Periodic Charging Scheme for Fixed-Priority
Real-Time Systems with Renewable Energy

Mario Bambagini'*

!Scuola Superiore Sant’Anna, Pisa, Italy

and Hakan Aydin®

e-mail: m.bambagini@sssup.it

2University of Modena and Reggio Emilia, Italy e-mail: mario.bambagini@unimore.it

3George Mason University, Fairfax, VA, USA

Abstract—Energy harvesting systems are gaining increasing
importance in the embedded systems domain, as they provide an
effective solution to bridge the gap between the energy supply and
demand. However, the variable nature of the energy supply rate
due to the environmental conditions creates serious challenges
for embedded real-time systems targeting predictability.

This paper presents a proactive and highly predictable frame-
work, called Periodic Charging Scheme (PCS), for fixed-priority
real-time systems with renewable energy. The main idea of
the algorithm is to plan in advance for periodic charging and
discharging of the battery to avoid energy outage, while still
meeting the timing constraints. The algorithm is specifically
designed to exploit the low-power states of modern processors,
to enable effective power state transitions when the battery is re-
charged on a periodic basis. We also offer online enhancements
to opportunistically extend the duration of charging phases and
improve the responsiveness of the potential non-real-time work-
loads without compromising feasibility. Extensive simulations
show that the proposed approach outperforms the state-of-the-
art algorithms in terms of the number of task sets that meet the
timing constraints under specified energy profiles, when a realistic
power model with state transition overheads is assumed.

I. INTRODUCTION

Resource management for real-time embedded systems, that
offer predictability in terms of timing constraints, has always
been a prime research and development area. In the last
decade, power-aware resource management and scheduling
for embedded systems has received increasing attention. One
of the major factors in this trend is the proliferation of
small footprint devices that rely on battery power, which is
fairly limited in practice. Hence, several power management
techniques to save energy at run-time and extend the lifetime
of the system before it runs out of energy were proposed.
Among these techniques are Dynamic Power Management
(11, [2], [3]) and Dynamic Voltage and Frequency Scaling
([41, [5]) approaches that exploit low-power sleep states and
low-power/low-performance active states, respectively.

More recently, there has been a growing interest in energy
harvesting systems that scavenge energy from the environ-
ment. Most commonly, the deployed systems use solar panels
and piezoelectric units, that exploit solar energy and mechani-
cal energy generated by vibrations, respectively. The harvested

This work has been supported by the European Commission under the P-
SOCRATES project (FP7-ICT-611016), and in part, by US National Science
Foundation awards CNS-1016855 — CNS-1016974

e-mail: aydin@cs.gmu.edu

energy is stored in a re-chargeable battery or supercapacitor for
future use. With energy harvesting capability, energy becomes
a resource which can be replenished in quasi-continuous
manner. The power generation activity is typically predictable
(for example, considering the time of the day and season in the
case of solar energy); but its rate of supply is not necessarily
uniform: the system is not able to harvest solar energy at night
time, and energy harvesting rate will vary during the day. This
predictably non-uniform energy availability is characteristic
of energy harvesting systems, and adds a new dimension to
the power-aware system design. An additional complexity is
related to the limited capacity of the energy storage unit. With
energy harvesting, in theory it becomes possible to design and
build energy-neutral systems [6]: the systems that manage
their energy consumption activities in such a way that they
can perpetually sustain their operation, subject to the hardware
faults/longevity only. In an energy-neutral system, over any
time interval [0,¢], the consumed energy should not exceed
the available energy, which is the harvested energy augmented
by the initial energy reserves.

In the real-time embedded systems area as well, researchers
have recently started to investigate the impact of adding energy
harvesting dimension to the existing frameworks. In those
settings, the real-time scheduling objectives have to consider
two separate resource supply dimensions simultaneously: time,
which is available at uniform rate, and energy which is
supplied by the environment at a time-varying rate. As a result,
several solutions have been proposed for both dynamic-priority
and fixed-priority systems. In general, energy-harvesting algo-
rithms apply task procrastination as the conditions warrant:
for instance, due to the current low energy level, or as a way
to proactively prevent a future energy shortage. Based on this
distinction, we can broadly divide the existing algorithms into
energy-greedy and computation-greedy classes depending on
the actions they take when the energy level is low. Under that
condition, the energy-greedy algorithms exploit the available
slack in the system by procrastinating tasks and charging the
battery as much as possible. In contrast, the computation-
greedy algorithms give priority to execute the pending work-
load, and charge the battery only when there is no sufficient
energy to execute tasks.

For fixed-priority real-time embedded systems which are
more common in practice, the two well-known algorithms

are PFP,; (also called EDeg) [7] and PF Py4qp [8], that
represent energy-greedy and computation-greedy algorithms,
respectively. In particular, PF' P,), is shown to be optimal in
[8]: any task set that can be feasibly scheduled by any other
fixed-priority energy-harvesting scheduling algorithm can be
also scheduled by PF'FP,,,. On the other hand, the same
paper shows that in terms of the preemption numbers and
other run-time overhead metrics, PF P, has a clear advantage,
while its average feasibility performance lags behind PF' P,
by a small margin.

