
1

On Reliability Management of Energy-Aware
Real-Time Systems through Task Replication

Mohammad A. Haque, Hakan Aydin, and Dakai Zhu,

Abstract—On emerging multicore systems, task replication is a powerful way to achieve high reliability targets. In this paper, we
consider the problem of achieving a given reliability target for a set of periodic real-time tasks running on a multicore system with
minimum energy consumption. Our framework explicitly takes into account the coverage factor of the fault detection techniques
and the negative impact of Dynamic Voltage Scaling (DVS) on the rate of transient faults leading to soft errors. We characterize
the subtle interplay between the processing frequency, replication level, reliability, fault coverage, and energy consumption on
DVS-enabled multicore systems. We first develop static solutions and then propose dynamic adaptation schemes in order to
reduce the concurrent execution of the replicas of a given task and to take advantage of early completions. Our simulation
results indicate that through our algorithms, a very broad spectrum of reliability targets can be achieved with minimum energy
consumption thanks to the judicious task replication and frequency assignment.

Index Terms—Energy-aware Systems, Real-time and Embedded Systems, Reliability, Multicore Systems, Scheduling

F

1 INTRODUCTION

In real-time systems, the timeliness of the output is
as important as its logical correctness; in other words,
timing constraints, often expressed in the form of
deadlines, must be satisfied. A wide range of appli-
cations require real-time computing, including those
in industrial automation, embedded control, avionics,
and environmental acquisition/monitoring domains.
As real-time embedded systems often control safety-
critical applications tolerating faults and achieving
high reliability levels is of utmost importance: faults
must be detected, and appropriate recovery tasks
must be successfully completed before the deadlines.
Another very desirable feature of such systems is
energy awareness. However, energy management and
fault tolerance, are in general, conflicting system ob-
jectives as fault tolerance typically requires redundancy
of system resources, such as extra CPU time and/or
spare processing units [1], [2] [3], [4], [5].

Computer systems are susceptible to faults, leading
to various run-time errors. Faults can be broadly cate-
gorized into two types: transient and permanent faults
[6], [7]. Transient faults are known to occur much
more frequently in practice, [8], [9]. Since transient
faults are non-persistent, re-execution of the affected
task or invocation of an alternate task are commonly
used recovery techniques [6], [7].

Transient faults may manifest in the form of single
event upsets or soft errors with incorrect computation

• Mohammad A Haque and Hakan Aydin are with the Department of
Computer Science, George Mason University, Fairfax, VA, 22030.
E-mail: aydin@cs.gmu.edu

• Dakai Zhu is with the Department of Computer Science, University
of Texas at San Antonio, San Antonio, TX, 78249.

results. These errors are commonly caused by alpha
particles and cosmic rays (e.g., neutrons) that hit sili-
con chips in unpredictable way, creating large number
of electron-hole pairs due to ionization mechanism
and flipping the output of a logic gate [10]. These
errors are called soft because they do not lead to a
permanent failure on the affected hardware compo-
nent [11]. Moreover, with increasing scaling levels in
CMOS technologies, the susceptibility of computer
systems to transient faults is known to increase, as
more and more transistors are deployed per unit
area [12], [13]. This is also considered as one of the
great challenges for the Near-threshold-voltage (NTV)
designs that are considered key for the next genera-
tion energy-efficient systems [14].

Dynamic Voltage Scaling (DVS), which is based on
adjusting the CPU voltage and frequency, is a well-
known energy management technique that trades off
the processing speed with energy savings [15], [16].
The consideration of reliability for systems employing
DVS for energy is equally important, as the current
research suggests the negative impact of DVS on the
transient fault rate [17], [18]: as we decrease the sup-
ply voltage and frequency to save power, the transient
fault rate (and the corresponding soft errors) signifi-
cantly increase. Therefore, energy management tech-
niques must take into account the reliability degra-
dation and make provisions accordingly, in particular
for real-time applications. A set of techniques, called
the Reliability-Aware Power Management (RAPM) [19],
[20], exploit time redundancy available in the system
for both energy and reliability management. These
works consider the problem of preserving the sys-
tem’s original reliability, which is the reliability of the
system executing tasks without any slowdown. The
scheme in [20] resorts to backward recovery approach

2

and assigns a recovery task for every task that has
been slowed down, while the technique in [19] uses
recovery blocks shared by all the scaled tasks.

More recently, the reliability-oriented energy manage-
ment framework has been proposed for periodic real-
time tasks running on a single-core system [21]. The
main objective is to achieve arbitrary reliability levels, in
terms of tolerance to transient faults, with minimum
energy consumption. Unlike RAPM studies, the target
reliability level can be lower or higher than the original
reliability. This flexibility is important, as some high-
criticality tasks may require very high-levels of relia-
bility, while for some other tasks a modest reliability
degradation may be acceptable to save energy. The
solution still focuses on single-core systems and hence
resorts to a limited number of shared recovery jobs
that are invoked upon the detection of soft errors.

The main proposal of this paper is a reliability-
oriented energy management framework for multicore
systems. In the last decade, due to the advances in the
CMOS technology, we witnessed the proliferation of
systems with multiple processing cores. Systems with
2-4 cores are commonplace, and systems with more
processing cores are also available. We observe that
on these systems with multiple processing cores, task
replication is likely to become a quite viable option
for reliability management. By scheduling multiple
copies of the same task on multiple cores, the like-
lihood of completing at least one of them successfully
(i.e., without encountering transient faults) increases
significantly. Replication has several advantages as
an effective reliability management tool. Firstly, very
high reliability targets can only be achieved through
task replication. Secondly, replication has the poten-
tial of tolerating permanent faults in addition to im-
proving reliability in terms of tolerance to transient
faults. Thirdly, and most importantly, it creates an
additional and powerful dimension to reduce the
energy consumption by executing multiple copies at
lower frequencies, while achieving the same reliability
figures.

In our framework, we consider the energy-efficient
replication problem for preemptive, periodic applica-
tions running on a multicore system. Our setting is
reliability-oriented in the sense that we consider mini-
mizing energy to meet arbitrary task-level or system-
level reliability targets. Specifically, for a given relia-
bility target, our goal is to find the degree of replication
(number of copies) and the frequency assignment for
all tasks, such that the overall energy consumption
is minimized, while ensuring that all timing con-
straints will be met. Our reliability formulation explic-
itly considers the probability that the fault detection
technique will work successfully during execution.
This paper is an extension of the work presented
in [22]. The main contributions of this paper can be
summarized as follows:
• We present an extensive analysis to show the via-

bility of replication as a tool for joint management
of reliability and energy, while also taking into
account the imperfect nature of the fault detection
techniques and the impact of DVS on transient
fault rates.

