
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018 21

Multicore Mixed-Criticality Systems: Partitioned
Scheduling and Utilization Bound

Jian-Jun Han, Member, IEEE, Xin Tao, Dakai Zhu, Member, IEEE, Hakan Aydin, Member, IEEE,
Zili Shao, Member, IEEE, and Laurence T. Yang, Senior Member, IEEE

Abstract—In mixed-criticality (MC) systems, multiple activities
with various certification requirements (thus with different crit-
icality levels) can co-exist on shared hardware platforms, where
multicore processors have emerged as the de facto computing
engines. In this paper, by using the partitioned earliest-deadline-
first with virtual deadlines (EDF-VDs) scheduler for a set of
periodic MC tasks running on multicore systems, we derive a
criticality-aware utilization bound for efficient feasibility tests and
then identify its characteristics. Our analysis shows that the bound
increases with increasing number of cores and decreasing system
criticality level. We show that, since the utilizations of MC tasks
at different criticality levels can vary considerably, the utilization
contribution of a task on different cores may have large varia-
tions and thus can significantly affect the system schedulability
under the EDF-VD scheduler. Based on these observations, we
propose a novel and efficient criticality-aware task partitioning
algorithm (CA-TPA) to compensate for the inherent pessimism
of the utilization bound. In order to improve the system schedu-
lability, the task priorities are determined according to their
utilization contributions to the system in CA-TPA. Moreover,
by analyzing the utilization variations of tasks at different lev-
els, we develop several heuristics to minimize the utilization
increment and balance the workload on cores. The simulation
results show that the CA-TPA scheme is very effective in achiev-
ing higher schedulability ratio and yielding balanced workloads.
The actual implementation in Linux operating system further
demonstrates the applicability of CA-TPA with lower run-time
overhead, compared to the existing partitioning schemes.

Index Terms—Embedded systems, mixed-criticality (MC),
multicore systems, partitioned scheduling, utilization bound.

Manuscript received September 25, 2016; revised January 25, 2017;
accepted April 9, 2017. Date of publication April 25, 2017; date of cur-
rent version December 20, 2017. This work was supported in part by the
National Natural Science Foundation of China under Award 61472150, in
part by the Fundamental Research Funds for the Central Universities China
(HUST) under Grant 2016YXMS081 and Grant 2015TS072, and in part by
the U.S. National Science Foundation under Award CNS-1422709 and Award
CNS-1421855. This paper was recommended by Associate Editor J. Xue.
(Corresponding author: Xin Tao.)

J.-J. Han, X. Tao, and L. T. Yang are with the School of
Computer Science and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China (e-mail: jasonhan@hust.edu.cn;
m201472823@hust.edu.cn; ltyang@stfx.ca).

D. Zhu is with the Department of Computer Science, University of Texas
at San Antonio, San Antonio, TX 78249 USA (e-mail: dzhu@cs.utsa.edu).

H. Aydin is with the Department of Computer Science, George Mason
University, Fairfax, VA 22030 USA (e-mail: aydin@cs.gmu.edu).

Z. Shao is with the Department of Computing, Hong Kong Polytechnic
University, Hong Kong (e-mail: cszlshao@comp.polyu.edu.hk).

This paper has supplementary downloadable multimedia material available
at http://ieeexplore.ieee.org provided by the authors.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2697955

I. INTRODUCTION

IN MODERN embedded systems, the ever-increasing com-
plexity demands the integration of multiple functionalities

on a common computing platform due to space, power, and
cost constraints. For instance, the integrated modular avionics
initiative for aerospace provides guidelines for hosting mul-
tiple avionics components on shared systems to address the
increased complexity and cost [27]. In such integrated sys-
tems, diverse application activities with various certification
requirements and different levels of importance (criticality)
may co-exist. For example, the avionics certification stan-
dard DO-178 B/C defines five design assurance levels A
to E, which are distinguished according to the extent of
damage that result from activity failures [24]. To incorpo-
rate various certification requirements and enable the efficient
management of application activities, the concept of mixed-
criticality (MC) systems has been proposed in Vestal’s seminal
work [29]. Over the last decade, numerous MC scheduling
studies have been reported for a variety of system and task
models [8], [11], [12], [17], [22], [26], [30].

Unlike the traditional sporadic real-time task systems, where
the worst-case resource requirements of all tasks must be sat-
isfied, the successful execution of an MC task is defined by
its own criticality level and the system’s running mode. The
basic principle of the MC model is to have more than one crit-
icality level, where tasks at the kth (>1) criticality level have
k different worst case execution requirements [29]. Moreover,
the execution requirement of a task at (k − 1)th level is no
higher than that at kth level.

Most of the existing studies considered MC tasks running
on single processor systems, with a focus on Fixed-
Priority-based scheduling (FPS) [4], [9], [21], [25], [30]
and earliest-deadline-first (EDF)-based scheduling
techniques [7], [8], [10], [19], [28]. The most notable
EDF-based scheduling algorithm for MC tasks is the recently
proposed EDF with virtual deadlines (EDF-VDs) algo-
rithm [2], [3]. The basic idea of the EDF-VD scheduler is
to feasibly assign virtual (and smaller) deadlines (and thus
higher priorities) to high-criticality tasks when the system
operates at low-criticality mode, in order to improve the
schedulability.

As multicore processors have become powerful computing
engines for modern systems, there is a renewed interest in
exploring scheduling algorithms for multicore/multiprocessor
real-time systems. There are two classical approaches to the
multiprocessor scheduling problem: 1) partitioned scheduling

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:jasonhan@hust.edu.cn
mailto:m201472823@hust.edu.cn
mailto:ltyang@stfx.ca
mailto:dzhu@cs.utsa.edu
mailto:aydin@cs.gmu.edu
mailto:cszlshao@comp.polyu.edu.hk
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

22 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

and 2) global scheduling. A recent empirical study on
multicore scheduling shows that, when compared to global
scheduling, the partitioned-based scheduling generally has bet-
ter system schedulability, where the individual job queues
on processor cores and migration-less activities at run-time
typically result in much lower run-time overhead [13].

Typically, the existing partitioned MC scheduling studies
focus on dual-criticality systems (with only two criticality lev-
els) and adopt the traditional heuristics that usually rely on
either task/system utilizations [14], [18] [e.g., first-fit decreas-
ing (FFD), best-fit decreasing (BFD), and worst-fit decreasing
(WFD)] or the criticality levels [16]. It has been shown that
a hybrid partitioned scheme [23], which allocates high crit-
icality tasks using WFD and then low-criticality tasks using
FFD, can effectively improve task schedulability compared to
the schemes that consider only either utilization or critical-
ity. Moreover, based on the EDF-VD algorithm and speedup
factor analysis, several mapping schemes for dual-criticality
systems are reported in [6]. To achieve better task schedulabil-
ity (albeit at the cost of much higher time complexity), several
mapping algorithms for dual-criticality systems were recently
reported, such as the demand bound function (DBF)-based fea-
sibility test [14] and the mixed integer nonlinear programming
solutions that use task clustering [22].

The existing partitioned scheduling algorithms for dual-
criticality systems normally consider only a task’s uti-
lization at its highest criticality level (i.e., its maximum
utilization) [16], [18], [22], [23]—and this usually leads to
pessimistic estimates of system utilization and thus degraded
system schedulability. On the other hand, a look at the existing
schedulability conditions for EDF-VD [2], [3] reveals that, in
addition to its maximum utilization, an MC task’s utilizations
at other valid (lower) levels also play an important role.

Motivated by this observation, in this paper, we derive a
utilization bound for MC tasks with multiple criticality levels
running on multicore platforms under partitioned EDF-VD,
and discuss its properties. By employing the latest vari-
ant of the EDF-VD algorithm [3], we extend our previous
work [15] and propose a criticality-aware task partitioning
algorithm (CA-TPA), where the utilization variations of tasks
at different levels are taken into account for better schedu-
lability and balanced workload distribution. Specifically,
the contributions of this paper can be summarized as
follows.

1) We develop a criticality-aware utilization bound for MC
tasks scheduled by the partitioned EDF-VD algorithm
with WFD mapping heuristic, which forms the basis of
an efficient feasibility test.

2) We identify the monotonicity of the utilization bound,
showing that the bound increases with the number of
deployed processor cores and decreases with system
criticality level.

3) By exploiting the variations of tasks’s utilizations at
different criticality levels, we present an efficient task
partitioning algorithm with EDF-VD scheduler. Several
criticality-aware heuristics are proposed to improve
tasks’ schedulability and balance the workload across
multicores.

4) The empirical results from an actual implementation in
the Linux operating system show that CA-TPA with
EDF-VD is quite practical thanks to the relatively low
run-time overhead and its criticality-aware workload
balancing policy.

The remainder of this paper is organized as follows.
Section II presents the task and system models and dis-
cusses the feasibility conditions of the EDF-VD scheduler. The
criticality-aware utilization bound under partitioned EDF-VD
with WFD is developed, and its properties are discussed, in
Section III. Our CA-TPA scheme is presented in Section IV.
The evaluation results and implementation are discussed in
Sections V and VI concludes this paper. A review of the
MC scheduling research can be found in the supplementary
material.

II. SYSTEM MODELS AND PRELIMINARIES

In this section, we first present the system and task models.
The schedulability conditions for periodic MC tasks scheduled
by EDF-VD on single processor are briefly reviewed, followed
by the description of the problem addressed in this paper.

A. System and Task Models

We consider a multicore system that consists of M ≥ 2
homogeneous processing cores, which are denoted as
{P1, . . . ,PM}. A set of N periodic MC tasks � = {τ1, . . . , τN}
are scheduled in the system. The MC tasks have K > 1 crit-
icality levels. K is called the system criticality level and the
system starts its operation at level-1 criticality.