Our work is partly inspired by the observation that, despite

their theoretical importance, the existing algorithms assume
power models that do not fully comply with existing pro-
cessors: for instance, it is assumed that the CPU can be
switched to/from a low-power (sleep) state instantaneously
and without any energy overhead. Moreover, there is only
one sleep state and its power consumption is negligible.
Contemporary processors have typically multiple low-power
states, each with different power/transition overhead char-
acteristics, such as standby, idle, and deep sleep states. In
general, the lower the power consumption in a state, the higher
the transition overhead, and there is a minimum idle time
interval that must be guaranteed before switching to a low-
power state, called break-even time [9]: if the system has to
switch back to active state sooner, then the overall energy
consumption increases, negating all the benefits of low-power
states. Another objective is to develop a simple, proactive
and highly-predictable framework that seamlessly integrate the
energy-harvesting capabilities into existing and widely known
fixed-priority systems.
Paper contributions. This paper proposes a novel and highly-
predictable energy management algorithm for fixed-priority
real-time systems with renewable energy, called Periodic
Charging Scheme (PCS). The main idea consists of planning in
advance for periodically alternating charging and discharging
phases to avoid battery failures. Specifically, the task execution
is suspended periodically and for a pre-determined duration,
to allow the system to re-charge the battery. At design time,
the algorithm computes the duration of the phases, taking
into account the characteristics of tasks and the embedded
platform, as well as the break-even times of the existing
low-power states. At runtime, the algorithm opportunistically
extends the duration of the charging states whenever possible,
to further increase the energy level. Moreover, we also provide
an enhancement to increase the spare bandwidth that can
be used by non real-time aperiodic tasks, if included in the
workload, without affecting the overall feasibility.

We perform extensive simulations to compare the perfor-
mance of PCS against the state-of-the-art techniques. We
show that when realistic power parameters are considered,
PCS outperforms other techniques in terms of feasibility
ratio, which is the percentage of the task sets that are feasibly
scheduled with the given energy profiles. We also evaluate
several other performance indicators, such as the number of
preemptions and the length of the average sleep intervals.
Paper organization. Section II introduces the power and

Environment RealTime
Embedded
System
Battery
v
Pr(t) E(t)
= Workload
Harvester
Fig. 1. Components involved in the energy flow.

workload models that are used in this paper. Section III gives
the details of the proposed approach. Section IV compares our
algorithm with the state-of-the-art techniques, experimentally.
In Section V, we overview the closely related work. Finally,
Section VI concludes the paper with final remarks.

II. SYSTEM MODEL

A. Power model

As depicted in Figure 1, we assume a system with energy
harvesting capability. The harvester unit is in charge of
scavenging energy from the environment and storing in the
energy storage unit (which may be a battery or supercapacitor).
The energy available to the embedded system at time ¢ is
denoted by F(t). This energy level is bounded by C, which
is called the battery capacity. The energy is harvested at the
rate of P.(t). As common in energy harvesting research ([6],
[10], [11]), we assume that the operation interval is divided
into equal length time slots (or, epochs): in each time slot (of
duration 7)) the energy harvesting/replenishment rate can be
assumed to be constant. For example, several papers assumed
various 7. values, ranging from 15 to 60 minutes.

The power consumption of the processor in the active state
(denoted as og) is given by a constant value Pcopy that
accounts for both dynamic and leakage dissipation. The overall
power consumption due to the entire set of remaining system
components (e.g., I/O devices/peripherals) is denoted by Py, .
The total power P,, consumed by the system in the active state
is the sum of processor power and total power consumption of
the specific subsets of peripherals in use by the running task;
thus, at any time, Popy < Py, < Pocpyu + Piev. As in [7],
[8], we do not assume DVES capability in the system; i.e.,
task execution takes place at a constant frequency level.

A feature provided by almost all processors consists of
aset & = {o1,...,0m} of low-power (sleep) states, in
which the task execution is suspended and the system enters a
mode with reduced power consumption. Typically, processors
support multiple states with different nomenclature, such as
idle, standby and deep sleep states. Moreover, each low-power
state o € ® is characterized by a power consumption level
P, and a break-even time &, . Specifically, the break-even
time is the length of the shortest idle interval that must be
available in the schedule to switch to, and later back from,
that specific low-power state ([3], [9]). This is necessary to
amortize the time and energy overheads associated with that
transition. In general, when the CPU is idle, the system should

try to switch to the deepest low-power state whose break-even
time is shorter than the predicted length of the idle interval.

Given the above notation, if the system remains in state oy,
(which may be the active state oy as well as one of the low-
power states o; (i > 1)) from time ¢; to t2, then the battery
energy level at time to is expressed by:

to
E(ty) = min | C, E(t1)+/(PT(t) — Py,)dt
t1
B. Task model

The workload consists of a set of n real-time sporadic
independent tasks, I' = {7y, 72 ..., 7,}. Each real-time task
7; consists of a infinite sequence of jobs (7; 1, 7; 2,...) and is
characterized by a minimum inter-arrival time 7; (also called
the period), a relative deadline D;, a worst-case execution
time (WCET) C;, and power consumption P;. Each task 7;
releases a new job 7; ; sporadically at time a; ;, meaning that
the interval between two consecutive jobs arrivals is greater
than or equal to T;: a; j4+1 > a;;+7T;. We assume the common
implicit-deadline systems in which the relative deadline is
equal to the minimum inter-arrival time: Vr;, D; = T;.

P; represents the power consumed to execute a job of 7;, in-
cluding both the processor and the peripherals (Popy < P; <
Popu+ Pgey)- The overall worst-case energy required by each
job of 7; is denoted as F; and it is computed as F; = P; x C;.
Note that two tasks having the same WCET may consume
different energy if they use different peripherals. H denotes
the hyperperiod of the task set, computed as the least common
multiple of all the periods: H = lem/(Ty,...,T,).

Finally, the real-time tasks are executed according to the
Rate Monotonic scheduling policy. Tasks are indexed in de-
creasing priority order, so that 7; is the highest priority task.

III. PROPOSED APPROACH

The proposed approach is based on a periodic scheme which
alternates between active and inactive phases of the processor:
the first one is in charge of executing the pending workload,
while the second one replenishes energy until the next active
phase.

The inactive phase is implemented by adding a new hypo-
thetical periodic task (7) that puts the processor in a low-
power state for an interval Cy in every period T, in order to
charge the battery continuously, without any interruption by
other tasks. To this aim, the highest priority in the system
is assigned to T,; implying that whenever it is ready, the
system will be put in a low-power state and continuous re-
charging will be enforced in a predictable and periodic fashion.
Moreover, its “execution time” Cy is chosen in such a way
that the system will be able to exploit the deepest possible
low-power state offered by the platform, by considering the
break-even times of the existing states, while still guaranteeing
the deadlines of real-time tasks. In other words, our periodic
charging scheme (PC'S) provides both a predictable harvest-
ing mechanism and an ability to comply with the requirements

of the low-power states of the processor, in terms of the
overhead amortization.