• We formulate the Generalized Energy-Efficient
Replication Problem (GEERP) and show its in-
tractability,

• We propose an efficient and approximate solution
to GEERP,

• We develop a dynamic adaptation scheme based
on adaptive delaying, that enables partial or com-
plete cancellation of the additional task replicas
to save further energy, and,

• We evaluate the performance of our framework
under a wide range of system parameters.

2 SYSTEM MODEL

2.1 Workload and Processor Model

We consider a set of N periodic real-time tasks Ψ =
{τ1, ..., τN}. Each task τi has worst-case execution time
ci under the maximum available CPU frequency fmax.
τi generates a sequence of task instances (or, jobs) with
the period of Pi. The relative deadline of each of these
jobs is equal to the period value Pi, in other words,
each job must complete by the arrival of the next job of
the same task. The utilization of task τi, ui, is defined
as ci

Pi
. The total utilization Utot is the sum of all the

individual task utilizations.
The workload executes on a set of M identical cores.

Each core can operate at one of the K different fre-
quency settings ranging from a minimum frequency
fmin to a maximum frequency fmax. We denote by F
the set of available frequency settings. Without loss
of generality, we normalize the frequency levels with
respect to fmax (i.e., fmax = 1.0). At frequency f , a
core may require up to ci

f time units to complete a
job of task τi.

Our framework assigns ki replicas (copies) of task
τi to ki ≤ M distinct processing cores, to achieve
reliability targets. The entire set of

∑
ki task copies are

partitioned upon the multicore system. Each replica
task, being a periodic task itself, generates a sequence
of jobs on the core it is assigned to. The kth replica of
the jth instance/job of task τi is denoted by T ki,j .

The preemptive Earliest-Deadline-First policy,
which is known to be optimal on a single processing
unit [23], is adopted to execute tasks on each core.

2.2 Power Model

We consider a power model adopted in previous
reliability-aware power management research [24],
[21], [20]. The power consumption of each core
consists of static and dynamic power components.
The static power Ps is determined mainly by the
leakage current of the system. The dynamic power

3

Pd includes a frequency-dependent power compo-
nent (determined by voltage and frequency levels),
and a frequency-independent power component Pind,
driven by the modules such as memory and I/O
subsystem in the active state. In DVS technique, the
supply voltage is scaled in almost linear fashion with
the processing frequency. Consequently, the power
consumption of a core can be approximated by:

Pcore = Ps + Pd = Ps + Pind + Cef
3 (1)

Above, Ce is a system-dependent constant, reflect-
ing the effective switching capacitance. When a core is
not executing any task (idle state), its power consump-
tion is primarily determined by the static power. We
assume that the static power consumption can only be
eliminated by the complete power-down of the core.

Existing research indicates that arbitrarily slowing
down a task is not always energy-efficient [25], [26],
[27], due to the frequency-independent power compo-
nents. In other words, there is a processing frequency
below which the total energy consumption increases.
This frequency is called the energy-efficient frequency
and denoted by fee. fee can be computed analytically
through the well-known techniques [26], [18].

While the power model we adopt is commonly
used in reliability-aware power management research,
we note that our replication-based reliability manage-
ment techniques would remain valid as long as Pcore
is a non-linear and convex function of the processing
frequency f (and not necessarily a cubic function of
f); however, numerical examples would need to be
re-visited to obtain updated energy values.

2.3 Fault Model
Transient faults are typically modelled using an expo-
nential distribution with an average arrival rate λ [28].
The fault rate λ increases significantly as frequency is
scaled down when using DVS [17], [18]. The average
fault rate at the maximum frequency is denoted by
λ0. The fault rate at frequency f can be expressed as
[1], [18], [24], [29]:

λ(f) = λ010
d(1−f)
1−fmin (2)

Above, the exponent d, called the sensitivity factor in
the paper, is a measure of how quickly the transient
fault rate increases when the system supply voltage
and frequency are scaled. Typical values range from
2 to 6 [18], [20], [24].

The reliability of a single task instance is defined as
the probability of executing the task successfully, in
the absence of transient faults [20]. Using the expo-
nential distribution assumption, then the reliability of
a single instance of task τi running at frequency fi can
be expressed as e−λ(fi)

ci
fi as in [1], [18], [24], [29].

At the end of execution of each task copy (replica),
an acceptance test (or, sanity check) [6], [7] is conducted
to check the occurrence of soft errors induced by the

transient faults. If the test indicates no error, then the
output of the task copy is committed to; otherwise,
it is discarded. Therefore, in replicated execution set-
tings of a given task, it is sufficient to have at least one
task copy execution that passes the acceptance test.

Acceptance tests are not 100% accurate. Sometimes
a fault may remain undetected or the acceptance
test may declare a correct outcome faulty [6]. Con-
sequently the reliability of a job in the presence of an
imperfect acceptance test must be derived by factoring
in the probability that the acceptance test will perform
correctly. The latter probability is called coverage factor
of the acceptance test in [6]. In our paper, we denote
it by (1 − α), where α is the probability of making
an incorrect decision during the the acceptance test.
Thus, the reliability of a job can be expressed as:

Ri(fi) = (1− α)× e−λ(fi)
ci
fi (3)

Conversely, the probability of failure (PoF) of a task
instance of τi is given by:

φi(fi) = 1−Ri(fi) (4)

Throughout the paper, we consider reliability in
terms of tolerance to transient faults only. We also
focus on transient faults that affect the core logic;
we assume that the memory subsystem is protected
against transient faults through the use of error-
correcting codes (ECCs) and memory interleaving
which are known to provide strong protection against
such faults [12], [30]. As our focus is the transient
faults that affect the core hardware logic, failures that
are due to software faults (bugs) are not considered.