An MC task τi is characterized by a tuple {Ci, pi, �i}.
�i (1 ≤ �i ≤ K) indicates τi’s criticality level (i.e., its
own criticality). The system criticality level K is corresponds
to the maximum criticality level among all the tasks. pi

denotes the task τi’s period as well as its relative deadline
(thus, we consider implicit-deadline task systems). The vector
Ci = <ci(1), . . . , ci(�i)> represents the worst-case execution
times (WCETs) of task τi at each criticality level, where the
WCET of a task at a higher level is generally larger than
that at a lower level, that is, ci(1) < ci(2) < · · · < ci(�i).
We assume that the jth instance (job) of task τi arrives at time
ri,j = (j−1)·pi and must complete its execution by its absolute
deadline di,j = j · pi. We assume partitioned scheduling—
the subset of tasks allocated to core Pm is denoted as �m

(m = 1, . . . , M) and a partition of tasks to cores is represented
as � = {�1, . . . , �M}, where � = ∪M

m=1�m.
We assume that the adaptive mixed criticality (AMC)

scheme [3], [5] (which is applicable for both FPS and
EDF-based scheduling) is adopted to manage the individual
executions of jobs at run-time on the multicore system. When
the current system operates at level-k (<K) running mode
and a task τi executes for more than its level-k WCET ci(k)
(k < �i) without indicating its completion, the system per-
forms a global mode transition and the running mode switches
to level-(k + 1). At that moment, all tasks in the system with
own criticality level k are discarded and no future level-k tasks
are released, until the system becomes idle and gets back to
level-1 running mode [6]. Once tasks are mapped to cores, we

HAN et al.: MULTICORE MC SYSTEMS: PARTITIONED SCHEDULING AND UTILIZATION BOUND 23

assume that EDF-VD scheduler is deployed on each core Pm

to schedule its subset of MC tasks �m.

B. Schedulability Conditions of EDF-VD Scheduler

The EDF-VD scheduler was first studied in the context
of a single processor [2], [3] with the idea of assigning a
virtual (and smaller) deadlines (thus higher priorities) to high-
criticality tasks in order to improve schedulability. When the
system switches to high-criticality mode, the timing require-
ments of high-criticality tasks can be guaranteed by restoring
their original deadlines and dropping low-criticality tasks.

We first review the schedulability conditions for MC tasks
running on a single processor scheduled under EDF-VD. We
first introduce some key notations.

1) ui(k) = (ci(k)/pi): The utilization of task τi at level-k
(≤�i).

2) Uj(k): The level-k utilization of tasks at own criticality
level k or higher, which is defined as

Uj(k) =
∑

∀τi:�i=j∧j≥k

ui(k). (1)

3) U�m
j (k): The level-k utilization of tasks on core Pm at

own criticality level k or higher, that is

U�m
j (k) =

�i=j∧j≥k∑

∀τi:τi∈�m

ui(k). (2)

4) U(k): The total (aggregate) level-k utilization of tasks
at own criticality level k or higher. Using (1), we can
have

U(k) =
K∑

j=k

Uj(k). (3)

By incorporating the utilizations of tasks at different criti-
cality levels, a sufficient schedulability condition for implicit-
deadline MC tasks scheduled under AMC-based EDF-VD
algorithm was reported in [3], which is summarized in the
theorem that follows.

Theorem 1 [3, Th. 3.4]: For an implicit-deadline MC task
set allocated to processor core Pm, the tasks are feasible under
the EDF-VD scheduler on core Pm if either

K∑

l=1

U�m
l (l) ≤ 1 (4)

or, for some k = 1, . . . , K − 1, the condition below holds

k∑

l=1

U�m
l (l) < 1 and

∑K
l=k+1 U�m

l (k)

1 −∑k
l=1 U�m

l (l)
︸ ︷︷ ︸

a(k)

≤ 1 −∑K
l=k+1 U�m

l (l)
∑k

l=1 U�m
l (l)

︸ ︷︷ ︸
b(k)

. (5)

Basically, (4) states that if core Pm can accommodate the
maximum utilization demands of all its tasks at their own
criticality, the tasks are schedulable under EDF-VD (which

actually reduces to EDF as there is no virtual deadline for
any task [3]). We note that the condition is rather pessimistic
since only the maximum utilization demands of tasks are
considered.

Note that if (4) fails, b(k) < 1 (k = 1, . . . , K − 1) in (5).
When (4) fails but (5) holds for some k (condition-k), the
virtual (relative) deadline of any task τi on core Pm with
own criticality level higher than k (i.e., �i > k) can be set
as p̂i = x · pi, where x = [a(k), b(k)] (<1) is defined as a
reduction factor for the virtual deadlines for high-criticality
tasks to allow them to complete their low-criticality work-
loads earlier. When the system mode shifts to level-(k + 1)
(i.e., a task exceeds its level-k WCET), all level-k tasks on
core Pm are discarded, and the relative deadlines of tasks on
core Pm with their own criticality levels higher than k will be
restored to their original ones. For the detailed mechanism of
virtual deadline adjustment and the discussions of EDF-VD
for arbitrary-deadline dual-criticality systems (please see [3]).

Based on Theorem 1, we can obtain the following propo-
sition related to the feasibility of MC tasks scheduled under
the partitioned EDF-VD algorithm on multicore systems.

Proposition 1: For a set � of MC tasks with K criticality
levels running on a multicore system with M homogeneous
cores, a given partition � = {�1, . . . , �M} is feasible if,
Theorem 1 holds for every core Pm (m = 1, . . . , M).

As the special case, for a dual-criticality system (i.e.,
K = 2), the task set is feasible under partitioned EDF-VD
scheduler if, for each core Pm (m = 1, . . . , M), we have

either U�m
1 (1) + U�m

2 (2) ≤ 1 (6)

or U�m
1 (1) < 1 and

U�m
2 (1)

1 − U�m
1 (1)

≤ 1 − U�m
2 (2)

U�m
1 (1)

. (7)

The MCK(N, M) Partition Problem: For a set � of N MC
implicit-deadline tasks with K criticality levels running on a
system with M homogeneous cores, find a feasible task-to-core
mapping �, where tasks on each core are schedulable under
EDF-VD.

Clearly, when K = 1, the MCK(N, M) partition problem
actually reduces to the classical partitioned real-time schedul-
ing problem, which is a well-known NP-hard problem. Hence,
the MCK(N, M) partition problem is NP-hard as well.

III. CRITICALITY-AWARE UTILIZATION BOUND AND

ITS CHARACTERISTICS UNDER PARTITIONED

EDF-VD SCHEDULER

With the focus on EDF-VD for uniprocessor systems,
Baruah et al. [3] identified the speedup factor to evaluate
its optimality (i.e., how close the performance of the EDF-
VD algorithm is to that of a clairvoyant algorithm): if an MC
task set is schedulable by a clairvoyant algorithm, the tasks
can also be feasible under EDF-VD when they are executed
with a speedup factor, which is obtained by a global nonlinear
continuous optimization solver (e.g., 4/3 for a dual-criticality
system). To the best of our knowledge, a result on the speedup
bounds for the partitioned EDF-VD scheduler for tasks with
multiple criticality levels has not been reported yet.

24 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

In contrast to a speedup factor-based approach, our approach
is based on deriving a utilization bound for efficient feasibility
test of MC tasks with multiple levels, scheduled by parti-
tioned EDF-VD. One prominent advantage of the utilization
bound is that for a given mapping scheme, as long as the
total utilization of a task set does not exceed the given bound,
the partitioning generated by the scheme is guaranteed to be
schedulable [20].

Note that, the schedulability conditions given in inequali-
ties (4) and (5) are quite involved and most of the existing
schemes are rather complicated (e.g., hybrid scheme [23],
CA-TPA proposed in this paper, and the DBF-based heuris-
tic [14]). Among these mapping algorithms, the simplest
hybrid scheme allocates tasks to cores using different heuris-
tics (e.g., WF and FF) according to their own criticality
levels. In contrast, we adopt the simple WFD as the rep-
resentative mapping heuristic to derive a utilization bound
and then discuss its properties related to other task/system
parameters. Despite of its simplicity, some insightful infor-
mation can be obtained to guide our partitioned scheme to
improve tasks’ schedulability and balance the workload distri-
bution. The detailed discussions can be found at the beginning
of Section IV.

A. Level-1 Core Utilization Limit

Since task utilizations at all valid levels are consid-
ered, we can see that the schedulability conditions for
EDF-VD expressed in inequalities (4) and (5) are quite
involved. As each task has level-1 WCET, we first trans-
form these conditions to the simplified schedulability condition
for total level-1 utilization of tasks on any core (i.e., level-1
core utilization limit). Then, using that limit, we derive a
level-1 utilization bound for partitioned EDF-VD in the next
section.

Define ω as the maximum ratio of WCETs between
two consecutive criticality levels for any task, i.e., ω =
max∀τi∈�{(ci(k + 1)/ci(k))|k = 1, . . . , �i − 1}, where ω > 1.
We can obtain the following theorem with respect to the
level-1 core utilization limit for any core.

Theorem 2: For a set of periodic MC tasks �m allocated
to core Pm, the tasks are schedulable under EDF-VD if, the
total level-1 utilization of the tasks

∑K
j=1 U�m

j (1) satisfies

K∑

j=1

U�m
j (1) < λ = K − 1

2·(ωK−1)
(ω−1)2 − 2·K

ω−1 − (K − 1)2
. (8)

Proof: Consider the contrapositive. Suppose that neither
inequality (4) nor inequality (5) holds for core Pm. We first
consider the second case, where inequality (5) fails.

