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In this article, we consider clustered wireless sensor networks where the nodes harvest energy from the
environment. We target performance-sensitive applications that have to collectively send their information
to a cluster head by a predefined deadline. The nodes are equipped with Dynamic Modulation Scaling
(DMS)-capable wireless radios. DMS provides a tuning knob, allowing us to trade off communication latency
with energy consumption. We consider two optimization objectives, maximizing total energy reserves and
maximizing the minimum energy level across all nodes. For both objectives, we show that optimal solutions
can be obtained by solving Mixed Integer Linear Programming problems. We also develop several fast
heuristics that are shown to provide approximate solutions experimentally.
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1. INTRODUCTION

Power management in wireless sensor networks (WSNs) is a critical challenge, given
the fact that many of these systems are expected to last for long periods of time, and
replacing batteries after they are depleted is, in many cases, expensive or difficult to do
[Rault et al. 2014]. To address this problem, there is significant interest in using energy
harvesting techniques in WSNs. Using environmental energy harvesting technology to
charge the storage units that power the wireless sensor nodes offers multiple benefits
[Sudevalayam and Kulkarni 2011a]. Energy harvesting reduces or eliminates the need
for a direct connection to the electrical distribution infrastructure or the requirement to
replace the batteries. It is also a sustainable and environmentally friendly approach to
energy production. For nodes installed in harsh and inaccessible environments, energy
harvesting provides long-term system life that reduces the need for maintenance.
Deploying energy harvesting systems requires careful selection of a harvest-
ing source, converter and consumption circuits, and the type of energy storage unit
[Sudevalayam and Kulkarni 2011b]. Heat, vibration, and solar radiation are among the
commonly used harvesting sources. The choice of storage unit depends on the required
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Fig. 1. Wireless energy harvesting nodes equipped with DMS radios communicating with a cluster head.

output voltage, energy density, charge-discharge efficiency, memory effect, and weight.
Typically, energy harvesting solutions need to be integrated within the global energy
management frameworks implemented in actual systems. Approaches to this problem
include cross-layer duty cycling strategies [Glatz et al. 2011] and relay node selection
for data transfer [Medepally and Mehta 2010]. It is nevertheless still an open question
as to whether energy harvesting methods based on predictable but noncontrollable
environmental energy sources can be used to support low-power wireless systems that
demand performance-sensitive network performance. Due to the variability in the
availability of the harvested energy, energy depletion and potential system shutdown
might pose serious problems for safety-critical and industrial systems.

This article considers deadline-driven cluster-based wireless sensor networks whose
energy storage devices are powered by harvesting noncontrollable but predictable en-
ergy sources (such as solar or wind energy). Cluster-based WSNs offer multiple advan-
tages such as increasing scalability, hierarchical routing, and energy saving through
data aggregation and minimizing topology maintenance [Mamalis et al. 2009]. As
shown in Figure 1, a cluster-based system has a coordinator node that directly com-
municates with all of the other nodes under its control [Park et al. 2011]. Each sensor
node transmits its data to the cluster head periodically. The cluster head has to finish
the data collection from all the nodes within a specified deadline. Once it has collected
each node’s data, the cluster head in turn communicates with the base station directly
or through the network to complete data delivery.

In this article, we concentrate on intracluster communication. As a motivating exam-
ple, consider a target tracking application in which all nodes in a site periodically send
their recording to the cluster head. For timely tracking of the target, data delivery in
every period must be guaranteed. Delayed data will be overridden by new contents and
lose their importance. Another example is utility companies and municipalities that
require the constant monitoring of water flow for the purposes of correctly billing cus-
tomers, as well as for quickly detecting water pipe leakages or breaks. In this example,
a WSN could harvest energy from sources such as solar or miniature water dynamos
and provide a continuous pipe monitoring service. The objective is to ensure enough
time and energy for all nodes along a time horizon to be able to complete their data
transmission in a timely manner. This requires an energy-aware time slot assignment
for each epoch in the time horizon given the energy profile of the nodes.
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Our focus in this article is the use of Dynamic Modulation Scaling (DMS) as an energy
management technique to support real-time energy harvesting WSNs [Schurgers et al.
2003]. Similar to Dynamic Voltage Scaling (DVS) techniques that use the processor
voltage and frequency as a control knob [Pillai and Shin 2001], DMS adjusts the radio
modulation levels and constellation sizes, and hence trades off energy expenditure
with communication latency [Schurgers et al. 2003]. In our target application, the
nodes in the cluster communicate with the coordinator using DMS to save energy. By
assigning time slots and modulation levels to individual nodes, the system’s energy and
timing constraints can be simultaneously satisfied. Signal modulation entails encoding
multiple bits on one carrier symbol by varying some properties of the carrier. Changing
the modulation level means that the number of bits represented by each symbol, and
hence the number of symbols, will change. Increasing (decreasing) the modulation level
reduces (increases) the number of symbols that need to be transmitted. An increased
modulation level reduces the amount of time required to transmit, at the expense
of increased energy consumption. We are motivated to use DMS for several reasons.
Since the radio is the dominant energy consumer within wireless sensor nodes, it
is more beneficial to manage this tradeoff compared to other energy management
techniques, such as DVS [Sudha Anil Kumar et al. 2007]. Further, DMS-enabled radios
are supported by embedded wireless standards such as 802.15.4 [Standard 2012].

In our setting, the problem is to determine the time slots and modulation levels that
will be used by individual nodes to meet the time constraints and energy neutrality
[Kansal et al. 2007] requirements given the predicted harvested energy. The cluster
head periodically transmits a beacon packet that assigns time slots and modulation
levels to all of the nodes in the cluster. Each node transmits using its assigned time
slot and modulation level. We consider two different optimization objectives subject
to the aforementioned constraints, namely, maximizing the summation of the node
energy levels and maximizing the minimum energy level across all nodes. The first
objective aims at improving the system’s overall resilience for unexpected extra loads
or imperfect harvesting power predictions. The second objective targets achieving a
more balanced energy level distribution across the entire network to avoid cases where
some nodes’ energy reserves may be depleted in order to increase the overall energy of
the entire cluster.

We show that both problems can be reduced to the instances of Mixed Integer Linear
Programming (MILP) problem. The MILP formulations are optimal in the sense that
they will find a feasible solution that avoids energy depletion while meeting the com-
munication deadlines, if one exists. Simultaneously, they will maximize the objective
under consideration. We also propose and evaluate several fast heuristic algorithms to
reduce the computational complexity at the risk of occasionally failing to find some fea-
sible solutions or generating a suboptimal solution in terms of maximizing the target
metric. In our solution, energy-rich nodes are allowed to increase their communication
speeds, thereby providing the low-energy nodes with large time slack and ability to
slow down without violating the timing constraints. We experimentally evaluate the
tradeoffs between the optimal but computationally intensive MILP solutions and the
simpler heuristic approaches. Our results indicate that the heuristic algorithms that
allow individual nodes to apply different modulation levels offer advantages over those
that do not. While much simpler, a heuristic based on the uniform modulation level as-
signment fails to generate feasible solutions for a significant portion of the parameter
spectrum.