3 INTERPLAY OF ENERGY, RELIABILITY,
FREQUENCY, AND REPLICATION

Before presenting our detailed analysis, we start by
illustrating how the level of replication and processing
frequency jointly determine the reliability and energy
savings. Consider a single instance of task τi running
at frequency fi. Its probability of failure is given
by Equation (3) and is a function of the processing
frequency f , λ0, coverage factor and the sensitivity
factor d. Now consider two replicas of τi running at
frequency f . The execution with replication will be
unsuccessful only if both replicas encounter transient
faults during their respective executions. Hence, the
new reliability with two replicas is found as:

R′i = 1− (1−Ri(f))2

Its new probability of failure is given by:

φ
(2)
i = (φi(f))2

In general, with k replicas, the probability of failure
decreases exponentially with k:

φ
(k)
i = (φi(f))k (5)

4

10-25

10-20

10-15

10-10

10-5
1.0

105

0.2 0.4 0.6 0.8 1.0

N
or

m
al

iz
ed

 T
ar

ge
t P

oF

Normalized CPU frequency

k = 1
k = 2
k = 3
k = 4

Fig. 1: Impact of the frequency on reli-
ability

0

0.50

1.0

1.50

2.0

1 2 3 4 5N
or

m
 E

ne
rg

y
C

on
su

m
pt

io
n

Number of Replicas

PoF = 10
PoF = 1

PoF = 10-5

PoF = 10-10

Fig. 2: Impact of replication level on
energy

0

0.25

0.50

0.75

1.0

1.25

1.50

10-15 10-10 10-5 1.0 10000N
or

m
 E

ne
rg

y
C

on
su

m
pt

io
n

Normalized Target PoF

k = 4
k = 3
k = 2
k = 1

Fig. 3: Impact of target PoF on energy

We observe that the use of replication may be
a powerful tool to mitigate the negative impact of
the voltage/frequency scaling on the probability of
failure, and improve energy savings through parallel
execution. However, there are several non-trivial de-
sign dimensions that must be considered, including
the energy cost of additional replica execution(s). As
a concrete example, consider a single task with worst-
case execution time ci = 100 ms. Following [21], in this
and subsequent examples used in the paper, we as-
sume that transient fault arrival rate at the maximum
frequency is λ0 = 10−6, and the system sensitivity
factor d is 4. For illustration purposes, we assume
a perfect acceptance test with coverage factor 1. We
normalize the target PoF values with respect to a
single copy running at the maximum frequency.

Figure 1 shows how the execution frequency deter-
mines the achievable PoF, for different number (k) of
replicas. The PoF values are given in normalized form,
with respect to the probability of failure of a single
copy running at maximum frequency. Note that the
y−axis in the plot is in logarithmic scale. Hence, for
a given number of replicas, the PoF increases (the re-
liability decreases) rapidly with decreasing frequency.
However, for a given frequency, there is also an
exponential improvement on reliability (decrease in
PoF), with increasing number of replicas. This simple
fact points to an interesting design spectrum: the same
target PoF value can be achieved at different frequency
and replication levels.

We note that there is a lower bound on the number
of replicas required to achieve a certain PoF target,
φtarget. In particular, high reliability levels necessitate
the use of multiple replicas. Using Equation (5), we
can easily determine the minimum number of repli-
cas (k) needed to achieve the target PoF at a given
frequency level f :

φtarget ≥ (φi(f))k

k ≥
⌈ log(φtarget)

log(φi(f))

⌉
(6)

On the other hand, the energy consumption of dif-
ferent replication/frequency levels yielding the same
reliability level may vary significantly. Figure 2 shows
the impact of replication on energy consumption for

our example task, under various target (normalized)
PoF values. In these experiments, for a given target
PoF value φtarget and for each replication level (k), we
compute the minimum energy consumption when we
use the best common frequency f for all k replicas to
achieve φtarget. The energy consumption is normal-
ized with respect to a single replica running at the
maximum frequency1.

A few key observations are in order. First, some
very high reliability (very low PoF) targets can only
be achieved with large number of replicas. Second, for
a fixed reliability target, using a minimum number of
replicas generally consumes high energy. This is due
to the fact that the minimum number of replicas are
typically executed at high frequency levels to meet the
reliability target φtarget, giving high energy figures.
On the other hand, as we start increasing the number
of replicas, we can afford reducing the frequency of
individual replicas and thus the total energy con-
sumption starts to decrease. But as we deploy further
replicas, after a certain point, the energy consumption
due to additional replicas offsets the energy savings
due to execution at low frequencies. As a result, the
energy consumption starts increasing. This is also
coupled by the fact that reducing the frequency below
the energy-efficient frequency fee is not helpful, even
if we can use additional replicas. Consequently, the
energy consumption figures continue to increase be-
yond a certain threshold point. Finally, it is clear that
the optimal number of replicas to minimize energy
depends highly on the target reliability.

Figure 3 depicts the interplay of target probability
of failure and energy consumption. Notice that, as we
increase the target PoF, the total energy consumption
decreases for a fixed number of replicas, as we are
more tolerant of reliability degradation and we can
afford running the replicas at lower frequencies. Once
the frequency required to achieve the reliability tar-
get reaches the energy-efficient frequency, the energy
curve flattens out. At that point, increasing the tar-
get probability of failure does not yield any energy
savings. Moreover, in our example, φtarget values
smaller than 10−7 were not achievable by deploying
< 3 replicas.

1. We assume Pind = 0.1 in the examples.

5

10-30

10-20

10-10

1

1 2 3 4

N
or

m
al

iz
ed

 P
oF

Number of Replicas

Coverage Factor=0.9
Coverage Factor=0.99

Coverage Factor=1.0

Fig. 4: Impact of the coverage factor

The coverage factor has also a significant impact
in the results. In Fig. 4, we present the PoF as a
function of the degree of replication and coverage
factor. The CPU frequency is fixed at fmax. The PoF
values are normalized with respect to a system with
single replica running at fmax and coverage factor 0.9.
As expected, the PoF decreases quickly with better
coverage factor. We observe that we can achieve the
same reliability target despite a lower coverage fac-
tor by deploying additional replicas. Consequently,
replication can be used as a tool to compensate for
an acceptance test with lower coverage factor. Finally,
some reliability targets can only be achieved in the
presence of an acceptance test with higher coverage
factor and higher number of replicas.

The key observations in this section are as follows:
• In addition to the processing frequency, the repli-

cation can be used to manage reliability on DVS-
enabled multicore systems, giving a broad design
spectrum involving multiple dimensions, and in
particular, energy consumption.

• The same target reliability can be typically
achieved through multiple ways: using small
number of replicas running at high frequencies
or large number of replicas running at low fre-
quencies. While the use of replication allows the
system to use lower frequencies to mitigate the
reliability loss, this may have a negative impact
on the energy consumption due to the cost of exe-
cuting additional replicas. The configuration that
minimizes energy consumption varies depending
on the system parameters and target reliability.

• Coverage factor provides another dimension of
constraint and optimization opportunity. Replica-
tion can be used to compensate the impact of an
acceptance test with low coverage factor.