For core Pm, since inequality (4) does not hold
either [i.e.,

∑K
l=1 U�m

l (l) > 1], we can have (1 −∑K
l=k+1 U�m

l (l)/
∑k

l=1 U�m
l (l)) < 1 (k = 1, . . . , K − 1) and

thus the second item of inequality (5) can be transformed as
(
∑K

l=k+1 U�m
l (k)/1 −∑k

l=1 U�m
l (l)) < 1 (k = 1, . . . , K − 1).

Then, when inequality (5) fails for core Pm, for each condition-
k (k = 1, . . . , K − 1), there is

∑k
l=1 U�m

l (l) ≥ 1 or

∑k
l=1 U�m

l (l)+∑K
l=k+1 U�m

l (k) ≥ 1. Therefore, we only need
to consider the second case, that is

k∑

l=1

U�m
l (l) +

K∑

l=k+1

U�m
l (k) ≥ 1.

By the definition of ω, there is U�m
l (x) ≤ U�m

l (1) · ωx−1

(1 ≤ x ≤ l ≤ K). Hence, the above inequality is rewritten as

k∑

l=1

U�m
l (1) · ωl−1 +

K∑

l=k+1

U�m
l (1) · ωk−1 ≥ 1

K∑

j=1

U�m
j (1) +

k∑

l=1

U�m
l (1) · (ωl−1 − 1)

+
K∑

l=k+1

U�m
l (1) ·

(
ωk−1 − 1

)
≥ 1.

Note that, U�m
x (1) ≤ ∑K

j=1 U�m
j (1) (x = 1, . . . , K). Then, the

above inequality for condition-k is further rewritten as

K∑

j=1

U�m
j (1) ·

(
1 +

k∑

l=1

(
ωl−1 − 1

)
+
(
ωk−1 − 1

)
· (K − k)

)
≥ 1

(9)

⇒
K∑

j=1

U�m
j (1) ·

(
ωk − 1

ω − 1
+ ωk−1 · (K − k) − (K − 1)

)
≥ 1.

(10)

To compute S = ∑K−1
k=1 ωk−1 · k, we have

ω · S = 1 · ω1 + 2 · ω2 + · · · + (K − 1) · ωK−1

ω · S − S = (K − 1) · ωK−1 −
(
ωK−2 + ωK−3 + · · · + ω0

)

S = (K − 1) · ωK−1

ω − 1
+ 1 − ωK−1

(ω − 1)2
.

Adding up the above (K − 1) inequalities for condition-k as
given in (10), we can further obtain

K∑

j=1

U�m
j (1) ·

(
ωK − ω

(ω − 1)2
− K − 1

ω − 1
+ ωK−1 − K

ω − 1

− 1 − ωK−1

(ω − 1)2
− (K − 1)2

)
≥ K − 1

⇒
K∑

j=1

U�m
j (1) ≥ K − 1

2·(ωK−1)
(ω−1)2 − 2·K

ω−1 − (K − 1)2
= Ub1 = λ.

We next consider the other case, where inequality (4) fails
[i.e.,

∑K
l=1 U�m

l (l) > 1]. Following similar steps, we get:

U�m
1 (1) + ω · U�m

2 (1) + · · · + ωK−1 · U�m
K (1) > 1

K∑

j=1

U�m
j (1) +

[
(ω − 1) · U�m

2 (1) + · · · +
(
ωK−1 − 1

)

× U�m
K (1)

]
> 1.

HAN et al.: MULTICORE MC SYSTEMS: PARTITIONED SCHEDULING AND UTILIZATION BOUND 25

As U�m
x (1) ≤ ∑K

j=1 U�m
j (1) (x = 1, . . . , K), we have

K∑

j=1

U�m
j (1) +

(
ω − 1 + · · · + ωK−1 − 1

)
·

K∑

j=1

U�m
j (1) > 1

⇒
K∑

j=1

U�m
j (1) >

1

1 +∑K
l=1

(
ωl−1 − 1

) = Ub2. (11)

Define f (k) (k = 1, . . . , K) in (9) as

f (k) = 1 +
k∑

l=1

(
ωl−1 − 1

)
+
(
ωk−1 − 1

)
· (K − k). (12)

Recall that ω > 1. For each k (k = 1, . . . , K − 1), we can get

f (k + 1) − f (k) = (K − k) ·
(
ωk − ωk−1

)
> 0

⇒ f (k + 1) > f (k).

Note that, by the definition of f (k), there are Ub2 · f (K) = 1
based on (11) and Ub1 · (f (1)+· · ·+ f (K −1)) = K −1 based
on (9). Thus, we can obtain

Ub1 · f (K) · (K − 1) > K − 1 ⇒ Ub1 · f (K) > 1

⇒ Ub1 > Ub2.

Therefore, if neither inequality (4) nor inequality (5) holds,
we can get

∑K
j=1 U�m

j (1) ≥ Ub1 = λ. Taking its contraposi-

tive, when
∑K

j=1 U�m
j (1) < λ, either (4) or (5) holds for core

Pm. Hence, the task set �m is schedulable under EDF-VD by
Theorem 1.

Based on the level-1 core utilization limit λ under EDF-VD
in (8), we can obtain the monotonic relationship between λ

and other task parameters (i.e., ω and K) as follows.
Property 1: When K is fixed, the level-1 core utilization

limit λ for each core scheduled by EDF-VD decreases when
ω increases.

Proof: We can see that every f (k) (k = 1, . . . , K − 1) as
defined in (12) increases when ω increases and K is fixed. As
λ = (K − 1/

∑K−1
k=1 f (k)), λ decreases when ω increases.

Property 2: The level-1 core utilization limit λ under EDF-
VD scheduler for each core decreases when the system
criticality level K increases and ω is fixed.

For the proof of Property 2, please see the supplementary
material.

B. Criticality-Aware Utilization Bound

Based on the level-1 core utilization limit for any core as
given in (8), the minimum feasible number of tasks on any core
can be found as β =
(λ − ε/ρ)�, where ρ = max{ui(1)|i =
1, . . . , N} and ε is an arbitrarily small positive number. We
can directly obtain the schedulability condition related to the
number of MC tasks (N) running on the target system as
follows.

Property 3: For a set � of N periodic MC tasks with
K criticality levels running on a multicore system with M
cores under partitioned EDF-VD scheduler, the task set � is
guaranteed to be feasible as long as N does not exceed β · M.

Once the number of tasks N does not exceed β ·M, based on
the level-1 core utilization limit for any core presented in (8),

the following theorem corresponding to the level-1 utilization
bound can be used as an efficient feasibility test for a set of
MC tasks, which execute on a multicore system scheduled
under partitioned EDF-VD with the WFD mapping.

Theorem 3: For N periodic MC tasks with K criticality
levels running on a multicore system with M cores, the
level-1 utilization bound Uca,bound under partitioned EDF-VD
scheduling with the WFD heuristic is

Uca,bound = (β · M + 1) · λ

β + 1
. (13)

Proof: We assume that we use WFD and hence, the tasks
have been sorted by their nonascending level-1 utilizations:
for any two tasks τi and τj (1 ≤ i < j ≤ N), ui(1) ≥ uj(1).

Suppose that the task τn is the first task for which the suffi-
cient feasibility condition given in (8) fails when it is mapped
to any core. Then, for each core Pm (m = 1, . . . , M), we get

cn(1)

pn
+

∑

∀τj∈�m

cj(1)

pj
≥ λ ⇒ un(1) +

∑

∀τj∈�m

uj(1) ≥ λ

where �m contains the subset of tasks on core Pm after allocat-
ing the first (n−1) tasks and |�m| corresponds to the number of
tasks in the subset �m. Adding these M inequalities together,
we have

(M − 1) · un(1) +
n∑

j=1

uj(1) ≥ M · λ.

By the assumption that tasks have been ordered by their non-
increasing level-1 utilizations, un(1) ≤ (

∑n
j=1 uj(1)/n). Thus,

the above inequality can be further rewritten as
(

M − 1

n
+ 1

)
·

n∑

j=1

uj(1) ≥ M · λ.

Hence, we can get
∑n

j=1 uj(1) ≥ (M · n · λ/M + n − 1). Based
on (3), considering that the total level-1 utilization of tasks
U(1) = ∑K

l=1 Ul(1) ≥ ∑n
j=1 uj(1), we can further have

U(1) ≥ M · n · λ

M + n − 1
= g(n) (14)

where g(n) is a function of n. Since neither λ nor M is related
to n, the first derivative of g(n) with respect to n is

g′(n) = M · (M − 1) · λ

(M + n − 1)2
> 0.

Therefore, the minimum value of g(n) can be determined when
n = β · M + 1, i.e., U(1) ≥ g(β · M + 1) = ((β · M + 1) ·
λ/β + 1) = Uca,bound.

Hence, taking its contrapositive, when the total level-1 uti-
lization of tasks U(1) is less than Uca,bound, WFD guarantees
to generate a partition satisfying (8) for any core and thus
Proposition 1 holds, which concludes the proof.

When the task system has no criticality certification require-
ment, which is denoted as non-MC task system (i.e., traditional
periodic real-time task system), we can have K = 1, ω = 1 and
thus λ = 1 based on (9) and the proofs in Theorem 2. For the
function g(n) defined in (14) with λ = 1, we can get its first
derivative as g′(n) = (M·(M−1)/(M+n−1)2) > 0. Therefore,

26 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

(a) (b) (c) (d)

Fig. 1. Criticality-aware utilization bound under partitioned EDF-VD scheduling with the WFD heuristic. (a) K = 3 and ρ = 0.1. (b) ω = 1.5 and ρ = 0.1.
(c) M = 8 and ρ = 0.1. (d) ω = 1.5 and K = 3.

the minimum value of g(n) can be found as (β · M + 1/β + 1)

when n = β · M + 1, which actually reduces to the utiliza-
tion bound for non-MC systems under partitioned-EDF with
WFD [20].

