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On Maximizing Reliability of Real-Time Embedded
Applications Under Hard Energy Constraint
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Abstract—The dynamic voltage and frequency scaling (DVFES)
technique is the basis of numerous state-of-the-art energy man-
agement schemes proposed for real-time embedded systems. How-
ever, recent research has illustrated the alarmingly negative im-
pact of DVFES on task and system reliability. In this paper, we con-
sider the problem of assigning processing frequencies to a set of
real-time tasks in order to maximize the overall reliability, under
given time and energy constraints. First, under the frame-based
task model, we formulate the problem as a nonlinear optimization
problem and show how to obtain the static optimal solution. Then,
we propose online (dynamic) algorithms that detect early comple-
tions and adjust the task frequencies at runtime, to improve overall
reliability. Furthermore, we extend these solutions to the periodic
task model, with both static and dynamic solutions. All our solu-
tions ensure that all timing constraints are met while the cumula-
tive energy consumption of tasks does not exceed the given energy
budget. Our simulation results indicate that our algorithms per-
form comparably to a clairvoyant optimal scheduler that knows
the exact workload in advance.

Index Terms—Dynamic voltage and frequency scaling, real-time
embedded systems, reliability.

1. INTRODUCTION

ITH THE proliferation of the embedded computing de-
W vices, energy management has become critically im-
portant. The dynamic voltage and frequency scaling (DVFS)
technique [35] has been recognized as the basis of numerous
energy management solutions. DVFES exploits the fact that the
dynamic power consumption is a strictly convex function of
the CPU speed, and attempts to save energy by reducing the
supply voltage and frequency at runtime. In real-time embedded
systems research where providing temporal predictability is of
paramount importance, DVFS has been well studied as an ef-
fective energy management technique. Existing studies in this
area can be divided into two main lines. In energy-aware real-
time systems research, the problem is to meet the application’s
timing constraints with minimum energy consumption for var-
ious task/processor and scheduling models [5], [27], [30]. On
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the other hand, for energy-constrained real-time embedded sys-
tems, energy is set as a hard constraint [2], [21], [36]. This re-
search line is motivated by applications where the system has to
remain functional during a well-defined mission/operation time,
with fixed and nonreplenishable energy budget. Example appli-
cations include military, space and disaster recovery applica-
tions, as well as emerging portable medical monitoring and life
support devices. In such settings, it is imperative to avoid sce-
narios where the real-time embedded system runs out of energy
in the middle of a mission with potentially detrimental conse-
quences [3], [21], [29]. The Mars Rover system has been often
mentioned as an energy-constrained system that must complete
its mission-critical tasks within a well-defined operation time
[10], [21], [36]. In energy-constrained real-time systems area,
researchers have exploited the problem of maximizing the total
utility [36], reward [2], [10], [29], value [3], and throughput
[38], without exceeding the available energy budget.

A number of studies analyzed the interplay between energy
management and fault tolerance/reliability [18], [24], [28],
[34], [39]. Despite the effectiveness of DVFS to reduce energy
consumption, recent research [13], [43] has shown that DVFS
has a significant and negative effect on the system reliability,
primarily because of the significantly increased transient fault
rates at low supply voltage and frequency levels. Hence, there
is a growing awareness about the need to apply DVFS only
after careful evaluation, especially for mission-critical real-time
embedded applications where both high level of reliability and
low-energy consumption are important. While some existing
studies revisited the energy-aware solution frameworks to miti-
gate the negative impact of DVFS on reliability [32], [40]-[42],
to the best of our knowledge, the problem has not been yet
addressed in energy-constrained settings (with hard energy
constraint).

A. Related Work

Simultaneous consideration of energy consumption, time-
liness and fault tolerance/reliability dimensions has attracted
attention in recent years. In [31], the authors studied the energy
minimization problem for mapping frame-based dependent
real-time tasks on DVFS-enabled multiprocessor systems and
proposed an efficient two-step iterative approach based on
genetic algorithms. Notwithstanding its innovative solution,
the framework does not consider the reliability dimension.
Izosimov et al. [18] obtain and solve an optimization problem
for mapping a set of tasks with reliability constraints, timing
constraints and precedence relations to processors and for de-
termining appropriate fault tolerance policies (re-execution and
replication). This study does not explicitly model the effects of
DVES on transient fault rates.

1551-3203/$26.00 © 2010 IEEE
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A significant number of existing research work focused on
tolerating a fixed number of faults within the context of energy-
aware real-time operation [24], [34], [39]. The checkpointing
technique was adopted in [24] to tolerate faults at runtime while
exploiting the system slack through DVES to reduce energy con-
sumption. By adopting the checkpointing technique for soft pe-
riodic real-time tasks, Zhang et al. developed an online fault
tolerance algorithm in [39]. Further, they suggested a fixed pri-
ority scheme through the Rate-Monotonic algorithm (RMA) to
tolerate faults in hard real-time systems. Based on the character-
ization of feasibility with RMA, in [34], the authors proposed
an efficient online scheme to minimize energy consumption by
applying DVEFES policies and considering the runtime behaviors
of tasks and fault occurrences, while still satisfying the timing
constraints.

The negative impact of DVFS on transient fault rates and
investigation of the resulting reliability/energy consumption
tradeoffs gave rise to another line of research. The modeling of
system reliability as a function of frequency/voltage assignment
and a preliminary analysis of related tradeoff dimensions has
been conducted by Zhu et al. in [43]. The work in [40] proposed
a reliability-aware power management (RA-PM) scheme that
dynamically schedules a recovery job at task dispatch time
whenever DVFS is applied, preserving the overall (original) re-
liability. The scheme is further extended to multiple tasks with
a common deadline [42] and to periodic real-time tasks [41]. By
employing a feedback controller to track the overall miss ratio
of tasks in soft real-time systems, Sridharan et al. [32] proposed
a reliability-aware energy management algorithm to minimize
the system energy consumption, while still preserving the
overall system reliability. Pop et al. propose a novel framework
[28] where user-defined reliability goals are first transformed
to the objective of tolerating a fixed number of faults through
re-execution for individual tasks, by using the reliability model
from [43]. The authors developed a constraint-logic-program-
ming (CLP) based solution to minimize energy consumption
with these goals, for dependent tasks represented by directed
acyclic graphs (DAGs). Finally, Dabiri ef al. [12] considered
the problem of assigning frequency/voltage to tasks for energy
minimization subject to reliability and timing constraints.

While existing research explored various aspects of the
interplay between DVFS, reliability and energy consumption
from energy-aware operation point of view, to the best of our
knowledge, maximizing reliability in energy-constrained set-
tings (with hard energy constraint) has not been studied before.
In this research effort, we assume energy-constrained operation
settings [2], [10], [21], [29], [36] where the system’s energy
consumption must not exceed a given bound. By modeling
the transient fault rates as a function of task voltage/frequency
levels, we consider and optimally solve the problem of deter-
mining task level frequency assignments to maximize overall
reliability (i.e., the probability of completing the application
successfully), without exceeding the given energy budget/al-
lowance or missing the deadlines.

