
Reliability-Aware Energy Management
for Periodic Real-Time Tasks
Dakai Zhu, Member, IEEE, and Hakan Aydin, Member, IEEE

Abstract—Dynamic Voltage and Frequency Scaling (DVFS) has been widely used to manage energy in real-time embedded systems.

However, it was recently shown that DVFS has direct and adverse effects on system reliability. In this work, we investigate static and

dynamic reliability-aware energy management schemes to minimize energy consumption for periodic real-time systems while

preserving system reliability. Focusing on earliest deadline first (EDF) scheduling, we first show that the static version of the problem is

NP-hard and propose two task-level utilization-based heuristics. Then, we develop a job-level online scheme by building on the idea of

wrapper-tasks, to monitor and manage dynamic slack efficiently in reliability-aware settings. The feasibility of the dynamic scheme is

formally proved. Finally, we present two integrated approaches to reclaim both static and dynamic slack at runtime. To preserve

system reliability, the proposed schemes incorporate recovery tasks/jobs into the schedule as needed, while still using the remaining

slack for energy savings. The proposed schemes are evaluated through extensive simulations. The results confirm that all the

proposed schemes can preserve the system reliability, while the ordinary (but reliability-ignorant) energy management schemes result

in drastically decreased system reliability. For the static heuristics, the energy savings are close to what can be achieved by an optimal

solution by a margin of 5 percent. By effectively exploiting the runtime slack, the dynamic schemes can achieve additional energy

savings while preserving system reliability.

Index Terms—Real-time systems, periodic tasks, earliest deadline first (EDF) scheduling, dynamic voltage and frequency scaling

(DVFS), reliability, transient faults, backward recovery.

Ç

1 INTRODUCTION

THE phenomenal improvements in the performance of
computing systems have resulted in drastic increases in

power densities. For battery-operated embedded devices
with limited energy budget, energy is now considered a
first-class system resource. Many hardware and software
techniques have been proposed to manage power con-
sumption in modern computing systems and power-aware
computing has recently become an important research area.
One common strategy to save energy is to operate the
system components at low-performance (thus, low power)
states, whenever possible. For example, Dynamic Voltage and
Frequency Scaling (DVFS) technique is based on scaling
down the CPU supply voltage and processing frequency
simultaneously to save energy [34], [35].

For real-time systems where tasks have stringent timing
constraints, scaling down the clock frequency (i.e., processing
speed) may cause deadline misses and special provisions are
needed. In the recent past, several research studies explored
the problem of minimizing energy consumption while
meeting all the deadlines for various real-time task models.
These include a number of power management schemes
which exploit the available static and/or dynamic slack in the

system [4], [10], [11], [27], [30], [31]. For instance, the optimal
static power management scheme for a set of periodic tasks
would scale down the execution of all tasks uniformly at a
speed proportional to the system utilization and employ the
Earliest Deadline First (EDF) scheduling policy [4], [27].

Reliability and fault tolerance have always been major

factors in computer system design. Due to the effects of

hardware defects, electromagnetic interference, and/or

cosmic ray radiations, faults may occur at runtime, espe-

cially in systems deployed in dynamic/vulnerable environ-

ments. Several research studies reported that the transient

faults occur much more frequently than the permanent faults

[9], [21]. With the continued scaling of CMOS technologies

and reduced design margins for higher performance, it is

expected that in addition to the systems that operate in

electronics-hostile environments (such as those in outer

space), practically all digital computing systems will be

remarkably vulnerable to transient faults [15].
The backward error recovery techniques, which restore the

system state to a previous safe state and repeat the

computation, can be used to tolerate transient faults [29].

It is worth noting that both DVFS and backward recovery

techniques are based on (and compete for) the active use of

the system slack. Thus, there is an interesting trade-off

between energy efficiency and system reliability. Moreover,

DVFS has been shown to have a direct and adverse effect on

the transient fault rates, especially for those induced by

cosmic ray radiations [12], [15], [42], further complicating

the problem. Hence, for safety-critical real-time embedded

systems (such as satellite and surveillance systems) where

reliability is as important as energy efficiency, reliability-

cognizant energy management becomes a necessity.

1382 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009

. D. Zhu is with the Computer Science Department, University of Texas at
San Antonio, One UTSA Circle, San Antonio, TX 78249.
E-mail: dzhu@cs.utsa.edu.

. H. Aydin is with the Department of Computer Science, George Mason
University, Science and Technology II, Room 401, MSN 4A5, 4400
University Drive, Fairfax, VA 22030. E-mail: aydin@cs.gmu.edu.

Manuscript received 3 Mar. 2008; revised 14 Oct. 2008; accepted 12 Feb.
2009; published online 24 Mar. 2009.
Recommended for acceptance by S.H. Son.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-03-0099.
Digital Object Identifier no. 10.1109/TC.2009.56.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Fault tolerance through redundancy and energy manage-
ment through DVFS were extensively (but, independently)
studied in the context of real-time systems. Only recently,
few research groups began to investigate the implications of
having both fault tolerance and energy efficiency require-
ments [14], [26], [33], [36]. However, none of them considers
the negative effects of DVFS on system reliability. As the first
effort to address the effects of DVFS on transient faults,
we previously studied a reliability-aware power management
(RA-PM) scheme. The central idea of the scheme is to exploit
the available slack to schedule a recovery task at the dispatch
time of a task before utilizing the remaining slack for DVFS
to save energy, thereby preserving the system reliability [38].
The scheme has been extended to consider various task
models and reliability requirements [39], [41], [44], [45].

In this paper, we investigate both static and dynamic
RA-PM schemes for a set of periodic real-time tasks
scheduled by the preemptive EDF policy. Specifically, we
consider the problem of exploiting the system’s static and
dynamic slack to save energy while preserving system
reliability. We show that the static RA-PM problem is
NP-hard and propose two efficient heuristics for selecting a
subset of tasks to use static slack (i.e., spare CPU capacity)
for energy and reliability management. Moreover, we
develop a job-level dynamic RA-PM algorithm that monitors
and manages the dynamic slack which may be generated at
runtime, again for these dual objectives. The latter algo-
rithm is built on the wrapper-task mechanism: the key idea is
to conserve the dynamic slack allocated to scaled tasks for
recovery across preemption points, which is essential for
preserving reliability. Integrated schemes for effectively
exploiting both static and dynamic slack in a uniform
manner are also presented. To the best of our knowledge,
this is the first research effort that provides a comprehensive
energy and reliability management framework for periodic
real-time tasks.

The remainder of this paper is organized as follows: The
related work is summarized in Section 2. Section 3 presents
the system models. Section 4 focuses on the task-level static
RA-PM schemes. The wrapper-task mechanism and the
job-level dynamic RA-PM scheme are studied in Section 5.
Section 6 presents the integrated slack reclamation mechan-
isms. Simulation results are discussed in Section 7, and we
conclude in Section 8.

2 RELATED WORK

In [33], Unsal et al. proposed a scheme to postpone the
execution of backup tasks to minimize the overlap of
primary and backup execution, and thus, the energy
consumption. The optimal number of checkpoints, evenly
or unevenly distributed, to achieve minimal energy con-
sumption while tolerating a single fault was explored by
Melhem et al. [26]. Elnozahy et al. proposed an Optimistic
Triple Modular Redundancy (OTMR) scheme that reduces the
energy consumption for traditional TMR systems by
allowing one processing unit to slow down provided that
it can catch up and finish the computation before the
application deadline [14]. The optimal frequency settings for
OTMR were further explored in [43]. Assuming a Poisson
fault model, Zhang and Chakrabarty proposed an adaptive

checkpointing scheme that dynamically adjusts checkpoint
intervals for energy savings while tolerating a fixed number
of faults for a single task [36]. The work is further extended
to a set of periodic tasks [37].

For the existing DVFS-based research efforts, most of the
research either focused on tolerating fixed number of faults
[14], [26] or assumed constant fault rate [36], [37]. However,
it was shown that there is a direct and negative effect of
voltage scaling on the rate of transient faults [12], [15], [42].
Taking such effects into consideration, Ejlali et al. studied
schemes that combine the information (about hardware
resources) and temporal redundancy to save energy and
preserve system reliability [13]. Recently, Pop et al. studied
the problem of energy and reliability trade-offs for dis-
tributed heterogeneous embedded systems [28]. The main
idea is to tolerate transient faults by switching to prede-
termined contingency schedules and re-executing processes.
A novel, constrained logic programming-based algorithm is
proposed to determine the voltage levels, process start time,
and message transmission time to tolerate transient faults
and minimize energy consumption while meeting the
timing constraints of the application.

In our recent work, to address the problem of reliability
degradation under DVFS, we studied an RA-PM scheme
based on a single-task model. The central idea of RA-PM is to
reserve a portion of the available slack to schedule a recovery
task for the task whose execution is scaled down, to recuperate
the reliability loss due to the energy management [38]. The
idea has been extended later to consider various task models
[39], [44] as well as different reliability requirements [45].

3 SYSTEM MODELS AND PROBLEM DESCRIPTION

3.1 Application Model

We consider a set of independent periodic real-time tasks
� ¼ fT1; . . . ; Tng. The task Ti is characterized by the pair
ðpi; ciÞ, where pi represents its period (which is also the
relative deadline) and ci denotes its worst-case execution
time (WCET). The jth job of Ti, which is referred to as Jij,
arrives at time ðj� 1Þ � pi and has a deadline of j � pi.

In DVFS settings, it is assumed that the WCET ci of task Ti
is given under the maximum processing speed fmax. For
simplicity, we assume that the execution time of a task scales
linearly with the processing speed.1 That is, at the scaled
speed f (�fmax), the execution time of task Ti is ci � fmaxf .

The system utilization is defined as U ¼
Pn

i¼1 ui, where
ui ¼ ci

pi
is the utilization for task Ti. The tasks are to be

executed on a uniprocessor system according to the
preemptive EDF policy. Considering the well-known feasi-
bility condition for EDF [25], we assume that U � 1.