Properties of the Bound: In what follows, we discuss the
characteristics of the bound Uca,bound associated with other
system/task parameters (i.e., M, ω, K, and ρ), which actually
reveal the monotonicity of Uca,bound related to M, ω, and K.
First, when the other parameters are fixed, the monotonic rela-
tionship between Uca,bound and the number of cores M can be
identified as follows.

Property 4: For N periodic MC tasks with K criticality
levels running on a multicore system, the utilization bound
Uca,bound increases when the number of cores increases.

Proof: Let h(M) = Uca,bound = ((β · M + 1) · λ/β + 1). As
neither β nor λ is related to M, the first derivative of h(M) is
h′(M) = (β · λ/β + 1) > 0, which concludes the proof.

Next, for the parameters ω and K in λ, when other parame-
ters are fixed, the monotonicity of the bound Uca,bound related
to ω and K can be obtained as follows.

Property 5: For a set � of MC tasks with K criticality lev-
els running on a multicore system with M cores, the utilization
bound Uca,bound decreases when ω and/or K increases.

Proof: Define g(ω, K) = λ. Recall that β =
(λ − ε/ρ)�
and let h(ω, K) = β =
(g(ω, K)− ε/ρ)�. Then, we can have
Uca,bound = ((β · M + 1) · λ/β + 1) = ((h(ω, K) · M + 1) ·
g(ω, K)/h(ω, K) + 1).

We prove the property by contradiction. First, we assume
that the claim is false. That is, there must exist two ω1 and ω2
(ω1 > ω2) such that ((h(ω1, K) · M + 1) · g(ω1, K)/h(ω1, K)+
1) ≥ ((h(ω2, K) · M + 1) · g(ω2, K)/h(ω2, K) + 1). Based on
Property 1, we have g(ω1, K) < g(ω2, K) as ω1 > ω2. Note
that ρ is not related to M, ω, K, and thus λ. Then, since the
floor function of h(ω, K) (i.e., β) is considered, we can have
h(ω1, K) ≤ h(ω2, K) and

h(ω1, K) · M + 1

h(ω1, K) + 1
· g(ω1, K) ≥ h(ω2, K) · M + 1

h(ω2, K) + 1
· g(ω2, K)

⇒ h(ω1, K) · M + 1

h(ω1, K) + 1

>
h(ω2, K) · M + 1

h(ω2, K) + 1
⇒ h(ω2, K) − h(ω1, K)

> (h(ω2, K) − h(ω1, K)) · M

⇒ 0 > 0 or M < 1

which leads to contradiction. Following the similar steps,
based on Property 2, we can also get contradictory results by
assuming that Uca,bound does not decrease as K increases.

Finally, when other task/system parameters are fixed, the
relationship between Uca,bound and ρ is given as follows.

Property 6: For a set � of MC tasks with K criticality
levels scheduled on a multicore system with M cores, the
utilization bound Uca,bound cannot increase as ρ increases.

Proof: The proof is obtained by contradiction. Again, ρ

is not related to M and λ. Define h(ρ) = β =
(λ − ε/ρ)�
and we can have Uca,bound = ((h(ρ) · M + 1) · λ/h(ρ) + 1).
Suppose that the claim is false. Then, there must exist two ρ1
and ρ2 (ρ1 > ρ2) such that ((h(ρ1) · M + 1) · λ/h(ρ1) + 1) >

((h(ρ2) · M + 1) · λ/h(ρ2) + 1). As h(ρ) (i.e., β) is a floor
function, h(ρ1) ≤ h(ρ2). Therefore, we can have

(h(ρ1) · M + 1) · λ

h(ρ1) + 1
>

(h(ρ2) · M + 1) · λ

h(ρ2) + 1
⇒h(ρ2) − h(ρ1)>(h(ρ2) − h(ρ1)) · M ⇒ 0 > 0 or M < 1

which results in contradiction and concludes the proof.
The relationship between the criticality-aware system uti-

lization bound Uca,bound and other task/system parameters (i.e.,
M, ω, K, and ρ) can be more explicitly illustrated in Fig. 1,
where the default parameter values are: M = 8, ω = 1.5,
K = 3, and ρ = 0.1. From the figures, we can see that when
there are more available cores M and smaller ω, based on
Properties 4 and 5, the bound Uca,bound gradually increases
when other parameters (i.e., K and ρ) are fixed [Fig. 1(a)].
For given M, ω, and ρ, based on Property 5, Uca,bound can
drop dramatically when K increases [Fig. 1(b)], because higher
task utilizations at high levels can lead to much smaller λ and
Uca,bound. For task systems with a high level criticality (e.g.,
K ≥ 4), the bound can be extremely low, which rather lim-
its its applicability. Similarly, based on Property 5, for given
M and ρ, Uca,bound also decreases as ω and/or K increase as
shown in Fig. 1(c). Moreover, when other parameters are fixed,
Uca,bound exhibits stepwise decrease as ρ increases [Fig. 1(d)],
which is consistent with Property 6.

IV. CRITICALITY-AWARE TASK PARTITIONING

While Uca,bound provides an efficient feasibility test, it only
considers the worst-case scenarios: for instance, a pessimistic
ω value is used when transforming the utilizations of tasks
at high criticality levels to level-1 utilizations and the WFD
heuristic only takes tasks’ level-1 utilizations into account.

HAN et al.: MULTICORE MC SYSTEMS: PARTITIONED SCHEDULING AND UTILIZATION BOUND 27

Therefore, due to the characteristics of Uca,bound with respect
to other task/system parameters as given in Properties 4–6, the
applicability of the bound is rather limited especially when ω

and/or K become large. In addition, even if the total level-1
utilization of tasks does not exceed the bound, the workload of
partitions generated by WFD may be imbalanced, giving high
run-time overhead as illustrated in Section V-C. More impor-
tantly, although the utilization bound (e.g., 3/4 for cumulative
high-criticality utilization and low-criticality utilization on a
processor [6]) can be directly employed for task mapping,
such bound-based mapping algorithm can usually result in
rather degraded schedulability even for dual-criticality systems
as validated in [6].

Nonetheless, the derived bound essentially provides impor-
tant insights into the partitioned scheme design for multicore
MC systems with multiple criticality. The utilizations of tasks
at different levels, instead of only those at a certain level [such
as level-1 core utilization limit λ in the bound Uca,bound and the
maximum utilization demands of tasks in (4)], can also affect
the feasibility of tasks based on the schedulability conditions
given in (4) and (5). Hence, the tasks’ utilizations at different
levels should be incorporated into the mapping heuristics for
better schedulability. More importantly, as the various combi-
nations of ω and K can generate divergent utilizations of tasks
at different levels, the discrepancy among these utilizations
can cause rather imbalanced workload among cores. Thus,
more effective policies are needed for criticality-aware work-
load balancing, which effectively improves its applicability as
validated in Section V-C.

Hence, with the objective of reducing the pessimism in
the bound, the tasks’ utilization variations at different lev-
els need to be considered to enhance schedulability perfor-
mance and balance system workload. Recall that the original
MCK(N, M) partition problem is NP-hard. In what follows,
for tasks with multiple levels running on multicores, we
focus on efficient partitioned scheme with better practical
viability (i.e., high schedulability ratio and low run-time
overhead).

In general, there are two fundamental phases when map-
ping tasks to cores: 1) determine the order (i.e., priority)
of tasks to be allocated and 2) find an appropriate core for
each task. Instead of only using the maximum utilizations
of tasks and the simple (but pessimistic) schedulability con-
dition (4), we focus on the more improved schedulability
condition (5). Because of the large variations of tasks’ utiliza-
tions at different levels, it is crucial to take such variations into
account when designing the two essential steps of partitioned
scheme.

Based on the above discussions, we propose a CA-TPA.
We define the utilization contribution of a task at a given
level, which is then used to guide the allocation of tasks
to cores. CA-TPA adopts a probe-based approach to ensure
that, when allocating a task to cores, the overall system uti-
lization has the smallest increment. Moreover, a workload
imbalance factor is introduced to balance workload. Therefore,
this paper differs from the existing studies that usually rely on
only the maximum utilizations of tasks at their own criticality
levels.

A. Task Ordering and Utilization Contribution

To incorporate the utilizations of tasks at different criticality
levels in the first step, we present the concept of utilization
contribution of tasks. Specifically, a task τi’s utilization con-
tribution at level-k (≤�i) is defined as

Ci(k) = ui(k)

U(k)
, k = 1, . . . , �i (15)

where U(k) defined in (3) is the total level-k utilization of
tasks at the own criticality level k or higher. The utilization
contribution of task τi to the system (by considering all its
valid levels) can be further defined as

Ci = max{Ci(k)|k = 1, . . . , �i}. (16)

From the above definitions, we can see that the utilization
contribution of a task essentially represents its largest weight in
system utilizations in all its valid levels. Therefore, as opposed
to the conventional partitioning heuristics solely based on the
utilizations of tasks (such as FFD and WFD), we determine
the ordering priorities of MC tasks using their utilization con-
tributions in the first step before allocating them to cores. For
this purpose, we define two relational operators � and � for
task prioritization with the following rules.

1) If task τi has larger utilization contribution than task τj,
we say that τi has higher ordering priority than τj (which
is denoted as τi � τj). Otherwise, if task τi’s utilization
contribution is smaller than that of τj, τi � τj.

2) When the two tasks have the same utilization contribu-
tion, the tie is broken in favor of the task with higher
criticality level. That is, if Ci = Cj ∧ �i > �j, we have
τi � τj.

3) If there is still a tie, the task with smaller index is
assigned higher ordering priority: τi � τj if i < j ∧ Ci =
Cj ∧ �i = �j.