After presenting our system models and assumptions in
Section II, we first address and solve the static version of the
problem under the frame-based task model, where all tasks ex-
ecute their worst-case workload within the same given deadline
(Section III-Af). Then, we extend our framework to dynamic

settings and propose three online reclaiming algorithms that
detect early completions and adjust the task frequencies at
runtime, with the objective of improving the application’s
reliability by making the best use of excess energy at run-
time (Section III-B). Next, we extend these solutions to the
periodic task model where tasks may have different periods
(Section 1V). We show that it is always possible to find an
optimal solution with maximum reliability where all the jobs of
a given periodic task run at the same frequency throughout the
hyperperiod. This important result, in turn, allows us to reuse
the static optimal solution we developed for the frame-based
systems. Next, we provide dynamic reclaiming algorithms for
periodic tasks to further improve the reliability at runtime by
using excess energy that arises from early completions to speed
up task executions. The experimental evaluation (presented in
Sections III-C and I'V-C) indicates that our dynamic algorithms
(for both frame-based and periodic task models) perform com-
parably to a clairvoyant optimal scheduler that knows the exact
workload in advance. Section V concludes this paper.

II. SYSTEM MODELS

A. Power Model

With DVES, the clock frequency (speed) is reduced alongside
with the supply voltage [26] due to the almost linear relationship
between the supply voltage and operating frequency [8]. In this
paper, we assume that the CPU supply voltage level corresponds
to the minimum level necessary to support the target processing
frequency. In the context of DVES, we use the term frequency
change to stand for the simultaneous adjustment of frequency
and voltage.

We adopt the system-level power model proposed in [43] and
subsequently used in [40]-[42]. Hence, the system power con-
sumption P is given by

P:Ps+h(Pin(i+Rl):Ps+h(Pind+Ceffm) (1)

where P; is the static power, P;,q is the frequency-independent
active power, and P; is the frequency-dependent active power.
The static power, which may be removed only by powering off
the whole system, includes the power to maintain basic circuits,
keep the clock running and the memory in sleep modes [14].
P4 is a constant independent of processing frequencies (i.e.,
the power consumed by off-chip devices such as main memory
and external devices) and can be efficiently removed by putting
systems into sleep states [8]. P, is the power mainly consumed
by CPU, in addition to any power that depends on the frequen-
cies [8]. h represents system states and indicates whether active
powers are currently consumed in the system. Specifically, when
the system is active, i = 1; otherwise, the system is in sleep
modes or turned off and 7 = 0. The effective switching capaci-
tance Cor and the dynamic power exponent m (which is, in gen-
eral, no smaller than 2) are system-dependent constants and f is
the processing frequency. All frequency values are normalized
with respect to the maximum frequency fi,ax (i-€., fmax = 1.0).

Since there exists an excessive time and energy overhead as-
sociated with turning on/off the entire system, we assume that
the system is always active. As P is not manageable, we will ig-
nore the static power and concentrate on the frequency-indepen-
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dent active power P4 and frequency-dependent active power
Py, in our analysis.

Although DVFS can reduce energy consumption, the ap-
plication will take more time to complete at low frequencies.
As a result, higher total energy may be consumed because of
the prolonged device active times (due to the frequency-in-
dependent active power P;,q). Therefore, considering the
system-level power, lower frequencies may not be always best
for energy savings and it is shown in [14] that there exists a
minimum energy-efficient voltage/frequency pair. In [43], the
energy-efficient frequency for our power model is derived as
fee = ((Pina)/((m — 1)Ceg))*/™. Hence, it is not energy-effi-
cient to run any task at a frequency below f..; doing otherwise
will result in more energy consumption. Note that if f.. exceeds
the maximum available frequency level fi,.«, then the system
should not reduce its speed below fiax [4]. In the following
discussion, we use the dynamic power exponent m as 3.

In general, there is a time and energy overhead associated
with the runtime voltage and frequency changes in DVES tech-
nique. For instance, the time and energy overhead in frequency/
voltage transitions is in the range of 10-120 us and 0.5-2.6 p
Joules respectively, for the state-of-the-art Mobile AMD Athlon
and Intel Xscale architectures [1], [25], [37].

B. Fault Model

During the execution of an application, a fault may occur due
to various reasons, such as hardware failure, software errors,
electromagnetic interference and cosmic ray radiations. Since
transient faults occur much more frequently than permanent
faults [9], [16], [17], in this paper, we focus on transient faults,
and develop feasible DVFS solutions with a given energy budget
to maximize overall reliability.

Traditionally, transient faults have been modeled through
Poisson distribution with an average arrival rate A [39]. In line
with the existing literature [19], [33], [43], we assume that the
transient faults that occur during the execution of different tasks
are independent. However, considering the effects of voltage
and frequency scaling on transient faults [13], [43], the average
rate A will depend on the system processing frequency and
supply voltage. Therefore, the fault rate at frequency f (and its
corresponding voltage level) can be generally modeled as

M) =Xo-9(f) (2)

where )¢ is the average fault rate corresponding to the max-
imum frequency funax (and supply voltage Vi,ax). That is,
g(fmax) =1

In general, transient fault rates are exponentially related to the
circuit’s critical charge (the smallest charge required to cause a
soft error in a circuit node) [15]. In our analysis and simulations,
we focus on the exponential fault rate model proposed in [43]

3)

d(1—

40-7)
ACf) = 2o g(f) = Ao - 107 Fmin

where the exponent d(> 0) is a constant, indicating the sen-
sitivity of fault rates to voltage and frequency scaling. That is,
reducing the supply voltage and frequency for energy savings
results in exponentially increased fault rates. The maximum av-
erage fault rate is assumed to be A ax = Ao - 10? which corre-
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Fig. 1. An example task set with precedence constraints.
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Fig. 2. The execution order within a frame for the given task set.

sponds to the lowest available frequency fuin (and the supply
voltage Vi,in). Note that this fault rate model, proposed in [43]
and used in [28], [40]-[42] has been also independently verified
in [12]. In this work, we do not consider or model the effect of
temperature changes on the transient fault rate.

C. Application Model

In this paper, we first consider and solve the problem of
reliability maximization under a given hard energy constraint
for frame-based tasks running on a DVFS-enabled uniprocessor
system. Specifically, we consider a real-time application repre-
sented by a directed acyclic graph (DAG) G = (V, E). The set
of vertices (nodes) V = {11, ..., T, } represents the set of tasks
with the common period and deadline D¢. Dy is also called the
frame length. The set of edges E = {F1, ..., F,,} represents a
partial order corresponding to the precedence constraints [22]
among tasks, with the interpretation that whenever the edge
(T;,T;) € E, the task T; cannot start to execute until T; has
been completed. We assume that, given a DAG, an execution
order of tasks that satisfies the precedence constraints has been
determined and that the task indices reflect the execution order
in that sequence (i.e., T; is the ith task to execute in each frame).
Such an execution order can be obtained, for example, through
topological sorting algorithm in time O(m +n). Fig. 1 presents
an example task set with six tasks and precedence constraints.
In Fig. 2, we show the execution order within a frame, obtained
through topological sorting.

The worst-case execution time (WCET) of task T; is denoted
by ¢;. We consider a system with DVFS capability where
the clock frequency can vary from a minimum available fre-
quency fuin to a maximum frequency fpa.x (normalized to
1.0). The execution time of task 7; under the frequency f; is
given by (¢;)/(f:). The utilization U of the task set is given
as Y (¢i)/(Df - fmax) = Y (ci)/(Dy); in other words, it
corresponds to the load under the maximum CPU frequency.