4 TASK-LEVEL ANALYSIS

We first address our problem of finding the energy-
optimal configuration (i.e., the number and frequency
assignment of replicas) in the context of a single task
to achieve a target reliability level. This single-task

setting enables us to illustrate some additional non-
trivial aspects of the problem as well as to present the
terminology and definitions that will be instrumental
for the eventual system-level analysis that will be
carried out in Section 5.

Ideally the system can choose different speed as-
signment for different replicas of the same job. Even
though theoretically it should minimize the energy
consumption, obtaining the speed assignment for all
the replicas of all the tasks will be computationally
prohibitive as the number of such possible combi-
nations will increase exponentially with the number
of replicas. Another alternative is to assign the same
speed for all the replicas of a job. This choice re-
duces the computational overhead of determining the
speeds and as observed in [22], the energy consump-
tion increases only marginally compared to optimal
but computationally prohibitive speed assignment
method. Consequently, we will assume uniform speed
for all replicas of a given task in the rest of the paper.

We start by observing that, for a given execution
frequency, the minimum number of replicas needed to
obtain a target reliability level is provided by Equation
(6). Moreover, the number of available frequency lev-
els is very limited in existing processors; for example,
Intel Pentium M processor with 1.6 GHz maximum
frequency supports only six frequency steps in the
active state [31]. Consequently, for a given reliability
target, one can easily compute the number of replicas
needed, as well as the corresponding overall energy
consumption for every available frequency setting in
time O(K). An interesting question is whether the
energy numbers obtained as a function of decreasing
replica frequency exhibit a certain (e.g., convex or
concave) pattern. Unfortunately, as [22] illustrates,
the answer is negative, and hence standard nonlinear
optimization techniques do not apply.

In general, we can construct for every task τj a table
with K rows on a system with K frequency levels.
For each frequency setting, we compute the minimum
number of replicas (through Equation (6)) to achieve
its target reliability φj,target and the corresponding
overall energy consumption. In preparation for our
system-level analysis, we also include a column that
indicates the total CPU time needed by all the replicas.

The entries given in each row corresponds to a
separate configuration of the system. We denote the
ith configuration for a task by RfConfig(i), which con-
tains information about the frequency of each replica,
number of replicas, total energy consumption, and
total CPU time needed by all replicas. This Energy-
Frequency-Reliability (EFR) table can be clearly con-
structed in time O(K) for a given task.

Table 1 shows an example EFR table for a task
whose execution time is c = 100 ms. The normal-
ized Pof target is 10−6. For simplicity, assume a per-
fect acceptance test and Ps and Pind are negligible.
Assuming the processor has 10 different frequency

6

steps, we have 10 different configurations (RfConfig(i)
i = 1, . . . , 10).

TABLE 1: An Example EFR Table

Frequency, f Replica # r Energy CPU time
1 2 0.2 0.2

0.9 2 0.162 0.222222
0.8 3 0.192 0.375
0.7 3 0.147 0.428571
0.6 3 0.108 0.5
0.5 3 0.075 0.6
0.4 4 0.064 1
0.3 4 0.036 1.33333
0.2 5 0.02 2.5
0.1 6 0.006 6

Note that, in general, the number of valid frequency
levels may be smaller than the number of available
frequency levels. This is because frequencies below
the energy-efficient frequency fee should not be con-
sidered. In addition, since the task τj would miss its
deadline at the frequency levels below its utilization
value of uj =

cj
Pj

, we do not need to consider frequen-
cies < max{fee, uj}.

As we decrease the CPU frequency, the time re-
quired for executing each replica increases. The num-
ber of required replicas may remain the same or
increase. As a result, the total CPU time consumption
keeps increasing. However, in terms of energy con-
sumption patterns, the trends are not always obvious.
For example, looking at Table 1 and comparing the
entries for f = 0.9 and f = 0.8, we observe an
interesting phenomenon. Specifically, the energy con-
sumption at the lower frequency configuration f = 0.8
is higher than that of the higher frequency configura-
tion f = 0.9. Obviously, there is no benefit in using
the frequency f = 0.8 as it consumes more energy
while also using more CPU time (potentially affecting
the feasibility of other tasks that may exist in the
system), compared to the adjacent higher frequency
level f = 0.9.

Clearly such inefficient frequency levels can be also
removed from the table in a linear pass. Considering
that the frequency levels below max{fee, uj} are not
valid either, the trimming of the entire table can
be achieved O(K) time. After such a trimming, the
energy consumption values in the table will be in de-
creasing order and the minimum energy configuration
for the task will be at the last row of the table. While
choosing this minimum energy configuration is ideal
for the task, the feasibility and reliability requirements
of other tasks may not allow the use of this frequency.
This issue will be further analyzed in Section 5.

5 SYSTEM-LEVEL ANALYSIS

In this section, we address the system-level problem
that involves the consideration of all the tasks in
the system, each with potentially different reliability
targets. We first give additional details necessary to

formulate and manage reliability of periodic tasks
each with multiple task instances (jobs).

5.1 Reliability Formulation for Periodic Tasks
We consider a reliability formulation similar to the
one used in [21]. The reliability of a periodic task is
defined as the probability of successfully executing all
instances of that task during the hyperperiod, which
is defined as the least common multiple of all the
periods. Specifically, if the task τi has hi instances in
the hyperperiod, the PoF of the task is given by:

φi = 1−Πhi
j=1(1− φi,j) (7)

where φi,j denotes the PoF of the job Ti,j .
The system reliability is the probability of executing

all instances of all the tasks successfully. Therefore, it
can be easily computed as the product of individual
task reliabilities. The system PoF is then given by:

φsyst = 1−ΠN
i=1(1− φi)

In reliability-oriented energy management problem,
the task-level reliability targets may be given as part
of the problem input. However, if only the system-
level target reliability is given, we first need to com-
pute the task level reliability target from the given
system level reliability target φ′syst. In this case, we can
use the technique called the Uniform Reliability Scaling
in [21]. This technique scales up or down all original
task reliabilities by the same factor to achieve the new
system-level target reliability. Specifically, assume that
when all instances of a periodic task during the
hyperperiod are executed at fmax and there are no
additional replicas, the task level Pof is φ̂i. Then, the
task-level target φi,target values are determined such
that φ′syst = 1−ΠN

i=1(1− φi,target), and

∀i
φi,target

φ̂i
= ω (8)

Above, ω is called the (uniform) PoF scaling factor.
Clearly, small (large) ω values correspond to higher
(lower) reliability objectives.