B. Utilization Increment

To improve the schedulability of MC tasks while balancing
workload among cores, the key point in our core selection
heuristic is to take the utilization variations of tasks at different
levels into consideration. Specifically, from (5), we can see
that, the utilizations of tasks at all valid levels can affect their
schedulability on a certain core. Moreover, as each core has a
distinct subset of MC tasks, the utilizations of cores at each
level can vary significantly [see (2)]. Therefore, the allocation
of a task to different cores can lead to very divergent feasibility
results and large variations in resulting core utilizations, which
is quite different from the conventional partitioned scheduling
of non-MC tasks.

Based on Theorem 1, once tasks are allocated to cores, we
can check (4) and (K − 1) conditions given in (5). Note that,
only one condition is required to hold on each core to satisfy
the feasibility condition for the partitioned EDF-VD sched-
uler. In general, a partitioning scheme requires that the core
utilization does not exceed 1. However, we can see that if (4)
holds, b(k) ≥ 1 for any condition-k in (5). To incorporate
and exploit the core utilization to guide task mapping under

28 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

partitioned EDF-VD, condition-k in (5) can be rewritten as

k∑

l=1

U�m
l (l) < 1 and μ�m(k) ≤ θ�m(k)

μ�m(k) =
k∑

l=1

U�m
l (l) ·

K∑

l=k+1

U�m
l (k)

θ�m(k) =
(

1 −
k∑

l=1

U�m
l (l)

)
·
⎛

⎝1 −
K∑

l=k+1

U�m
l (l)

⎞

⎠ (17)

where θ�m(k) ≤ 1 [θ�m(k) = 1 only if Pm is empty].
Intuitively, (5) [i.e., (17)] represents an improved schedu-

lability condition compared to (4). Next, we identify the
relationship between (4) and (17) regarding the schedulabil-
ity. For ease of discussion, let x(k) = ∑k

l=1 U�m
l (l), y(k) =∑K

l=k+1 U�m
l (l) and z(k) = ∑K

l=k+1 U�m
l (k) for condition-k on

core Pm. As y(k) and z(k) may be 0, we have: y(k) ≥ z(k)
(k = 1, . . . , K − 1).

Property 7: For a set � of MC tasks running on a multicore
system scheduled under partitioned EDF-VD, when (4) holds
for core Pm, then μ�m(k) ≤ θ�m(k) (k = 1, . . . , K − 1), that
is, the second condition in (17) holds for every condition-k.

Proof: As (4) holds for core Pm, we have x(k) + y(k) ≤ 1
(k = 1, . . . , K − 1). As y(k) ≥ z(k), for each k

θ�m(k) − μ�m(k) = [1 − x(k)] · [1 − y(k)] − x(k) · z(k)

= 1 − [x(k) + y(k)] + x(k)

× [y(k) − z(k)] ≥ 0

which concludes the proof.
Property 8: For MC tasks running on multicore systems

under partitioned EDF-VD, if (17) fails for any condition-k
on core Pm, (4) holds only when each task on Pm has its own
criticality level 1 and U�m

1 (1) = 1.
Proof: As (17) fails for any condition-k (k = 1, . . . , K −

1) on core Pm, for each k, we have x(k) ≥ 1 or θ�m(k) −
μ�m(k) < 0. We first consider the second case

θ�m(k) − μ�m(k) < 0 ⇒ [1 − x(k)] · [1 − y(k)]

− x(k) · z(k) < 0 ⇒
K∑

l=1

U�m
l (l) = x(k) + y(k)

> 1 + x(k) · [y(k) − z(k)] ≥ 1.

This means that (4) also fails. Then, (17) fails but (4) holds
for core Pm only if x(k) ≥ 1 (k = 1, . . . , K − 1). For each k,
as (4) holds, we have

∑K
l=1 U�m

l (l) = x(k) + y(k) ≤ 1. Then,
we can get x(k) = 1 and y(k) = 0 for each k. Moreover, when
x(k) = 1 and y(k) = 0 hold, x(k + 1) = 1 and y(k + 1) = 0
(k = 1, . . . , K − 2). Hence, (17) fails but (4) holds only if
x(1) = 1 and y(1) = 0, i.e., U�m

1 (1) = 1 and U�m
l (l) = 0

(l = 2, . . . , K), which concludes the proof.
Based on Properties 7 and 8, we can see that except in

very rare cases, (17) represents a less pessimistic sufficient
schedulability condition when compared to (4). Therefore,
with an objective to incorporate task utilizations at different
levels for effectively guiding the mapping of tasks to cores, (4)
can be ignored and we only need to focus on the sufficient

condition (17) when evaluating a core’s available utilization.
Then, the available utilization for condition-k on core Pm is
defined as

A�m(k) = min

{
θ�m(k) − μ�m(k), 1 −

k∑

l=1

U�m
l (l)

}
. (18)

The following properties are further provided to obtain
an effective available utilization for any condition-k on
core Pm.

Property 9: For a set � of MC tasks with K criticality lev-
els running on a multicore system under partitioned EDF-VD
scheduler, when (4) fails but (17) holds for some k (<K) on
core Pm, we have θ�m(k) − μ�m(k) < 1 −∑k

l=1 U�m
l (l).

Proof: Since (4) fails for core Pm, we can have
x(k) + y(k) > 1 (k = 1, . . . , K − 1). As (17) holds for some k
on core Pm, we can get x(k) < 1 and

θ�m(k) − μ�m(k) ≥ 0

⇒ [1 − x(k)] · [1 − y(k)] − x(k) · z(k) ≥ 0

⇒ 1 − [x(k) + y(k)] + x(k) · [y(k) − z(k)] ≥ 0

⇒ x(k) · [y(k) − z(k)] > 0

⇒ 0 < x(k) < 1 and y(k) > z(k) > 0.

Therefore, we can have

θ�m(k) − μ�m(k) −
(

1 −
k∑

l=1

U�m
l (l)

)

= [1 − x(k)] · [1 − y(k)] − x(k) · z(k) − [1 − x(k)]

= [x(k) − 1] · y(k) − x(k) · z(k) < 0

which concludes the proof.
Again, y(k) and z(k) may be 0 (k = 1, . . . , K−1). Following

the similar steps in the proofs of Property 9, we can have the
following property.

Property 10: For a set � of MC tasks with K criticality
levels running on a multicore system that are scheduled under
partitioned EDF-VD, if (4) holds and (17) holds for some k (<
K) on core Pm, we have θ�m(k)−μ�m(k) ≤ 1−∑k

l=1 U�m
l (l).

Basically, Properties 9 and 10 indicate that no matter
whether (4) holds or not, we have θ�m(k) − μ�m(k) ≤
1 − ∑k

l=1 U�m
l (l) if condition-k holds. Hence, the available

utilization for condition-k as defined in (18) can be safely
determined as

A�m(k) = θ�m(k) − μ�m(k). (19)

Following the schedulability conditions presented in (4)
and (17), the core utilization on core Pm is defined as

U�m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∞,

K∑

l=1

U�m
l (l) > 1 and ∀k : A�m(k) < 0 (20a)

or
k∑

l=1

U�m
l (l) ≥ 1, k = 1, . . . , K − 1

max{1 − A�m(k)|∀k : A�m(k) ≥ 0}, else. (20b)

Essentially, (20) implies that, if the sechedulability condition
given in Theorem 1 fails for core Pm, then U�m = ∞; other-
wise, U�m indicates the maximum exploited utilization among

HAN et al.: MULTICORE MC SYSTEMS: PARTITIONED SCHEDULING AND UTILIZATION BOUND 29

all valid condition-k (i.e., A�m(k) ≥ 0) on core Pm. Therefore,
based on Property 7 and the definition of A�m(k), when (4)
or (17) is satisfied for core Pm, there must exist some k such
that A�m(k) ≥ 0 holds.

Then, the system utilization Usys and average core utiliza-
tion Uavg are defined, respectively, as follows:

Usys = max
{
U�m |m = 1, . . . , M

}
(21)

Uavg =
∑M

m=1 U�m

M
. (22)

To further quantify the impact of partitioning a task τi to core
Pm, the increment of core utilization on Pm is defined as

��m∪{τi} = U�m∪{τi} − U�m . (23)

The new core utilization U�m∪{τi} of core Pm, by assuming
that task τi is assigned to the core, can be computed based
on (20). Note that, in case U�m∪{τi} = ∞ [see (20a)], τi cannot
be feasibly allocated to core Pm subject to the schedulability
conditions (4) and (17).

Properties in Dual-Criticality Systems: Next, focusing on
dual-criticality systems (i.e., K = 2), we derive some proper-
ties related to the core utilization variations when allocating a
task to cores. Despite the simplified assumptions, the results
of these properties can shed light to design mapping heuristics
and evaluate their effectiveness as discussed below.

Below, task τi is assumed to be allocated to core Pm. For
ease of presentation, let x = U�m

1 (1), y = U�m
2 (2) and for any

task τj (�j = 2), we have cj(1) = ι · cj(2) where ι (<1) is a
constant. Thus, U�m

2 (1) = ι · U�m
2 (2) = ι · y. Based on these

assumptions, we can obtain the following properties related to
the utilization increment after assigning τi to Pm.

Property 11: Suppose that (7) holds after τi is mapped to
Pm. If τi’s own criticality level equals 1 and we denote by z
the quantity ui(1), then the core Pm’s utilization increment is
no greater than z.

Proof: For dual-criticality systems, there is only condition-1
(k = 1) on each core. From (7) and (20), we have

U�m = 1 − [
(1 − x) · (1 − y) − ι · x · y

]

U�m∪{τi} = 1 − [
(1 − x − z) · (1 − y) − ι · (x + z) · y

]
.

Note that y may be 0. Then, based on (23), we have

��m∪{τi} = (1 − y) · z + ι · y · z = [
1 − (1 − ι) · y

] · z ≤ z

which concludes the proof.
Property 12: Assume that (7) holds after task τi is assigned

to core Pm. If task τi’s own criticality level equals 2 and if
we denote by z the quantity ui(2), the utilization increment
��m∪{τi} of core Pm is no greater than z but greater than
ui(1) (i.e., ι · z).