According to this framework, the problem can be reformu-
lated as finding a valid pair of C and Ts which avoid deadline
misses and energy failures while executing 75 at the highest-
priority level. Note that the assignment of the highest priority
to 7, is critical to enforce its “non-preemptive” execution, to
enable the system to enter a low-power state effectively.

In systems with renewable energy, the concept of feasibility
is extended to consider also battery (or, energy) failures ([7],
[8]). Specifically, in addition to guaranteeing task completions
no later than their respective deadlines, in order to ensure fea-
sibility, the algorithm must also guarantee that the battery level
never drops below a certain threshold Ejoq,: Vi, E(t) > Ejow-
Without loss of generality, we consider the case of Ej,, = 0;
for higher thresholds, the battery capacity can be downsized
accordingly and the problem can be re-stated as an instance
with Ej,,, = 0. Note that, if an energy failure happens, it may
not immediately lead to a deadline miss as the required time
to charge the battery may not violate real-time constraints.
Our adopted definition is stricter than this interpretation: our
proactive approach treats any energy underflow as a failure
condition, which may indeed introduce unpredictability in real-
time embedded system design.

Compared to the existing energy-greedy and computation-
greedy energy harvesting algorithms (Section I), PCS is
conceptually much simpler and easier to implement with low
online complexity. Moreover, thanks to its design principles, it
explicitly considers the time/energy overheads involved in the
processor state transitions, through the explicit analysis of the
break-even times. In contrast, the energy-greedy algorithms
(e.g., PF P, [7]) involve online computation of the existing
slack to re-charge the battery, which is, in general, of pseudo-
polynomial complexity. Similarly, the computation-greedy al-
gorithms (e.g., the theoretically optimal PF Pyg4p) result in
very frequent invocation and processor state transitions with
prohibitive costs on real systems that have non-zero transition
overheads.

An example of our approach is illustrated in Figure 2,
showing how the battery level varies while executing the
instances of 7, and the workload. For the sake of simplicity,
the replenishment function has been assumed constant and all
tasks consume the same power. Since 7, runs at the highest
priority (in order to guarantee a non-preemptive execution),
any time an instance of 7, is released, the actual running job
is preempted, the processor enters into a low-power state, and
the battery is replenished. Then, the workload execution is
resumed when 7, instance completes its execution, running
for at most Ty, — (s time units before next instance arrives.

We first present the details of the proposed algorithm in
Section III-A. Then, a sufficient condition is provided to test
the system feasibility at design time (Section III-B). Finally,
for workloads that may include non real-time components,
an online enhancement is introduced in Section III-C to
improve the responsiveness of such tasks, without affecting
the feasibility of the real-time workload.

Ts
r
T3 T2 T1 TIT3T2 T1 T3 T2 T1 T3 T2
t
Fig. 2. Example of algorithm execution.

A. Algorithm

This section gives the details of the proposed algorithm:
Periodic Charging Scheme (PCS). Specifically, at design time,
the algorithm computes the period 75 and charging time Cj
which lets 7, execute periodically in a non-preemptive fashion.
Then, at runtime, the algorithm opportunistically compacts idle
intervals and 7, execution, to further extend battery phases and
exploit deeper low-power states.

First, let us consider the design-time step. The shortest
period among the real-time tasks is assigned to 7 in order
to let 75 have the highest priority and run in a non-preemptive
way. The computational time C is assigned according to
the sensitivity analysis proposed by Bini et al. [12], which
computes the highest spare utilization that 74 can have, without
causing deadline misses among the lower priority tasks. In
this case, lower priority tasks correspond to the entire orig-
inal task set I'. Although the sensitivity analysis considers
fully-preemptive tasks, the non-preemptive execution of 7
is automatically guaranteed by its highest priority, without
invalidating the analysis. Moreover, the specific low-power
state o, to which the system switches during the 75’s execution
is chosen as the deepest sleep state whose break-even time is
shorter than or equal to Cs. The corresponding pseudocode is
presented in Algorithm 1.

On the other hand, the runtime component of PC'S is exe-
cuted whenever the ready queue becomes empty. Specifically,
when the processor is idle, the algorithm first computes earliest
possible next arrival time of any periodic task (next_arrival),
which can be easily computed given the minimum inter-arrival
time information of the tasks. Then, it re-adjusts the next
arrival time of 74 to coincide with next_arrival. In this
way, the system enters an extended charging phase from the

Algorithm 1 PCS: Design-Time Algorithm
1: function PCS_AT_DESIGN_TIME(I")
2: T, = mirll T;
T €
Cs = ACs /* From sensitivity analysis [12] */
' —TU{rs}

k= max)
0; € PNE,, <Cs

6: end function

R w

current time until next_arrival + Cs, potentially enabling the
exploitation of even deeper low-power states simultaneously.

To prove that the schedulability is not affected by re-
adjusting the next invocation time of 7, arrival, let us assume
a generic task set whose feasibility is statically guaranteed.
Recall that 7, has the highest priority in the system. Accord-
ing to the well-known fixed-priority schedulability analysis
techniques, the response time of any task is maximized when
its job arrives simultaneously with the jobs of higher-priority
tasks [12]. Since the task set is deemed feasible at the static
phase, the response time of any task does not exceed its
deadline even in that critical instant, by definition. Hence, by
aligning the next invocation time of 7 with the next_arrival,
other deadlines cannot be compromised. Then, forcing 75 to
arrive at the same time lets us obtain a configuration equivalent
to the critical instant, whose feasibility is already assumed in
the static analysis.

The pseudocode in Algorithm 2 gives the details of the
runtime component of PCS, which computes the actual
charge length (1¢p4rge), adjusts 7,’s next invocation time a,;
and selects the deepest low-power state to use during that
specific charge step.