3.2 Power Model

The operating frequency for CMOS circuits is almost linearly
related to the supply voltage [7]. DVFS reduces supply
voltage for lower frequency requirements to save power/
energy [34] and, in what follows, we will use the term

ZHU AND AYDIN: RELIABILITY-AWARE ENERGY MANAGEMENT FOR PERIODIC REAL-TIME TASKS 1383

1. A number of studies have indicated that the execution time of tasks
does not scale linearly with reduced processing speed due to accesses to
memory [32] and/or I/O devices [6]. However, exploring the full
implications of this observation is beyond the scope of this paper and is
left as our future work.

frequency change to stand for both supply voltage and
frequency adjustments. Considering the ever-increasing
static leakage power due to scaled feature size and increased
levels of integration [23], as well as the power-saving states
provided in modern power-efficient components (e.g., CPU
[2] and memory [24]), in this work, we adopt the system-level
power model originally proposed in [42] (similar power
models have been adopted in several recent papers [3],
[11], [19], [23], [30]), where the power consumption P ðfÞ of a
computing system at frequency f is given by

P ðfÞ ¼ Ps þ �hðPind þ PdÞ ¼ Ps þ �hðPind þ CeffmÞ: ð1Þ

Above Ps is the static power, which includes the power to
maintain basic circuits and keep the clock running. It can be
removed only by powering off the whole system. Pind is the
frequency-independent active power, which is a constant and
corresponds to the power that is independent of CPU
processing speed. It can be efficiently removed (typically,
with acceptable overhead) by putting the system compo-
nents (e.g., main memory) into sleep state(s) [2], [24]. Pd is
the frequency-dependent active power, which includes the
processor’s dynamic power and any power that depends on
system processing frequency f (and the corresponding
supply voltage) [7], [24].

When there is computation in progress, the system is
active and �h ¼ 1. Otherwise, when the system is turned off
or in power-saving sleep modes, �h ¼ 0. The effective
switching capacitance Cef and the dynamic power exponent
m (in general, 2 � m � 3) are system-dependent constants
[7]. Despite its simplicity, this power model captures the
essential components for system-wide energy management.

Note that even though the switching capacitance Cef
may show some variation for different tasks, accurate
information about these variations may not be always
available. Consequently, following also recent research
work [4], [11], [27], [31], [30], we assume a common Cef
for all tasks, which can also be seen as the average system
capacitance. This also allows us to focus primarily on the
main problem of this paper, which is the simultaneous
management of reliability and energy.

We assume that the normalized processing frequency is
used with the maximum frequency as fmax ¼ 1 and the
frequency f can be varied continuously from the minimum
available frequency fmin to fmax. The implications of having
discrete speed levels are discussed in Section 7.3. In
addition, the overhead of frequency adjustment is assumed
to be negligible or such overhead can be incorporated into
the WCET of tasks.
Minimum energy-efficient frequency. Considering that
energy is the integral of power over time, the energy
consumption for executing a given job at the constant
frequency f will be EðfÞ ¼ P ðfÞ � tðfÞ ¼ P ðfÞ � cf , where
tðfÞ ¼ c

f is the execution time of the job at frequency f .
From (1), intuitively, lower frequencies result in less
frequency-dependent active energy consumption. But with
reduced speeds, the job runs longer, and thus, consumes
more static and frequency-independent active energy.
Therefore, a minimal energy-efficient frequency fee, below
which DVFS starts to consume more total energy, does exist
[3], [19], [23], [30]. Considering the prohibitive overhead of

turning on/off a system (e.g., tens of seconds), we assume
that the system is always on and the static power Ps is
continuously consumed during the operation interval.
From the above equations, one can find that [42]

fee ¼
ffi

Pind
Cef � ðm� 1Þ

m

s
: ð2Þ

Consequently, for energy efficiency, throughout the paper,
the processing frequency f is limited to the range ½fee; fmax�.

3.3 Fault and Recovery Models

It has been reported that the transient faults occur much
more frequently than permanent faults [9], [21], especially
with the continued scaling of CMOS technology sizes and
reduced design margins for higher performance [15].
Consequently, in this paper, we focus on transient faults,
which, in general, follow the Poisson distribution [36], [37].
DVFS is known to have a direct and negative effect on the
system reliability due to increased number of transient
faults (especially, the ones induced by cosmic ray radia-
tions) at lower supply voltages [12], [15]. Therefore, the
average transient fault arrival rate for systems running at
scaled frequency f (and corresponding supply voltage) can
be expressed as [42]

�ðfÞ ¼ �0 � gðfÞ; ð3Þ

where �0 is the average fault rate corresponding to fmax.
That is, gðfmaxÞ ¼ 1. With reduced processing speeds and
supply voltages, the fault rate generally increases [42].
Therefore, we have gðfÞ > 1 for f < fmax.

It is assumed that transient faults are detected by using
sanity (or consistency) checks at the completion of a job’s
execution [29]. When a fault is detected, a recovery task is
dispatched in the form of re-execution [26], [36], [38]. Again,
for simplicity, the overhead for fault detection is assumed to
be incorporated into the WCETs of tasks.

3.4 Problem Description

Our primary objective in this paper is to develop power
management schemes for periodic real-time tasks executing
on a uniprocessor system and to preserve system reliability
at the same time. The reliability of a real-time system
generally depends on the correct execution of all jobs.
Although it is possible to preserve the overall system
reliability while sacrificing the reliability for some indivi-
dual jobs, for simplicity, we focus on maintaining the
reliability of individual jobs. Here, the reliability of a real-time
job is defined as the probability of its being correctly executed
(considering the possible recovery, if any) before its deadline.

Therefore, the problem to be addressed in this paper is,
for a periodic real-time task set with utilization U , how to

efficiently use the spare CPU utilization ð1� UÞ, as well

as the dynamic slack generated at runtime, in order to

maximize energy savings while keeping the reliability of

any job of task Ti no less than R0
i (i ¼ 1; . . . ; n), where

R0
i ¼ e��0ci (from Poisson fault arrival pattern with the

average fault rate �0 at fmax [38]) represents the original
reliability for Ti’s jobs, when there is no power management
and the jobs use their WCETs.

1384 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009

Here, to simplify the discussion, we assume that the
achieved system reliability is satisfactory when there is no
prescheduled recovery and no power management scheme
is applied (i.e., when all tasks are executed at fmax). We
underline that the schemes that are studied in this paper can
be applied to systems where higher levels of reliability are
required as well. Without loss of generality, suppose that a
recovery task RT needs to be prescheduled intentionally to
achieve the desired high level of reliability. Consider the
augmented task set �0 ¼ � [fRTg. Applying the schemes
that are presented in upcoming sections to �0 (where the
recovery task RT is treated as a normal task) will ensure that
the reliabilities for all tasks in �0 will be preserved, which
will preserve the required high level of system reliability.

In increasing level of sophistication and implementation
complexity, we first introduce the task-level static RA-PM
schemes and then job-level dynamic RA-PM schemes in the
next two sections. The integration of static and dynamic
schemes is further addressed in Section 6.

4 TASK-LEVEL STATIC RA-PM SCHEMES

4.1 RA-PM

Before presenting the proposed schemes, we first review the
concept of RA-PM [38]. Instead of utilizing all the available
slack for DVFS to save energy as in ordinary power
management schemes which are reliability-ignorant (in the
sense that no attention is paid to the potential effects of
DVFS on task reliabilities), the central idea of RA-PM is to
reserve a portion of the slack to schedule a recovery task (in
the form of re-execution [29]) for any task whose execution
is scaled down, to recuperate the reliability loss due to
energy management [38].

Here, for reliability preservation, the recovery task is
dispatched at the maximum frequency fmax, and only if a
transient fault is detected at the end of the scaled task’s
execution. With the help of the recovery task, the overall
reliability for a task will be the summation of the probability
of the scaled task being executed correctly and the prob-
ability of having transient fault(s) during the task’s scaled
execution and the recovery task being executed correctly. It
was shown that if the available slack is more than the WCET
of a task, by scheduling a recovery task (in the form of re-
execution), the RA-PM scheme can guarantee to preserve
the reliability of a real-time job while still obtaining energy
savings using the remaining slack, regardless of increased
fault rates and scaled processing speeds [38].

4.2 Task-Level RA-PM

We start with the static RA-PM schemes that make their
decisions at the task level. In this approach, for simplicity, all
the jobs of a task have the same treatment. That is, if a given
task is selected for energy management, all its jobs will run
at the same scaled frequency; otherwise, they will run at
fmax. From the above discussion, to recuperate reliability
loss due to scaled execution, each scaled job2 will need a
corresponding recovery job within its deadline, as a
provision against potential faults.

To provide the required recovery jobs, we construct a
periodic recovery task (RT) by exploiting the spare CPU
capacity (i.e., static slack). The recovery task will have the

same timing parameters (i.e., WCET and period) as those of
the task to be scaled. Therefore, with the recovery task, for
each primary job, a recovery job can be scheduled within its
deadline. Note that a recovery job is activated only when
the corresponding primary job incurs a fault and executed
always at the maximum processing speed to preserve the
primary job’s reliability.

As a concrete example, suppose that we have a periodic
task set of three tasks � ¼ fT1ð1; 7Þ; T2ð2; 14Þ; T3ð2; 7Þg with
system utilization U ¼ 4

7 . Without considering system
reliability, the optimal ordinary static power management
(SPM) under EDF will scale down all tasks uniformly at the
speed f ¼ U � fmax ¼ 4

7 , as shown in Fig. 1a [4], [27]. In the
figure, the X-axis represents time and the height of task
boxes represents processing speed. Due to the periodicity,
only the schedule within the least common multiple (LCM) of
tasks’ periods is shown. However, by uniformly scaling
down the execution in this way, the reliability figures of all
the tasks (and that of the system) would be significantly
reduced [42].

Instead of scaling down the execution of all tasks using
all the available slack, suppose that the static RA-PM
scheme chooses task T1 for management. That is, after
constructing the recovery task RT1ð1; 7Þ, which has the
same WCET and period as those of T1 with the utilization
ru1 ¼ 1

7 , the augmented system utilization will become
U 0 ¼ U þ ru1 ¼ 5

7 . Then, the remaining spare capacity sc ¼
1� U 0 ¼ 2

7 will be allocated to task T1 and all its jobs can be
scaled down to the speed of 1

3 . With the recovery task RT1

and the scaled execution of T1, the effective system
utilization is exactly 1 and the modified task set is
schedulable under EDF, as shown in Fig. 1b. From the
figure, we can see that every scaled job of task T1 has a
corresponding recovery job within its deadline. Therefore,
all T1’s jobs could preserve their reliability R0

1. Since the jobs
of tasks T2 and T3 run at fmax, their reliability figures are
maintained at the levels of R0

2 and R0
3, respectively.