5.2 Problem Definition
We now address the problem for a generalized setting,
where there are multiple periodic tasks in the sys-
tem. With multiple tasks, feasibility (deadline guaran-
tees) becomes a major concern. Therefore, many tasks
cannot be scheduled according to the most energy-
efficient configuration from the EFR table since the
total CPU time of all the replicas may exceed the time
available on existing number of cores. Consequently,
some tasks may have to be executed in a different
’configuration’. Given the EFR tables, determining the
configuration (i.e., the degree of replication and fre-
quency assignment) for each task such that the overall
energy consumption is minimized while meeting the
reliability target is a non-trivial problem.

7

Generalized Energy-Efficient Replication Problem
(GEERP): Given a set of periodic tasks and task-level
reliability targets, determine the number of replicas to
execute and the frequency assignment for each replica
such that the energy consumption is minimized, while
ensuring a feasible partitioning such that the deadline
constraints are met and no two replicas of the same
task are assigned to the same core.

To present the general optimization problem formu-
lation, we first introduce some additional notation. Let
ki be the number of replicas assigned to task τi and
Ei(fi) be the energy consumption for each replica of
τi running at frequency fi during the hyperperiod.
Γm denotes the set of all tasks for which a replica is
assigned to core m. ρ(i, j) represents the core where
the jth replica of τi is assigned. Then our problem
is to find ki and fi values along with the replica-
to-core allocation (partitioning) decisions {ρ(i, ki)},
i = 1, . . . , N , so as to:

minimize ΣNi=1ki × Ei(fi) (9)

subject to ∀i fi ∈ F (10)

∀i ki ≤M (11)

∀m Στi∈Γm

ci
Pi × fi

≤ 1 (12)

∀i (φi(fi))
ki ≤ φi,target (13)

∀i ∀j 6=k ρ(i, j) 6= ρ(i, k) (14)

Above, the constraint (10) ensures a legitimate fre-
quency assignment for every task and the constraint
(11) enforces that the number of replicas does not
exceed the available number of cores. The constraint
(12) ensures that a feasible partitioning is obtained
for all the cores, using the well-known schedulability
condition with preemptive EDF [23]. The constraint
set (13) represents the task level reliability targets.
Finally, the constraint (14) ensures that no two replicas
of a task are assigned to the same core.

The problem can be easily shown to be NP-hard
in the strong sense: If we consider the special case of
tasks with identical periods (deadlines), target reliabil-
ities equal to the original reliability levels (requiring
only one copy of each task), and a system without
any DVS capability (where all tasks are executed at
constant speed), GEERP reduces to the problem of
packing variable-size items on M bins – this is the
classical bin-packing problem, which is known to be
NP-hard in the strong sense [32].

We consider a two-step solution for GEERP. In the
first step, we construct the EFR tables for all tasks,
separately. In the second step, using the tables, we
search for a solution configuration that can be feasibly
partitioned, while obtaining as much energy savings
as possible. Due to the intractability of the problem,
we resort to an efficient heuristic-based solution that
still satisfies all the constraints of the problem.

5.3 Algorithm Energy-Efficient Replication (EER)

In this section, we present our solution. First, using
Equation (7), the algorithm determines the job level
reliability target for each periodic task, given the task-
level reliability targets. Then as described in Section 4
the EFR tables are constructed. Assume that, the jth

configuration of τi is denoted by RfConfig(i,j). In the
rest of the paper, f(i,j), r(i,j), E(i,j) and S(i,j) denote
respectively the frequency, the number, total energy
consumption, and total CPU time of all replicas in
RfConfig(i,j). The specific quantities for RfConfig(i,j) can
be obtained from the jth row of the corresponding
EFR table. From the tables, the algorithm first deter-
mines the minimum energy configuration for a given
task.

The algorithm then tries to partition the workload
for various configurations on M cores. We use the
well-known First-Fit-Decreasing (FFD) heuristic [33]
to allocate the replicas to the cores. However, we
modified the FFD heuristic such that a different core
is chosen for each replica of a task.

As the first attempt, the algorithm checks if it is
possible to obtain a feasible partitioning where every
task has its preferred (i.e., minimum-energy) replica-
frequency configuration. If so, this is clearly the op-
timal solution for the entire problem. Otherwise, we
check the other extreme, where every replica is forced
to run at fmax to minimize the number and total CPU
time of all the replicas. If there is no feasible solution
for this case, the algorithm exits with an error report.
Otherwise, the algorithm moves on to the next phase,
which we call the relaxation phase.

In the relaxation phase, the algorithm starts with
a feasible configuration where every replica runs at
fmax and all tasks are marked as eligible for relax-
ation. Then in each step, based on the specific task
selection heuristic (that will be discussed shortly), one
eligible task is chosen and its frequency is reduced by
one level according to its EFR table. If the resulting
configuration is also feasible, the new configuration
is committed to and the algorithm proceeds to the
next step. Otherwise, the algorithm backtracks to the
previous configuration and the chosen task is marked
as ineligible for future relaxations. If a task reaches
its minimum energy configuration level in the EFR
table, it is also marked as ineligible for additional
slowdown. The algorithm stops when there is no more
eligible task for relaxation. Algorithm 1 shows the
pseudo-code of the algorithm.

Several heuristics can be applied to choose the
task for relaxation in every iteration. For this, we
considered the following heuristics.

Largest-Energy-First (LEF): In this heuristic we
choose the task that will provide the largest energy
savings when relaxed to the next level in the EFR
table. For task τi, let the current configuration be the
row j in the EFR table. Then, the task with the largest

8

Algorithm 1 Algorithm Energy-Efficient Replication

Construct the EFR tables for all tasks
for i = 1 to N do
/* assume ji is the most energy-efficient frequency-
level for τi in the EFR table */

CurConfig[i] ← ji;
end for
Partition the workload in CurConfig with modified
FFD
if (feasible(CurConfig)) then

return CurConfig and the partitioning ρ
exit

end if
for i = 1 to N do

CurConfig[i] ← 1;
eligible[i] ← true;

end for
Partition the workload in CurConfig with modified
FFD
if (!feasible(CurConfig)) then

return error; /* No feasible solution exists */
exit

end if
while (∃j eligible[j]) do /* relaxation phase */

Choose eligible task according to LEF, LPF or
LUF

/* τi is chosen for relaxation */
CurConfig[i] ++;

Partition the workload in CurConfig with modified
FFD

if(!feasible(CurConfig)) then
CurConfig[i] −−;
eligible[i] ← false;

end if
end while
return CurConfig and the partitioning ρ;

∆E = E(i, j)− E(i, j + 1)

value is selected according to this heuristic.
Largest-Power-First (LPF): We choose the task that

provides the largest energy savings per unit time for
the additional CPU time required for the next level
in the corresponding EFR table. Therefore, task τi is
selected to maximize:

∆E

∆S
=

E(i, j)− E(i, j + 1)

S(i, j + 1)− S(i, j)

Largest Utilization First (LUF): This is a simple
heuristic where the task with largest utilization value
is chosen first.