2. RELATED WORK

Our work focuses on real-time cluster-based WSNs under the control of a central
coordinating node. Because of the performance requirements of our targeted application
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class, we use TDMA to schedule packet transmissions. There has been a significant
body of work studying the use of TDMA assignment methods for WSNs. For instance,
the work in Shen et al. [2014] uses a preemptive method to give high-priority traffic
preference over low-priority traffic. Since TDMA mechanisms are commonly used in
industrial standards such as 802.15.4e, Wireless Hart, and ISA 100.11a, many authors
have proposed and analyzed algorithms for slot assignment within these protocols
[Hanzalek and Juréik 2010; Toscano and Bello 2012; Ding and Hong 2013]. The goals
of these papers revolve around issues such as reducing delay, improving throughput,
or maintaining fairness. None of this earlier work considers the potential benefits of
DMS or the implications of energy harvesting.

There has also been some research into the problem of TDMA or TDMA-like WSNs
that use energy harvesting. For instance, Iannello et al. [2012] use Markov modeling
to predict the probability of packet delivery under a number of energy harvesting
conditions. Luo et al. [2013] propose the use of reserving slots for energy harvesting
followed by packet transmission. Michelusi and Zorzi [2013] cast the problem as a
multiaccess game and describe the Symmetric Nash Equilibrium. Michelusi and Zorzi
[2015] essentially extend this approach using utility maximization. This previous work
also does not take into consideration the possibility of energy harvesting.

For many WSN applications, the deployment environment impedes manually replac-
ing the nodes’ batteries and therefore a sustainable energy source must be considered.
This includes both habitat and environmental monitoring [Mainwaring et al. 2002] and
industrial [Gungor and Hancke 2009] applications. Potential environmental sources
of energy include solar, temperature differences, electromagnetic energy, airflow, and
piezoelectric. Gorlatova et al. [2010] review the challenges of solar and piezoelectric
sources and suggest a cross-layer solution for energy saving. The authors also report
the measurements of indoor light as an energy source for indoor WSN applications.
The measurements show a high variability in harvested energy, which emphasizes the
need for an energy management technique to save the unused energy of burst times
for scarce-energy situations. Relying solely on renewable sources introduces design
difficulties including maintaining a minimum service level for the nodes, constant pro-
cessing and communication power, and reliable data delivery. The work presented in
Gubbi et al. [2013] reviews a number of performance constraints of WSNs and the
challenges of meeting those criteria when the node only relies on the ambient energy
sources. Vigorito et al. [2007] address the challenges of preserving energy neutrality,
maximum performance, and minimum service level variation and propose a duty cy-
cling solution to achieve the desirable objective. We consider a more complex cluster
setting where energy saving is collaboratively pursued by all of the nodes in the clus-
ter, as opposed to a single node. The power industry has recently embraced WSN as a
cheap and more reliable substitute of the conventional monitoring devices. Smart grid
management systems are a good example of WSN applications that benefit from Radio
Frequency (RF)-based wireless energy transfer as its energy source [Erol-Kantarci and
Mouftah 2012].

Despite its potential benefits, there has been relatively little attention paid to DMS
for wireless sensor networks. An important and highly cited early work on DMS is
Schurgers et al. [2003]. In order to schedule packets, the authors suggest deploying
DMS in a data link layer accompanied with TDMA. Packets are scheduled using Earli-
est Deadline First and are assigned a static scaling factor based on their maximum size.
This requires sending a control packet to communicate the factor with the receiver. For
a single packet in a time-variant channel, the authors propose a DMS approach based
on sampling the channel quality.

Subsequent DMS research has focused on issues such as choice of modulation scheme.
Cui et al. [2005] derive detailed circuit and transmission energy equations for both
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Multiple Quadrature Amplitude Modulation (M-QAM) and Multiple Frequency Shift
Keying (MFSK) over additive white Gaussian noise (AWGN) channels. Lowering the
transmission speed may also be desirable in nonorthogonal multiple-access schemes
since higher speeds create more interference with other users. Miao et al. [2010] pro-
posed a link adaptation technique for Orthogonal Frequency Division Multiplexing
(OFDM) by assigning bit rates to orthogonal channels, which maximizes the amount
of data sent with a given amount of energy. A similar study in Li et al. [2007] derives
equations for energy consumption for integrated transceiver front ends and analyzes
the effects of occupied signal bandwidth, peak-to-average ratio (PAR), symbol rate,
constellation size, and pulse-shaping filter roll-off factor. Their experiments on the
modulation level confirm the convexity of the energy function, used in this work. DMS
is applied in Zhang and Chanson [2005] as the power management scheme in energy
harvesting time-constrained wireless sensor networks, with the objective of maximiz-
ing data throughput. The model optimizes energy for a single node that transmits to
multiple receivers. The authors confirmed the convex relationship between the energy
consumption and modulation level in Binary Phase-Shift Keying (BPSK).

Our approach is to focus on the common case of multiple collaborative sensors re-
porting to a single base station. In addition, we provide a more general framework of
energy harvesting in which the amount of predicted energy for each node changes over
time. DMS is applied at intercluster and intracluster levels of communication using
collaborative communication in Zhou et al. [2008]. Their numerical results show the
advantage of applying DMS. Their model does not include energy harvesting or battery
size limitation.

The work in Zhang et al. [2013] uses both DMS and DVS and targets WSNs arranged
in tree topologies. This approach aims to maximize system resilience to network-wide
workload bursts. Our current work focuses on cluster networks, topologies more suited
to industrial control systems. Further, our work guarantees energy neutrality when
possible.

The research presented in Fateh and Govindarasu [2015] addresses precedence, in-
terference, and timing constraints to minimize joint communication and computation
energy. The authors propose a heuristic method that converts the problem into a graph
model and assigns slots with maximum parallelism in order to achieve the maximum
static slack. Fateh and Govindarasu [2013] study dynamic slack reclamation in appli-
cations that discard redundant data by simply sending the header. Nodes probe the
channel after the transmission time of the header of their predecessors in the schedule.
If the channel was found free, they apply DMS to reclaim the dynamic slack due to
redundancy.

Compared to Fateh and Govindarasu [2013, 2015], our model avoids interference by
scheduling node transmissions using TDMA. Our target application has a star topology
where all nodes talk directly to the cluster head and they share a collective deadline.
The choice of underlying structure, a.k.a. topology, protocol, and our scheduling algo-
rithm, leads to a collaborative system life improvement. In addition, energy harvesting
adds a whole new dimension because the energy neutrality condition must be satisfied.
To the best of our knowledge, this is the first work that facilitates boosting the energy
reserves of one node by using excessive energy reserves of its neighbors in the network
by transmission rate adjustment.