In our model, each task 7T; is allowed to have a different fre-
quency-independent power figure P4, , since each task may re-
quire access to different subsets of external devices. We assume
that the system is energy-constrained in the sense that it has a
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fixed energy budget F; which is not replenishable during exe-
cution and cannot be exceeded in any frame of length Dy.

The reliability of a task is defined as the probability of
completing the task successfully (i.e., without any transient
faults) [40], [42], [43]. Assuming that the transient faults follow
a Poisson distribution, the reliability of the task 7; with its
WCET ¢; is [43]

Ri(fi) = e N0 4)

where f; isits execution frequency and A( f;) is defined as in (3).
Given an execution order of tasks that satisfies the precedence
constraints, the reliability of a real-time system depends on the
correct execution of all tasks in an application [19], [33], [42].
In our application model, which consists of n tasks, the system
reliability is, therefore, R = [[;_, Ri(fi).

Note that we also extend our framework to periodic tasks
with possibly distinct periods in Section IV, at the beginning
of which we provide more details about the model we assume
in that analysis.

III. RELIABILITY-AWARE DVES FOR FRAME-BASED TASKS

Our analysis starts with the case of frame-based tasks where
tasks share a common deadline D ;. We first provide the static
solution under the assumption that all tasks will take their worst-
case workload, and then develop dynamic solutions where task
frequencies are adjusted at runtime to improve overall reliability
when the actual workload deviates from the worst-case.

A. Static Solution

In this section, we formalize and optimally solve the problem
of finding task-level frequency assignments to maximize the
system reliability, with a given energy budget F; during a pe-
riod Dy.

We first consider the impact of DVFS-induced time and
energy overhead [25] on the problem formulation. Let A
and 1) be the maximum transition time and energy overhead
between any two frequency/voltage levels, respectively. In a
given frame, during the execution of task set 77,...,7T,, the
system’s voltage/frequency changes at most n times (at task
dispatch times). As a result, the total time overhead due to
voltage/frequency scaling within a frame is bounded by n - A.
Similarly, the total energy dissipation due to transitions is
bounded by 7 - ¥. Hence, it is safe to assume that the time and
energy available for task execution within a frame is given by
D =Dy—(n-A)and E = E; — (n - 9), respectively. For
simplicity, in the rest of this paper, we refer to D and E as
(modified) deadline and energy budgets, respectively.

Recall that the probability of completing the task 7; without
a fault (that is, its reliability) at the processing frequency f; is
Ri(fi) = e~ AFx()/(fi) where A(f;) is given by (3). Hence,
R;(f;) is a strictly concave and increasing function of f;. The
total (i.e., frequency-dependent and frequency-independent) en-
ergy consumption of 7; at the frequency f; can be expressed as
[40]

Ei(fi) = Pua, - 2 + Ceg - ci - f? ®)

indq- ‘ f"/

Notice that F; ( f;) is a strictly convex function and is minimized
when f; = fe, (Section II-A).

Let @;(fi) = A(fi) - (¢;)/(fi). Our problem can be stated as
to find f;(1 < i < n) values so as to maximize

R= HRi — o 2 #ilf) ©
i=1
Subject to
n ¢
; fi — @)
i=1
fmin < f7 < fmax(l <1< n)f )

Above, the inequality (7) corresponds to the deadline constraint,
while (8) encodes the hard energy constraint. The constraint set
(9) gives the range of feasible frequency assignments.

Considering the well-known features of the exponential
functions, we can re-express our objective as to minimize
i, i(fi) subject to the constraints (7), (8) and (9). In the
rest of this paper, this optimization problem will be called En-
ergy-Constrained Reliability Management (ECRM) problem.

Let Fjimit be the minimum energy that must be allocated
to the given task system to allow their completion before or
at the deadline D. Given the task parameters, Fjnit can be
computed by the polynomial-time algorithm developed in [4].
As a by-product, the same algorithm yields also the optimal
task-level frequency assignments (fly, fla, ..., fl,) when the
total energy consumption is exactly Ejjni. Obviously, if £ <
Fhimit, then there is no solution to our problem, since the system
would lack the minimum energy needed for timely comple-
tion. Also, let Erpax = Y. Ei(fmax) be the energy con-
sumption of the task set when all tasks run at f,,x. As another
boundary condition, when £ > F,,x, executing all tasks at
the maximum frequency is the optimal solution (since R;(f;)
is monotonically increasing with f; and the system has suf-
ficient energy to run at fi,,x continuously). Therefore, in the
remainder of this paper, we will focus exclusively on settings
where Elimit S FE < Emax~

Lemma 1: In the optimal solution to ECRM, Vi f; > fee,
where fee, = ((Ping,)/(2Ce))(*/?) is the energy-efficient fre-
quency for T;.

Proof: This follows from the observation that executing

T, at a speed lower than fe., would result in increased energy
consumption for T; (Section II-A). As a result, if a task were to
execute at a frequency lower than f.., in the optimal solution,
then increasing its frequency to fe., would actually decrease
its energy consumption [while still satisfying (8)] and increase
the overall reliability considering the positive impact of higher
frequencies on task reliability—giving a contradiction. ]

Thanks to Lemma 1, the constraint (9) can be rewritten
as flowi S fi S fmax(1 S { S ’I’L), where flowq- is
maX(fmin: feez' )

Lemma 2: If Eyinmir < E < Enax, in the optimal solution
to ECRM, the total energy consumption »_._, E;(f;) must be
equal to E.
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Proof: Assume that the statement is false. Since £/ < Fpax
by assumption, there must be a speed f; < fmax-. In this case, it
should be possible to increase f; by € > 0 such that (f; +¢) <
fmax and 37, Ej(f;) + Ei(fi +¢) < E.Itis clear that the
deadline and energy constraints are still satisfied after this modi-
fication. Further, the overall system reliability has improved due
to the execution of 77 at a speed higher than f;. Thus, the pro-
posed solution cannot be optimal and we reach a contradiction.ll

Lemma 2 allows us to conclude that if Ejjpnit < F < Foax,
then we can rewrite the constraint (8) as an equality in the form
of Y., E;(f;) = E. Consequently, we obtain a new nonlinear
(convex) optimization problem ECRM’ defined as:
find f; (1 <4 < n) values so as to minimize

> eilfi) (10)
i=1
Subject to
n ¢
— <D 11
; Ji ~ (v
Y Eif)=E (12)
=1
flowi S fi S fmax(l S 1 S n) (13)

The problem ECRM’ can be solved, for instance, by
Quasi-Newton techniques developed for constrained non-
linear optimization [7]. The technique exploits the well-known
Kuhn-Tucker optimality conditions for nonlinear programs in
an iterative fashion by transforming the original problem to a
quadratic programming problem and solving it optimally [7].
While optimal, a theoretical complication with this approach is
that it is practically impossible to express the maximum number
of iterations as a function of the number of unknowns which,
in this case, corresponds to the number of tasks n. However, in
our experience, the algorithm is rather fast: For instance on a 1
GHz CPU with 1 GB memory, our implementation was able to
return the optimal solution in less than 1.8 s even for task sets
with 1000 tasks. The reported experimental results are based
on using this optimal algorithm.