Therefore, by incorporating a recovery task for the task
to be managed, the task-level utilization-based static
RA-PM scheme could preserve system reliability while
obtaining energy savings. In [39], we reported that it is not
optimal (in terms of energy savings) for the RA-PM scheme

ZHU AND AYDIN: RELIABILITY-AWARE ENERGY MANAGEMENT FOR PERIODIC REAL-TIME TASKS 1385

Fig. 1. Static schemes for a task set with three tasks fT1ð1; 7Þ;
T2ð2; 14Þ; T3ð2; 7Þg. (a) The optimal ordinary SPM. (b) Task-level RA-PM

when managing task T1. (c) Task-level RA-PM when managing tasks T1

and T2.

2. We use the expression scaled job to refer to any job whose execution is
slowed down through DVFS, for energy management purposes.

to utilize all the slack for a single task in case of aperiodic
tasks. Similarly, we can use the spare capacity for multiple
periodic tasks for better energy savings. For instance, Fig. 1c
shows the case where both tasks T1 and T2 are scaled to
speed 2

3 after constructing the corresponding recovery tasks
RT1 and RT2. For illustration purposes, if we assume that
the system power is given by a cubic function, simple
algebra shows that managing only task T1 could save 8

9E,
where E is the energy consumed by all jobs of task T1

within LCM under no power management. In comparison,
the energy savings would be 11

9 E if both tasks T1 and T2 are
managed, which is a significant improvement.

Intuitively, when more tasks are to be managed, more
computation can be scaled down for more energy savings.
However, more spare capacity will be reserved for recovery
tasks, which, in turn, reduces the slack available for DVFS.
A natural question to ask is, for a periodic task set with
multiple real-time tasks, whether there exists a fast (i.e.,
polynomial time) optimal solution (in terms of energy
savings) for the problem of task-level utilization-based
static RA-PM.

4.3 Intractability of Task-Level RA-PM

The inherent complexity of the static RA-PM problem
warrants an analysis. Suppose that the system utilization of
the task set is U and the spare capacity is sc ¼ 1� U . If a
subset � of tasks is selected for management with total
utilization X ¼

P
Ti2� ui < sc, after accommodating all

recovery tasks, the remaining CPU spare capacity (i.e.,
sc�X) can be used to scale down the selected tasks for
energy management. Considering the convex relation
between power and processing speed (see (1)), the solution
that minimizes the energy consumption will uniformly
scale down all jobs of the selected tasks, where the scaled
processing speed will be f ¼ X

Xþðsc�XÞ ¼ X
sc . Since the

probability of recovery jobs being activated is rather small,
by ignoring the energy consumed by recovery jobs, the total
energy consumption for all primary jobs (i.e., the total fault-
free energy consumption) within LCM is found as:

ELCM ¼ LCM � Ps þ LCMðU �XÞ
�
Pind þ cef � fmmax

�
þ LCM � sc Pind þ cef �

X

sc

� �m� �
;

ð4Þ

where the first part is the energy consumption due to static
power, the second part captures the energy consumption of
unselected tasks, and finally, the third part represents the
energy consumption of the selected tasks. Simple algebra
shows that when

Xopt ¼ sc �
Pind þ Cef
m � Cef

� � 1
m�1

;

ELCM will be minimized.
If sc > Xopt � U , all tasks should be scaled down

appropriately to minimize energy consumption. Otherwise,
the problem becomes essentially a task selection problem,
where the summation of the utilization for the selected tasks
should be exactly equal to Xopt, if possible. In other words,
such a choice would definitely be the optimal solution. In
what follows, we formally prove that the task-level
utilization-based static RA-PM problem is NP-hard by

transforming the PARTITION problem, which is known to
be NP-hard [17], to a special case of the problem.

Theorem 1. For a set of periodic tasks, the problem of the task-
level utilization-based static RA-PM is NP-hard.

Proof. We consider a special case of the problem with
m ¼ 2; Cef ¼ 1, and Pind ¼ 0, that is, Xopt ¼ sc

2 . We show
that even this special instance is intractable, by trans-
forming the PARTITION problem, which is known to be
NP-hard [17], to that special case.

In the PARTITION problem, the objective is to find
whether it is possible to partition a set of n integers
a1; . . . ; an (where

Pn
i¼1 ai ¼ S) into two disjoint subsets,

such that the sum of numbers in each subset is exactly S
2 .

Given an instance of the PARTITION problem, we
construct the corresponding static RA-PM instance as

follows: we have n periodic tasks, where ci ¼ ai and

pi ¼ 2 � S. Note that in this case, U ¼
P ci

pi
¼ 1

2 ; sc ¼ 1 �
U ¼ 1

2 . Observe that the energy savings will be max-

imized if it is possible to find a subset of tasks whose total

utilization is exactly Xopt ¼ sc
2 ¼ 1

4 . Since pi ¼ 2S 8i, this is

possible if and only if one can find a subset of tasks �

such that
P

i2� ci ¼ S
2 . But this can happen only if the

original PARTITION problem admits a YES answer.

Therefore, if the static RA-PM problem had a polynomial-

time solution, one could also solve the PARTITION

problem in polynomial time, by constructing the corre-

sponding RA-PM problem, and checking if the maximum

energy savings that can be obtained correspond to the

amount we could gain through managing exactly Xopt ¼
sc
2 ¼ 25 percent of the periodic workload. tu

4.4 Heuristics for Task-Level RA-PM

Considering the intractability of the problem, we propose

two simple heuristics for selecting tasks for energy manage-

ment: largest utilization first (LUF) and smallest utilization first

(SUF). Suppose that the tasks in a given periodic task set are

indexed in the nondecreasing order of their utilizations (i.e.,

ui � uj for 1 � i < j � n). SUF will select the first k tasks,

where k is the largest integer that satisfies
Pk

i¼1 ui � Xopt.

Similarly, LUF selects the task with the largest utilization

first and in decreasing order of task utilizations, tasks are

added to the selected subset � one by one as long asP
Tk2� uk � Xopt.
Here, SUF tries to manage as many tasks as possible.

However, after selecting the first few tasks, if the task with
the next smallest utilization cannot fit into Xopt, SUF may be
forced to use a significant portion of the spare capacity (i.e.,
much more than necessary) for energy management, which
may not be optimal. On the contrary, LUF tries to select
larger utilization tasks first and minimize the difference
between Xopt and the total utilization of the selected tasks.
The potential drawback of LUF is that relatively few tasks
might be managed for energy savings. These heuristics are
evaluated in Section 7.

5 JOB-LEVEL DYNAMIC RA-PM ALGORITHM

In our backward recovery framework, the recovery jobs are
executed only if their corresponding scaled primary jobs
fail. Otherwise, the CPU time reserved for recovery jobs is

1386 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009

freed and becomes dynamic slack at runtime. Moreover, it
is well known that real-time tasks typically take a small
fraction of their WCETs [16]. Therefore, significant amount
of dynamic slack can be expected at runtime, which should
be exploited to further save energy and/or to enhance
system reliability.

For ease of discussion, in this section, we first focus on
the cases where no recovery task is statically scheduled.
That is, for the task set with system utilization U � 1, we
exploit only the dynamic slack that comes from the early
completion of real-time jobs for energy and reliability
management. The integrated approaches, which combine
static and dynamic schemes and collectively exploit spare
capacity and dynamic slack, will be discussed in Section 6.

Unlike the greedy RA-PM scheme which allocates all
available dynamic slack for the next ready task when the
tasks share a common deadline [38], in periodic execution
settings, the runtime dynamic slack will be generated at
different priorities and may not be always reclaimable by the
next ready job [4]. Moreover, possible preemptions that a job
could experience after it has reclaimed some slack further
complicate the problem. This is because in RA-PM frame-
work, once a job’s execution is scaled through DVFS,
additional slack must be reserved for the potential recovery
operation to preserve system reliability. Hence, conserving the
reclaimed slack until the job completes (at which point it may be
used for recovery operation if faults occur, or freed otherwise) is
essential in reliability-aware settings.

5.1 Dynamic Slack Management
with Wrapper Tasks

The slack management problem for periodic real-time
tasks has been studied extensively (e.g., CASH-queue [8]
and �-queue [4] approaches) for different purposes. By
borrowing and also extending some fundamental ideas
from these studies, we propose the wrapper-task mechan-
ism to track/manage dynamic slack, which guarantees the
conservation of the reclaimed slack, thereby maintaining the
reliability figures.

Here, wrapper-tasks represent dynamic slack generated
at runtime. At the highest level, we can distinguish three
rules for managing dynamic slack with wrapper-tasks.

. Rule 1 (slack generation). When new slack is
generated due to early completion of jobs or removal
of recovery jobs, a new wrapper-task is created with
two timing parameters: a size that equals the amount
of dynamic slack generated and a deadline that is
equal to that of the job whose early completion gave
rise to this slack. Then, the newly created wrapper-
task will be put into a wrapper-task queue (i.e.,
WT-Queue), which is used to track/manage available
dynamic slack. Here, the wrapper-tasks in WT-Queue
are kept in the increasing order of their deadlines
and all wrapper-tasks in WT-Queue represent slack
with different deadlines. Thus, the newly created
wrapper-task may be merged with an existing
wrapper-task in WT-Queue if they have the same
deadline.

. Rule 2 (slack reclamation). The slack is reclaimed
when: (a) a nonscaled job has the highest priority in
Ready-Q and its reclaimable slack is larger than the
WCET of the job’s task (which ensures that a
recovery in the form of re-execution can be scheduled

to preserve reliability) or (b) the highest priority job
in Ready-Q has been scaled (i.e., its recovery job has
already been reserved) but its speed is still higher
than fee and there is reclaimable slack. After
reclamation, the corresponding wrapper-tasks are
removed from WT-Queue and destroyed.

. Rule 3 (slack forwarding/wasting). After slack
reclamation, the remaining wrapper-tasks in
WT-Queue compete for CPU along with ready jobs.
When a wrapper-task has the highest priority (i.e.,
the earliest deadline) and is “scheduled”: (a) if there
are jobs in the ready queue (Ready-Q), the wrapper-
task will “fetch” the highest priority job in Ready-Q
and “wrap” that job’s execution during the interval
when the wrapper-task is “executed.” In this case, the
corresponding slack is actually lended to the ready
job and pushed forward (i.e., it is preserved with a later
deadline) and (b) otherwise, if there is no ready job,
the CPU will become idle and the wrapper-task is
said to “execute no-ops” where the corresponding
dynamic slack is consumed/wasted during this time
interval. Note that when wrapped execution is
interrupted by higher priority jobs, only part of slack
will be pushed forward (if it is consumed by the
wrapped execution) or wasted, while the remaining
part has the original deadline.