The most current, widely available type of DMS-capable radios are used in wire-
less military communication systems. These systems generally use Software Definable
Radio (SDR) stacks to control basic radio properties. The SDR changes the modu-
lation type in software. For example, Thales Line-of-Sight (RFE 4145) and Satellite
(Modem 21) systems use a scheme called Adaptive Coding Modulation (ACM), which
changes modulation speeds (along with other parameters) in response to changing
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conditions [Thales 2015]. This modem uses combinations of modulation schemes and
code rates for 12 different levels. Similarly, the smart meter industry started to adapt
DMS-capable systems. For instance, Sensus uses the iCon family of products, which
supports seven different modulation levels [Sensus 2009].

It is expected that the DMS capability will be available in radios used in low-power
WSNs in the near future. In fact, some existing sensor nodes already offer multiple
modulation schemes (but not full DMS capability within a given modulation scheme).
For instance, CC1100 [2014] uses 2-FSK, MSK, OOK, and ASK, while CC2500 [2014]
uses 2-FSK, 2-GFSK, MSK, and OOK schemes.

3. SYSTEM MODEL

In our system model, each sensor node consists of an energy harvesting element such
as a solar panel or a wind turbine, an energy storage unit such as a rechargeable
battery or super capacitor, a CPU, and a DMS-capable radio. Nodes communicate
directly with a gateway or cluster head, which serves as the system coordinator. The
gateway will often, but not always, be connected to a back-end network. Compared to
the nodes, the gateway has ample computational capabilities and is powered either
by easily replaceable batteries or a main power supply. Each node periodically senses
its environment and after a processing step sends these readings in the form of data
packets to the gateway over wireless channel. We assume the requirement for real-
time communication between the gateway and each node, which is specified by a fixed
deadline. To ensure real-time performance and to avoid channel contention, the cluster
uses frame-based transmission scheduling techniques such as Time Division Multiple
Access (TDMA) or Guaranteed Time Slot (GTS) assignments during the contention-free
period of the ZigBee/802.15.4 super-frame [Park et al. 2011].

The clustered topology and the presence of the computationally powerful gateway en-
able a coordinated set of DMS node-level settings that guarantee, when possible, both
real-time communication and energy neutrality constraints. The energy neutrality con-
dition [Kansal et al. 2007] requires that each node is able to sustain itself by harvesting
energy and regulating its energy consumption according to the initial energy reserves
as well as predicted harvesting profiles. Time is divided into a set of energy harvesting
epochs. For concreteness and without loss of generality, we consider harvesting solar
power and consider a 24-hour scheduling horizon. An epoch is a time window during
which the rate of harvested energy is approximated to be constant. For example, in
a period of 24 hours, 48 epochs of length 30 minutes exist. Using techniques such as
those discussed in Bartolini et al. [2012], the gateway possesses a function or table
that predicts for each epoch the amount of energy that will be harvested by the nodes
in the cluster. The gateway uses its knowledge of the currently available stored energy
and the predicted amount of the newly harvested energy to assign modulation levels
at each node for the entire epoch. The solution must make sure that all deadlines are
met and the energy neutrality condition is satisfied, whenever possible.

We assume that the WSN has been properly dimensioned and under typical operating
conditions the link is not overloaded (e.g., the utilization never approaches 100%). This
is the common assumption in most research that focuses on link layer WSN issues
[Tannello et al. 2012; Luo et al. 2013; Michelusi and Zorzi 2013, 2015]. We assume
the existence of slack time in the schedule with the maximum modulation level. Our
suggested framework enables collaboration between energy-rich and energy-poor nodes
to increase the energy savings.

The gateway is responsible for running the algorithms and then informing each
node about its modulation level for the duration of the epoch. As shown in Figure 2,
each epoch consists of a repeating set of super-frames, each of length D. The super-
frame itself is divided into a set of variable-length transmission slots assigned to
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Fig. 2. Transmission slots in super-frames of length D in consecutive epochs.

different nodes. x/ represents the transmit time the scheduler assigns to node i in

each super-frame during epoch j, which is adjustable through DMS. The transmission
time for a node is identical for different super-frames within an epoch but may vary
for different epochs. Hence, with y super-frames within each epoch, node i receives a
total of #/ = x/ - y transmission time during epoch j. Although not shown in the figure,
in practice each super-frame could also include space for a gateway-generated beacon
used for management purposes.

The energy consumption of a node during an epoch is the sum of sensing, processing,
and radio transmission energy figures. Following the common assumption in WSN
research (e.g., Restuccia and Das [2016], Varshney et al. [2015], Xie et al. [2013],
Zhang et al. [2015], and Li et al. [2013]), we assume sensing and processing energy
components are constant and negligible compared to radio (communication) power.
Hence, in the rest of this article, we focus on radio power.

Energy consumption due to the radio usage has two components: electronic circuitry
power and transmit (receive) power [Schurgers et al. 2003]. Electronic circuitry power
consumption P, is due to activities such as filtering, modulation, and up-converting. It
is linearly proportional to the symbol rate R; and can be expressed as:

Pe:Ce'RSa

where C, is a radio-specific constant. The transmit power P; is a function of the number
of bits per symbol b, also referred to as the modulation level [Schurgers et al. 2003;
Fateh and Govindarasu 2015], and is given by

For DMS, the modulation level is taken from a set of size B,
{bl,bg,...,bB}, Wherebi < bi+1,i = 1,...,B— 1.

The function ¢(b) depends on the modulation scheme. For example, for QAM, ¢(b) =
20 — 1 [Schurgers et al. 2003]. The coefficient C; is constant with respect to the modu-
lation level and depends on the receiver implementation, operating temperature, dis-
tance, and propagation environment. The time required to send 1 bit is calculated as

1
R, b
Assuming QAM and combining the previous expressions for electronic circuitry

power, transmit power, and transmit time, the energy to send 1 bit can be derived
as [Schurgers et al. 2003]

Thit(b) = (1)

Cs'(2b_1)+Ce
b .

We observe that the energy consumption is independent of the symbol rate, and de-
creasing the modulation level reduces energy consumption substantially, at the expense
of longer transmission times. This observation demonstrates the potential importance
of DMS.

Epit(b) = (Ps + Pe) - Trir(b) = (2)
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It is important to note that the potential of DMS in terms of energy savings is a
function of the ratio & - Specifically, by defining & = C , we can rewrite the expression
for the energy needed to transmit a bit as

k-C,- 26 1 C,
Epie(b) = % v

The first component in the previous equation represents the dynamic communication
b .
energy, E;, = P - Ty = w, while the second component represents the energy

consumed by the electronic circuitry, E, = P, - Tp;; = %. We illustrate the impact of %
by an example. In Figure 3, on the left, the energy per bit Ej;() is shown as a function
of k = C , for the lowest and highest modulation levels b; and bg, when we keep C,

constant. On the right subfigure of Figure 3, we show the ratio of g””((ll’,’*)) As can be seen

in the figures, increasing % results in greater energy-savings potential by adjusting the
modulation level.