An example is reported in Figure 3, representing the

Algorithm 2 PC'S: Runtime Algorithm

1: function PCS_AT_RUNTIME (¢) © t: CPU becomes idle
2: t1 = next_arrival

3: Tcharge = Cs + (tl - t)
4: Qg5 = t1
5 kK = max 7

0, €PNEo; <Teharge
6: end function

schedules without and with the runtime component of PC'S.
Specifically, when the runtime component is enabled, it is
invoked at ¢ (when the CPU becomes idle) and, computing
the next arrival time in I' as ¢1, 75’s execution and the idle
interval are compacted to form a single longer interval (of
duration Cs 4 (t; — t)). With longer intervals, the algorithm
gains the ability to potentially exploit deeper low-power states.

Ts : :

] 1

r IT |
t t 1 t tl
WithoutRuntime Adjustment WithRuntimeAdjustment

Fig. 3. Schedule examples without and with the PC'S runtime component.

At runtime, the introduced complexity for the scheduler
is negligible as the algorithm only requires to schedule the
additional task 75. The complexity of the static (design-time)
component is pseudo-polynomial with respect to the number
of tasks due to the sensitivity analysis. Finally, the runtime
component of PCS has also low complexity: assuming the
earliest next arrival time can be evaluated in constant time,
then the overall complexity is linear with respect to the number
of low-power states, which is O(m).

B. A Sufficient Condition for Schedulability

In PCS, the feasibility in terms of timing constraints
is explicitly guaranteed through the sensitivity analysis. On
the other hand, providing a simple necessary and sufficient
condition to check whether a given system configuration, with
a certain initial energy budget and harvesting profile is feasible
or not, is not trivial.

Nevertheless, a sufficient condition to guarantee execution
without energy failures can be derived, for design-time (of-
fline) analysis. The condition is based on guaranteeing that,
even in the worst-case scenario, the difference between the
harvested energy and the consumed energy during one period
T, of 7, is not negative. If this holds, due to the periodic
nature of 7,’s invocations, the energy level of the system will
never decrease in the long run, guaranteeing feasibility.

Specifically, the difference in the energy levels at the
beginning of two consecutive invocations of 75 is given by:

AE:(PT_PUk)'Cs_(Pact_Pr)'(Ts_Os)203 (1)

where P,.; is the maximum task power consumption in the
active state (P,.; = max P;) and oy is the low-power state

selected by the offline ghase of PCS.

An intuitive example is shown in Figure 4, illustrating how
the battery level E varies while executing 75 and real-time
tasks. The first term in Eq. (1), (P. — Py,) - Cs, gives the net
energy gain during the charging phase, while the second term
(Pact — P.) - (Ts — Cs) corresponds to the energy loss during
the discharging phase.

E(t)

Ey

Ts

Fig. 4. Energy level changes during one period of 7

Eq. (1) can be reformulated with respect to Cj, as:
Pact - Pr

Cs >
* act_Pak

T,)

Note that this condition is pessimistic, because it is assumed
that the system is always in active state (o), executing the task
with the maximum power consumption characteristics, when
T 1S not running (i.e., during the discharge phase of length
Ts — Cs). However, it provides a simple formula that can be
checked in constant time, regardless of the initial energy level.
In the rest of the paper, we refer to this version of PC'S which
checks feasibility at design time by using Eq. (2), as PCS™*.

C. Enhancing the Algorithm for Mixed Workloads

In some cases, thanks to a favorable scenario, the energy
stored in the battery may reach the capacity, leading to a
waste of energy. Although battery overflows do not represent
a problem for neither real-time nor energy constraints, the
scheduler may optimize the use of resources, such as energy
and CPU time.

In fact, such an optimization may be quite useful for
mixed workloads that contain both sporadic real-time and
aperiodic non-real-time (NRT) tasks. For mixed workloads, the
traditional objective is to meet the hard deadlines of the real-
time tasks, while improving the responsiveness (i.e., average
response time) of NRT tasks [13]. Hence, in our settings,
some instances of 7, may be skipped, making available its
allocated computation time to NRT tasks. Figure 2, at the

bottom schedule, illustrates the execution of an NRT task €2
during the idle intervals of the PC'S schedule. If the third job
of 7, is discarded, the response time of {2 can be shortened
without causing any energy failure.

However, skipping too many instances of 75 may hurt
feasibility in the long term; in particular, as the harvesting rate
P, changes at the end of each epoch T, typically of length 15-
30 minutes, one should still try to maximize the battery energy
level as much as possible by the end of the current epoch.
Consequently, our proposed enhancement is based on skipping
one instance of 75 out of j 4+ 1 consecutive instances (j > 1),
while ensuring maximization of the battery level by the end
of epoch. Specifically, by denoting the initial energy level at
the beginning of the epoch as Ej, the net energy harvested
until the end of the current epoch has to be no less than the
available capacity (C' — Ejp) in the battery:

N-AE*>C —Fy>0, 3)

Above, N is the number of skipped instances during the
current epoch (N = iﬁ) and AFE* is the difference
between harvested and consumed energy in a time interval of
length (5 +1) - T:

AE* = j'(Pr_Pa'k)'Cs_(Pact_PT)'(j'Ts_j'Cs +Ts) Z 0.

“4)
Since T,.>>T,, we can a.pproximate N as ﬁ From
Egs (3) and (4), we can derive a lower bound for j:
Pac _P’I" Ts+ CiEOTs
= (o = 1) L 5)

(Pact_Pa'k)'Os_

(Pact _Pr) 'Ts - C;EOTS7

The value of j must be set as the smallest integer that
satisfies Eq. (5) — a higher value of j may decrease the
responsiveness of the NRT workload, while wasting energy
that cannot be stored in the battery. This enhanced version of
PCS, denoted by PCSNET | is invoked whenever an epoch
starts and has constant-time complexity (O(1)), as only Eq (5)
needs to be solved.