5.2 An Example with Wrapper Tasks

Before formally presenting the dynamic RA-PM algorithm,
in what follows, we first illustrate the idea of wrapper-
tasks through a detailed example. We consider a task set
with four periodic real-time tasks � ¼ fT1ð1; 6Þ; T2ð6; 10Þ;
T3ð2; 15Þ; T4ð3; 30Þg. For jobs in interval ½0; 30� (the LCM of
tasks’ periods), suppose that J21, J22, J23, and J41 take 2, 3,
4, and 2 1

3 time units, respectively, and all other jobs take
their WCETs.

Recall that preemptive EDF scheduling is used. For jobs
with the same deadline, the one with the smaller task index is
assumed to have higher priority. When J21 completes early at
time 3, four units of dynamic slack are generated and the
system state is shown in Fig. 2a. Here, a wrapper-task
(shown as a dotted rectangle) is created to represent the slack
(Rule 1), which is labeled by two numbers: its size (e.g., 4)
and deadline (e.g., 10). The job deadlines in Ready-Q are
given by the numbers at the bottom of the job boxes.

It is known that the slack that a job Jx can reclaim (i.e.,
the reclaimable slack) should have a deadline no later than
Jx’s deadline [4]. From our previous discussion, to recup-
erate reliability loss due to energy management, a recovery
job needs to be scheduled within Jx’s deadline. Hence, a
nonscaled job will reclaim the slack only if the amount of
reclaimable slack is larger than the job size. Thus, at time 3,
J31 reclaims the available slack (Rule 2a) and scales down
its execution, as shown in Fig. 2b. Here, a recovery job RJ31

is created. The scaled execution of J31 uses the time slots of
the reclaimed slack and is scaled at speed 2

4 ¼ 1
2 , while RJ31

will take J31’s original time slots. Both J31 and RJ31 could
finish their executions within J31’s deadline in the worst-
case scenario.

Suppose that scaled J31 finishes its execution correctly at
time 8, after being preempted by J12 at time 6. The recovery
job RJ31 will be removed from Ready-Q and all its time slots
will become slack (Rule 1), as shown in Fig. 2c. But this slack

ZHU AND AYDIN: RELIABILITY-AWARE ENERGY MANAGEMENT FOR PERIODIC REAL-TIME TASKS 1387

is not sufficient for reclamation by J41. However, since the
corresponding wrapper-task has higher priority, it is
scheduled and wraps the execution of J41 (Rule 3a). When
the wrapper-task finishes at time 10, a new wrapper-task
with the same size is created, but with the deadline of J41.
This can also be viewed as J41 borrowing the slack for its
execution and returning it with the extended deadline (i.e.,
the slack is pushed forward). The schedule and queues at time
10, after J22 arrives, are shown in Fig. 2d.

When J22 completes early at time 14 (after being pre-
empted by J13 at time 12), three units of slack are generated

with the deadline of 20 (Rule 1), as shown in Fig. 2e. Now, we

have two pieces of slack (represented by two wrapper-tasks,

respectively) with different deadlines.
Note that as faults are assumed to be detected at the end of

a job’s execution, a full recovery job is needed to recuperate

the reliability loss for an even partially scaled execution.3 Thus,

when the partially executed J41 reclaims all the available slack

1388 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009

Fig. 2. Using wrapper-tasks to manage dynamic slack. (a) J21 completes early at time 3. (b) J31 reclaims the slack. (c) Scaled J31 finishes correctly,
RJ31 is freed as slack. (d) At time 10, the slack is pushed forward. (e) At time 14, more slack is generated from J22. (f) Partial job J41 is scaled and
needs a full recovery job RJ41. (g) Scaled J41 finishes early, both its remaining time and RJ41 are released as slack at time 15, J32 arrives. (h) Scaled
J32 is preempted (but its reclaimed slack is conserved) and more slack is generated from J22 at time 24. (i) J15 reclaimed the new slack and was
scaled down; when it fails, RJ15 is executed; J32 and RJ32 meet their deadlines.

3. Although checkpointing could be used for partial recovery [36], it is
known that checkpoints with a single recovery section cannot always
preserve task reliability [38].

(since both wrapper-tasks have deadlines no later than J41’s

deadline), a full recovery jobRJ41 is created and inserted into

Ready-Q (Rule 2a). J41 uses the remaining slack to scale down

its execution appropriately, as shown in Fig. 2f.
When the scaled J41 finishes early at time 15, both its

unused CPU time and RJ41 are freed as slack (Rule 1). After

the arrival of J32 at time 15, the schedule and queues are

shown in Fig. 2g. Here, J32 will reclaim the slack and be

scaled to speed 2
5 after reserving the slack for its recovery job

RJ32. After the scaled J32 is preempted by J14 and J23 (at

time 18 and 20, respectively), and J23 completes early at time

24, Fig. 2h shows the newly generated slack and the state of

Ready-Q, which contains J15 (with arrival time 24). Note that

the recovery job RJ32 (i.e., the slack time) is conserved even

after J32 is preempted by higher priority jobs.
J15 reclaims the new slack. Suppose that both of the

scaled jobs J15 and J32 fail, then RJ15 and RJ32 will be

executed as illustrated in Fig. 2i. It can be seen that all jobs

(including recovery jobs) finish their executions on time and

no deadline is missed.

5.3 Job-Level Dynamic RA-PM (RA-DPM) Algorithm

Algorithm 1. EDF-based RA-DPM Algorithm

1: In the algorithm, tpast is the elapsed time since last

scheduling point. J and WT represent the current job

and wrapper task, respectively (each can have the value

of NULL if there is no such a job or wrapper task).

J:rem and WT:rem denote the remaining time

requirements; J:d and WT:d are the deadlines.
2: Step 1:

3: if (J!=NULL and J:rem� tpast > 0) {

4: J:rem� ¼ tpast;
5: if (J completes) //slack of early completion

6: Create a wrapper-task with J:rem and J:d;

7: else Enqueue(J , Ready-Q);}

8: if (WT !=NULL and WT:rem� tpast > 0) {

9: WT:rem� ¼ tpast; Enqueue(WT , WT-Queue);}
10: if (WT !=NULL and J!=NULL) //push forward;

11: Create a wrapper-task with tpast and J:d;

12: if (J is scaled and succeeds){

13: RemoveRecoveryJob(J ,Ready-Q);//free recovery

job;

14: Create a wrapper-task with J:c and J:d;}

15: Step 2:

16: for (all newly arrived job NJ){ NJ:rem ¼ NJ:c;
17: NJ:f ¼ fmax; Enqueue(NJ , Ready-Q);}

18: Step 3://in the following, J and WT represent the next

job and wrapper-task to be processed, respectively;

19: J ¼ Dequeue(Ready-Q);

20: if (J!=NULL) ReclaimSlack(J , WT-Queue);

21: WT ¼ Header(WT-Queue);

22: if (J!=NULL){

23: if (WT ! ¼ NULL and WT:d < J:d)
24: WT ¼ Dequeue(WT-Queue);// wrap execution

25: else WT ¼ NULL;//normal execution

26: Execute(J);}

27: else if (WT !=NULL)

28: WT = Dequeue(WT-Queue);

The outline of the EDF-based RA-DPM algorithm is shown
in Algorithm 1. Note that RA-DPM may be invoked by three
types of events: job arrival, job completion, and wrapper-task
completion (a timer can be used to signal a wrapper-task
completion to the operating system). As common routines,
we use Enqueue(J, Q) to add a job/wrapper-task to the
corresponding queue and Dequeue(Q) to fetch the highest
priority (i.e., the header) job/wrapper-task and remove it
from the queue. Moreover, Header(Q) is used to retrieve the
header job/wrapper-task without removing it from the
queue.

At each scheduling point, as the first step (from line 3 to
line 14), the remaining execution time information of the
currently running job and that of the wrapper-task (if any)
is updated. If they did not complete, they are put back to
Ready-Q and WT-Queue (lines 7 and 9), respectively. When a
wrapper-task (WT) is used and wraps the execution of J
(line 11), as discussed before, the corresponding amount of
slack (i.e., tpast) is pushed forward by creating a new
wrapper-task with the deadline of the currently wrapped
job. Otherwise, the slack is consumed (wasted).

If the current job completes early (line 6) or its recovery
job is removed due to the primary job’s successful scaled
execution (lines 13 and 14), new slack is generated and
corresponding wrapper-tasks are created and added to the
wrapper-task queue WT-Queue.

Second, if new jobs arrive at the current scheduling
point, they are added to Ready-Q according to their EDF
priorities (line 17). The remaining timing requirements will
be set as their WCETs at the speed fmax. The last step is to
choose the next highest priority ready job J (if any) for
execution (lines 19 to 28). J first tries to reclaim the available
slack (line 20; details are shown in Algorithm 2). Then,
depending on the priority of the remaining wrapper-tasks,
J execution may be wrapped (line 24) or executed normally
(line 25). When a wrapper-task has the highest priority but
no job is ready, the wrapper-task executes no-ops (line 28).

Algorithm 2. ReclaimSlack(J , WT-Queue)

1: if(J is a recovery job) return; // not scaled
2: Step 1: //collect reclaimable slack

3: slack ¼ 0;

4: for(WT 2WT-Queue)

5: if (WT:d � J:d) slackþ ¼WT:rem;

6: Step 2: //scale down J if the slack is sufficient

7: if (!J:scaled && slack <¼ J:c) return;

8: if (!J:scaled) slack� ¼ J:c; //reserve for recovery

9: tmp ¼ maxðfee; J:rem�J:f
slackþJ:rem fmaxÞ;

10: slack ¼ J:rem�J:f
tmp � J:rem; //slack for slowing down

11: J:f ¼ tmp; //new speed

12: if (!J:scaled){CreateRecoveryJob(J); slackþ ¼ J:c;}
13: J:scaled ¼ true; //label the job as scaled

14: //remove the reclaimed slack from WT-Queue;
15: while (slack > 0){

16: WT ¼ Header(WT-Queue);

17: if (slack �WT:rem){slack� ¼WT:rem;

18: WT ¼ Dequeue(WT-Queue);}

19: else{WT:rem� ¼ slack; slack ¼ 0;}

20: }

ZHU AND AYDIN: RELIABILITY-AWARE ENERGY MANAGEMENT FOR PERIODIC REAL-TIME TASKS 1389

Algorithm 2 presents the details of slack reclamation.
Recall that recovery jobs are assumed to be executed at fmax
and are not scaled (line 1). For a job J , by traversing WT-
Queue, we can find out the amount of reclaimable slack
(lines 3 and 5). IfJ is not a scaled job (i.e., its recovery job is not
reserved yet) and the amount of reclaimable slack is no larger
than the WCET ofJ (i.e.,J:c), the available slack is not enough
for reclamation (line 7). Otherwise, after properly reserving
the slack for recovery (line 8), J’s new speed is calculated,
which is bounded by fee (line 9). The actual amount of slack
used by J includes those for energy management (line 10) as
well as the slack for recovery job (where the recovery job is
created and added to Ready-Q in line 12). For the reclaimed
slack, the corresponding wrapper-task(s) will be removed
from WT-Queue and destroyed (lines 15 to 20), which ensures
that this slack is conserved for the scaled job, even if higher
priority jobs preempt the scaled job’s execution later.