However, we also developed a heuristic algorithm that
provably runs in polynomial-time. This algorithm, named
ECRM-LU, satisfies the deadline, energy and frequency range
constraints. Further, it yields solutions that are extremely close
to the optimal solution. ECRM-LU proceeds as follows. We
temporarily ignore the deadline constraint (11) and solve the
problem ECRM’ only by considering the energy constraint
(12) and frequency range constraints (13). Notice that, by
excluding the deadline constraint, the problem is transformed
to a separable convex optimization problem with 7 unknowns,
2n inequality constraints and a single equality constraint. This
problem, in turn, can be solved in time O(n?) by iteratively
manipulating the Kuhn—Tucker optimality conditions in a way
similar to the technique illustrated in algorithm given in [4].
Now, if this solution satisfies also the deadline constraint (11),
obviously, it is also the solution to ECRM’. Otherwise, we
rewrite the constraint set (13) as

thfszmax (1SZSTL) (14)

where fl; is the frequency assignment to task 7; in the solu-
tion where the task set completes at exactly D and with en-
ergy consumption Ejp;¢. Again, the { f{;} values can be com-
puted in time O(n?) [4]. By enforcing the constraint set (14), we
make sure that the final speed assignments satisfy also the dead-
line constraint. Once again, this version of the problem where
the deadline constraint is handled implicitly by enforcing the
lower bounds on frequency assignments can be solved in time
O(n?). Hence, the overall time complexity of ECRM-LU is also
O(n?). Our extensive simulation studies show that ECRM-LU
performs very well compared to the optimal solution through
the almost entire spectrum: the reliability figures yielded by
ECRM-LU are close to the optimal one by a margin of 0.03%,
when (E)/(Flimit) > 1.02. In a tiny portion of the interval
where 1.0 < (E)/(Eumit) < 1.02, we observed a difference
of at most 1%.

B. Dynamic Reliability-Aware Scheduling

The static solution presented in the previous section is optimal
under the assumption that all tasks will present their worst-case
workload (i.e., their WCETSs). While provisioning for worst-
case scenarios is imperative in real-time systems, in practice,
many real-time tasks complete early without consuming their
WCETs. In fact, numerous DVFS studies published in recent
past were based on detecting and reclaiming unused CPU time
(i.e., dynamic slack) to enhance energy savings by reducing the
processing frequency at runtime [5], [6], [27]. A similar oppor-
tunity exists here: the excess energy that arises from early com-
pletions of tasks, can be used to increase the speeds of tasks at
runtime, to improve the system reliability. Clearly, utmost care
must be exercised to make sure that the system remain within
its energy allowance (budget) before making such adjustments.

In this section, we develop online (dynamic) reliability-aware
schemes for reclaiming the excess energy at runtime. In the fol-
lowing algorithms, we assume that n tasks in the real-time em-
bedded application are executed in the order 14, 15, ..., T},. The
three dynamic algorithms that we developed are the following.

* BR: dynamic basic reclaiming algorithm. In this solution,
an initial speed assignment is made by solving the static
problem presented in the preceding section, assuming
worst-case workload for each task. At task completion
points, the excess energy that may be available (due
to early completions) is effectively recycled within the
system: a new speed (frequency) assignment is made
for the remaining tasks by considering the remaining
(updated) energy budget and time to deadline. This as-
signment is obtained by reinvoking our optimal solution
to the problem ECRM.

* GRE: dynamic greedy algorithm. Although BR satisfies
the energy and deadline constraints, it is pessimistic in
the sense that it assumes WCETs for all tasks when redis-
tributing the excess energy. An alternative approach may
be to allocate the excess energy entirely to the next task!
Thext at each task completion point, relying on the fact that
Thext 18 also likely to complete early and release excess en-
ergy for the use of the remaining tasks. In the mean time,

Note that if the next task cannot be assigned the entire excess energy due to
the maximum frequency limitations, then the following task(s) will be able to
reclaim energy at the next task completion points.
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the reliability of T},.x¢ Will be significantly improved due to
execution at high speed. GRE preserves feasibility in terms
of timing and energy constraints: compared to the initial
static solution obtained by ECRM, the task speeds never
decrease (guaranteeing the timely completion) and only the
excess energy that is obtained at runtime is reassigned.

* AGR: dynamic aggressive algorithm. This scheme repre-
sents the most speculative solution, in the sense that it
counts on probable early completions before execution,
and makes speed assignments accordingly. The main idea
is to aggressively give sufficient energy to the current task
while still leaving minimum required energy for the tasks
to follow, based on their WCETs. It is speculative, be-
cause under a worst-case scenario (where most of the tasks
present high workload), many tasks in the chain would be
forced to execute at low speeds to guarantee the completion
within the energy budget, significantly lowering the overall
reliability. However, in settings where the actual workload
is likely to deviate from the worst-case with high proba-
bility, this strategy will (and, as we show in the perfor-
mance evaluation section, does) pay off. Specifically, AGR
is implemented through the following steps: First, E}init
[which is defined as the minimum energy needed to com-
plete all the tasks by their deadline (Section III-A)] is com-
puted. Next, a speed assignment (fly, flo, ..., fl,,) based
on WCETs of all tasks but with energy allocation equal to
Flimit 1s computed. Th, . . ., T,, are tentatively assigned the

frequencies (fla, ..., fl,) and their energy consumption
with these assignments and WCETSs (F,eserve) are evalu-
ated. Then, the entire remaining energy (i.e., £ — Fiesorve)
is allocated to the first task 77, allowing it to execute as
fast as possible within the given constraints. At task com-
pletion points, the above steps are repeated by considering
the early completions and actual remaining energy for re-
maining tasks. The fact that this solution preserves the en-
ergy and deadline constraints follows from the properties
of the speed assignments that corresponds to Fy; i, which
is the minimum energy needed for a feasible solution.

C. Simulation Results and Discussion

To evaluate the performance of our dynamic algorithms under
varying workload conditions, we designed a discrete-event sim-
ulator in C. In our simulator, we implemented Basic Reclaiming
(BR) scheme, Greedy Reclaiming (GRE) scheme, Aggressive
(AGR) scheme, in addition to the Static scheme which com-
putes the processing frequencies using the optimal solution to
problem ECRM assuming the worst-case workload for each
task. Static does not use any online component in the sense that
no dynamic speed adjustment is performed, regardless of the
actual workload. Finally, we also implemented the Clairvoyant
scheme (denoted as Bound), that knows the actual workload of
each task in advance and computes the optimal speed assign-
ments to maximize the reliability by solving the problem ECRM
accordingly. Bound is not a practical scheme (since it assumes
the knowledge of the actual workload in advance); however, it
characterizes the upper bound on the performance of any static
or dynamic algorithm.

In our simulations, we considered 1000 task sets each con-
taining eight tasks, with the frame/period length of D = 1000.