IV. EXPERIMENTAL RESULTS

In this section, we provide the results of simulation experi-
ments that we carried out in order to evaluate the performance
of our proposed algorithms under different system parameters.

We considered an embedded system equipped with an NXP
LPC1768 [14] processor (ARM Cortex M3 [15]), powered by
a battery with capacity C' = 500mAh and two solar panels,
each providing a maximum of 500mW . The power consump-
tion of the processor in active state, without considering the
peripherals, is Popy ~ 690mW. When all peripherals are
activated, the overall power consumption is around 11, giving
Piery = 310mW. Two low-power states are considered: idle
(01) and sleep (o2). Their power consumption and break-even
times are P,, = 490mW, &, =~ Oms, P,, = 290mW and
&s, = 1oms. Observe that, although the sleep state consumes
least power, its break-even time is not negligible.

The synthetic task sets used in the tests are composed of 10
tasks randomly generated using the UUniFast algorithm [16],

where each period 7T; is uniformly distributed in the range
of [40,500]ms. In our simulations, we generated 4000 task
sets (200 for each utilization value under consideration). The
power consumption P; of each job of task 7; is computed as:

P, = Popu + 7 - Pyeo,

where 0 < z; < 1.0 is a real number generated randomly. By
choosing different x; values, we are able to model the case of
tasks consuming different amount of power per time unit of
execution.

We report the results of our experiments in three parts. The
first set evaluates the effectiveness of the proposed algorithms
in terms of the ratio of the task sets that are scheduled in
feasible manner (called the feasibility ratio), with respect
to both timing and energy constraints. The second set of
experiments assess several online metrics, such as average
sleep interval length and preemption count, and the last set
analyzes the spare CPU bandwidth that is made available to
potential non-real-time tasks.

A. Feasibility ratio

1 tayy, %y 3 ! !
0.9 :‘ % ", 0y Bound ms |
0.8 \ =" b PFPasap b |
207 \\ R PF Py |
=] Y) D
0.6 \ 2y % PCS
20.5 3 % 'S e |
£0. \ Y] CS" =
B 04 iy |
203 \ 1N,
0 3% %
0.2 LNy
0.1 \ t L
0 N, A ey
045 05 055 06 065 07 075 08 085 09 095
Utilization
Fig. 5. Feasibility ratio vs. Utilization ({,, = 0, Py, = OW, P. = 70%).

To evaluate the feasibility ratio under different system
configurations, we implemented the following algorithms in
our discrete-event simulator:

e PFP,,,: the computation-greedy algorithm whose opti-
mality for fixed-priority systems with renewable energy,
but only under negligible state transition overheads as-
sumption, was formally proven in [8];

o PFPg (also called EDeg, from [7]): the energy-greedy
algorithm whose feasibility performance was shown to
lag slightly behind PF' P,), in [8];

e PCS* that evaluates only the sufficient condition given
by Eq. (2) at design time, to guarantee the feasibility;

e PCS — presented in Section III-A;

e Bound that represents a theoretical limit on the feasibility
performance of any scheduling algorithm.

The executions of PF Pygqp, PF Py and PCS are simu-
lated, assuming an initial energy level of Ey = 0 (the worst-
case scenario) and checking for any deadline misses or battery
failures during the hyperperiod H. To implement Bound, we
adopted a methodology similar to the one suggested by Pagani

9 0.7

= 0.6

-
205
é 0.4
G803
o
0.2
0.1
(] c
0.1

i
'y,
1,
Y
1

0.25 0.3
Utilization

(@) Pr = 50%.

0.35 0.45

0 L
0.3 0.35 04 045 0.5 055 06 0.65 0.7 0.75 0.8 0.85 0.9
Utilization

(b) Pr =170%.

Fig. 6. Feasibility ratio vs. Utilization for non-negligible transition overhead and sleep power.

and Chen [17], by transforming the problem into another
one where tasks have identical release times and identical
deadlines (equal to the hyperperiod H of the original task
set) while keeping task utilizations the same. Specifically, the
battery capacity limit is ignored, and the longest possible
charging interval within the hyperperiod is considered. In these
ideal settings, the entire workload with utilization U can be
procrastinated for (1 — U) - H time units and the system is
feasible if and only if the energy harvested in (1 —U) - H is
higher than or equal to the energy consumed in U - H time
units of execution.

Since PF' P, 5., and PF'P,; were developed assuming neg-
ligible state transition overheads, they have been updated to in-
corporate a simple mechanism to deal with those overheads at
run-time. Specifically, PF'P,,;,, which procrastinates only to
harvest the energy necessary to execute the next computational
unit, chooses the deepest sleep state whose break-even time is
not longer than the required time to harvest the missing energy
amount. Similarly, PF Pg;, which exploits the whole available
slack to charge the battery when it becomes empty, selects
the deepest low-power state whose break-even time is shorter
than or equal to the target procrastination delay. In addition,
both algorithms are enhanced by putting the processor to
the deepest low-power state which lets the system be fully
operational by the next job arrival, when the CPU is idle.

In Figure 5, we first report the results for a system with
“ideal” settings, that is, the one with a negligible power
dissipation and zero break-even time associated with the sleep
state (i.e., &, = Oms and P,, = 0W). The harvesting rate
P, is set to 70% of the maximum system power consumption
(Popu + Piev)-

As expected, in this scenario with no overheads, PF' P, 4,;,’s
optimality is demonstrated: it yields a feasibility ratio higher
than PFP,; and PCS. Also, in accordance with what is
experimentally shown in [8], PF' P, is a close second — in fact,
its performance almost coincides with that of PF' FPy,p. PCS
comes next, showing that putting periodically the processor
in sleep state is not the best approach on systems with zero
transition overhead and zero sleep power.

However, when a realistic set of low-power states is con-
sidered, the picture changes entirely. The results are reported

in Figure 6(a) and Figure 6(b), for P, = 50% and 70% of the
maximum power consumption (Popy + Pyes), Tespectively.