5.4 Analysis of RA-DPM

Note that when all jobs in a task set present their WCETs at
runtime, there will be no dynamic slack and no wrapper-
task will be created. In this case, RA-DPM will perform the
same as EDF and generate the same worst-case schedule,
which is feasible by assumption. However, as some jobs
complete early, RA-DPM will undertake slack reclamation
and/or wrapped execution, and one needs to show that the
feasibility is preserved even after the changes in CPU time
allocation (hence, processing frequency) of jobs.

Recall that the elements of WT-Queue represent the slack
of tasks that complete early. These slack elements, while
being reclaimed, may be entirely or partially retransformed
to actual workload. Our strategy will consist in proving that
at any time t during execution, the remaining workload could be
feasibly scheduled by EDF, even if all the slack elements in
WT-Queue were to be reintroduced to the system, with their
corresponding deadlines and remaining worst-case execu-
tion times (sizes). This, in turn, will allow us to show the
feasibility of the actual schedule, since the aforementioned
property implies the feasibility even with an overestimation
of the actual workload, for any time t.

In RA-DPM, the slack is reclaimed for dual purposes of

scheduling recovery jobs and slowing down the execution

of tasks to save energy with DVFS. Similarly, the slack may

be added to the WT-Queue as a result of early completion of

a primary/recovery job, or deactivation of the recovery job

(in case of a successful, nonfaulty completion of the

corresponding primary job). However, the feasibility of

the resulting schedule is orthogonal to these details. Hence,

we will not be further concerned about whether the slack is

obtained from a primary job or a recovery job, and for what

purpose (i.e., recovery or DVFS), it is used.

Before presenting the proof for the correctness of RA-

DPM, we first introduce the concept of processor demand and

the fundamental result in the feasibility analysis of periodic

real-time task systems scheduled by preemptive EDF [5], [22].

Definition 1. The processor demand of a real-time job set � in an

interval ½t1; t2�, denoted as h�ðt1; t2Þ, is the sum of

computation times of all jobs in � with arrival times greater

than or equal to t1 and deadlines less than or equal to t2.

Theorem 2 ([5], [22]). A set of independent real-time jobs � can

be scheduled (by EDF) if and only if h�ðt1; t2Þ � t2 � t1 for all

intervals ½t1; t2�.
Let us denote by Jðr; e; dÞ a job J that is released at time r

and must complete its execution by the deadline d, with

worst-case execution time e. We next prove the following

lemma that will be instrumental in the rest of the proof.

Lemma 1. Consider a set �1 of real-time jobs which can be

scheduled by preemptive EDF in a feasible manner. Then, the

set �2, obtained by replacing Jaðra; ea; daÞ in �1 by two jobs

Jbðra; eb; dbÞ and Jcðra; ec; dcÞ, is still feasible if eb þ ec � ea
and da � db � dc.

Proof. Since the EDF schedule of �1 is feasible, from

Theorem 2, we have h�1
ðt1; t2Þ � t2 � t1; 8 t1; t2. We need

to show that h�2
ðt1; t2Þ � t2 � t1; 8 t1; t2.

It is well-known that when evaluating the processor

demand for a set of real-time jobs, one can safely focus

on intervals that start at a job release time and end at a job

deadline [5], [22]. Noting that the only difference between

�1 and �2 consists in substituting two jobs Jb and Jc for

Ja, we first observe that h�2
ðrx; dyÞ ¼ h�1

ðrx; dyÞ �
dy � rx, whenever rx is a job release time strictly greater

than ra, or dy is a job deadline strictly smaller than da.

Hence, we need to consider only the intervals ½rx; dy�,
where rx � ra and dy � da. By taking into account the fact

that da � db � dc, the following properties can be easily
derived for all possible positionings of dy with respect to

these three deadlines:

. h�2
ðrx; dyÞ ¼ h�1

ðrx; dyÞ � ðea � eb � ecÞ if dc � dy,
. h�2

ðrx; dyÞ ¼ h�1
ðrx; dyÞ � ðea � ebÞ i f da � db �

dy < dc,
. h�2

ðrx; dyÞ ¼ h�1
ðrx; dyÞ � ea if da � dy < db � dc.

Since ea � eb þ ec by assumption, in all three cases,

h�2
ðrx; dyÞ � h�1

ðrx; dyÞ � dy � rx, and the job set �2 is

also feasible. tu
Now, we introduce some additional notations and

definitions to reason about the execution state of RA-DPM

at time t.

. JRðtÞ denotes the set of ready jobs at time t. Each job

Ji 2 JRðtÞ has a corresponding remaining worst-case

execution time ei at time t and deadline di. Note that

Ji can be seen as released at time t, and having the

worst-case execution time ei and deadline di.
. JF ðtÞ denotes the set of jobs that will arrive after t,

with their corresponding worst-case remaining ex-
ecution times and deadlines.

. JW ðtÞ denotes the set of jobs obtained through the
WT-Queue. Specifically, for every slack element in

WT-Queue with size si and deadline di, JW ðtÞ will

include a job Jiðt; si; diÞ.

Definition 2. The Augmented Remaining Workload of

RA-DPM at time t, denoted by ARW(t), is defined as

JRðtÞ
S

JF ðtÞ
S
JW ðtÞ.

1390 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009

Informally, ARW(t) denotes the total workload obtained,

if one reintroduces all the slack elements in WT-Queue at

time t to the ready queue, with their corresponding

deadlines. This is clearly an overestimation of the actual

workload at time t, since the amount of workload

reintroduced by slack reclamation can never exceed JW ðtÞ.
Theorem 3. ARW(t) can be scheduled by EDF in a feasible

manner during the execution of RA-DPM, for every time t.

Proof. The statement is certainly true at t ¼ 0, when the

WT-Queue is empty, and the workload can be scheduled

in a feasible manner by EDF even under the worst-case

conditions.

Assume that the statement holds 8 t � t1. Note that

for t ¼ t1; t1 þ 1; . . . ; ARWðtÞ remains feasible as long as

there is no slack reclamation or “wrapped execution.”

This is because under these conditions, the task with

highest priority in the ready queue is executed at every

time slot according to EDF—and being an optimal

preemptive scheduling policy, EDF preserves the feasi-
bility of the remaining workload. Also, note that if the

ready queue is empty for a given time slot, then the slack

at the head of WT-Queue is consumed, which corre-

sponds to the fact that ARW(t) is updated dynamically

according to EDF execution rules.

Let t2 be the first time instant after t1, if any, where

RA-DPM performs a slack reclamation or starts the

“wrapped execution.” We denote the head of WT-Queue

by H at t ¼ t2, with deadline dH and size eH . We will

show that ARW() remains feasible after such a point in

both scenarios, completing the proof.

. Case 1. At t ¼ t2, slack reclamation is performed

through the WT-Queue. Assume that k units of

slack are transferred from H to the job JA which is
about to be dispatched, with deadline dA � dH
and remaining worst-case execution time eA. Note

that this slack transfer can be seen as replacing

JHðt2; eH; dHÞ in ARW(t2) by two new jobs

JH1
ðt2; k; dAÞ and JH2

ðt2; eH � k; dHÞ, and consid-

ering Lemma 1, ARW(t2) remains feasible after

the slack transfer. If the slack is transferred from

multiple elements in WT-Queue successively, then
we can repeat the argument for the following

elements in the same order.
. Case 2. At t ¼ t2, a “wrapped execution” starts to

end at t ¼ t3 > t2. We will show that ARW(t)

remains feasible for t2 � t � t3, completing the

proof.

The wrapped execution (i.e., slack forwarding)

in the interval ½t2; t3� is functionally equivalent to

the following: in every time slot ½ti; tiþ1� in the

interval ½t2; t3�, one unit of slack from H (the head

of WT-Queue) is replaced by another item in

WT-Queue with size 1 and deadline dAi
, which is

the deadline of job JAi
that executes on the CPU in

the interval ½ti; tiþ1�. On the other hand, when seen

from the perspective of changes in ARW(t), this is

equivalent to the reclamation by JAi
one unit of

slack from H in slot ½ti; tiþ1� (even though, in

actual execution, this slack unit will not be used

because of wrapped execution). As a conclusion,

ARW(t) remains feasible at every time slot in the

interval ½t2; t3� as slack reclamation on ARW(t) was

shown to be safe in Case 1 above. tu
Since ARW(t) is an overestimation of the actual work-

load, we obtain the following result.

Corollary 1. RA-DPM preserves the feasibility of any periodic

real-time task set under preemptive EDF.

5.5 Runtime Complexity of RA-DPM

Note that in the worst case (e.g., at t ¼ 0), n jobs can arrive

simultaneously and the complexity of building Ready-Q

(lines 16 and 17 of Algorithm 1) will be Oðn � logðnÞÞ.
Moreover, the deadlines of wrapper-tasks are actually the

deadlines of corresponding real-time jobs. At any time t,

there are at most n different deadlines corresponding to jobs

with release times on or before t and deadlines on or after t.

That is, the number of wrapper-tasks in WT-Queue is at

most n. Therefore, slack reclamation, where multiple

wrapper-tasks may be reclaimed at the same time, can be

performed by traversing WT-Queue (see Algorithm 2) in

time OðnÞ. Hence, the complexity of RA-DPM is at most

Oðn � logðnÞÞ at each scheduling point.

6 INTEGRATED SCHEMES

In the last two sections, we separately studied the task-level

static and job-level dynamic RA-PM schemes that exploit

system spare capacity (i.e., static slack) and dynamic slack,

respectively. In what follows, depending on how the static

and dynamic slack are collectively reclaimed, we will present

two different approaches that integrate the static and

dynamic schemes in reliability-aware settings.