We now analyse the complexity of the proposed
solution. In the first phase, we construct the EFR
tables for each task. As discussed in Section 4, each
table can be constructed in O(K) time. Therefore, the

0

10

20

30

40

50

10-6 10-4 10-2 1 102

E
ne

rg
y

S
av

in
gs

 (
%

)

Target PoF Scaling Factor, ω

LPF
LEF
LUF

(a) Utot = 1.6, 4 cores

0

10

20

30

40

50

10-6 10-4 10-2 1 102

E
ne

rg
y

S
av

in
gs

 (
%

)

Target PoF Scaling Factor, ω

LPF
LEF
LUF

(b) Utot = 1.6, 8 cores

0

10

20

30

40

50

1 101 102 103

E
ne

rg
y

S
av

in
gs

 (
%

)

Target PoF Scaling Factor, ω

LPF
LEF
LUF

(c) Utot = 3.2, 4 cores

0

10

20

30

40

50

10-6 10-4 10-2 1 102

E
ne

rg
y

S
av

in
gs

 (
%

)

Target PoF Scaling Factor, ω

LPF
LEF
LUF

(d) Utot = 3.2, 8 cores

Fig. 5: Impact of target Pof

running time of phase 1 is O(NK) in the worst case.
In the relaxation phase, we can have at most NK
relaxation steps and for obtaining the partitioning the
cost is O(NM) in the worst case. Therefore, the overall
running time of the algorithm is O(N2MK). Note
that, for most practical systems K and and M are
small constants. In addition, the algorithm is executed
only once as a pre-processing phase.

6 PERFORMANCE EVALUATION

In this section, we present our simulation results to
evaluate the performance of our proposed scheme.
We considered three different heuristics - LEF, LPF
and LUF - for choosing the tasks for relaxation. As
a baseline scheme, we considered the case where all
replicas run at fmax and with the minimum number
of replicas required to achieve the target reliability.
We report the energy savings of our proposed scheme
compared to the baseline scheme.

We constructed a discrete event simulator to evalu-
ate the performance of our schemes. For each data
point, we considered 1000 data sets with 20 tasks.
The task utilizations are generated randomly using
the UUnifast scheme [34]. Task periods are generated
between 10 ms and 100 ms. The default number of
speed steps in the system is 10 starting from 0.1 to 1.0
with steps of 0.1. The static power and the frequency-
dependent power are set to 5% and 15% respectively
of the maximum dynamic power consumption. We
assumed an imperfect acceptance test with coverage
factor 0.9 unless otherwise stated.

Impact of Target Reliability. We first consider the impact
of target uniform Pof scaling factor ω on the system
energy consumption. Figure 5 shows the energy sav-
ings for task sets with total utilization 1.6 and 3.2
running on 4- and 8-core systems. There is almost no
energy gain for target ω = 1. The reason is, when the

9

0

10

20

30

40

50

 4 5 6 7 8 9 10 11 12

E
ne

rg
y

S
av

in
gs

 (
%

)

Number of Cores

LPF
LEF
LUF

Fig. 6: Impact of number of cores

0

10

20

30

40

50

 0.5 1 1.5 2 2.5 3 3.5

E
ne

rg
y

S
av

in
gs

 (
%

)

Total Utilization

LPF
LEF
LUF

Fig. 7: Impact of system load

 0

 20

 40

 60

 80

 100

 0.9 0.92 0.94 0.96 0.98 1

E
ne

rg
y

S
av

in
gs

 (
%

)

Coverage Factor

LPF
LEF
LUF

Fig. 8: Impact of coverage factor

target ω = 1, the target reliability becomes equal to the
reliability obtained trivially by the baseline scheme
with exactly 1 replica for each task. We observe that
for all settings, as we increase ω beyond 1, the energy
savings increase as we can afford running the replicas
at lower frequencies. When the frequency reaches the
energy-efficient frequency, the savings reach a stable
level. On the other hand, when ω < 1, the baseline
scheme uses more than one replicas running at fmax
and LEF, LPF and LUF can execute replicas at lower
frequencies. Even though LEF, LPF and LUF may
use more replicas compared to the baseline scheme,
they still save energy thanks to execution at lower
frequencies.

In Figure 5b, the system utilization is very low com-
pared to the available cores. As a result, the minimum
energy configurations are feasible. Therefore, the en-
ergy savings for all schemes converge. In Figure 5c,
on the other hand, the system utilization is very high.
Therefore, it is not possible to find a feasible solution
for target ω < 1. For Figure 5a and 5d, the utilization
is moderate considering the number of cores. When
ω > 1, all schemes were able to achieve the minimum
energy. But as ω becomes smaller than one, there
is no feasible solution for the most energy-efficient
settings. However, some tasks can be feasibly relaxed
to run at a lower frequency. Notice that, typically LPF
performs slightly better than LEF. Further, both LEF
and LUF outperform LUF. While LPF chooses the task
that provides the highest energy savings per unit time,
LEF chooses tasks based on energy savings only. Some
tasks may provide higher energy savings at the cost of
large increase of CPU time. As a result, LEF performs
slightly worse than LPF.

Impact of the number of cores. Next, we evaluate the
impact of the number of cores on the system perfor-
mance. Figure 6 shows the energy consumption for a
task set with total utilization 1.75 and target Pof scal-
ing factor set to ω = 10−3. Observe that increasing the
number of cores allows greater slowdown of replicas
and hence typically provides greater energy savings.
Initially LPF and LEF were able to improve energy
savings significantly by making limited number of
high energy-saving relaxation. LUF requires some
additional cores before it can perform enough relax-

ation steps to achieve significant energy savings. Then
with even additional cores, the energy savings for all
schemes converge at a stable point, when choosing the
most energy-efficient configurations become feasible
for all tasks.