Our approach outperforms PFP,; and PI'FPy,,, as it
periodically guarantees replenishment phases which last longer
than the sleep state’s break-even time, overcoming the limita-
tions due to short idle intervals. For instance, when P, = 70%,
PFP,.,’s performance degrades when U 0.35, while
PC'S successfully schedules all the task sets up to U = 0.45.
The performance of PF'FPy,,, drops because it is able to
exploit only shallow low-power states. The difference between
PCS* and PCS is entirely due to the pessimistic nature of
the offline test. Finally, although PF P;,’s performance is close
to PC'S, its online complexity is pseudo-polynomial whereas
our simple algorithm has a linear complexity at runtime.

Figure 7 presents the impact of the relative harvesting rate
(P./(Pcpu + Piev)) on the feasibility ratio when U = 0.4.
In other words, this analysis shows the minimum required
harvesting rate that guarantees schedulability. Again, PCS
offers the best performance (besides Bound, which gives the
theoretical limit): it guarantees the feasibility for the lowest
harvesting power.

1 ¥ o
&
0.9 o
\’\0\
0.8 o
807§
= 0.6 ;'
205 [F § S 1
= 04§ S o8 Bound «m»
SV 3 e |
203§ € 0 / POS |
S H Radity PFPs; v
0.2 « / PCS* == |
0.1 f\\\“\ " PFPusap IHu
0 ™ n
0.5 0.55 0.6 0.65 0.7
Pr/(PC’PU + Pdev)
Fig. 7. Feasibility ratio vs. Harvesting rate (U = 0.4).

Next, we analyze how the performance changes as a func-
tion of the different break-even times associated with the
sleep state, in Figure 8(a) and Figure 8(b), for PC'S™ and
PCS, respectively. The results are obtained for P. = 65%,
and the minimum period value of 40ms. As expected, the
results show that the longer the break-even time, the lower the

| sl ;
0.9 %, ms == | 09 Oms == |
08 oms Mo | 08 15ms ¥ |
ms "3 75ms ¥
© 0.7 3 b © 0.7 B
= 0o ms B} - 06 135ms "B} |
; ’ >ms =l ; ’ 225ms =l
205 ms@] =207 300ms ‘@ |
F 04 £ 04
303 203
(5] (5]
02 0.2
0.1 0.1
0 ‘ 0
02 025 03 035 04 045 05 055 02 025 03 035 04 045 05
Utilization Utilization
(a) Under PC'S™. (b) Under PC'S.
Fig. 8. Feasibility ratio vs. Utilization under different break-even times for P, = 65%.
feasibility ratio. However, PC'S is less affected than PCS* _ PCS, P =70% %
by the changes in the break-even time: this is because, it g 100 PCS, Pr = 60% M= |
opportunistically manages to compact inactive intervals at @ PCS, Pr = 50% ==
. E, 3y = oY
runtime. z PEPy, P, = 70% @
‘QE) 75 -
B. Online metrics = B
o
This subsection considers some online metrics that are rel- 8 0
. . N . 7]
evant to characterize the algorithms’ performance at runtime: o
e average time spent in sleep state: this metric shows g L
o . 25
the capability to exploit the deepest low-power state for z 7

as long as possible. In generally, the longer the sleep
intervals, the higher the harvested energy and the higher
the probability to execute the workload without battery
failures;

o number of preemptions: this metric shows the total num-
ber of preemptions experienced by each algorithm. Obvi-
ously, an algorithm with prohibitive number of preemp-
tions is not desirable, considering the overhead associated
with each preemption;

e average battery energy level: this metric highlights the
success of the algorithms in effectively harvesting energy,
while executing the workload.

The comparisons in this section involve only PCS and
PF Py, due to the fact that the results in [8], that are in line
with ours, clearly show that PF'P,; outperforms PF P, by
a significant margin when considering these online metrics.

First, we analyze the average length of the sleep intervals
for PF P, and PCS in Figure 9. We observe that PC'S
guarantees longer sleep intervals on the average; however
their lengths tend to decrease with increasing utilization (the
time assigned to 7, becomes shorter). Conversely, the average
sleep interval length for PF' Pq; first remains constant with
the utilization (due to the feasibility constraint and reaching
the battery capacity during recharging), before dropping. It
is worth noting that for PF Py, the total length of the idle
intervals is comparable to that of the sleep intervals. Note
that some values are not reported for certain data points
whenever the corresponding algorithm does not generate a
feasible solution for that utilization value.

When the absolute time spent in low-power states
(idle + sleep) is considered instead of the average duration,

0.1 0.15 02 025 03 035 04 045 05 055 0.6 0.65
Utilization

Fig. 9. Average sleep interval vs. Utilization under PC'S and PF Ps;.

PCS and PF Ps; have similar trends. Specifically, the differ-
ence is around only 5% of the entire hyperperiod during which
PF Pg; puts the system in the idle state rather than the sleep
state, due to the break-even time considerations.

Next, in Figure 10, we show the number of preemptions of
PC'S, normalized with respect to PF P;’s. PC'S has the side
effect of introducing a higher preemption count than PF' P,
as the system executes the additional charging task 7, with the
period set to the minimum period value. However, except for
very low utilization values, the increase is only around 50%
compared to PF P, during the hyperperiod. The preemption
ratio is not reported for utilization values where PF P, or
PC'S does not generate feasible values.

190
= PCS, P = 70%
%0 180 PCS,; Pr="607 v
=
Q —
2 1704 PCS, P, = 50% =+ |
=
k) 160
g
g 10 "y
ERTI RN S e
s
2 by
ﬁ: 130

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Utilization

Fig. 10. Ratio of preemption number in PC'S to that in PF Ps; (percentage).