There is an effective modulation level below which DMS is no longer beneficial, as
shown in Schurgers et al. [2003]. Its value can analytically be determined by setting the
first derivative of the radio energy to zero. Similarly, as Cui et al. [2005] indicates, the
bit error rate tends to increase with decreasing modulation levels. Using the analytic
formulae (as those proposed in Cui et al. [2005]), it is possible to compute the mini-
mum modulation level that is acceptable to support a given, acceptable bit error rate.
Consequently, we are assuming that the minimum modulation level b; is determined
by considering the maximum value among the effective modulation level, the lowest
level that still supports the target bit error rate, and the lowest level supported by the
modulation scheme.

M packets each of length p bits are sent by each node in every super-frame. Each
node is assigned a fixed modulation level in a given epoch, but the assignment may
vary from epoch to epoch and from node to node. Since there are y super-frames within

each epoch, during the j* epoch, for the i** node with modulation level of b{ , the total
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communication time tij and energy consumption elj are given by
t = (- M-p)- Tpu(®))

and
e/ =(y M- p)- Ey(®)),

respectively. Our algorithms assume that if all the nodes use the maximum modulation
levels, in the absence of the energy constraints, it is possible to meet the deadline in
each super-frame; that is,

M- p
: D.
R bp

No solution can exist if that condition is not satisfied.

Due to the short duration of an epoch (e.g., 15 to 30 minutes), we assume that the har-
vesting power is constant in an epoch [Moser et al. 2008]. There are several techniques
for forecasting how much energy will be harvested during the epoch from uncontrol-
lable but predictable environmental sources, including using an autoregressive filter
[Kansal et al. 2007], a round-based approach [Kinoshita et al. 2008], or an exponentially
weighted moving average method [Kansal and Srivastava 2003]. In order to consider
environmental temporary conditions, Noh et al. [2009] introduce a short-term factor
as the ratio of observed and predicted energy in the last epoch. This, combined with a
degrading weight factor, is applied to the predicted model to improve the accuracy. Our
approach is independent of the prediction technique but assumes its availability.

P/ denotes the harvested power prediction during epoch j, for node i. The process
of energy conversion from the energy harvesting panel to electrical energy consum-
able by the node components is subject to several harvesting, conversion, storing, and
consumption inefficiencies. We assume that these factors are already analyzed and
factored in the reported value of P/. Therefore, the harvested energy of node i in epoch

J is obtained as c- Pij , where c is the duration of a single epoch. On node i, the harvested
energy is stored in the energy storage unit with capacity <J;. The energy level at the
beginning of the first epoch and the target energy at the end of the operation period

(with T epochs) are denoted by Ei0 and ElT @8 respectively. The energy level of node i
at the end of epoch j is denoted by L.

n

4. OPTIMIZATION PROBLEMS

We now formulate the problem we are addressing. Assume there are Y consecutive
epochs for which we have available energy predictions. Given a set of n wireless energy
harvesting nodes, each equipped with DMS-capable radios and operating in an envi-
ronment with a known energy harvesting profile, we aim to determine the modulation
level for each node in every epoch, so as to satisfy our objective, while guaranteeing
the deadline in every communication super-frame and ensuring the energy neutrality
throughout the operation. We considered two objective functions for our clustered sensor
network settings as discussed in the following subsections.

4.1. Objective 1: Maximizing Total Remaining Energy
The first objective is to maximize the sum of energy levels at the end of the Y epochs.
Specifically, the optimization problem can be formulated as

Maximize Z L' 3
i=1
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n

Subject to >« <D, Vji:l<j=<Y (4
=1
0<L <d, Viij:1<i<n 1<j<7T-1 (5
EI8 < LY < J; Vi:l<i<n (6

The objective is to maximize the sum of remaining energy levels across all nodes at
the end of the Y epoch, """ ; LY, as specified in Equation (3). The real-time communica-
tion performance requirement is encoded in the constraint set in Equation (4): all nodes
should complete their transmission within time D, the length of the super-frame. The
choice of the objective function is to increase the system’s resilience against temporary
changes in energy resources and potential prediction inaccuracies.

In addition, it is necessary to avoid both battery overflow and underflow conditions,
as well as guarantee energy neutrality (constraint sets in Equations (5) and (6)). Pre-
vention of the battery underflow condition ensures the battery level never drops to
zero. By preventing the battery overflow, we make sure that the battery level at the
end of each super-frame does not exceed the node’s storage capacity. Finally, the energy

neutrality constraint will ensure that the energy level at the end of the last epoch

should not be less than a given target level ElT 8¢l For a single node, a natural choice

is ELT 8¢ > EY which makes sure that the system is able to sustain itself by relying on
the harvested power only [Kansal et al. 2007].

Given that the modulation level for a given node i is only one of the B distinct values,
we can use a binary indicator variable o}, to specify whether the /* modulation level
was selected for node i in epoch j or not. In fact, after a series of additional algebraic
manipulations, it is possible to re-encode the problem as an instance of a Mixed Integer
Linear Programming Problem. The solution to this problem is denoted as Opt1 in the
rest of this article. The full steps of the derivation can be found in the appendix.

4.1.1. Heuristic Algorithms. The Mixed Integer Linear Programming is known to be NP-
hard; however, problem instances of moderate size can be solved by existing optimiza-
tion packages. Nonetheless, it is very desirable to develop schemes that run fast and
yield good performance while satisfying all the constraints. For this purpose, we devel-
oped and evaluated two fast algorithms, which are described next.

Uniform Modulation Level Assignment

A basic heuristic is to assign equal modulation levels (transmission times) for all
nodes and epochs. This uniform assignment is not fully energy aware since it does
not discriminate between energy-poor and energy-rich nodes. Consequently, the slot
assignment is the same for all epochs. Because the energy consumption is an increasing
function of the modulation level, the problem reduces to finding the smallest modulation
level that meets the deadline in a super-frame:

M- p
R, - by

b* = min {bk|n- < D}.

The term n - % in the previous equation is the total time that it takes for all nodes
in the cluster to complete their transmission with the uniform modulation level &,. We
are interested in the smallest value of by, called b*, that meets the deadline constraint
since further increasing the modulation level only increases the energy consumption,
which is clearly against the nature of the objective function. The minimum time-feasible
uniform modulation level is also energy feasible if and only if it also meets the energy
constraints. Otherwise, no larger value of modulation level will meet those constraints.
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ALGORITHM 1: Uniform Modulation Level Assignment
r=1
: while (n- M - p) - Tyi;(b,) > D do
r=r+1
celb) =(y-M-p)- Eyp(by)
fori=1:ndo

for j=1:7 do

L! = min{J;, L{_l +c- P/ —e(b)}

:fori=1:ndo
forj=1:T—-1do
10: if L] < 0 then
11: return (r, Infeasible)
12: fori =1:ndo
13:  if LY < E"“* then
14: return (r, Infeasible)
15: return (r, Feasible)

SIS I

©

Smaller modulation levels (b < b*) will not meet the time constraints. Evaluating b*
may involve scanning through all choices of modulation levels in the worst case. For a
candidate b value, the scheme (whose pseudo-code is provided in Algorithm 1) computes
the energy levels at the end of all the epochs for all nodes (the L/ values) and checks the
energy neutrality conditions. Note that in Line 7, the remaining energy for each node

(L{ )is updated by taking into account the battery capacity (</;), the remaining energy at

the end of the previous epoch (L] ) , the total harvested energy (c- P/), and the energy
consumed during the epoch ((e(d,)). The overall time complexity is linear in the number
of nodes and the length of the operation period, specifically, O(B+n- 7). The maximum
number of modulation levels in a modulation scheme (B) is a small constant (e.g., B=5
in QAM), which yields a simplified complexity figure of O(n- Y). The algorithm returns
the index of the common modulation level and an indicator showing if the solution was
energy feasible or not.