Proof: Following the similar steps in Property 11, as (7)
holds for core Pm, we have 0 ≤ x < 1 and

U�m∪{τi} = 1 − [
(1 − x) · (1 − y − z) − ι · x · (y + z)

]

��m∪{τi} = (1 − x) · z + ι · x · z = [1 − (1 − ι) · x] · z ≤ z.

Since 0 ≤ x < 1 and 0 < ι < 1, we can further have

1 − ι > (1 − ι) · x ⇒ 1 − (1 − ι) · x > ι ⇒ ��m∪{τi} > ι · z

Algorithm 1: Outline of CA-TPA
Input: � (the task set); M (the number of cores);
Output: A feasible partition � or FAIL;

1 Initiate � = {�m}, where �m = ∅ (m = 1, . . . , M);
2 Sort tasks in � based on their utilization contributions;
3 for (each τi ∈ � in the above order) do
4 � = ∞;
5 for (each Pm) do
6 Calculate U�m∪{τi} based on Equation (20);
7 Calculate ��m∪{τi} based on Equation (23);
8 if ({�m ∪ {τi}} is feasible and ��m∪{τi} < �) then
9 � = ��m∪{τi}; x = m;

10 end
11 end
12 if (� == ∞) then
13 � = ∅; break; //not feasible on any core;
14 end
15 �x = �x ∪ {τi}; //allocate τi to Px;
16 Update U�x(k) (k = 1, . . . , K) and U�x ;
17 end
18 Return (� �= ∅ ? �: FAIL);

which concludes the proof.
Based on the analysis from Properties 11 and 12, we can

see that for dual-criticality systems, a lower ratio of U2(1)

to U2(2) (i.e., ι) can lead to a smaller increment for core
utilization, which is consistent with the intuition that more
tasks with high criticality levels can reduce their deadlines to
complete their relatively light low-criticality workloads earlier.
More importantly, we can see that when tasks of different own
criticalities are mapped onto the same core, the core utilization
increment may be lower than the maximum utilization of the
task to be allocated to the core.

As our partitioned scheme aims at minimizing the utiliza-
tion increments of cores during task mapping, the tasks with
different own criticality levels are more likely to be assigned to
the same core. Therefore, when the system mode changes, the
remaining high-criticality tasks can be distributed uniformly
among cores, which typically results in criticality-cognizant
workload balance and thus lower run-time overhead (due to
potentially fewer job preemptions on each core) as validated
in Section V-C.

C. Criticality-Aware Task Partitioning Algorithm

Based on the above analysis, we adopt a probe-based
approach to incorporate the contributions of tasks’ utilizations
at multiple levels on different cores when allocating a task to
cores. Specifically, by checking all cores in the system, a task
τi will be mapped to the core Px that has the minimum incre-
ment for its core utilization, should τi be allocated to Px. That
is, ��x∪{τi} = min{��m∪{τi}|m = 1, . . . , M}. If more than one
core has the same minimum core utilization increment, the tie
is broken by mapping the task to the core with smaller index.

The outline of our CA-TPA is summarized in Algorithm 1.
First, the task-to-core partition � and the subset of tasks for

30 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

each core are initialized (line 1). Then, all tasks are sorted
in descending order of their utilization contributions (line 2).
For each task, CA-TPA probes all cores by calculating its
new core utilization [based on (20)] and utilization increment
[based on (23)], by assuming that task τi is allocated to it
(lines 5–11). For all cores that can feasibly accommodate task
τi under the EDF-VD scheduler based on the schedulability
conditions given in (4) and (17), the core Px with the smallest
utilization increment is chosen (line 9). If τi cannot be feasi-
bly allocated to any core, CA-TPA fails to obtain a feasible
task-to-core partition and quits (lines 12 and 13). Otherwise,
τi is allocated to the target core Px by updating its subset of
tasks �x and related parameters (lines 15 and 16). Once all
tasks have been successfully assigned to the cores, the feasible
partition � is obtained and returned (line 18).

1) Time Complexity of CA-TPA: Recall that there are M
cores and N tasks in the system. As there are normally only
a few criticality levels (i.e., usually no larger than 6) in most
applications, K can be assumed to be a constant in the com-
plexity analysis. Uj(k) can be computed from (1) in O(N)

time. The computation of U(k) from (3) can also be done in
O(N) time. Therefore, sorting the tasks in decreasing order of
their utilization contributions can be performed in the com-
plexity of O(N · logN). Next, from Algorithm 1, we can see
that determining a target core that can feasibly accommodate
a task can be done in O(M+N) time, by computing utilization
increments of all cores for all tasks that have been allocated.
Hence, the overall time complexity of CA-TPA can be found
as O((M + N) · N).

2) Workload Imbalance Factor: When tasks are allocated to
cores under CA-TPA with partitioned EDF-VD, it is possible
to obtain a mapping with imbalanced workloads among cores,
where a few cores are over-loaded while the remaining cores
have enough free capacity. To prevent our partitioning algo-
rithm from allocating most tasks to a few cores, we introduce
a workload imbalance factor �, which is defined as

� = Usys − min
{
U�m |m = 1, . . . , M

}

Usys (24)

where Usys is defined in (21).
In essence, � is exploited to control the variations of core

utilizations during the task-to-core mapping. In addition, there
is a threshold ρ for the workload imbalance factor �, which
is set prior to the task assignments. When � increases and
approaches the threshold ρ, instead of selecting a target core
according to CA-TPA, the new task can be allocated directly
to the valid core with the minimum core utilization (i.e.,
min{U�m |m = 1, . . . , M}), subject to the feasibility condi-
tions (4) and (17). A concrete example can be found in the
supplementary material.

V. EVALUATIONS AND DISCUSSION

To evaluate the performance of the proposed CA-TPA
scheme with EDF-VD experimentally, we developed a simula-
tor and implemented the EDF-VD scheduler in Linux kernel.
For comparison, in addition to the CA-TPA scheme, we also
implemented the well-known partitioning heuristics WFD,
FFD, BFD, as well as the hybrid scheme proposed in [23]

TABLE I
SYSTEM AND TASK PARAMETERS FOR THE EXPERIMENTS

that can be adopted for EDF-VD and systems with multiple
criticality levels. To test the feasibility of a core with a new
task, these schemes first use the sufficient schedulability con-
dition (4). In case the outcome is negative, they check the
second and improved condition (5).

As the optimal solution-based scheme reported in [22] only
focuses on dual-criticality systems and is usually applicable for
small problems, it is omitted here. Moreover, we also evaluate
the performance of two partitioned schemes MC-P-UT-INC [6]
and MPVD-HA-BF [14] pplicable to dual-criticality systems.
In what follows, we first give the parameter settings for the
experiments in Section V-A, and then in Sections V-B and V-C,
we present and discuss the simulation results and empirical
results for the tested schemes, respectively.

A. Parameter Settings

We compare these schemes based on the following perfor-
mance metrics.

1) Schedulability ratio, which is defined as the ratio of
the number of task sets that satisfy the schedulability
condition to the total number of tested task sets.

2) Average core utilization (Uavg) defined in (22) that
assesses the workload balance of partitions generated
by the schemes and can typically affect the run-time
overheads for the schemes.

3) Run-time overhead that measures the applicability of all
mapping schemes.

In Table I, we provide the parameter ranges of the system
considered in the experiments, including the number of cores
(M), the system criticality level (K), the normalized system
utilization (NSU) (defined as the ratio of the aggregate level-1
utilization of all tasks to the number of cores), and a threshold
for workload imbalance � (α). Then also shows the parameters
for MC tasks: the number of tasks (N), task periods (P), and
the increment factor (IFC) (defined as the increasing ratio of
WCETs between two consecutive levels for any task).

In the experiments, the synthetic task sets are generated
from the above parameters as follows. First, the system crit-
icality level K is selected uniformly in the range [2, 5]. For
given values of M, N, and NSU, the base task utilization at
level-1 is set as ubase(1) = (NSU · M/N) based on the defini-
tion of NSU. Then, for each task τi, its period pi is randomly
chosen in one of the three period ranges given in Table I.
Next, the value of ci(1) is obtained uniformly in the range
[0.2 · pi · ubase(1), 1.8 · pi · ubase(1)]. The task τi’s criticality
level �i is selected uniformly within [1, K]. Finally, similar

HAN et al.: MULTICORE MC SYSTEMS: PARTITIONED SCHEDULING AND UTILIZATION BOUND 31

(a) (b)

Fig. 2. Simulation performance of the schemes with varying NSU for dual-
criticality systems. (a) Schedulability ratio. (b) Average core utilization.

to the generation of the value of ci(1), the values of ci(k)
(k = 2, . . . , �i) can be accordingly generated using ci(1) and
the value of IFC.

B. Performance of the Partitioning Schemes

Unless otherwise noted, the default parameter values in the
simulations are: M = 8, N = 80, K = 4, NSU = 0.6, α =
0.2, and IFC = 0.4. In the reported results, each data point
corresponds to the average result of 50 000 task sets.

1) Results for Dual-Criticality Systems: We first conduct
the performance comparison between these mapping schemes
for dual-criticality systems (i.e., K = 2). Due to space limits,
we only evaluate the impact of the NSU on the performance
of tested schemes and the results are shown in Fig. 2 (where
IFC = 1).