6.1 RA-DPM over Static Schemes

The intuitive approach, which follows the same idea of

applying dynamic slack reclamation on top of static power

management [4], is to apply RA-DPM to a task set that has

been statically managed. In this case, a subset of tasks is

statically selected to scale down and each of them has a

corresponding recovery task for reliability preservation

utilizing the spare capacity, which is different from the

original task set (where all tasks run at the maximum

frequency and no spare capacity is reclaimed). Therefore,

for jobs of different tasks, RA-DPM needs to treat them

differently at the time of their arrivals (i.e., at lines 16 and 17

of Algorithm 1).

Specifically, for jobs of tasks that are not scaled down,

they will be handled in the same way as shown in

Algorithm 1. However, for jobs of scaled tasks, their

initial speed will not be fmax but a predetermined scaled

speed (e.g., NJ:f ¼ f < fmax). The worst-case remaining

execution time and flags should be set accordingly

(e.g., NJ:rem ¼ NJ:c
f ;NJ:scaled ¼ true;) and corresponding

recovery jobs should be created. After that these prescaled

jobs can be treated the same as jobs that are scaled online.

ZHU AND AYDIN: RELIABILITY-AWARE ENERGY MANAGEMENT FOR PERIODIC REAL-TIME TASKS 1391

That is, if their scaled speed is higher than fee, they may

reclaim additional dynamic slack and further slow down

their executions. When they complete successfully, the

corresponding recovery jobs will be removed/released

and become dynamic slack; otherwise, the recovery jobs

will be activated accordingly.

Note that after a feasible task set (with system utilization

U � 1) is managed statically, the effective total system

utilization of the augmented task set (with scaled tasks

and newly constructed recovery tasks) should still be less

than or equal to 1 (see Section 4). That is, the augmented task

set is schedulable under preemptive EDF. From previous

discussion, we know that RA-DPM does not introduce any

additional workload to the augmented task set. Therefore,

the approach of applying RA-DPM over static RA-PM

schemes is feasible in terms of meeting all the deadlines.

6.2 Slack Transformation Using a Dummy Task

In the previous approach, spare capacity (i.e., static slack)

and dynamic slack are reclaimed in two separate steps. To

simplify the process, in this section, we consider a single-

step approach where the spare capacity will be transformed

into dynamic slack and is reclaimed at runtime. The central

idea of such slack transformation relies on the creation of a

dummy task T0 using the spare capacity. The utilization of T0

is u0 ¼ sc ¼ 1� U . At runtime, all jobs of the dummy task

will have the zero actual execution time, which effectively

transforms the spare capacity to dynamic slack periodically.

Therefore, with this approach, all available slack can be

managed/reclaimed by the dynamic scheme (i.e., RA-DPM)

uniformly. In this approach, since a separate static compo-

nent does not exist, at system start time, all jobs will assume

(implicitly) the speed fmax. However, at dispatch time,

many jobs will be able to slow down due to the dynamic

slack periodically introduced by the dummy task T0.
Note that regardless of the period of T0, the task set

augmented with the dummy task is schedulable under
preemptive EDF. Therefore, it is also schedulable under
RA-DPM. However, we can see that the period of the
dummy task will lead to an interesting trade-off between
the slack usage efficiency and the overhead of RA-DPM.
Intuitively, for smaller periods, the dummy task will
distribute the slack across the schedule more evenly, and
thus, increase the chance of the slack being reclaimed.
However, with smaller periods, more preemptions and
scheduling points/activities can be expected (thus, result-
ing in higher scheduling overhead). Conversely, larger
periods for the dummy task will incur less scheduling
overhead, but the chance of the corresponding slack being
reclaimed will be reduced and the slack is more likely to be
wasted. The effects of the dummy task’s period on the
performance and overhead of RA-DPM will be evaluated in
the next section.

7 SIMULATION RESULTS AND DISCUSSIONS

To evaluate the performance of our proposed schemes, we
developed a discrete event simulator using Cþþ. In the
simulations, we consider the following different schemes.

The scheme of no power management (NPM), which executes

all tasks/jobs at fmax and puts system to sleep states when

idle, is used as the baseline for comparison. The ordinary

SPM scales all tasks uniformly at speed f ¼ U � fmax
(where U is the system utilization). For the task-level static

RA-PM schemes, after obtaining the optimal utilization

(Xopt) that should be managed, two heuristics are

considered: smaller utilization task first (RA-SPM-SUF) and

larger utilization task first (RA-SPM-LUF). For dynamic

schemes, we implemented our job-level dynamic RA-PM

(RA-DPM) algorithm and the cycle conserving EDF

(CC-EDF) [27], a well-known but reliability-ignorant DVFS

algorithm, for periodic real-time tasks.

Transient faults are assumed to follow the Poisson

distribution with an average fault rate of �0 ¼ 10�6 at fmax

(and corresponding supply voltage), which corresponds to

100,000 FITs (failures in time, in terms of errors per billion

hours of use) per megabit. This is a realistic fault rate as

reported in [18], [46]. To take the effects of DVFS on fault

rates into consideration, we adopt the exponential fault rate

model developed in [42], where �ðfÞ ¼ �0 � gðfÞ ¼ �010
dð1�fÞ

1�fmin .

Here, the exponent d (> 0) is a constant which indicates the

sensitivity of fault rates to DVFS. The maximum fault rate is

assumed to be �max ¼ �010d, which corresponds to the

minimum frequency fee (and corresponding supply vol-

tage). In our simulations, we assume that the exponent d ¼ 2.

That is, the average fault rate is assumed to be 100 times

higher at the lowest speed fmin (and corresponding supply

voltage). The effects of different values of d were evaluated

in our previous work [38], [39], [42].

As discussed in Section 3, the static power Ps will be

always consumed for all schemes. Therefore, we focus on

active power in our evaluations. We further assume that

m ¼ 3, Cef ¼ 1, and Pind ¼ 0:1. In these settings, the energy-

efficient frequency is found as fee ¼ 0:37 (see Section 3). The

effects of these parameters on normalized energy consump-

tion have been studied extensively in our previous work [43].

We consider synthetic real-time task sets where each task

set contains 5 or 20 periodic tasks. The periods of tasks (p)

are uniformly distributed within the range of ½10; 20� (for

short-period tasks) or ½20; 200� (for long-period tasks). The

WCETs of tasks are uniformly distributed in the range of 1

and their periods. Finally, the WCETs of tasks are scaled by

a constant such that the system utilization of tasks reaches a

desired value [27]. The variability in the actual workload is

controlled by the WCET
BCET ratio (that is, the worst-case to best-

case execution time ratio), where the actual execution time

of tasks follows a normal distribution with mean and

standard deviation being WCETþBCET
2 and WCET�BCET

6 ,

respectively [4].
We simulate the execution for 107 and 108 time units for

short- and long-period task sets, respectively. That is,

approximately 5-20 million jobs are executed during each

run. Moreover, for each result point in the graphs, 100 task

sets are generated and the presented results correspond to

the average.

1392 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009

7.1 Performance of Task-Level Schemes

For different system utilization (i.e., spare capacity), we first

evaluate the performance of the task-level static schemes. It

is assumed that all jobs take their WCETs. For task sets with

short periods (i.e., p 2 ½10; 20�), where each set contains

20 tasks, Fig. 3a first shows the probability of failure (i.e.,

1� reliability) for NPM and the static schemes. Here, the

probability of failure shown is the ratio of the number of

failed jobs over the total number of jobs executed. Here, the

recovery jobs are incorporated to the analysis as well.
From the figure, we can see that as the system utilization

increases, for NPM, the probability of failure increases

slightly. The reason for this is that with increased total

utilization, the computation requirement for each task

increases and tasks run longer, which increases the

probability of being subject to transient fault(s). The

probability of failure for SPM increases drastically due to

increased fault rates and extended execution time. Note that

the minimum energy-efficient frequency is fee ¼ 0:37. At

low system utilizations (i.e., U < 0:37), SPM executes all

tasks with fee. The probability of failure for SPM increases

slightly with increased utilization for the same reason as

NPM. However, when the system utilization is higher than

0.37, the processing speed of SPM increases with increased

utilization, which has lower failure rates and results in

decreased probability of failure.
For reliability-aware static schemes (i.e., RA-SPM-SUF

and RA-SPM-LUF), by incorporating a recovery task for

each task to be scaled, the probability of failure is lower

than that of NPM and system reliability is preserved, which

confirms the theoretical result obtained in Section 4.
Fig. 3b further shows the normalized energy consump-

tion for tasks under different schemes with NPM as a

baseline. Here, reliability-aware static schemes consume up

to 30 percent more energy than that of the ordinary SPM

because there is less spare capacity available for energy

management. Moreover, the figure also shows the energy

consumption for OPT-BOUND, which is calculated as the

fault-free energy consumption with the assumption that the

managed tasks have the accumulated utilization exactly

equal to Xopt (See Section 4.3). Clearly, OPT-BOUND

provides an upper bound even for the optimal static solution.

From the figure, we can see that the normalized energy

consumption for the two heuristics is almost the same as

that of the upper bound (within 2 percent). With 20 tasks in
a task set, each task has a very small utilization, which leads
to the close-to-optimal solution for both static heuristics.

When there are only five tasks in a task set, the

utilization for each task becomes larger and Fig. 3c shows

the normalized energy consumption for the static heuristics

and the upper bound. From the results, we can see that

RA-SPM-LUF outperforms RA-SPM-SUF for most cases

since it selects tasks to match Xopt more closely. However,

even for RA-SPM-SUF, the normalized energy consumption

is within 5 percent of that of the upper bound. For long-

period tasks (i.e., p 2 ½20; 200�), similar results are obtained

but are not included due to space limitations. The complete

set of results can be found in our technical report [40].

7.2 Performance of Job-Level Schemes

With system utilization fixed at U ¼ 1:0 (i.e., no static slack

is available), we vary WCET
BCET ratio and evaluate the

performance of the dynamic schemes. Fig. 4a first shows

the probability of failure for short-period tasks (i.e.,

p 2 ½10; 20�). Here, as WCET
BCET ratio increases, more dynamic

slack becomes available. Without considering system

reliability, CC-EDF uses all available slack greedily for

energy savings and its probability of failure increases (i.e.,

system reliability decreases) drastically due to the scaled

executions of jobs. Again, by reserving slack for recovery

jobs before using it for saving energy, RA-DPM preserves

system reliability. When there is more dynamic slack as the

value of WCET
BCET increases, more recovery jobs will be

scheduled and, compared to that of NPM, the probability

of failure for RA-DPM generally decreases (i.e., better

system reliability is achieved). The results for long-period

tasks are similar.