Greedy Modulation Level Assignment

One major drawback of Uniform is that some nodes are prevented from further lowering
their modulation levels (i.e., they do not exploit the maximum transmission slack that
can be used by DMS). In fact, there may be problem instances where the energy
feasibility cannot be satisfied by assigning a uniform modulation level, while reducing
the levels of individual nodes may lead to a feasible solution.

Our Greedy scheme (Algorithm 2) takes the output of the Uniform heuristic as the
base case. Specifically, the lowest uniform modulation level b, that meets the deadline
constraint is taken as the initial assignment for all the nodes. Then the algorithm
iterates over all the epochs and all the nodes and attempts to reduce the modulation
levels of selected nodes by exactly one level (i.e., their modulation levels are set to b,_1).
In each iteration, and for every epoch, the algorithm tentatively selects the nodes with
the minimum amount of remaining energy for the purpose of slowdown. Decreasing
the modulation level of a node within one epoch only by one level gives other nodes
a chance to reduce their transmission speed as well. This is further justified by the
convexity of the energy consumption function and the objective of saving energy as
much as possible. After such adjustments, the target energy constraint and feasibility
conditions are rechecked.

Note that the algorithm allows each node to scale down its modulation level by only
one level in each epoch, below the level suggested by Uniform. This helps to reduce the
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ALGORITHM 2: Greedy Modulation Level Assignment

1: Set r = Uniform()

2: Setb! =b,Vi,j:1<i<nl<j<7Y

3: if r == 1 then

4:  if Uniform returned Infeasible then
return (Infeasible)

else ,
return({6/DVi,j: 1<i<n 1<j<7Y

8: /*r > 1 and Greedy starts iterations */

9: tb) =y -M-p-Tpu(b)

10: t(b,—1) =y - M- p - Tp;t(b,—1)

11: for j=1: 7Y do

12: fori=1:ndo . i

13: L =min{J;, Ll " +¢- P/ — ¢/}

14:  Sort all L values for all the nodes in the j** epoch

15:  Slack=D-y -y "t

16: Q={1,....n}

17:  while Q # ¢ and Slack > (t(b,_1) — t(b,)) do

18: Slack = Slack — (t(b,_1) — t(b,))

19: index = node index with minimum L/ value in
20: b gex = br_1

. ) - . .
21: L{ndex = m'ln{Ji’ L{rwlex tc- R‘;dex - ezjndex}

22: Q = Q — {index}

23: fori=1:ndo

24: if L/ < 0 then

25: return (Infeasible)

26: fori =1:ndo

27:  if LY < E'“*" then

28: return (Infeasible)

29: return({6/DVi,j: 1<i<n1<j<7T

complexity; moreover, it is based on the observation that if the nodes were allowed to
scale down their modulation levels further by consuming a larger portion of the slack
time, that would be less effective than allocating the slack to other nodes in the same
epoch. In other words, Greedy attempts to allocate the slack time more evenly among
the nodes resulting in more collective energy saving, since the objective is to minimize
the total remaining energy.

The while loop in line 17 of Algorithm 2 selects one node to reduce transmission
speed in every iteration, and the existing slack is reduced accordingly after such a
selection. The iterations terminate when either all node modulation levels are already
scaled (breaking the condition @ # ¥) by one level or the slack is reduced to a level that
does not allow further scaling down (breaking the condition Slack > (¢(b,_1) — ¢(b,.))).
Consequently, the while loop terminates after at most n iterations. Since the rest of
the algorithm has a predetermined number of operations (due to the for loops), the
algorithm is guaranteed to terminate.

The algorithm invokes Uniform at the beginning. Moreover, it requires sorting the
remaining energy levels at the end of each epoch. Each sort takes O(nlog(n)) time,
and there are T total epochs. At most n — 1 nodes will require changing modulation
levels, the complexity of which is outweighed by the sorting complexity. As a result, the
algorithm has an overall time complexity of O(Y -n-log(n)+ B). For a given modulation
scheme, B is a small constant and the complexity can be simplified as O(Y - n - log(n)).
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4.2, Objective 2: Maximizing Minimum Remaining Energy

The second objective we studied is to maximize the minimum remaining energy across
the cluster, at the end of the operation period, that is, after Y epochs. This objective may
be more suitable than maximizing the total energy for settings where it is important to
have a more balanced remaining energy distribution across all the nodes. It will also
help to prepare the cluster to be more resilient against harvesting power prediction
imprecisions in future epochs. Formally, the problem is formulated as
Maximize min L;". (7)
1<i<n
The performance (Equation (4)), minimum remaining energy (Equation (5)), and target
energy (Equation (6)) constraints remain as described earlier. Although the Max-Min
objective is not immediately linear in terms of the unknown variables, a transformation
helps us to obtain another instance of the mixed integer linear programming problem.
Specifically, we introduce an auxiliary variable o and change the objective function
to maximize o:

Maximize o. (8)

The auxiliary variable represents the minimum of our main variables (L") at the end of
the final epoch, Y. We add extra constraints to the formulation to enforce this property:

o<Lf Vi: 1<i<n. 9)

It is easy to see that by maximizing o, we are maximizing the minimum of the
remaining energy levels. Consequently, the new problem is equivalent to

Maximize o
n

Subject to injSD, Vitl=j=T7
i=1
0<L<d, Vi,jil<i<nmn 1l<j<T-1
Ef“’gethfgeji, Vi:1l<i<n
o<Lf Vi:1<i<n.

By introducing the binary indicator variables as done for Objective 1, we can obtain
another instance of an MILP problem. The optimal solution to this problem, denoted
by Opt2, can be obtained by resorting to the optimization tools such as Cplex, Gurobi,
Lingo, and AMPL, for moderate-size instances.

4.2.1. Heuristic Algorithms. We looked for fast heuristic algorithms for Objective 2 as
well. Uniform is equally applicable for the objective of maximizing the minimum
remaining energy with its simplicity and low complexity. However, our experiments
showed that Greedy’s performance is subpar for this objective. We designed a new
algorithm, Aggressive, to find a fast approximate solution for our second objective. Ag-
gressive is designed specifically for maximizing the minimum remaining energy at the
end of the last epoch by allowing the energy-poor nodes to apply DMS multiple times
as described in the following.