When other parameters are fixed, larger NSU generally
means higher workload and lower acceptance ratio for the
schemes. Not surprisingly, as shown in Fig. 2(a), WFD usu-
ally yields the lowest acceptance ratio and CA-TPA can
have the best schedulability performance among polynomial
time complexity-based schemes due to its effort to minimize
the core utilization increment during task-to-core mapping.
MPVD-HA-BF has the best acceptance ratio but with much
higher pseudo-polynomial time complexity arisen due to the
use of DBF. MC-P-UT-INC considers the low-criticality work-
loads for high-criticality tasks and can have schedulability
comparable to the CA-TPA. However, MC-P-UT-INC only
focuses on dual-criticality systems and has quite high time
complexity, since it iterates the values (from 0.5 to 1 in
increments of 0.01 here) for the bound of the cumulative
high-criticality utilization on each core to find a feasible
partition.

Fig. 2(b) further shows the performance of workload bal-
ance generated by these schemes. This metric is obtained by
considering only the schedulable task sets for all schemes.
WFD usually generates partitions with the best workload
balance among the schemes. In addition to minimizing the
utilization increase of cores, CA-TPA employs a threshold for
workload imbalance to avoid severely imbalanced workloads.
Thus, CA-TPA can have average core utilization comparable
to WFD and generate partitions with more balanced workload
than other schemes.

2) Results for Systems With Multiple Criticality Levels: In
what follows, we evaluate the impacts of different parameters

(a) (b)

Fig. 3. Performance of the schemes with varying NSU. (a) Schedulability
ratio. (b) Average core utilization.

(a) (b)

Fig. 4. Performance of the schemes with varying IFC. (a) Schedulability
ratio. (b) Average core utilization.

on the performance of these partitioned schemes (except MC-
P-UT-INC and MPVD-HA-BF that are applicable only to dual-
criticality systems) for tasks with multiple criticality levels.

a) Impact of the normalized system utilization: Fig. 3
shows the impacts of the NSU on the performance for the par-
titioned schemes. As shown in Fig. 3(a), compared to WFD,
FFD, BFD, and hybrid mapping schemes, CA-TPA can obtain
much better schedulability ratio (up to 35% more) as explained
above, especially when the system becomes over-loaded (e.g.,
NSU > 0.63). Similar to the trends as those in Fig. 2(b),
Fig. 3(b) shows that CA-TPA can generate partitions with bet-
ter workload balance than FFD, BFD, and hybrid, and can
have lower average core utilization compared to WFD when
the system is under-loaded (e.g., NSU < 0.57).

b) Impact of the increment factor: Next, we evaluate the
schemes with varying IFCs and the results are shown in Fig. 4.
Usually, a larger IFC causes higher system workload and lower
acceptance ratio from the definition of IFC and the schedula-
bility conditions given in Theorem 1. The results follow the
similar trends as those for varying NSU: our CA-TPA-based
scheme performs best in terms of schedulability ratio and gen-
erates more balanced workload than FFD, BFD, and hybrid
heuristics. More specifically, as CA-TPA tries to bridge the gap
between the total task utilizations at different criticality levels
on every core, it can typically obtain average core utilization
comparable to WFD as shown in Fig. 4(b).

c) Impact of the threshold for workload imbalance α:
Fig. 5 illustrates the performance comparison among all map-
ping schemes with different thresholds for workload imbalance
(α). As α is used only by CA-TPA to tune workload imbalance
during task partitioning, the performance of other schemes
remains constant when α varies as shown in Fig. 5(a) and (b).

32 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

(a) (b)

Fig. 5. Performance of the schemes with varying α. (a) Schedulability ratio.
(b) Average core utilization.

(a) (b)

Fig. 6. Performance of the schemes with varying M. (a) Schedulability ratio.
(b) Average core utilization.

A larger α usually implies larger tolerance of workload
imbalance for CA-TPA. Consequently, when α increases, the
CA-TPA scheme attempts to allocate tasks to the core with
the minimum utilization increment without much considera-
tion of the workload balance (i.e., in a manner similar to FFD)
and thus can effectively improve schedulability as shown in
Fig. 5(a). However, this behavior can result in more imbal-
anced workload among cores (i.e., larger workload imbalance
factor), but our CA-TPA scheme still manages to generate
more balanced partitions compared to FFD, BFD, and hybrid
schemes as shown in Fig. 5(b).

d) Impact of the number of cores M: We further eval-
uate the performance for all schemes with varying number
of cores (M) and the results are shown in Fig. 6. In gen-
eral, more cores can provide more capacity and flexibility
for tasks. Thus, when M increases, all mapping schemes can
obtain better schedulability and CA-TPA still achieves the best
acceptance ratio among all schemes [see Fig. 6(a)]. Due to the
workload imbalance tuning during task assignments, CA-TPA
can generate partitions with better workload balance compared
to BFD, FFD, and hybrid [see Fig. 6(b)].

e) Impact of the number of criticality levels K: Finally,
the performance comparison for all schemes with different sys-
tem criticality levels (K) is shown in Fig. 7. Recall that the
NSU represents the system’s utilization at level-1. When other
parameters are fixed, a larger K implies more execution times
for tasks with highest level running at level-K. Therefore, the
acceptance ratios of all schemes decrease drastically when K
increases as shown in Fig. 7(a), but CA-TPA still can obtain
the best schedulability performance among all schemes as
explained earlier. Similarly, CA-TPA generates partitions with
more balanced workload compared to BFD, FFD, and hybrid

(a) (b)

Fig. 7. Performance of the schemes with varying K. (a) Schedulability ratio.
(b) Average core utilization.

heuristics, and yields average core utilization comparable to
WFD [see Fig. 7(b)].

C. Measurement Performance in Linux Kernel

To assess the usability of the mapping schemes, we imple-
mented them in Linux kernel. We followed the design patterns
of LITMUSRT [1] and exploited the available Linux infrastruc-
ture to implement the partitioned EDF-VD scheduler: a new
and highest-priority scheduling class is added to the traditional
Linux scheduler and the partitioned EDF-VD scheduler always
executes the highest priority jobs before the regular Linux jobs.
Moreover, to maintain the highest-priority scheduling class for
partitioned EDF-VD, an additional idle job on each core occu-
pies CPU resource once the system is idle (i.e., the job queue
on every processing core is empty).

The partitioned EDF-VD scheduler changes the Linux
scheduler to invoke the initialization functions, scheduling and
tick handlers at run-time. Similar to paradigms of LITMUSRT,
we provided a user space library to create MC tasks by means
of multithreading. The tasks are initially created as non real-
time where each task executes the same function codes by
updating a local variable in a while-loop. A system call is uti-
lized to pass the timing parameters of tasks from user space
to kernel space, and then per-task data structures are con-
structed in kernel. In addition, a warm-up tick is added to
ensure that the scheduling and data structures are all ready
before tasks start their executions. At each hardware timer
interval interrupt, every core triggers the tick handler and indi-
vidually performs scheduling decisions for its jobs: including
the arrival, preemption, and completion events.

Specifically, we established two additional global syn-
chronization mechanisms for partitioned EDF-VD scheduler:
one is used to synchronize the tick counters of all cores;
based on the first mechanism and AMC scheme [5], [6], the
other is used to address the issues when the system mode
switches to a higher level (which is similar to barrier syn-
chronization in [26]), such as discarding all low-criticality
jobs, restoring the relative deadlines of all high-criticality jobs
(if applicable), initializing the system running mode when
it is idle.

We implemented all schemes in Linux kernel 2.6.38.8
that execute on a PC with 32 nm AMD FX-8320 processor
(8 cores, 3.5 GHz clock speed, 8 MB L2, and L3 cache) and
8 GB RAM. Here, the performance metric is total run-time

HAN et al.: MULTICORE MC SYSTEMS: PARTITIONED SCHEDULING AND UTILIZATION BOUND 33

(a) (b) (c)

(d) (e) (f)

Fig. 8. Empirical performance of the task partitioning algorithms with respect to run-time overhead. (a) Performance with varying NSU. (b) Performance
with varying M. (c) Performance with varying IFC. (d) Performance with varying K. (e) Performance with varying MCP. (f) Performance with varying α.

overhead on cores, where the main sources are context switch-
ing, preemption delay, operations for job queues (i.e., job
arrival and job finish), and synchronization mechanisms for
MC systems.

1) Parameter Settings: The period range for tasks is
[50 ms, 500 ms] and other parameters are generated using the
same methodology adopted in the simulations. The evaluated
task sets are schedulable by all mapping schemes based on
the feasibility conditions in (4) and (5), and each task set exe-
cutes for 10 s under each scheme. The additional measuring
parameter for the mapping schemes is mode-change probabil-
ity (MCP), which is ranged from 0.01 to 0.1 and accounts
for the execution variations of MC tasks at run-time. We first
calculate the total number of jobs executed in 10 s, which is
then multiplied by MCP to obtain the number of jobs that can
result in mode transition. After randomly selecting such jobs
(that have their own levels higher than 1), the actual execu-
tion times of these jobs can be uniformly determined from
their minimum WCETs to the maximum WCETs.

Unless otherwise specified, the default parameter values in
experiments are: M = 4, N = 25, K = 4, NSU = 0.45,
α = 0.2, IFC = 0.4, and MCP = 0.08. For the results reported
below, each data point represents the average result of 1000
task sets.

2) Empirical Results: The overhead measurement results
(in s) for the schemes are shown in Fig. 8. The overhead
of CA-TPA usually corresponds about 3%–5% of the total
execution time on cores (e.g., 40 s by default), which is a
little lower than that (i.e., 5%) for partitioned EDF-VD on
Core i5 platform [26]. Specifically, CA-TPA has measured
overhead comparable to WFD and outperforms other schemes.
The details of the analysis can be found in the supplementary
material.