The total wutilization (U) of each task set under maximum
frequency is varied from 0.2 to 1.0 (full load). The worst-case
execution time (WCET) of each task (under f,ax) is randomly
generated from 0.01-U - D t0 0.9-U - D. To model the variations
in the actual workload, we use the ratio (ACET)/(WCET),
which denotes the ratio of the average-case execution time
(ACET) to the worst-case execution time. The lower this ratio,
the more the actual workload deviates from the worst-case.
For each task set and utilization value, (ACET)/(WCET)
is changed from 0.2 to 1.0. The actual workload ac; of each
task is generated randomly, using normal distribution. Each
of the 1000 task sets is executed 1000 times for a given
(ACET)/(WCET) and U value. The results that are shown
correspond to the average of all runs.

We model a DVFS-enabled CPU where the normalized pro-
cessing frequencies can change from fu;, = 0.1 t0 frax =
1.0. The power figures are normalized with respect to the fre-
quency-dependent power component P, which is taken as 1.6
W at the maximum frequency (modeled after the power con-
sumption of Intel XScale as in [1], [37]). We model the fre-
quency-independent power P;,4 following the methodology and
actual external device specifications from [11]. As in [11], we
assume that each task uses up to 2 devices during execution,
which gives a normalized frequency-independent power range
of [0, 2] per task. The specific P;,q value for each task is deter-
mined randomly according to uniform distribution in this range.

To analyze the impact of system’s energy budget E on
the performance, we varied F from FEjj,i¢ (minimum energy
needed to meet the deadline, see Section III-A) to E,,.. (en-
ergy consumption at frax). The ratio (E)/(Ejmit) shown in
the plots is a measure of the available energy in the system;
for example, when (E)/(Eumit) = 1.2 the system has 20%
more energy than the minimum needed to meet the deadline.
We assume that the transient faults’ occurrence is determined
by Poisson distribution and given by (3), where d = 3 and
X = 1079 X¢ = 1072 corresponds to 100 FITs (fail-
ures in time, in terms of errors per billion hours of use) per
megabit at fi,,x, Which is a reasonable SER rate as suggested
in [15] and [44]. For each task, once the actual workload
ac; and its runtime frequency f; is determined by the un-
derlying algorithm at runtime, its reliability is computed as
R;(f;) = e Mfi)x(ac)/(fi) The overall reliability of the task
set is then derived as R = [[_, Ri(fi).

Fig. 3 shows the relationship between the probability
of failure (PoF) and the energy budget when (ACET)/
(WCET) = 0.5 and U = 0.4. As expected, PoF (defined
as 1 — R) generally decreases with increasing energy budget
((E)/(E)imit) ratio), since more energy enables the system to
use higher processing speeds with improved reliability. The
clairvoyant Bound scheme achieves a constant probability of
failure, because even when F/ Eji,ie = 1, all tasks can be exe-
cuted at fi,,x thanks to a priori knowledge of actual execution
times, which are, on the average, half of the worst-case in these
experiments—since processing speeds beyond f.x are not
available, giving more energy to Bound does not further help.
We observe that, among the other schemes, the static scheme
(which does not perform any dynamic energy reclamation) per-
forms worst and AGR is the best, with very close performance
to Bound when ((F)/(Eymit) > 1.1). This result indicates
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Fig. 4. The probability of failure versus utilization (U) with (ACET)/
(‘/I/CET) = 0.5 and E/Eli"]if = 1.15.

that aggressively giving maximum energy to the tasks that will
execute early typically pays off in these settings, since these
tasks are also likely to generate excess energy due to early
completions, which can be allocated to the later tasks. BR is a
little worse than GRE;; but both perform consistently better than
Static, verifying the benefits of dynamic reclaiming. Observe
that once the available energy is 40% or more compared to
Elimit, all dynamic schemes perform almost the same.

Fig. 4 illustrates how the probability of failure changes as a
function of task utilization U, for (ACET)/(WCET) = 0.5
and E/FEjimit = 1.15. In general, the impact of increasing uti-
lization is manifested in two different ways on the overall relia-
bility. First, as the utilization increases, the workload (in terms
of number of cycles) increases, translating into the increased
probability of incurring transient faults, under comparable tran-
sient fault rates. Second, with increased utilization, the system
may be forced to adopt higher frequencies to meet the deadline,
depending on the available energy. These two factors tend to af-
fect the overall reliability in reverse directions as implied by eq.
(4). The relative ordering of the schemes remains the same as
in Fig. 3. We observe two interesting trends: For Static, BR and
AGR schemes, as we increase the utilization towards the range
of 0.5-0.6, the probability of failure first increases. In the utiliza-
tion range [0.2-0.5], for these three schemes, the increase in fre-
quency is modest and the PoF is primarily determined by the in-
crease in the workload. However, higher utilization values force
the system to adopt significantly higher frequencies in order to
meet the deadline and the positive impact of this on reducing
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Fig. 5. The probability of failure versus the (ACET)/(WCET) ratio with
U = 0.4 and E/Elimit =1.2.

the fault rates becomes the primary factor after a certain point.
In fact, after U = 0.8, all tasks are executed at speeds close to
fmax and then PoF drops sharply to a minimal value. On the
other hand, the probability of failure for AGR and Bound are
quite low and it tends to increase monotonically (but relatively
modestly) throughout the spectrum. This is because, due to low
ratio of (ACET)/(WCET) = 0.5, AGR and Bound can exe-
cute almost all the tasks with fy,,x while remaining within the
energy budget, even starting at U = 0.2. Therefore, when ex-
ecuting all tasks with fixed speed fiax, the PoF for AGR and
Bound is mainly determined by the execution times, which in-
crease with increasing utilization. Also, we notice that when the
utilization increases from 0.9 to 1.0, the PoF for all schemes in-
creases since all the tasks can be executed with f,x starting
from U = 0.9.

Fig. 5 shows the impact of the variability in the actual work-
load (i.e., the (ACET)/(WCET) ratio) on the probability
of failure, with F/Fjipis = 1.2 and U = 0.4. In general, we
find that the probability of failure increases with the increased
ratio of (ACET)/(WCET). This is to be expected, because
with the increased ratio of (ACET)/(WCET), at runtime,
tasks execute longer and they are subject to transient faults
with higher probabilities. However, observe that the dynamic
schemes are able to significantly reduce the probability of
failure compared to Static thanks to online reclaiming fea-
tures, especially at low (ACET)/(WCET) ratios. When
(ACET)/(WCET) = 0.9, the probabilities of failure of
Static, BR and GRE converge to that of Bound, since there
are almost no early completions or excess energy at runtime.
However, it is interesting to note that the probability of failure
of AGR is slightly higher from U = 0.9. This is because,
when all tasks almost take their WCET with the high utilization
U > 0.9, the expected early completions typically do not occur,
while the aggressive nature of AGR still forces the later tasks to
execute at relatively low speeds, causing a loss in reliability.