Impact of the System Load. Figure 7 represents the
impact of total utilization Utot on the energy savings.
For this experiment, we set the number of cores in
the system to 8 and the target ω is set to 10−3. We
vary the utilization from 0.5 to 3.5 and note the energy
savings. We observe that, at very low utilization the
energy savings is the highest, as we can find feasible
partitioning for the minimum energy configurations.
When the minimum energy configurations become
infeasible (U ≥ 1.5), the schemes start to differ. Then
as we increase the utilization the energy savings keep
decreasing. The energy savings for LPF and LEF drops
at a slower rate as the relaxation steps provide higher
energy savings. LUF has a sharper drop in energy
savings as the relaxation steps it chooses does not
always provide high energy savings. At very high uti-
lization the energy savings approach to convergence
as relaxation becomes difficult for all schemes.

Impact of the Coverage Factor. Figure 8 shows the impact
of coverage factor on the energy consumption. For this
experiment we vary the coverage factor from 0.9 to
1.0 while keeping the utilization and number of cores
fixed at 1.25 and 16 respectively. The target PoF is set
to 10−3× the PoF of a system with perfect acceptance
test, executing single replica for all tasks at fmax. We
record the energy savings compared to the baseline
scheme with coverage factor 0.9.

We observe that the energy savings increases from
3% to 85% as the coverage factor increases. This is be-
cause the system can achieve the reliability target with
less replicas or same number of replicas executing at a
lower frequency with better coverage factors. At very
low coverage factor, all schemes perform similarly as
the number of replicas required for all schemes are
high and there is very little slack for relaxation. As
we increase the coverage factor the number of replica
required decreases and schemes have some slack for
relaxation which leads to different energy savings for
different schemes. At coverage factor 1, all schemes

10

require the lowest number of replicas and can achieve
the optimum energy setting.

7 DYNAMIC ADAPTATIONS FOR ENHANCED
ENERGY SAVINGS

Our proposed solution in Sections 4 and 5 was based
on static analysis of workload characteristics and
reliability requirement. In this section, we present
dynamic adaptation techniques to further enhance
energy savings.

First, we note that it is sufficient to complete only
one replica successfully. So, if one replica completes
and no fault is detected, we can cancel other replicas
of that task immediately to avoid the energy con-
sumption of the replicas. Consequently, it is beneficial
to delay all the replicas except for the one that com-
pletes first, as this increases the chance of cancelation
for the additional replicas. In other words, by mini-
mizing the overlapped execution among the replicas
of the same task, entire or partial execution of the
additional replicas can be canceled in many scenar-
ios. Second, such replica delaying strategy becomes
even more attractive as real-time tasks often complete
earlier than the estimated worst-case execution times:
the dynamic slack generated by the early completions
can be utilized for reducing the execution overlaps of
replicas of other tasks.

In order to implement this replica delaying ap-
proach, our strategy will consist in executing one
replica as usual and delay the remaining replicas
without compromising the deadline constraints. To
this aim, we introduce the concept of primary and
secondary replicas. The primary replica is allowed to
execute as soon as it becomes eligible for execution.
The other (secondary) replicas are delayed whenever
possible. Note that, the selection of the primary replica
is done at run time; in fact, on a specific processor
there can be a mix of primary and secondary replicas
from different tasks. Specifically, when a replica of a
job T ji is about to be dispatched, the scheduler marks
it as primary if it is the first replica of T ji to be
dispatched on any processor. The primary replica is
then dispatched immediately at the speed determined
according to the scheme presented in Section 5. Other
replicas of the job T ji become secondary and are
delayed according to the strategy explained below.

The algorithm introduces an idle period before
dispatching a secondary replica. The length of the idle
period is determined dynamically. A simple approach
for delaying is to execute the secondary replicas at the
maximum frequency by allocating only the minimum
execution time needed for their completion. Then the
difference between the execution times at the scaled
and maximum frequencies can be used as the delay
duration. Even tough the secondary execution at the
maximum frequency involves an energy cost, recall
that in many scenarios the secondary’s execution will

20 30

20 30

T

T

150

0

2

1

1

1

Fig. 9: Slow down on CPU1 (top) and delayed execu-
tion on CPU2 (bottom) for a single task

be partially or entirely canceled thanks to the delaying
strategy.

Example 1: Let us consider a single task with pe-
riod 30 and worst case execution time 15 under fmax.
The task has two replicas. At the top of Figure 9 we
first show the slowed down execution scenario (at
f = 0.5) on the first CPU. On CPU 2, we can delay
the execution of the secondary replica until t = 15
and then execute it at fmax as shown at the bottom
of Figure 9. Assume the actual execution time of this
job is 2/3 of the worst-case. Then T 1

1 will complete
at t = 20. At that time we can cancel the remaining
portion of the secondary copy.

While simple, we call this strategy naive delaying,
because i.) for preemptive periodic tasks, determining
the exact future dispatch times of replicas becomes a
nontrivial problem, and ii.) it is possible to improve
the delay durations efficiently by using additional
data structures. To achieve this goal, we first introduce
the concept of canonical schedule (CS). A CS for a task
set is the expected schedule when all jobs present
their worst case workloads under the scaled speeds
given by the static solution. The main idea is to
determine, at the dispatch time t of a secondary
replica R, the total available CPU time for R such
that it will complete no later than its completion time
in the canonical schedule. This total available time is
denoted by γ. Then if the remaining execution time for
the secondary replica is c under fmax, we can delay
the secondary at time t by γ − c time units without
missing the deadline. We call this technique adaptive
delaying strategy. We present the following example to
illustrate the concept.

Example 2: Let us consider a task set with two
periodic tasks with the parameters c1 = 7.5, P1 = 25,
c2 = 5, P2 = 25. Assume both tasks can be slowed
down to speed 0.5 without compromising the reli-
ability and deadline requirements. Figure 10 shows
the canonical schedule for the task set on CPU 1.
Suppose the actual execution times at speed 0.5 are
10 and 7.5 respectively on CPU 1 as shown in Figure
11. In Figure 12, we first show the application of the
naive delaying approach on CPU 2. T 2

1 is delayed
for 7.5(= 15 − 7.5) units of time. As T 1

1 completes at
time 10, T 2

1 can be cancelled. The primary T 1
2 is then

dispatched immediately. However, the secondary T 2
2

11

0 5 10 15 20 25

T
2

1
T

1

1

Fig. 10: Canonical Schedule on CPU 1

0 5 10 15 20 25

T
1

1
T

2

1

Fig. 11: Actual Execution Scenario on CPU 1

0 5 10 15 20 25

T Tidle
1

2
2
2

Fig. 12: Naive Delaying Strategy on CPU 2

0 5 10 15 20 25

T
2

1 T
2

2

Fig. 13: Adaptive Delaying on CPU 2

is not dispatched immediately and using the naive
delaying strategy it is delayed by 5 units of time and
dispatched at time 15. In that scenario the execution
of T 1