Aggressive Modulation Level Assignment

Greedy, which was proposed for Objective 1, has two characteristics: the maximum
modulation level is the one calculated by Uniform, and each node can only be chosen
once in each epoch for scaling down the modulation level. Our new heuristic Aggressive
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ALGORITHM 3: Aggressive Modulation Level Assignment

1: Setd! =bpVi,j:1<i<nl<j<TY
2: [* Aggressive starts iterations */
3: t(bp) = y-M-p- Tyi:(bg)
4: for j=1:7 do
: fori=1:ndo

5 . . .
6: L{:min{cfi,Lfl—i-c-I)iJ—e{}

7. Sort all L] values for all the nodes in the j* epoch
8 Slack=D-y -t

9

o Q=1{1,...,n}
10:  while @ # ¥ and Slack > 0 do _
11: index = node index with minimum L/ valuein @
12: by, = modulation level of the node with minimum L/ value in @
13: if Slack + t(b;) — t(bp—1) > 0 then
14: Slack = Slack + t(by) — t(by_1)
15: b ex = bh1 _ _ _
16: LtJndex = min{'Ji’ L{n:iix +c- PLJndex - eLJndex}
17: if b} ;.. == b1 then
18: Q@ = Q — {index}
19: else
20: Q = Q — {index}

21: fori=1:ndo

22: if L/ < 0 then

23: return (Infeasible)

24: fori =1:ndo

25:  if LY < E'“*" then

26: return (Infeasible)

27: return ({6/DVi, j: 1<i<n1<j<7

is designed to remove those constraints, since the objective is no more maximizing the
total energy, but rather maximizing minimum energy.

The Aggressive scheme (Algorithm 3) chooses its baseline as the upper bound of the
modulation level. In other words, it allocates the nodes with the maximum communi-
cation speed first, hence the name Aggressive. In each epoch, the algorithm iteratively
looks for the node with the minimum remaining battery level before scaling down the
modulation level for that node (line 11). The modulation level of a given node may be re-
duced multiple times in an epoch, as long as it remains as the node with the minimum
remaining energy through the iterations. If the node hits the minimum modulation
level limitation or the remaining slack is not enough for it to slow down by one modu-
lation level, it is removed from the queue @ that keeps the nodes eligible for scaling in
that epoch (lines 14 and 19). One advantage of this approach is that the energy-poor
nodes are given more opportunities for reducing their modulation levels. At the end of
each epoch, the algorithm checks for the minimum battery level constraint and reports
infeasible if the constraint is not met (lines 22, 23). The final epoch has an extra step
of checking the energy neutrality constraint (lines 25, 26).

The loops in Algorithm 3 have a fixed number of operations, except for the while
loop in Line 10, which allows for at most n - B rounds of scaling. This is because
there are initially n nodes in the queue. If scaling a candidate node is not feasible, it
is immediately removed from the queue (Line 20). Nodes are also removed from the
queue when they are assigned the minimum modulation level (Line 18). Otherwise, the
node’s transmission speed is scaled down by one level and the slack time gets updated
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(Line 14). Therefore, in each round of the while loop, a node is either removed from the
queue or scaled down. Nodes’ modulation levels at most B times and there are n nodes.
Therefore, the while loop terminates after at most B - n iterations.

The algorithm can be implemented using a priority queue. Each iteration of Ag-
gressive includes an initial sort of the remaining battery levels assuming the baseline
modulation level with the complexity of O(nlog(n)). Each node can be extracted and
put back to the queue of eligible nodes for that epoch at most B times. The operations of
extracting the minimum and inserting take O(log(n)) time. Adding up the previous op-
erations, the complexity of an iteration will be O(nlog(n)+ B-n-log(n)) = O(B-n-log(n)).
There are a total of Y epochs and therefore iterations, resulting in an overall complex-
ity of O(Y - B - n - log(n)). Since B is a small constant, the complexity of Aggressive can
be simplified as O(Y - n - log(n)).

5. EXPERIMENTAL EVALUATION

In order to evaluate the performance of the different algorithms for our optimization
objectives under a wide variety of parameters, we implemented a discrete-event sim-
ulator in Matlab. We also used the IBM Cplex C++ library to solve the mixed integer
programming problem instances optimally.

For DMS, we assumed Quadrature Amplitude Modulation (QAM) and adopted the
radio parameters from Schurgers et al. [2003] by assigning C; = 12:107°,C, = 15-1079,
and the symbol rate of R; = 62,500Hz. Nodes communicate via packets of size p = 128
bytes. Each node transmits two packets within a single super-frame. Unless otherwise
stated, the super-frame length/deadline is set to D = 47.5ms. There are five available
modulation levels, selected from the set {2, 4, 6, 8, 10}.

The cluster is assumed to have n = 8 nodes, organized in a star topology. For energy
harvesting, we used the solar profile trace measurements from Renner et al. [2009].
The measurement was obtained by sampling solar radiation at intervals of 30 seconds
during a 2-month period in Hamburg, Germany. The daily energy profile is divided into
Y = 48 epochs; hence, the length of each epoch is ¢ = 30 minutes. The default number
of super-frames per epoch is y = 20,000. In a cluster with nodes distributed across
an area, nodes may not have completely homogeneous solar energy collection profiles;
for example, some of them may be subject to temporary blockage (due to clouds or
moving objects). Hence, the daily solar radiation patterns observed by different nodes
are derived also from the data available in Renner et al. [2009]. A sample daily energy
harvesting profile for eight nodes is illustrated in Figure 4. Energy values in the plot
are normalized with respect to the maximum energy harvested by a single node in the
entire network during any epoch.

Following Jiang et al. [2005], we chose a super-capacitor of size /; = J = 500 Joules
for all nodes. Unless stated otherwise, the maximum node-level initial energy in our
experiments is set to half of the battery capacity, that is, % The actual initial energy

level of each node, E?, is a uniformly chosen random value between % and % Hence, the
initial energy level of the nodes varies by a factor up to 50%. In all our experiments, we

set the target energy ELT @8t — 4 > E9, thereby enforcing the energy neutrality for all
nodes. The energy values reported in the plots are normalized with respect to the maxi-
mum storage capacity. Each reported data value represents the average of 35 runs. For
cases when a scheme fails to generate a feasible solution (i.e., violating either the dead-

line or the energy neutrality condition), no energy value is reported for that data point.

5.1. Evaluation of the Schemes That Maximize Total Remaining Energy

We first evaluate the performance of the algorithms that are proposed for maximizing
the total remaining energy at the end of last epoch while satisfying the deadline and
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energy neutrality conditions. Specifically, we compare the performance of our heuristics
Greedy and Uniform to that of the optimal but computationally expensive scheme
Optl1. The reported energy values are normalized with respect to the collective battery
capacity of the cluster (i.e.,n-J; =n-J).