These patterns can be also used to establish guidelines for
system designers who need to figure out the minimum amount
of energy supply that must be provided to the system, to achieve
a certain target probability of failure. Fig. 6 establishes these
thresholds for (ACET)/(WCET) = 0.5 and U = 0.4.
As can be seen from the figure, to achieve a target PoF, the
amount of energy that must be supplied to the system is largest
for Static, that cannot reclaim excess energy at runtime. This
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TABLE 1
DYNAMIC RECLAIMING OVERHEADS

Scheme 4 Tasks 8 Tasks 16 Tasks
AGR  0.67ms 0.68ms  0.68ms
GRE  0.65ms 0.65ms  0.66ms

BR 1.6ms 2.9ms 5.5ms
BR* 0.86ms 1.23ms 1.79ms

amount sharply decreases with the use of dynamic reclaiming
algorithms, and is minimum for the best-performing algorithm
AGR. For example, 20% additional energy (beyond F;p,;¢) must
be provided to the system to achieve a probability of failure
of 10~6, with Static. However, if dynamic schemes (e.g., BR
or GRE) are available, then 7% additional energy is sufficient.
The difference between the schemes becomes very important
at low values for the target probability of failure (e.g., smaller
than 10~°); indicating that in safety-critical applications, the
available energy budget may be a prime factor to achieve a
target reliability figure.

Runtime Characteristics: We also conducted experiments to
measure the runtime overhead of dynamic reclaiming routines
that require computation of excess energy and reassignment of
CPU frequencies. The results, presented in Table I for task sets
of different sizes, show the extra CPU time used by AGR, GRE
and BR at each invocation point. These results are obtained on
a 1 GHz CPU with 1 GB of memory. GRE has the lowest over-
head, by virtue of modifying the frequency of only one task at
each invocation. AGR has also a rather low overhead, which is
different from BR which needs to resolve the ECRM problem at
each invocation, by considering the remaining energy. We also
implemented an alternative version of BR, denoted by B R*, that
uses the polynomial-time algorithm ECRM-LU as the main op-
timization routine. The results suggests that BR* is very effec-
tive in reducing the runtime overhead of the basic reclaiming
scheme. Overall, we can conclude that the dynamic reclaiming
algorithms can be implemented with low overhead in practice.

IV. EXTENSION TO PERIODIC TASKS

In this section, we extend our solutions to a more general
model where tasks may have different periods. Specifically, we
consider a set of periodic real-time tasks I' = (T4,...,T,),

where the task 7; has the period p;. The task T; is characterized
by its worst-case execution time (under maximum frequency) c;
and frequency-independent power figure Pi,q,. The first job of
each task is assumed to arrive at time 0. The jth job (instance) of
T;, referred as T;;, arrives at time (j — 1) - p; and has a deadline
7-pi. The power and fault models are the same as those assumed
in Section III.

With the periodic task model and DVES, the effective system
utilization depends on the execution frequencies of the tasks.
Hence, the effective utilization of task 7; at frequency f; is
Ui(fi) = w;i/ fi, where u; = (¢;)/(p;) is the nominal utilization
of the task 7; under maximum frequency. The (nominal) system
utilization under maximum frequency (3 U;(1.0) = >0, u;)
is denoted by U in this section.

We assume preemptive earliest-deadline-first (EDF) sched-
uling, which is known to be an optimal real-time scheduling
policy: with EDF, the necessary and sufficient condition for the
feasibility of the task set is U < 1.0 [20]. Hence, throughout
this section, we assume that the system utilization U when all
tasks are executed at fi,,x never exceeds 100% in order to guar-
antee the feasibility.

A. Static Solution

For periodic real-time tasks, considering that it is sufficient
and necessary to obtain an optimal solution during a hyperpe-
riod (the least common multiple (LCM) of all the periods), we
can restate our problem as: Given the energy budget within the
hyperperiod, find the optimal frequency assignments to indi-
vidual jobs so that the overall reliability is maximized while the
feasibility is preserved.

As in Section III, we assume that the available energy budget
FE during LCM has been adjusted by taking into account the
total number of jobs N = > | LCM/p; and transition energy
overhead 1. In the same vein, the transition time overhead can
be factored in the worst-case execution time c; of each job. Note
that for periodic task sets, the overall reliability of the applica-
tion is the product of all the jobs of all the tasks that are executed
during the hyperperiod. Moreover, in general, each task instance
T;; (the jth job of task 7;) may have its own frequency f;; which
could be potentially different than the frequency of other jobs
of the same task 7; in the optimal solution. Considering that
the total number of jobs during the hyperperiod could be expo-
nential in the number of tasks, at first, the problem looks rather
challenging since even the number of unknowns (f;; values) is
prohibitively large. Fortunately, the following theorem indicates
that one can commit to fask-level frequency assignments where
a given task runs at a constant speed f;, without compromising
optimality.

Theorem 1: For periodic task sets, it is always possible to find
an optimal solution where all the jobs of a given task 7; run at
the same frequency throughout the hyperperiod.

Proof: Consider an optimal solution with overall reliability
R, where the task instance (job) 75; runs at frequency f;;. Call
this schedule S. We will show that one can transform S to an-
other schedule S’ where: i) the feasibility is preserved; ii) the
energy budget constraint is satisfied; iii) the overall reliability is
no less than R; and iv) all jobs of a given task 7} run at constant
speed f;. During the hyperperiod, there are k; = (LCM)/(p;)
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jobs of task T;. Now, consider the schedule S, where T;; runs at
constant speed f; = (Zle fii)] (k).

First, we show that S’ is feasible with these frequency
assignments. To start with, observe that f; < max{f;;}. If S
is feasible, max{f;;} < 1.0, and we get f; < 1.0 implying
that no task runs at a frequency higher than f,.x = 1.0 in S’.
Similarly, one can easily see that f; > min{f;;} > fumin-
Moreover, since S 1is feasible, the total execution time
during hyperperiod should not exceed the length of LCM,
that is, > ., Zle(c,)/(fu) < LCM. In other words,
S S (e)/(f)(D)/(LCM) < 1. Applying first u; =
(¢i)/(pi), and then (p;)/(LCM) = (1)/(k;), we conclude that
S (1)/ (ki) S (i) /(fi7) < 1 holds.

On the other hand, the effective system utilization in S’
is U' = Y (u;)/(fi). Due to convex nature of the func-
ton U(f) = (u/f), (i) /() < (1)/(ks) Sy )/ (fir)
holds. Consequently, U’ = Y1 (u;)/(fi) < i ,(1)/
(k;) Zle(ul)/(f”) < 1, giving U’ < 1, which is necessary
and sufficient for feasibility under EDF. As a result S’ is still
feasible.

Next, we show that, in S’ the energy constraint is not vio-
lated. Let the energy consumption of schedules S and S’ during
LCM be X and X', respectively. Obviously, X < F by as-
sumption. Since f; = (ijl fi;)/ (ki) and E;(f) is a strictly
convex function, one can infer that the energy consumption of a
given task 7T; in S’, namely, k; - E;(f;), does not exceed the en-
ergy consumption of the same task in S, namely Zle E;(fij)-
Hence, we get S0 ki - Ei(fi) < S0y S50 Ei(fi)), giving
X’ < X < F and showing that S’ still satisfies the energy
constraint.

