energy.

Our proposed approach is based on planning in advance for

periodically alternating charging and task execution phases

offering simplicity and predictability. Moreover, our proactive

algorithm is designed to take advantage of multiple low-power

(sleep) states offered by many current processors.

At design time, the duration and frequency of charging

phases are computed, whereas, at runtime, the algorithm

extends charging phases opportunistically by taking advan-

tage of the inactive intervals to exploit deeper low-power

states. Moreover, an enhancement is provided to improve the

responsiveness of non-real-time workloads without affecting

the overall feasibility of real-time tasks. Our proposal was

experimentally compared with the state-of-the-art algorithms.

We showed that our algorithm yields a higher feasibility

ratio when a realistic power model with non-zero power

state transitions is considered. Moreover, we evaluated several

runtime performance metrics, showing the viability of our

proposal.

REFERENCES

[1] Y.-H. Lee, K. Reddy, and C. Krishna, “Scheduling techniques for
reducing leakage power in hard real-time systems,” in Proc. of the 15th

IEEE Euromicro Conference on Real-Time Systems (ECRTS), 2003.
[2] R. Jejurikar, C. Pereira, and R. K. Gupta, “Leakage aware dynamic

voltage scaling for real time embedded systems,” in Proc. of the IEEE

Design Automation Conference (DAC), 2004.
[3] M. Bambagini, M. Bertogna, M. Marinoni, and G. Buttazzo, “An

energy-aware algorithm exploiting limited preemptive scheduling under
fixed priorities,” in Proc. of the 8th IEEE International Symposium on

Industrial Embedded Systems (SIES), 2013.
[4] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez, “Power-

aware scheduling for periodic real-time tasks,” IEEE Transactions on

Computers, vol. 53, no. 5, pp. 584–600, May 2004.
[5] E. Bini, G. Buttazzo, and G. Lipari, “Minimizing cpu energy in real-time

systems with discrete speed management,” ACM Trans. Embed. Comput.

Syst., vol. 8, no. 4, pp. 31:1–31:23, Jul. 2009.
[6] J. Hsu, S. Zahedi, A. Kansal, M. Srivastava, and V. Raghunathan,

“Adaptive duty cycling for energy harvesting systems,” in Proc. of

the International Symposium on Low-Power Electronics and Design

(ISLPED), 2006.
[7] M. Chetto, D. Masson, and S. Midonnet, “Fixed priority scheduling

strategies for ambient energy-harvesting embedded systems,” in Proc. of

the IEEE/ACM International Conference on Green Computing and

Communications (GreenCom), 2011.
[8] Y. Abdeddaim, Y. Chandarli, and D. Masson, “The optimality of

PFPasap algorithm for fixed-priority energy-harvesting real-time sys-
tems,” in Proc. of the 25th IEEE Euromicro Conference on Real-Time

Systems (ECRTS), 2013.
[9] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design

techniques for system-level dynamic power management,” IEEE Trans.

on Very Large Scale Integration Systems, vol. 8, no. 3, pp. 299–316,
2000.

[10] R.-S. Liu, P. Sinha, and C. Koksal, “Joint energy management and
resource allocation in rechargeable sensor networks,” in Proc. of the

IEEE INFOCOM, 2010.
[11] B. Zhang, R. Simon, and H. Aydin, “Maximum utility rate allocation

for energy harvesting wireless sensor networks,” in Proc. of the 14th

ACM International Conference on Modeling, Analysis and Simulation
of Wireless and Mobile Systems (MSWIM), 2011.

[12] E. Bini, M. Di Natale, and G. Buttazzo, “Sensitivity analysis for fixed-
priority real-time systems,” Real-Time Syst., vol. 39, no. 1-3, pp. 5–30,
Aug. 2008.

[13] G. C. Buttazzo, Hard Real-time Computing Systems. Santa Clara, CA,
USA: Springer-Verlag, 2004.

[14] “Nxp web site,” http://www.nxp.com/.
[15] “Arm web site,” http://www.arm.com/.
[16] E. Bini and G. C. Buttazzo, “Measuring the performance of schedu-

lability tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, May
2005.

[17] S. Pagani and J.-J. Chen, “Energy efficiency analysis for the single
frequency approximation (sfa) scheme,” in Proc. of the 19th IEEE Inter-

national Conference on Embedded and Real-Time Computing Systems

and Applications (RTCSA), 2013.
[18] D. Rakhmatov and S. Vrudhula, “Energy management for battery-

powered embedded systems,” ACM Trans. on Embedded Computing

Systems, 2003.
[19] H. El Ghor, M. Chetto, and R. H. Chehade, “A real-time scheduling

framework for embedded systems with environmental energy harvest-
ing,” Journal of Computers and Electrical Engineering, 2011.

[20] H. Kooti, N. Dang, D. Mishra, and E. Bozorgzadeh, “Energy budget
management for energy harvesting embedded systems,” in Proc. of the

18th IEEE International Conference on Real-Time Computing Systems

and Applications (RTCSA), 2012.
[21] C. Moser, J.-J. Chen, and L. Thiele, “Dynamic power management in

environmentally powered systems,” in Proc. of the 15th Asia and South

Pacific Design Automation Conference (ASP-DAC), 2010.
[22] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-time scheduling

with regenerative energy,” in Proc. of the IEEE European Conference

Conference on Real-Time Systems (ECRTS), 2006.