The impact of the super-frame size: We first analyze the impact of the super-frame
size (deadline) on the performance. Figure 5 shows the normalized energy levels for
different algorithms. In general, larger super-frame sizes produce higher levels of re-
maining energy. This is because large super-frame sizes imply larger deadlines, which
enable the system to use slower transmission speeds for individual nodes using DMS,
leading to more energy savings. Notice that Uniform and Greedy are not able to find
a feasible solution for deadlines smaller than 45ms and 42.5ms, respectively. Above
those thresholds, Greedy performs close to the optimal solution Opt1, while the simpler
Uniform achieved energy values within 13% of the other two in the worst case. We also
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observe the increasing gap between Uniform and the other two schemes as we increase
the deadline. In fact, the performance of Uniform remains constant in this experiment
since the extra slack provided by increasing the deadline is not large enough to allow
all the nodes to scale down their modulations collectively by one level. While Opt1 and
Greedy take advantage of extra slack to apply DMS on individual nodes, this is not
possible for the simple Uniform modulation assignment algorithm.

The impact of the initial battery level: Our next experiment was designed to study the
impact of the initial battery level on the remaining energy for two different values of
deadline (Figure 6). We changed the maximum initial energy of the batteries from 10%
to 100% of the battery capacity ;. As we increase the maximum initial energy level,
the total remaining energy also increases. However, the gains diminish with further
increase in the initial energy levels. This is because the extra energy obtained by
harvesting cannot be stored when the initial energy is already high, and the harvested
energy is more than the energy consumed during the day. At the same time, the closing
epochs of the period (the evening times) do not bring significant solar radiation (see
Figure 4). The nodes rely on the energy stored in their batteries during those epochs.
Consequently, the total remaining energy is restricted by the battery size and the
number of “dark” epochs toward the end of the day. For D = 43ms in Figure 6(a),
Uniform and Greedy produce the same result since the tight deadline does not allow
Greedy to reduce the modulation levels on individual nodes. But for larger deadlines,
(e.g., when D = 47 5ms in Figure 6(b)), Greedy is able to exploit the additional slack for
individual nodes and yield more energy.

The impact of the harvesting power: We studied the impact of the available harvesting
panel power in the next set of experiments. Specifically, we scaled the amplitude of
the harvested power with a factor in the range [0.6, 1.1] and repeated the experiments
(Figure 7). We observe that the performance of Opt¢1 changes almost linearly with the
scaling factor. Uniform and Greedy fail to find a feasible solution below the scaling
factors of 0.85 and 0.7, respectively. It is worthwhile to note that due to the relatively
small magnitude of the harvesting power figures (compared to the battery capacity),
the changes in the total remaining energy are rather small even when we scale up and
down the harvesting power figures.

The impact of the battery size: In this experiment (Figure 8), we scaled the maximum
battery capacity to investigate the impact of the battery size. Specifically, oJ; is scaled
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by a constant factor k2, where 0.6 < & < 1.5. In these experiments, with the battery
capacity, we also change the values of the initial energy and the target energy so that
their relationships with the battery capacity still hold. As the capacity of the battery
increases, the initial energy of the nodes increases, and this has a positive impact on
the total remaining energy since the consumed and harvested energy figures do not
change. The apparent small difference between the schemes is due to the rather large
range of the total normalized energy, as represented on the vertical axis of Figure 8.

The impact of the number of super-frames per epoch: The last experiment studies the
effect of the number of super-frames per epoch, y. As we increase y, the total energy
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consumption due to the communication also increases, decreasing the remaining
total energy as shown in Figure 9. An interesting observation is the super-linearly
decreasing nature of the remaining energy, with increasing y. This is because, when
we increase the number of super-frames per epoch, the modulation levels previously
calculated for the base case become suboptimal, and many nodes need to reduce their
modulation levels to guarantee the deadline and/or energy neutrality. Because of the
convex relationship between the modulation levels and energy consumption, a steep
decrease in total energy is observed. Note that Uniform and Greedy fail to find a
feasible solution when y > 20,500 and y > 22,000, respectively.

5.2. Evaluation of the Schemes That Maximize the Minimum Remaining
Energy Across the Nodes

Our next set of experiments study the performance of the algorithms suggested for
the objective of maximizing the minimum remaining energy across the entire cluster.
Specifically, we compare the performance of Uniform and Aggressive algorithms to
that of the optimal (but computationally expensive) scheme Opt2. In this section, the
minimum energy observed on any node at the end of the last epoch is normalized with
respect to the node-level battery capacity, /; = /.

The impact of the super-frame size: Figure 10 shows the impact of increasing deadline
on the performance of the algorithms. Again, the larger the super-frame is, the more
opportunities there are to use DMS, and the remaining energy for all nodes (hence,
also the minimum one) increases. Aggressive exhibits a lower performance compared to
Opt2, but their performance difference declines with increasing super-frame size (from
30% to 8%).

A comparison between the results of this experiment and the equivalent experiment
with the first objective (Figure 5) shows that the gap between the optimal algorithm
and heuristics is greater for the objective of maximizing the minimum energy across
all the nodes (Objective 2). This follows from the nature of the second objective in
which a slightly lower single final energy level in a heuristic has a disproportion-
ate impact—while such a decrease may be compensated by the increase in other
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nodes’ energy levels when the objective is to maximize the total remaining energy
(Objective 1).

The impact of the initial battery level: Our next experiment shows the impact of the
maximum initial battery level on the performance of the algorithms for two different
deadlines (Figure 11). As expected, with larger deadlines, we get larger slack and
better modulation scaling opportunities and this improves the performance. When the
deadline is tight (Figure 11(a)), Aggressive is not able to find many opportunities to
apply DMS and so performs close to Uniform, while it performs closer to the optimal
algorithm Opt¢2 when more slack time is provided (Figure 11(b)). Aggressive approaches
Opt2 as we increase the initial battery level in both cases.

Comparing the results in Figure 11 to those that depicted the relationship of the
deadline to the total remaining energy (Figure 6), we observe that Aggressive is able to
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outperform Uniform for both deadlines. Moreover, Uniform lags behind further when
the deadline is larger, as it cannot apply different modulation levels to different nodes.

The impact of the harvesting power: Figure 12 shows the impact of the amount of har-
vesting power on the minimum remaining energy. As the harvesting power increases,
the nodes can save more energy, therefore increasing the minimum remaining energy.
Notice that Aggressive offers a better performance than Uniform; in fact, the latter is
not able to yield feasible solutions for the harvesting power scaling factors less than
0.75.

The impact of the battery size: Minimum remaining energy increases almost linearly
with the increasing battery capacity as shown in Figure 13. As the size of the battery
is increased, more energy buffer becomes available for the nodes to prevent overflow
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Fig. 14. Effect of the number of super-frames per epoch.

Table |. Runtime Comparison of Different Algorithms (Seconds)

Optl Opt2 Uniform | Greedy | Aggressive
1285.496 | 1388.4932 | 0.0018 0.0628 0.0707

of the excess harvested energy, and more feasible solutions with better performance
values are obtained. This is particularly beneficial when more storage capacity is added
to small batteries (low-capacity numbers). As the harvesting power is constant, the
marginal return of such increases tends to diminish as we further increase the battery
capacity.