VI. CONCLUSION

For periodic MC tasks running on multicores under the
EDF-VD algorithm, we investigated a criticality-cognizant uti-
lization bound for partitioned EDF-VD in conjunction with
the WFD heuristic, and then discussed its characteristics. We
observed that as opposed to exclusively relying on tasks’ max-
imum utilizations, the feasibility conditions for EDF-VD also
depend on tasks’ utilizations at other valid levels. By exploit-
ing the contributions of tasks’ utilizations at various levels on
different cores, we developed a CA-TPA, and proposed several
heuristics to implement task prioritization, minimize the uti-
lization increments on cores and balance system workload. The
experimental results show that compared to the existing map-
ping schemes, the proposed CA-TPA scheme with partitioned
EDF-VD can achieve better schedulability performance with
acceptable time complexity, offer more balanced partitions and
experience lower run-time overhead.

REFERENCES

[1] B. B. Brandenburg and J. H. Anderson, “A comparison of the M-PCP,
D-PCP, and FMLP on LITMUSRT,” in Proc. Principles Distrib. Syst.,
Luxor, Egypt, 2008, pp. 105–124.

[2] S. Baruah et al., “The preemptive uniprocessor scheduling of mixed-
criticality implicit-deadline sporadic task systems,” in Proc. 24th
Euromicro Conf. Real Time Syst., Pisa, Italy, 2012, pp. 145–154.

[3] S. Baruah et al., “Preemptive uniprocessor scheduling of mixed-
criticality sporadic task systems,” J. ACM, vol. 62, no. 2, p. 14,
2015.

[4] S. K. Baruah and A. Burns, “Fixed-priority scheduling of dual-
criticality systems,” in Proc. 21st Int. Conf. Real Time Netw. Syst.,
Sophia Antipolis, France, 2013, pp. 173–181.

[5] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis for
mixed criticality systems,” in Proc. 32nd IEEE Real Time Syst. Symp.,
Vienna, Austria, 2011, pp. 34–43.

[6] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality
scheduling on multiprocessors,” Real Time Syst., vol. 50, no. 1,
pp. 142–177, 2014.

34 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

[7] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with
multiple criticality specifications,” in Proc. 20th Euromicro Conf. Real
Time Syst., 2008, pp. 147–155.

[8] Y. Chen, Q. Li, Z. Li, and H. Xiong, “Efficient schedulability analysis
for mixed-criticality systems under deadline-based scheduling,” Chin. J.
Aeronautics, vol. 27, no. 4, pp. 856–866, 2014.

[9] D. De Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling of
mixed-criticality real-time task sets,” in Proc. 30th IEEE Real Time Syst.
Symp., Washington, DC, USA, 2009, pp. 291–300.

[10] P. Ekberg and W. Yi, “Bounding and shaping the demand of generalized
mixed-criticality sporadic task systems,” Real Time Syst., vol. 50, no. 1,
pp. 48–86, 2014.

[11] P. Ekberg and W. Yi, “Schedulability analysis of a graph-based task
model for mixed-criticality systems,” Real Time Syst., vol. 52, no. 1,
pp. 1–37, 2016.

[12] G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele, and
B. D. de Dinechin, “Mixed-criticality scheduling on cluster-based
manycores with shared communication and storage resources,” Real
Time Syst., vol. 52, no. 4, pp. 399–449, 2016.

[13] G. Gracioli, A. A. Fröhlich, R. Pellizzoni, and S. Fischmeister,
“Implementation and evaluation of global and partitioned scheduling
in a real-time OS,” Real Time Syst., vol. 49, no. 6, pp. 669–714, 2013.

[14] C. Gu, N. Guan, Q. Deng, and W. Yi, “Partitioned mixed-criticality
scheduling on multiprocessor platforms,” in Proc. Design Autom. Test
Europe Conf. Exhibit., Dresden, Germany, 2014, pp. 1–6.

[15] J.-J. Han, X. Tao, D. Zhu, and H. Aydin, “Criticality-aware partitioning
for multicore mixed-criticality systems,” in Proc. 45th Int. Conf. Parallel
Process., Philadelphia, PA, USA, 2016, pp. 227–235.

[16] O. R. Kelly, H. Aydin, and B. Zhao, “On partitioned scheduling of fixed-
priority mixed-criticality task sets,” in Proc. Int. Conf. Trust Security
Privacy Comput. Commun., 2011, Changsha, China, pp. 1051–1059.

[17] A. Kostrzewa, S. Saidi, and R. Ernst, “Dynamic control for mixed-
critical networks-on-chip,” in Proc. 36th IEEE Real Time Syst. Symp.,
San Antonio, TX, USA, 2015, pp. 317–326.

[18] K. Lakshmanan, D. De Niz, R. Rajkumar, and G. Moreno, “Resource
allocation in distributed mixed-criticality cyber-physical systems,” in
Proc. 30th Int. Conf. Distrib. Comput. Syst., Genoa, Italy, 2010,
pp. 169–178.

[19] G. Lipari and G. Buttazzo, “Resource reservation for mixed criticality
systems,” in Proc. Workshop Real Time Syst. Past Present Future, York,
U.K., 2013, pp. 60–74.

[20] J. M. López, J. L. Díaz, and D. F. García, “Utilization bounds for
EDF scheduling on real-time multiprocessor systems,” Real Time Syst.,
vol. 28, no. 1, pp. 39–68, 2004.

[21] M. Neukirchner, P. Axer, T. Michaels, and R. Ernst, “Monitoring of
workload arrival functions for mixed-criticality systems,” in Proc. IEEE
Real Time Syst. Symp., Vancouver, BC, Canada, 2013, pp. 88–96.

[22] J. Ren and L. T. X. Phan, “Mixed-criticality scheduling on multipro-
cessors using task grouping,” in Proc. 27th Euromicro Conf. Real Time
Syst., Lund, Sweden, 2015, pp. 25–34.

[23] P. Rodriguez, L. George, Y. Abdeddaïm, and J. Goossens, “Multi-criteria
evaluation of partitioned EDF-VD for mixed-criticality systems upon
identical processors,” in Proc. Workshop Mixed Criticality Syst., 2013,
pp. 49–54.

[24] E. A. Lester, “Risk-based alternatives to the DO-178C software design
assurance process,” in Proc. Digit. Avionics Syst. Conf., Prague, Czechia,
2015, pp. 8B2-1–8B2-13.

[25] V. Sciandra, P. Courbin, and L. George, “Application of mixed-criticality
scheduling model to intelligent transportation systems architectures,”
ACM SIGBED Rev., vol. 10, no. 2, p. 22, 2013.

[26] L. Sigrist, G. Giannopoulou, P. Huang, A. Gomez, and L. Thiele,
“Mixed-criticality runtime mechanisms and evaluation on multicores,”
in Proc. Real Time Embedded Technol. Appl. Symp., 2015, Seattle, WA,
USA, pp. 194–206.

[27] A. Specification, 651: Design Guidance for Integrated Modular
Avionics, Aeronautical Radio Inc., Annapolis, MD, USA, 1991.

[28] H. Su and D. Zhu, “An elastic mixed-criticality task model and its
scheduling algorithm,” in Proc. Conf. Design Autom. Test Europe,
Grenoble, France, 2013, pp. 147–152.

[29] S. Vestal, “Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance,” in Proc. 28th IEEE Real Time
Syst. Symp., Tucson, AZ, USA, 2007, pp. 239–243.

[30] N. Zhang, C. Xu, J. Li, and M. Peng, “A sufficient response-time analysis
for mixed criticality systems with pessimistic period,” J. Comput. Inf.
Syst., vol. 11, no. 6, pp. 1955–1964, 2015.

Jian-Jun Han (M’07) received the Ph.D. degree
in computer science and engineering from the
Huazhong University of Science and Technology
(HUST), Wuhan, China, in 2005.

He is currently an Associate Professor with
the School of Computer Science and Technology,
HUST. He was with the University of California
at Irvine, Irvine, CA, USA, as a Visiting Scholar
from 2008 to 2009, and with the Seoul National
University, Seoul, South Korea, from 2009 to 2010.
His current research interests include real-time sys-

tems, parallel processing, and green computing.

Xin Tao is currently pursuing the master’s
degree with the School of Computer Science and
Technology, Huazhong University of Science and
Technology, Wuhan, China.

His current research interests include real-time
scheduling algorithm, embedded systems, and oper-
ating systems.

Dakai Zhu (M’04) received the Ph.D. degree in
computer science from the University of Pittsburgh,
Pittsburgh, PA, USA, in 2004.

He is currently an Associate Professor with the
Department of Computer Science, University of
Texas at San Antonio, San Antonio, TX, USA. His
current research interests include real-time systems,
power aware computing, and fault-tolerant systems.

Dr. Zhu was a recipient of the U.S. National
Science Foundation Faculty Early Career
Development Award in 2010.

Hakan Aydin (M’02) received the Ph.D. degree in
computer science from the University of Pittsburgh,
Pittsburgh, PA, USA, in 2001.

He is currently an Associate Professor with the
Department of Computer Science, George Mason
University, Fairfax, VA, USA. His current research
interests include real-time systems, low-power com-
puting, fault tolerance, and real-time operating
systems.

Dr. Aydin served as the Technical Program
Committee Chair of IEEE RTAS in 2011.

Zili Shao (M’06) received the M.S. and Ph.D.
degrees from the Department of Computer Science,
University of Texas at Dallas, Richardson, TX, USA,
in 2003 and 2005, respectively.

He has been an Associate Professor with the
Department of Computing, Hong Kong Polytechnic
University, Hong Kong, since 2010. His current
research interests include embedded systems, real-
time systems, compiler optimization, and hard-
ware/software co-design.

Laurence T. Yang (SM’04) received the Ph.D.
degree in computer science from the University of
Victoria, Victoria, BC, Canada. He is currently a
Professor with the School of Computer Science and
Technology, Huazhong University of Science and
Technology, Wuhan, China, and the Department of
Computer Science, St. Francis Xavier University,
Antigonish, NS, Canada. His current research inter-
ests include parallel and distributed computing, and
embedded and ubiquitous/pervasive computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