Fig. 4b shows the normalized energy consumption for

short-period tasks. Initially, as the ratio of WCET
BCET increases,

additional dynamic slack becomes available and normal-

ized energy consumption decreases. Due to the limitation

of feeð¼ 0:37Þ, when WCET
BCET > 9, the normalized energy

consumption for both schemes stays roughly the same

and RA-DPM consumes about 8 percent more energy than

CC-EDF. However, for long-period tasks (i.e., p 2 ½20; 200�),
as shown in Fig. 4c, RA-DPM performs much worse than

CC-EDF and consumes about 32 percent more energy. A

possible explanation is that when the slack is pushed

ZHU AND AYDIN: RELIABILITY-AWARE ENERGY MANAGEMENT FOR PERIODIC REAL-TIME TASKS 1393

Fig. 3. Reliability and energy consumption for static schemes. (a) 20 tasks with p 2 ½10; 20�. (b) 20 tasks with p 2 ½10; 20�. (c) Five tasks with

p 2 ½20; 200�.

forward excessively by the long-period tasks, this prevents

other jobs from reclaiming it (due to reduced slack

priorities), resulting in less energy savings.

7.3 Effects of Discrete Speeds

So far, we have assumed that the clock frequency can be

scaled continuously. However, current DVFS-enabled pro-

cessors (e.g., Intel XScale [1], [2]) only have a few speed levels.

Nevertheless, our schemes can be easily adapted to discrete

speed settings. After obtaining the desired speed (e.g., line 9

of Algorithm 2), we can either use two adjacent frequency

levels to emulate the task’s execution at that speed [20], or use

the next higher discrete speed to ensure the algorithm’s

feasibility. Assuming Intel XScale model [1] with five speed

levels f0:15; 0:4; 0:6; 0:8; 1:0g and using the next higher speed,

we reran the simulations. The results for normalized energy

consumption are represented as RA-DPM-DISC and shown

in Figs. 4b and 4c. Here, we can see that although RA-DPM-

DISC consumes slightly less energy than that of RA-DPM for

short-period tasks; for long-period tasks, RA-DPM performs

slightly better than RA-DPM-DISC. However, the difference

on the energy consumption for discrete speeds and contin-

uous speed is within 2 percent. This is because with the next

higher discrete speed being utilized, the unused slack is not

wasted but actually saved for future usage.

7.4 Evaluation of the Integrated Schemes

In the evaluation of the integrated schemes, we consider

three different algorithms for comparison. The static

RA-SPM-SUF scheme executes selected tasks at statically

determined scaled frequency but does not reclaim dynamic

slack at runtime. SUFþRA-DPM is the second scheme that

will reclaim dynamic slack to further scale down the

statically selected tasks or to manage more unscaled tasks

at runtime. The last scheme, DUMMYþ RA-DPM, uses a

dummy task (as discussed in Section 6) and does not select

any task for scaling down statically. At runtime, together

with the transformed dynamic slack from the dummy task,

all dynamic slack will be reclaimed appropriately as in

RA-DPM.

For task sets with 20 short-period tasks (i.e., p 2 ½10; 20�)
with system utilization U ¼ 0:5 and WCET

BCET ¼ 1, Fig. 5a first

shows the normalized number of scheduling points with

NPM as the baseline for different periods of the dummy

task. Note that the dummy task only affects DUMMYþ
RA-DPM scheme and the number of scheduling points for

RA-SPM-SUF and SPMþRA-DPM remain the same for

different dummy task periods. Without managing and

reclaiming the dynamic slack (from early completion of

jobs and the removal of statically scheduled recovery jobs),

the number of scheduling points for RA-SPM-SUF is

almost the same as that of NPM. For SUFþRA-DPM, it

reclaims dynamic slack at runtime and the number of

scheduling points is about 16 percent more than that of

NPM. For DUMMYþRA-DPM, as the period of the

dummy task increases, less scheduling activities are

expected and the normalized number of scheduling points

decreases. From the figure, we can see that the minimum

number of scheduling points is obtained when the dummy

period is 14 (which is around 10, the smallest period of

tasks in the task set). For larger dummy task periods, the

1394 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009

Fig. 5. Effects of the dummy task’s period. Here, U ¼ 0:5 and WCET
BCET ¼ 1. (a) Scheduling points for p 2 ½10; 20�. (b) Energy for p 2 ½10; 20�. (c) Energy

for p 2 ½20; 200�.

Fig. 4. Reliability and energy consumption for dynamic schemes. (a) Reliability for p 2 ½10; 20�. (b) Energy for p 2 ½10; 20�. (c) Energy for p 2 ½20; 200�.

transformed slack is aggregated and the job that reclaims

the slack is more likely executed at the minimum

frequency fee, which leads to more preemption and thus

more scheduling points.
Fig. 5b further shows the corresponding normalized

energy consumption for the three schemes. By reclaiming
the dynamic slack, SUFþRA-DPM could save roughly
12 percent more energy than that of RA-SPM-SUF. When
the period of the dummy task is less than 10, the
transformed slack is uniformly distributed and can be
effectively reclaimed, which leads to better energy savings
for DUMMYþRA-DPM than that of SUFþRA-DPM. How-
ever, for larger dummy task periods, the transformed slack
is aggregated under DUMMYþRA-DPM and leads to
uneven execution for tasks, where more energy is con-
sumed under DUMMYþRA-DPM than that of SUFþ
RA-DPM. From these results, we can see that for short-
period tasks, the best period for the dummy task would be the
minimum period of all tasks in a task set, which is further
confirmed for long-period tasks, as shown in Fig. 5c.
However, for long-period tasks, the energy consumption
for DUMMYþRA-DPM is much worse than that of
SUFþRA-DPM. This is because the transformed dynamic
slack under DUMMYþRA-DPM may be pushed forward
too much and wasted, which leads to inefficient usage of
the static slack and more energy consumption compared to
that of SUFþRA-DPM.

For different values of WCET
BCET (i.e., different amounts of

dynamic slack), Fig. 6 further shows the performance of the
integrated schemes with 20 tasks in the task sets. For short-
period (i.e., p 2 ½10; 20�) tasks with system utilization
U ¼ 0:5, Figs. 6a and 6b first show the probability of failure
and normalized energy consumption for all the schemes,
respectively. The same as before, all reliability-aware
schemes perform better than NPM with lower probability
of failure. By reclaiming dynamic slack and managing more
jobs at runtime, SUFþRA-DPM achieves better system
reliability (i.e., lower probability of failure values) than that
of RA-SPM-SUF. With the dummy task’s period being set
as 10, DUMMYþRA-DPM performs slightly better (in terms
of both reliability and energy) than SUFþRA-DPM when
WCET
BCET ¼ 1. That is, when there is no dynamic slack available
from early completion (i.e., WCET

BCET ¼ 1), by using a dummy
task to transform all spare capacity to dynamic slack,
DUMMYþRA-DPM can use it more effectively to scale
down the jobs to fee for more energy savings and possibly

reuse such slack to manage more jobs for better system

reliability. However, for cases where dynamic slack from

early completion is significant (i.e., WCET
BCET >¼ 2), DUMMYþ

RA-DPM could be too greedy when using the dynamic

slack and the slack transformed from spare capacity by the

dummy task, and thus, performs slightly worse

(�3 percent) than SUFþRA-DPM. For task sets with higher

system utilization U ¼ 0:7, similar results are shown in

Fig. 6c, where the performance difference between SUFþ
RA-DPM and DUMMYþRA-DPM becomes smaller. For

long-period (i.e., p 2 ½20; 200�) tasks, a larger performance

difference between SUFþRA-DPM and DUMMYþRA-

DPM has been observed and the results are omitted due

to space limitations (see [40] for details).

8 CONCLUSIONS

DVFS was recently shown to have negative impact on the
application reliabilities. In this paper, focusing on preemp-
tive EDF scheduling, we proposed an RA-PM framework
for periodic real-time tasks. We first studied task-level
utilization-based static RA-PM schemes that exploit the
system spare capacity. We showed the intractability of the
problem and proposed two efficient heuristics. Moreover,
we proposed the wrapper-task mechanism for efficiently
managing dynamic slack and presented a job-level dynamic
RA-PM scheme. The scheme is able to conserve the slack
reclaimed by a scaled job, which is an essential requirement
for reliability preservation, across preemption points. The
correctness of the dynamic scheme in terms of meeting all
the timing constraints is formally proved. In addition, two
integrated techniques that combine the management of
static and dynamic slack are also studied. Extensive
simulations show that our schemes are able to achieve
significant energy savings while preserving the reliability of
all the tasks.

ACKNOWLEDGMENTS

This work was supported by US National Science Founda-
tion through the awards CNS-0720651, CNS-0720647, and
US National Science Foundation (NSF) CAREER Award
CNS-0546244. The authors would like to thank the
reviewers for their valuable suggestions that helped to
improve the paper. A preliminary version of this paper
appeared in IEEE RTAS 2007.

ZHU AND AYDIN: RELIABILITY-AWARE ENERGY MANAGEMENT FOR PERIODIC REAL-TIME TASKS 1395

Fig. 6. Performance of the integrated schemes with 20 tasks. (a) U ¼ 0:5 and p 2 ½10; 20�. (b) U ¼ 0:5 and p 2 ½10; 20�. (c) U ¼ 0:7 and p 2 ½10; 20�.

REFERENCES

[1] Intel XScale Technology and Processors, http://developer.
intel.com/design/intelxscale/, 2008.

[2] Intel Corp. Mobile Pentium iii Processor-m Datasheet. Order
Number: 298340-002, Oct. 2001.

[3] H. Aydin, V. Devadas, and D. Zhu, “System-Level Energy
Management for Periodic Real-Time Tasks,” Proc. 27th IEEE
Real-Time Systems Symp. (RTSS), pp. 313-322, Dec. 2006.

[4] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez, “Power-
Aware Scheduling for Periodic Real-Time Tasks,” IEEE Trans.
Computers, vol. 53, no. 5, pp. 584-600, May 2004.

[5] S. Baruah, R. Howell, and L. Rosier, “Algorithms and
Complexity Concerning the Preemptive Scheduling of Periodic
Real-Time Tasks on One Processor,” Real-Time Systems, vol. 2,
no. 4, pp. 301-324, 1990.

[6] E. Bini, G.C. Buttazzo, and G. Lipari, “Speed Modulation in
Energy-Aware Real-Time Systems,” Proc. 17th Euromicro Conf.
Real-Time Systems, pp. 3-10, 2005.