The impact of the number of super-frames per epoch: Figure 14 shows the impact of
increasing the cluster’s workload in terms of the number of super-frames in an epoch.
Similar to the results presented for Objective 1 (in Figure 9), the increasing work-
load causes steep decreases in the performance, because of the need to use higher
modulation levels to guarantee feasibility, and the convex relationship between the
energy consumption and the modulation levels. Once again, Uniform’s performance
quickly degrades, and it is not able to generate feasible solutions when the number of
super-frames per epoch exceeds 20,500.

The running times of the algorithms: The asymptotic complexity analysis of the pro-
posed algorithms was presented in their corresponding subsections. We also ran exper-
iments to measure the actual running times of the algorithms on an 2.6GHz dual-core
iMac machine with 8GB memory, and the results are presented in Table I. The reported
running times are obtained during the experiments that investigated the impact of the
initial battery level. The results show the average running time for 350 experiments
with different initial battery levels.

6. CONCLUSIONS

In this article, we considered cluster-based energy harvesting wireless sensor net-
works with timeliness requirements. In this framework, the nodes have to transmit
their readings to the cluster head by a specific deadline to preserve application func-
tionality. We considered the impact of Dynamic Modulation Scaling on these systems
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for two different objectives. The first objective is to maximize the energy reserves while
meeting the timing constraints under the energy neutrality conditions, which requires
that consumed energy never exceeds the sum of harvested and stored energy during
operation. The second optimization objective we considered is the maximization of the
minimum energy across all nodes, to make sure that the energy levels are more evenly
balanced in the network while still satisfying the timeliness and energy neutrality re-
quirements. We formally showed that both problems can be encoded as instances of the
Mixed Integer Linear Programming problem. We also proposed several fast heuristics
that traded off optimality for a reduction in computational complexity. Using a real
solar trace, we then compared the performance of the algorithms for both performance
objectives. Our results indicate that, while very fast, the uniform modulation level as-
signment algorithm performs relatively poorly. However, the heuristic algorithms that
allow individual nodes to adopt different slow-down factors in different epochs perform
much better, and they approach the performance of the computationally expensive
optimal algorithms, especially for large deadline or large initial battery level cases.

APPENDIX: DETAILS OF THE MIXED INTEGER PROGRAMMING FORMULATION

In this appendix, we provide the details of the Mixed Integer Linear Programming
formulation given in Section 4.1, which is the basis for the optimal solution.

Objective Function
Our objective function is to maximize the overall remaining energy levels of all nodes
at the end of last epoch (epoch number Y).

n
Maximize E Lf
i=1

A closed-form expression for the epoch-end energy levels (L values) requires ex-
pressing the energy consumption of each node as a function of the assigned modulation
level. Specifically, a node requires e(b) amount of energy to send M packets of size p
bits over the channel in one epoch, when using the modulation level b:

C,(28 -1)+C,
e(b):y.M.p.i_

b
Let us introduce a binary indicator variable a{é to indicate the corresponding modu-
lation level choices from the set {b1, ..., b} for node i during epoch j. Specifically, o},

is set to 1 if and only if the {** modulation level was selected for node i in epoch J;
otherwise, it is 0. Then, the energy consumption of a node i, in a given epoch j, can be
expressed as

el = -eb) +afy elby) + -+ eB)+ - + oy ebp). (10)
We add a constraint to show that exactly one of the B options for modulation level
will be chosen for node i in epoch j:
B .
=1V j:1<i<nl<j=<T.
=1
Epoch Energy Levels
For any node, the available energy at the end of each epoch equals available energy at

the end of the preceding epoch plus the difference between the harvested and consumed
energy amounts during that epoch. Considering that node i cannot store more than
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J; units of energy, the remaining energy level at node i at the end of epoch j may be
obtained as
L =min{d;, I/ " +¢- P/ —¢/}.
The overflow energy that may not be stored in the battery of node i at the end of

epoch j due to the capacity limits can be expressed by variable Oij (the excess energy that
cannot be stored and that is dissipated as heat). Overflow variables are nonnegative

real numbers: Qi’ > 0. We can write

L{:L‘]_l-l-cPJ_eJ_QJ

J
=E'+) (c- Pl —e(bi) - 0)
k=1
J
M
—E+) (¢ P - ”b—k"(cs (2% —1)+C,) -k
k=1 i

Then the objective function can be rewritten as
Maximize Z E) + Z —ef -0,

By substituting the value of eij from Equation (10), we obtain

y-M-p

n T
Maximize S E+) (c i T(CS 2% —1)+C,) - Qik) :
i=1 k=1 i

Since E? and c - P! are not a function of the modulation level, this is equivalent to

Minimize ZZ(V M-rc (zbf_1)+ce)+9ik>. 1

i=1 k=1

By using our binary indicator variables {«%}, we can rewrite as

T B k . . .
Minimize Y3 (LLEL € (-1 C)wef). a2)
: 4

Time Constraints
The real-time characteristic of the application requires all nodes to complete their
transmission within the deadline of each super-frame, D:

J )
ZtL=Z(;:[;)§D, V1i<j<T. (13)

Energy Constraints

The energy consumption characteristics must prevent both battery overflow and un-
derflow conditions while guaranteeing energy neutrality. The prevention of battery
underflow ensures that the battery level never drops to zero. We may combine the

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 3, Article 86, Publication date: April 2017.



DMS-Based Energy Optimizations for Clustered WSNs 86:25

target energy condition with the battery underflow condition by defining a variable {l-j
that shows the minimum allowable battery level of node i at the end of epoch ;.

Clearly, we have ¢/ =0, 1< j <Y —1,and ¥ = E] “* = E:

| J M. »
Lg:E?+Z(C~R~k—yb#((?s-(ﬂ—lﬂce)—@k) =4,
k=1 !

Vi,j:1<i<nl1l<j<T.
Preventing battery overflow ensures that the excess energy that cannot be stored
in the battery is not taken into account to guarantee the energy constraints of the

subsequent epochs. In other words, the battery level at the end of each super-frame
should not exceed the node’s battery capacity. Combining all these constraints, we get

. J . .
N O e U R AR B
k=1 4

Vi,j:1<i<nl1l<j<T.

Putting all the constraints together, we obtain the following mixed integer program-
ming formulation:

n Y B ak % Mp
o iy oM b k
Mingmize 30323 (L (0@ -1+ 4ot
i=1 k=1 I=1
n B (X'-]é'M',O
Subject t =] =D, Vitl=j=T
ubj 0 Z R, - b - J =J=
i=11=1
. .] B ak.y.M.lo
G <E+ Y c-Pf—Z(‘lb—(Cs'(zbl_l)"'Ce))_eik <
pt =1 !
Vi,j:1<i<nl<j<TY
o) €{0.1}, Vijl:l<i<nl<j<T1<I<B
B
ZO‘LJZ—L Vi,j:1<i<nl<j<TY
=1
6/ >0, Vi,j:1<i<nl1l<j<T.
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