Finally, in Figure 11, we analyze the average battery level,
normalized to the battery capacity, within a hyperperiod.
We observe that both PC'S and PF P,; guarantee a similar
average battery level, even though, charging principles and
timing are different. In general, the higher the utilization, the
lower the average battery level as the available time to charge
the battery is shorter. In addition, the higher the harvesting
rate P,, the higher the average battery level as the charging
process is more effective. Despite similar performance trends,
we note that the online component of PF' P, has pseudo-
polynomial time complexity (due to the computation of the
maximum slack at runtime), while PC'S has linear complexity.

0.35 ‘ :
_ L . PCS, P, = 70% %
2 030, PF P Pr="70% @ 1
E 025 ‘g8, PCS, Fr = 60% 2]
o . PFPy. P =60% @
: 0.2°F -.s\ o :,,. PCS; Pr=50%" o
g W ® rrp, P =5% O
3015 . .

b ‘\ 9., o .

g ol N
g el ®
S 0.05

2

<

0 L L L
0.1 0.15 0.2 0.25 0.3 0.35 04 045 0.5 0.55 0.6 0.65 0.7
Utilization

Fig. 11. Average battery level vs. Utilization under PC'S and PF Ps;.

C. Effective spare CPU bandwidth

Finally, we undertake an experimental analysis of PC
(Section III-C) which targets allocating as much CPU band-
width as possible to non-real-time (NRT) tasks in order to
improve their responsiveness. Recall that under PCSNET,
effectively additional CPU bandwidth is reserved by skipping
an instance of 75 out of j+ 1 consecutive instances, where j is
computed statically at the beginning of each epoch, to preserve
feasibility in terms of deadlines and energy constraints.

In these experiments, the utilization of the real-time task
set is set to 0.5, potentially leaving 50% of the CPU time to
non-real-time tasks, regardless of 7,’s configuration. Figure 12
shows the effective spare CPU bandwidth that is left for the
NRT workload, by considering also 7,’s invocations, as a
function of the harvesting rates and initial battery level Ey. In
this first simulation, the battery capacity is C = 500mAh and
the average 7, utilization is 0.4. When the online enhancement
is not able to skip any 7, instance (mainly due to low initial
battery level Ejy, or scarce harvested power P,), the CPU
bandwidth allocated to NRT tasks is around 10%, which
is equivalent to the static slack (0.5 — 0.4). As soon as
more favorable execution scenarios occur (either thanks to
the higher initial battery level Ejy or higher harvesting rate
P,), several of 74’s jobs can be skipped without hurting the
feasibility. Specifically, in the best case, the effective spare
CPU bandwidth goes from 10% to 30%, meaning that the
actual utilization of 7, is 0.2 (an instance is skipped out of 2).

In Figure 13, the same analysis is repeated, this time for
a system with lower battery capacity, C' = 250mAh. Since

SNRT

0.3 +
=
=l
025 ;
=]
© 0.2 i
Q0.15 4 e
) § $ Eo=C/2 .9
g l ‘X ‘ o\. E(? =C /4 ‘E
&0l .- .
Fo=0 -m-
07 08 00 1 LI 12 13 14 15 1.6 17 18 19
PT‘/(PCPU + Pdev)
Fig. 12. Effective spare CPU bandwidth vs. P,./(Pcpy + Pgey) for C =

500mAh.

the maximum amount of energy that can be stored is lower,
the upper bound on the effective spare CPU bandwidth is now
reached sooner.

0.3
=
=
3
30.25
e}
g
© 0.2
=)
[aW)
Jo.1s E
2 o.lf—lfl—i-

0.7 0.8 0.9 1 i 12 i3 T4
PT‘/(PCPU + Pdev)

Fig. 13. Effective spare CPU bandwidth vs. P, /(Pcpu + Pgey) for C =

250mAh.

V. RELATED WORK

Rakhmatov and Vrudhula [18] addressed the problem of
minimizing the energy consumption, while guaranteeing a
common deadline and avoiding battery failure for real-time
tasks. Their first algorithm decides how to schedule the tasks
by considering the precedence constraints and battery charac-
teristics. Then, when the system restarts after a battery failure,
the algorithm is invoked to exploit idle states or modulate the
processing speed.

Chetto et al. [7] considered the real-time scheduling problem
under the Rate Monotonic policy for systems with renewable
energy. They proposed five reactive heuristics, which are exe-
cuted whenever the battery becomes empty. The first heuristic
keeps the processor in sleep state for a predefined fixed interval
x, while the second extends the inactive period until the charge
level reaches a certain threshold. The third one (called E Deg,
later labeled as PF' P, in [8]) uses the entire available slack
time. The fourth heuristic stops charging when the battery is
completely charged. Another fifth algorithm is invoked when
the battery energy level drops below a predefined lower bound.

El Ghor et al. [19] proposed an algorithm under the EDF
policy that applies task procrastination to the energy harvesting
problem. Specifically, the pending jobs are executed if there

is enough energy to complete them, otherwise the available
slack time is exploited to charge the battery.

Abdeddaim et al. [8] proposed an optimal algorithm, called
PFPqp. The algorithm puts the processor in sleep state for
the shortest time interval that still guarantees to harvest the
required energy for executing only the next computational unit
of the highest priority task (which is equivalent to the first
heuristic in [7] by considering = = 1). Despite the algorithm’s
optimality, the paper shows that PI'F,,,, introduces a signif-
icant number of state transitions and preemptions. Moreover,
the overhead associated with transitions to/from low-power
states is not considered.

Kooti et al. [20] proposed an algorithm which divides the
analysis operation interval (one day) into a set of frames (30
minutes each) without any correlation with the task periods.
They assume no more than n out of m consecutive jobs of
a task miss their deadlines. At design time, an ILP solver
computes for each frame the allocated energy and the number
of hard real-time and best-effort jobs. Then, within each frame,
the online step executes the hard real-time tasks while the best-
effort tasks are executed only if there is enough energy.