Finally, along the same lines, we show that relia-
bility R’ of S’ is no worse than the reliability R of the
schedule S. Using the given parameters, we compute

n k;
R=T0 Ry = T T Ry = ¢ 2oim 2005 #409), yhie
the new reliability is R’ = II7_ R, = e~ 2o ke Onee
again, since ; is a convex function, k;p;(f;) < Zle ©i( fij)
holds due to the fact that f; = (Zle fii)/(k;). As a result,
in the new schedule, none of task-level reliabilities, which is
the product of the reliabilities of individual jobs for a given
task, decreases. This implies that the total reliability over all
the tasks, R’, cannot be worse than the original reliability R,
completing the proof. ]

Thanks to Theorem 1, the total energy consumption of 7T}
within LCM, at the optimal frequency level f; can be expressed
as

<f2> _( ind; +Oeff )];LCM

= (Pina; + Ceffi?’)ﬁni
fi
where n, = (LCM)/(p;) is the number of jobs of T; within
a LCM. Therefore, our problem for the periodic tasks can be
formally expressed 10 find task-level frequency f; (1 < i < n)
so as to maximize

R= ﬁRi =
=1

(15)

oLOMY T £ilfs) :e—zlln,%(ﬁ) (16)

Subject to
Z —<1 (17)
ZE (fi) < (18)
fmln S fl < fmax(l <i < n) (19)

where the inequality (17) encodes the feasibility constraint
for EDF. Once again, by noting the monotonic features of the
exponential functions, our objective can be re-expressed as to
minimize: Y-, n;p;(f;) with the constraints (17), (18) and
(19). This optimization problem is called Periodic Energy-Con-
strained Reliability Management (P-ECRM) problem.

To solve P-ECRM, similar to the solution for ECRM, we
first need to find Ej;;c and F.x. Here, Ejin;ic 1s redefined as
the minimum energy that must be allocated to the given peri-
odic task set to preserve the feasibility with EDF during the hy-
perperiod, and F . represents the energy consumption of the
task set when all jobs run at f,,. With given task parameters,
E)inmit can be computed by the polynomial-time algorithm sug-
gested in [4] and Eyax is equal to Y- E;(fmax). Obviously,
if E < FEiimit, then there is no solution to P-ECRM because
Ejinmit is the minimum energy needed to guarantee the timing
constraints. Likewise, when E > F, .., we can simply assign
the maximum frequency to all the tasks without exceeding the
energy budget E, to achieve the best system reliability. There-
fore, to solve P-ECRM, one needs to focus mainly on the case
where Eiimit < F < Ehax.

Let ©(fi) = m; - @i(f;), which is still a convex func-
tion. A close inspection of P-ECRM reveals that it has the
same mathematical form as the ECRM problem introduced
in Section III, since task execution times and the deadline
in ECRM are replaced by task utilizations and 1.0 (EDF’s
utilization bound). As a result, the same solution methodology
suggested in Section III-A is applicable.

B. Dynamic Solutions

Similar to the case of frame-based tasks, the static solution
is optimal only when all tasks execute their WCETs in every
instance. Since early completions are rather common in actual
executions, we have again opportunities for improving overall
reliability by speeding up execution at runtime by recycling the
excess energy. In this section, we suggest three online (dynamic)
reliability-aware schemes for reclaiming the excess energy that
becomes available for periodic tasks. In all these algorithms,
recomputation and reallocation of excess energy are performed
only at job completion points.

In fact, it is tempting to use the framework suggested in
Section III-A, by recomputing the new frequency assignments
by considering all jobs yet-to-complete. However, unlike the
case of frame-based tasks, under preemptive EDF scheduling
we may have a number of preempted jobs in the ready queue
that already started their execution in addition to jobs that
will be released in the future, at reclamation points. These
preempted jobs may have varying amounts of workload already
completed under a prior frequency assignment. In our schemes,
to preserve runtime efficiency and to be able to use P-ECRM
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algorithm with slight modifications for task-level frequency
assignment, such preempted jobs are not considered for excess
energy allocation. Rather, excess energy is distributed only
to the jobs that will be released in the future. In addition,
Theorem 1 implies that a task-level frequency assignment
gives an optimal redistribution of excess energy to these jobs.
Consequently, the proposed algorithms take into account the
energy needed to allow the preempted jobs to complete their
remaining workload at their current frequency assignments.
The algorithms that we propose are the following.

* P-BR: dynamic basic reclaiming algorithm for periodic
tasks. Initially all frequency assignments are made by
solving the P-ECRM problem under worst-case workload
assumption. When a job completes without consuming its
WCET, this excess energy is reallocated to jobs that have
not yet started their executions. The new task-level fre-
quency assignments for these jobs can be again obtained
by invoking our optimal solution to the problem P-ECRM
with updated energy budget. When reinvoking the algo-
rithm P-ECRM at runtime, one needs to only update 7;
in expressions (15) and (16) for the number of future jobs
of task 7T;. Compared to the initial speed assignments,
the new frequencies never decrease due to excess energy
available on the runtime. As a result, the feasibility of the
resulting schedule is guaranteed in P-BR scheme.

* P-GRE: dynamic greedy algorithm for periodic tasks.
P-GRE is an alternative approach that attempts to allocate
the entire excess energy to the next task to execute (Thext),
when a task instance completes. In other words, all future
jobs of Tiext Will be given a new (higher) frequency and
their reliability will be significantly improved. If T} ext
cannot use the entire excess energy due to the maximum
frequency limitations, then the remaining part is allocated
to another task at the next job completion point. Again,
the feasibility of P-GRE follows from the fact that none of
the tasks runs at a frequency level lower than its original
frequency assigned by the static solution.

* P-AGR: dynamic aggressive algorithm for periodic tasks.
This scheme extends the speculative AGR scheme pro-
posed for the frame-based tasks, by speeding up all the
future jobs of the next task to be dispatched as much as
possible, by reserving only a minimum amount of energy
for instances of other tasks. First, we compute Fiimit
and store the frequency assignments (fly, flo, ..., fl,n)
obtained through FEj;,is. Then, at reclamation point, if a
job task 7; is about to start its execution for the first time,
we recompute the frequency for the jobs of the remaining
tasks I' — 7; by evaluating the speed assignments with
Fiimit and their energy consumption with these assign-
ments and WCETSs (E,eserve) is evaluated. Then, the
entire remaining energy (i.e., £ — Fieserve) 18 allocated
exclusively to the current and future job instances of the
task T;, allowing it to execute as fast as possible within the
given constraints. This solution also preserves the energy
and feasibility constraints, which can be seen from the
properties of the frequency assignments that correspond
to Elimit (the minimum energy requirement for a feasible
solution).
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Fig. 7. The probability of failure versus E/Eym;e with (ACET)/
(WCET) =05and U = 0.4.

C. Simulation Results and Discussion

In this section, we evaluate the performance of our dynamic
reclaiming schemes proposed for periodic tasks. In addition to
the Static Scheme (P-Static), we implemented in our simulator
P-BR, P-GRE, and P-AGR. We also implemented the Clair-
voyant Scheme (P-Bound) that computes an absolute bound on
the optimal solution, by using the P-ECRM algorithm and the
actual workload information in advance.

The experimental methodology we follow in this section is
parallel to that described in Section III-C. We generated 1000
task sets each with eight tasks. The periods of the tasks are gen-
erated randomly in the range [72, 1080] ms, which are compa-
rable to task period values encountered in real applications [23].
We made sure that the least common multiple period LCM of
the periods is 1080 for every task set. This allows us to compare
different task sets over the same operation period LCM = 1080
for various utilization and energy budget values.