[7] T.D. Burd and R.W. Brodersen, “Energy Efficient cmos Micro-
processor Design,” Proc. Hawaii Int’l Conf. System Sciences (HICSS),
pp. 288-293, Jan. 1995.

[8] M. Caccamo, G. Buttazzo, and L. Sha, “Capacity Sharing for
Overrun Control,” Proc. Real-Time Systems Symp. (RTSS),
pp. 295-304, 2000.

[9] X. Castillo, S. McConnel, and D. Siewiorek, “Derivation and
Calibration of a Transient Error Reliability Model,” IEEE Trans.
Computers, vol. 31, no. 7, pp. 658-671, July 1982.

[10] J.-J. Chen and T.-W. Kuo, “Multiprocessor Energy-Efficient
Scheduling for Real-Time Tasks with Different Power Character-
istics,” Proc. Int’l Conf. Parallel Processing, pp. 13-20, June 2005.

[11] J.-J. Chen and T.-W. Kuo, “Procrastination Determination for
Periodic Real-Time Tasks in Leakage-Aware Dynamic Voltage
Scaling Systems,” Proc. Int’l Conf. Computer-Aided Design,
pp. 289-294, 2007.

[12] V. Degalahal, L. Li, V. Narayanan, M. Kandemir, and M.J. Irwin,
“Soft Errors Issues in Low-Power Caches,” IEEE Trans. Very Large
Scale Integration Systems, vol. 13, no. 10, pp. 1157-1166, Oct. 2005.

[13] A. Ejlali, M.T. Schmitz, B.M. Al-Hashimi, S.G. Miremadi, and P.
Rosinger, “Energy Efficient SEU-Tolerance in DVS-Enabled Real-
Time Systems through Information Redundancy,” Proc. Int’l Symp.
Low Power and Electronics and Design, pp. 281-286, 2005.

[14] E. (Mootaz) Elnozahy, R. Melhem, and D. Mossé, “Energy-
Efficient Duplex and TMR Real-Time Systems,” Proc. 23rd IEEE
Real-Time Systems Symp., pp. 256-265, Dec. 2002.

[15] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N.S. Kim,
and K. Flautner, “Razor: Circuit-Level Correction of Timing Errors
for Low-Power Operation,” IEEE Micro, vol. 24, no. 6, pp. 10-20,
Nov./Dec. 2004.

[16] R. Ernst and W. Ye, “Embedded Program Timing Analysis Based
on Path Clustering and Architecture Classification,” Proc. Int’l
Conf. Computer-Aided Design, pp. 598-604, 1997.

[17] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, 1979.

[18] P. Hazucha and C. Svensson, “Impact of CMOS Technology
Scaling on the Atmospheric Neutron Soft Error Rate,” IEEE Trans.
Nuclear Science, vol. 47, no. 6, pp. 2586-2594, Dec. 2000.

[19] S. Irani, S. Shukla, and R. Gupta, “Algorithms for Power Savings,”
Proc. Symp. Discrete Algorithms, pp. 37-46, 2003.

[20] T. Ishihara and H. Yauura, “Voltage Scheduling Problem for
Dynamically Variable Voltage Processors,” Proc. Int’l Symp. Low
Power Electronics and Design, pp. 197-202, 1998.

[21] R.K. Iyer, D.J. Rossetti, and M.C. Hsueh, “Measurement and
Modeling of Computer Reliability as Affected by System Activity,”
ACM Trans. Computer Systems, vol. 4, no. 3, pp. 214-237, Aug. 1986.

[22] K. Jeffay and D.L. Stone, “Accounting for Interrupt Handling
Costs in Dynamic Priority Task Systems,” Proc. IEEE Real-Time
Systems Symp., pp. 212-221, Dec. 1993.

[23] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage Aware Dynamic
Voltage Scaling for Real-Time Embedded Systems,” Proc. 41st
Design Automation Conf., pp. 275-280, 2004.

[24] A.R. Lebeck, X. Fan, H. Zeng, and C.S. Ellis, “Power Aware Page
Allocation,” Proc. Int’l Conf. Architectural Support for Programming
Languages and Operating Systems, pp. 105-116, 2000.

[25] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 46-61, 1973.

[26] R. Melhem, D. Mossé, and E. (Mootaz) Elnozahy, “The Interplay
of Power Management and Fault Recovery in Real-Time Systems,”
IEEE Trans. Computers, vol. 53, no. 2, pp. 217-231, Feb. 2004.

[27] P. Pillai and K.G. Shin, “Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems,” Proc. 18th ACM
Symp. Operating Systems Principles, pp. 89-102, Oct. 2001.

[28] P. Pop, K.H. Poulsen, V. Izosimov, and P. Eles, “Scheduling and
Voltage Scaling for Energy/Reliability Trade Offs in Fault-
Tolerant Time-Triggered Embedded Systems,” Proc. Int’l Conf.
Hardware/Software Codesign and System Synthesis, pp. 233-238, 2007.

[29] D.K. Pradhan, Fault Tolerance Computing: Theory and Techniques.
Prentice-Hall, 1986.

[30] S. Saewong and R. Rajkumar, “Practical Voltage Scaling for Fixed-
Priority RT-Systems,” Proc. Ninth IEEE Real-Time and Embedded
Technology and Applications Symp., pp. 106-114, 2003.

[31] C. Scordino and G. Lipari, “A Resource Reservation Algorithm for
Power-Aware Scheduling of Periodic and Aperiodic Real-Time
Tasks,” IEEE Trans. Computers, vol. 55, no. 12, pp. 1509-1522, Dec.
2006.

[32] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg, “Fast:
Frequency-Aware Static Timing Analysis,” Proc. 24th IEEE Real-
Time System Symp., pp. 40-51, 2003.

[33] O.S. Unsal, I. Koren, and C.M. Krishna, “Towards Energy-Aware
Software-Based Fault Tolerance in Real-Time Systems,” Proc. Int’l
Symp. Low Power Electronics Design, pp. 124-129, 2002.

[34] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
Reduced CPU Energy,” Proc. First USENIX Symp. Operating
Systems Design and Implementation, Nov. 1994.

[35] F. Yao, A. Demers, and S. Shenker, “A Scheduling Model for
Reduced CPU Energy,” Proc. 36th Ann. Symp. Foundations of
Computer Science, pp. 374-382, Oct. 1995.

[36] Y. Zhang and K. Chakrabarty, “Energy-Aware Adaptive Check-
pointing in Embedded Real-Time Systems,” Proc. IEEE/ACM
Design, Automation and Test in Europe Conf. (DATE), 2003.

[37] Y. Zhang, K. Chakrabarty, and V. Swaminathan, “Energy-Aware
Fault Tolerance in Fixed-Priority Real-Time Embedded Systems,”
Proc. Int’l Conf. Computer Aided Design, Nov. 2003.

[38] D. Zhu, “Reliability-Aware Dynamic Energy Management in
Dependable Embedded Real-Time Systems,” Proc. 12th IEEE Real-
Time and Embedded Technology and Applications Symp. 2006

[39] D. Zhu and H. Aydin, “Energy Management for Real-Time
Embedded Systems with Reliability Requirements,” Proc. Int’l
Conf. Computer Aidded Design, pp. 528-534, 2006.

[40] D. Zhu and H. Aydin, “Reliability-Aware Energy Management for
Periodic Real-Time Tasks,” technical report, Dept. of Computer
Science, Univ. of Texas at San Antonio, http://www.cs.utsa.edu/
~dzhu/papers/CS-TR-2008-005-zhu.pdf, 2006.

[41] D. Zhu, H. Aydin, and J.-J. Chen, “Optimistic Reliability Aware
Energy Management for Real-Time Tasks with Probabilistic
Execution Times,” Proc. 29th IEEE Real-Time Systems Symp. (RTSS),
pp. 313-322, 2008.

[42] D. Zhu, R. Melhem, and D. Mossé, “The Effects of Energy
Management on Reliability in Real-Time Embedded Systems,”
Proc. Int’l Conf. Computer Aidded Design, pp. 35-40, 2004.

[43] D. Zhu, R. Melhem, D. Mossé, and E. (Mootaz) Elnozahy,
“Analysis of an Energy Efficient Optimistic tmr Scheme,” Proc.
10th Int’l Conf. Parallel and Distributed Systems, pp. 559-568, 2004.

[44] D. Zhu, X. Qi, and H. Aydin, “Priority-Monotonic Energy
Management for Real-Time Systems with Reliability Require-
ments,” Proc. IEEE Int’l Conf. Computer Design, pp. 629-635, 2007.

[45] D. Zhu, X. Qi, and H. Aydin, “Energy Management for Periodic
Real-Time Tasks with Variable Assurance Requirements,” Proc.
IEEE Int’l Conf. Embedded and Real-Time Computing Systems and
Applications (RTCSA), pp. 259-268, 2008.

[46] J.F. Ziegler, Trends in Electronic Reliability: Effects of Terrestrial
Cosmic Rays, http://www.srim.org/SER/SERTrends.htm, 2004.

1396 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009

Dakai Zhu received the BE degree in computer
science and engineering from Xi’an Jiaotong
University in 1996, the ME degree in computer
science and technology from Tsinghua Univer-
sity in 1999, and the MS and PhD degrees in
computer science from the University of Pitts-
burgh, in 2001 and 2004, respectively. He joined
the University of Texas at San Antonio as an
assistant professor in 2005. His research inter-
ests include real-time systems, power-aware

computing, and fault-tolerant systems. He has served on program
committees (PCs) for several major IEEE and ACM-sponsored real-time
conferences (e.g., RTAS and RTSS). He is a member of the IEEE and
the IEEE Computer Society.

Hakan Aydin received the BS and MS degrees
in control and computer engineering from
Istanbul Technical University in 1991 and
1994, respectively, and the PhD degree in
computer science from the University of Pitts-
burgh in 2001. He is currently an associate
professor in the Computer Science Department
at George Mason University, Fairfax, Virginia.
He has served on the program committees of
several conferences and workshops, including

the IEEE Real-Time Systems Symposium and IEEE Real-Time
Technology and Applications Symposium. He was a recipient of the
US National Science Foundation (NSF) Faculty Early Career Develop-
ment (CAREER) Award in 2006. His research interests include real-time
systems, low-power computing, and fault tolerance. He is a member of
the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHU AND AYDIN: RELIABILITY-AWARE ENERGY MANAGEMENT FOR PERIODIC REAL-TIME TASKS 1397