Moser et al. [21] defined a 3-layered solution for energy
harvesting systems: Application Rate Control, Service Level
Allocation, and Real-Time Scheduling. For the first two layers,
a long-term analysis is conducted to guarantee an average
high performance level. For the real-time scheduling phase, an
algorithm called Lazy Scheduling Algorithm (LSA) is proposed.
Specifically, by using the EDF policy, the algorithm sets the
start time of a job equal to its deadline minus the total
harvested energy divided by the power consumption. In this
way, idle intervals that can be used to recharge the battery are
introduced in the schedule. However, the transition overheads
associated with low-power states are not considered. The idea
is further followed in [22], which provides a admission con-
dition that considers the energy demand and supply functions.

VI. CONCLUSIONS

In this paper, we addressed the energy management problem
for fixed-priority real-time systems with renewable energy.
Our proposed approach is based on planning in advance for
periodically alternating charging and task execution phases
offering simplicity and predictability. Moreover, our proactive
algorithm is designed to take advantage of multiple low-power
(sleep) states offered by many current processors.

At design time, the duration and frequency of charging
phases are computed, whereas, at runtime, the algorithm
extends charging phases opportunistically by taking advan-
tage of the inactive intervals to exploit deeper low-power
states. Moreover, an enhancement is provided to improve the
responsiveness of non-real-time workloads without affecting
the overall feasibility of real-time tasks. Our proposal was
experimentally compared with the state-of-the-art algorithms.
We showed that our algorithm yields a higher feasibility
ratio when a realistic power model with non-zero power
state transitions is considered. Moreover, we evaluated several

runtime performance metrics, showing the viability of our
proposal.

REFERENCES

[11 Y.-H. Lee, K. Reddy, and C. Krishna, “Scheduling techniques for
reducing leakage power in hard real-time systems,” in Proc. of the 15th
IEEE Euromicro Conference on Real-Time Systems (ECRTS), 2003.

[2] R. Jejurikar, C. Pereira, and R. K. Gupta, “Leakage aware dynamic
voltage scaling for real time embedded systems,” in Proc. of the IEEE
Design Automation Conference (DAC), 2004.

[3] M. Bambagini, M. Bertogna, M. Marinoni, and G. Buttazzo, “An
energy-aware algorithm exploiting limited preemptive scheduling under
fixed priorities,” in Proc. of the Sth IEEE International Symposium on
Industrial Embedded Systems (SIES), 2013.

[4] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez, “Power-
aware scheduling for periodic real-time tasks,” IEEE Transactions on
Computers, vol. 53, no. 5, pp. 584-600, May 2004.

[5] E. Bini, G. Buttazzo, and G. Lipari, “Minimizing cpu energy in real-time
systems with discrete speed management,” ACM Trans. Embed. Comput.
Syst., vol. 8, no. 4, pp. 31:1-31:23, Jul. 2009.

[6] J. Hsu, S. Zahedi, A. Kansal, M. Srivastava, and V. Raghunathan,
“Adaptive duty cycling for energy harvesting systems,” in Proc. of
the International Symposium on Low-Power Electronics and Design
(ISLPED), 2006.

[71 M. Chetto, D. Masson, and S. Midonnet, “Fixed priority scheduling
strategies for ambient energy-harvesting embedded systems,” in Proc. of
the IEEE/ACM International Conference on Green Computing and
Communications (GreenCom), 2011.

[8] Y. Abdeddaim, Y. Chandarli, and D. Masson, “The optimality of
PF Pgysqp algorithm for fixed-priority energy-harvesting real-time sys-
tems,” in Proc. of the 25th IEEE Euromicro Conference on Real-Time
Systems (ECRTS), 2013.

[9]1 L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design

techniques for system-level dynamic power management,” /EEE Trans.

on Very Large Scale Integration Systems, vol. 8, no. 3, pp. 299-316,

2000.

R.-S. Liu, P. Sinha, and C. Koksal, “Joint energy management and

resource allocation in rechargeable sensor networks,” in Proc. of the

IEEE INFOCOM, 2010.

B. Zhang, R. Simon, and H. Aydin, “Maximum utility rate allocation

for energy harvesting wireless sensor networks,” in Proc. of the 14th

ACM International Conference on Modeling, Analysis and Simulation

of Wireless and Mobile Systems (MSWIM), 2011.

E. Bini, M. Di Natale, and G. Buttazzo, “Sensitivity analysis for fixed-

priority real-time systems,” Real-Time Syst., vol. 39, no. 1-3, pp. 5-30,

Aug. 2008.

G. C. Buttazzo, Hard Real-time Computing Systems.

USA: Springer-Verlag, 2004.

“Nxp web site,” http://www.nxp.com/.

“Arm web site,” http://www.arm.com/.

E. Bini and G. C. Buttazzo, “Measuring the performance of schedu-

lability tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129-154, May

2005.

S. Pagani and J.-J. Chen, “Energy efficiency analysis for the single

frequency approximation (sfa) scheme,” in Proc. of the 19th IEEE Inter-

national Conference on Embedded and Real-Time Computing Systems

and Applications (RTCSA), 2013.

D. Rakhmatov and S. Vrudhula, “Energy management for battery-

powered embedded systems,” ACM Trans. on Embedded Computing

Systems, 2003.

H. El Ghor, M. Chetto, and R. H. Chehade, “A real-time scheduling

framework for embedded systems with environmental energy harvest-

ing,” Journal of Computers and Electrical Engineering, 2011.

H. Kooti, N. Dang, D. Mishra, and E. Bozorgzadeh, “Energy budget

management for energy harvesting embedded systems,” in Proc. of the

18th IEEE International Conference on Real-Time Computing Systems

and Applications (RTCSA), 2012.

C. Moser, J.-J. Chen, and L. Thiele, “Dynamic power management in

environmentally powered systems,” in Proc. of the 15th Asia and South

Pacific Design Automation Conference (ASP-DAC), 2010.

C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-time scheduling

with regenerative energy,” in Proc. of the IEEE European Conference

Conference on Real-Time Systems (ECRTS), 2006.

[10]

(1]

[12]

[13] Santa Clara, CA,

[14]
[15]
[16]

(171

(18]

[19]

[20]

[21]

[22]