Fig. 7 shows how the probability of failure changes with in-
creasing energy budget when (ACET)/(WCET) = 0.5 and
U = 0.4. First, we observe the same decreasing trends for prob-
ability of failure with increasing energy budget and same rela-
tive order of reliability among these schemes as those in Fig. 3
obtained for frame-based tasks. Compared to Fig. 3, there are
two main differences: First, P-BR provides a slightly better re-
liability performance compared to P-GRE. In the case of peri-
odic tasks, there are typically a large number of jobs that can
benefit from dynamic reclamation during the hyperperiod, and
a more balanced energy allocation that considers all the tasks
tends to be better than the greedy approach. Second, the per-
formances of three dynamic schemes show further improve-
ments with respect to the static scheme P-Static, even when
(E)/(Fiimit) = 1. With our dynamic schemes, the more jobs
complete early, the more jobs in the future can be executed at
the higher frequencies (occasionally, even at f,.x) due to the
dynamic reclaiming. In fact, even when £ = FEj;p,i¢, many jobs
complete early when (ACET)/(WCET) < 1.0. Hence, the
advantages of dynamic schemes over the static scheme P-Static
become more pronounced with increased number of jobs that
translate to increased number of reclamation/speedup points.

Fig. 8 illustrates the relationship between the probability of
failure and task set utilization U for (ACET)/(WCET) = 0.5
and F/FEymie = 1.15. Again, the main trends observed for
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frame-based tasks can be found in the case of periodic tasks.
Specifically, increasing the utilization has potential impact on
two factors that affect the reliability differently: the increase in
task workloads tends to increase PoF’, but for cases where the
system has to use significantly higher frequencies, this becomes
the dominant factor and PoF drops. The latter case can be
observed in the utilization range [0.5-0.9] for P-Static, P-BR
and P-GRE. A notable difference compared to the experiments
with frame-based tasks is that the performance of P-AGR is
almost identical to that of P-Bound. The reason is that with
large number of jobs during the hyperperiod, we typically
have sufficient energy to aggressively assign the current job a
frequency close to fmax, Which approaches that assigned by
P-Bound through the advance knowledge of actual workload.
Due to the jobs’ very frequent early completions (recall that
(ACET)/(WCET) = 0.5 in these experiments), the specula-
tive strategy of P-AGR pays off.

Fig. 9 shows the impact of the variability in the actual work-
load (i.e., the (ACET)/(WCET) ratio) on the probability
of failure, with £/Ejjmix = 1.2 and U = 0.4. In general,
similar to the results presented in Fig. 5 for frame-based tasks,
under fixed utilization, the probability of failure is primarily
determined by the effective workload, which tends to increase
with larger (ACET) /(W CET) ratios. This results in mono-
tonically increasing PoF values. Compared to the results for
frame-based tasks, the difference between static schemes and
our three dynamic schemes becomes bigger, which verifies
that the dynamic schemes can achieve better reliability for
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Fig. 10. The acceptable probability of failure versus the required E/ Eiimis

ratio.
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Fig. 11. The probability of failure versus E/Ejm; with (ACET)/
(WCET) = 0.5 and U = 0.4 (LCM = 2160).

periodic tasks since there are more available energy to be dy-
namically reclaimed due to early completions of numerous jobs
during the hyperperiod. An interesting observation is that the
almost perfect performance of P-AGR degrades rapidly when
(ACET)/(WCET) > 0.8, implying that it should be used
only when there is great confidence about high variability in
the actual workload. With settings (ACET)/(WCET) = 0.5
and U = 0.4, Fig. 10 shows the required minimum energy
supply to achieve a target (acceptable) probability of failure.
As we can see, if the system’s acceptable probability of failure
is 1076, we need to allocate 20% additional energy (beyond
FEiimit) when using Static scheme. However, when dynamic
schemes (e.g., P-BR or P-GRE) are applied, then 5% additional
energy is sufficient. Furthermore, when using P-AGR, as long
as the likelihood of early completions is high (such as the case
here with (ACET)/(WCET) = 0.5), there is practically no
need to allocate energy beyond FEjini¢ if the target probability
of failure is less than 10~%. We also repeated the experiments
for a larger LCM, namely for LCM = 2160. The results are
quite similar to those reported above. Due to space limitations,
we only report the impact of energy budget and utilization on
the probability failure, in Figs. 11 and 12, respectively.

To summarize, these results indicate that our dynamic
schemes can achieve even better performance compared to the
static schemes in the case of periodic tasks, because there are
more dynamic energy reclamation opportunities with the larger
number of jobs that execute within the hyperperiod.
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TABLE II
DYNAMIC RECLAIMING OVERHEADS
Scheme 4 Tasks 8 Tasks 16 Tasks
P-AGR 0.68ms 0.69ms  0.70ms
P-GRE 0.66ms 0.66ms 0.66ms
P-BR 1.9ms 3.4ms 6.5ms
P-BR* 0.98ms 1.42ms 2.13ms

Runtime Characteristics: Our measurements to explore the
runtime overhead of dynamic reclaiming algorithms for peri-
odic task sets, presented in Table II, yielded figures similar to
those obtained for frame-based tasks (Table I). Again, the num-
bers correspond to average CPU time used by the reclamation
routines at each invocation (job completion) point. P-BR a has
a larger overhead compared to BR, primarily due to the need
of solving P-ECRM online for large number of jobs. However,
we note that its overhead can be reduced by employing the
ECRM-LU algorithm (adapted to periodic settings) as the opti-
mization routine. That variation is denoted as P-BR* in Table II.

D. Practical Considerations

Our solution framework assumed frequency levels that can
assume any value in the range [fmin, fmax]- In discrete-fre-
quency settings where the frequency levels can assume k&
distinct levels fi,..., fx, the problem gets decidedly more
complex. In fact, in [2], it is shown that merely deciding the
feasibility of a set of frame-based tasks with common release
time and deadline in discrete frequency settings under hard
energy constraint is NP-Complete. This immediately implies
that the more general problem of maximizing the reliability
of frame-based tasks under both hard deadline and energy
constraints is intractable as well. For periodic tasks having
access to nonsharable resources protected by semaphores and
mutex locks, the use of resource access protocols such as
Priority Inheritance Protocol, Priority Ceiling Protocol and
Stack Resource Policy [22] will be necessary. Such settings,
in general, imply nontrivial feasibility conditions and warrant
further investigation.

V. CONCLUSION

Recent research has identified significant and negative im-
pact of the popular energy management technique DVES on
the reliability of real-time embedded systems. In this paper,

we considered both frame-based and periodic task models and
showed how to compute frequency assignments (which translate
to task-level energy allocations) to maximize the overall relia-
bility, while satisfying a hard energy constraint. By assuming a
frequency value that can vary from a lower bound to an upper
bound, we first presented our static optimal scheme. Then, we
extended our framework with several online (dynamic) schemes
that exploit early task completions and speed up task executions
at runtime, to improve overall reliability. All our static and dy-
namic solutions guarantee both timing and energy budget con-
straints in all execution scenarios. Moreover, the experimental
results indicate that our algorithms perform comparably to a
clairvoyant optimal scheduler that can maximize overall reli-
ability thanks to its advance knowledge about the exact work-
load. To the best of our knowledge, this problem has not been
addressed in the research literature in the past.
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