2 and T 2
2 will overlap between time 15 and

17.5. However, with our adaptive scheduling policy
(Fig. 13), consulting the canonical schedule, we can
take advantage of the early cancellation of T 2

1 and
delay T 2

2 until t = 20 which is the difference between
the completion time in the canonical schedule and its
remaining workload (25 − 5). Thus we can avoid the
execution of T 2

2 entirely.
While the idea of using the canonical schedule to

compute the safe delaying durations is attractive, gen-
erating the canonical schedule in advance for preemp-
tive periodic tasks with arbitrarily large hyperperiod
is not a computationally acceptable solution. Noting
that what we really need is the difference between
the completion times in the worst-case canonical
schedule and the remaining execution time in the
current schedule, we can use a simple data structure
originally proposed in [16] to implement dynamic
reclaiming algorithms. This data structure that we call
Canonical Execution Queue (CEQ) is a priority queue,
where jobs are sorted in ascending order of their
absolute deadline. Every processor has its own CEQ.
The CEQ follow two rules.

1) At the arrival of a replica T ki,j in the processor,
add a corresponding job to the CEQ with execu-
tion time ci/fi, where fi is the speed assigned
to τi according to the static scheme.

2) At every time unit, the execution time of the job
at the head of the CEQ is decreased by one and
when it reaches zero, the job is removed from

T
1,1

T
2,1

T
1,2

T
2,2

T
2,2

T
1,3

0 10050 150 200 250 300

Fig. 14: Canonical Schedule

225

225

T T T T T

T T T T T

CPU 2

CPU 1
0

0

25

25

50

50

100

100

125

125 200

200 250

250

300

300

150

150

1,1

1

2,1

1 1

1,2

1

2,2

1

1,3

1,1

2

2,1

2

1,2

2

2,2

2

1,3

2

Fig. 15: Parallel Execution based on Static Schedule

T
1,3

2T
1,1

2

T
1,1

1 T1

2,1
T1

1,2
T1

2,2
T1

1,3

CPU 1

CPU 2

0

0

25

25

50

50

100

100

125 150

150

200

200 250

300

300

250225

225

Fig. 16: Adaptive Delaying Scheme

the queue.
During execution, CEQ effectively gives a snapshot of
the ready queue of the corresponding processor in the
canonical schedule, with remaining workload of every
ready job at that time. As shown in [16], it is sufficient
to update CEQ only at task arrival and completion
times and the complexity of update is linear in the
number of tasks.

At dispatch time of a secondary replica job, the
amount of safe delay may be computed by inspecting
CEQ. Specifically, all jobs in the CEQ that are ahead
of the current job have higher priority and hence
they must have already been completed. So the sum
of execution time for all those jobs and the current
job according in CEQ can entirely be used by the
current job without missing any deadlines [16]. This
total available CPU time is denoted by γ. Specifically,
for a secondary replica T ki,j , we can compute γ as,

γ = Σ{T z
x,y∈EQ & dx<di}rem(T kx,y) + rem(T ki,j) (15)

where rem(T ki,j) is the remaining execution of T ki,j in
the CEQ. Then we can set the safe delay duration for
T ki,j to (γ− cri), where cri is the remaining worst-case
execution time of T ki,j under fmax to ensure feasibility.

12

 0

 20

 40

 60

 80

 100

0.2 0.4 0.6 0.8 1.0

E
ne

rg
y

S
av

in
gs

 (
%

)

BC/WC Execution Time

U = 1.5
U = 2.5
U = 3.5

(a) Impact of Workload Variability

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5

E
ne

rg
y

S
av

in
gs

 (
%

)

Total Utilization

ω = 103

ω = 1
ω = 10-3

(b) Impact of Utilization

 40

 60

 80

 100

 0.9 0.92 0.94 0.96 0.98 1

E
ne

rg
y

S
av

in
gs

 (
%

)

Coverage Factor

BC/WC = 0.2
BC/WC = 0.6

BC/WC = 1

(c) Impact of Coverage Factor

Fig. 17: Impact of Dynamic Adaptations

Example 3: Consider two tasks with parameters
p1 = 100, p2 = 150, c1 = 30, c2 = 45. Assume it is
sufficient to have two replicas for each task running
at frequency 0.6 to achieve the reliability target. Figure
14 shows the canonical schedule for the task set. If the
actual execution time of each job is 50% of the worst
case estimate, we obtain the schedule generated by
the static solution (Figure 15). Notice that the replicas
are executed in parallel, each CPU is busy for 60%
of time, the energy consumption is significant due to
overlapped execution of the replicas. Figure 16 shows
the execution with our proposed adaptive delaying
technique. At time 0, T 1

1,1 in CPU 1 is marked as
primary and dispatched immediately. T 2

1,1 on CPU 2
therefore becomes secondary. According to CEQ γ =
50 and we can delay it until 20 (= 50 - 30), when it
starts running at fmax. At time 25, T 1

1,1 completes in
CPU 1 and the corresponding secondary in CPU 2
is canceled. At time t = 25, CPU 1 dispatches T 1

2,1

as primary. From the CEQ, we get γ = 100, while
the worst-case execution time is 45. So the secondary
can be delayed for (100 - 45) = 55 units of time
i.e. till 80. As T 1

2,1 completes at time 62.5 at CPU 1,
the secondary in CPU 2 can be canceled entirely.
In this way the secondaries T 2

1,2, T 2
2,2 are canceled

entirely, while the secondary T 2
1,3 executes only briefly.

Using this strategy CPU 2 is used for only 10 time
units. Using the power parameters from Section 6,
the dynamic energy consumption can be found to
decrease by 35% compared to the static solution.

8 EVALUATION OF DYNAMIC ADAPTATION
TECHNIQUES

In this section we present our experimental results
concerning the performance of the dynamic adap-
tation techniques. The main simulation settings are
essentially the same as those in Section 6. In addition,
to model the workload variability, we determined
the actual execution time of each job according to
a probability distribution. The actual execution time
is constrained between a best-case (BC) and a worst-
case (WC) execution time and is determined accord-
ing to the normal distribution. The mean and the

standard deviation of the normal distribution are set
to (BC + WC)/2 and (WC − BC)/6, respectively,
as in [16]; this guarantees that the actual execution
time falls in the [BC, WC] range with the 99.7%
probability. Moreover, we varied the BC/WC ratio to
model different workload variability settings.

First we study the impact of the workload variabil-
ity in Figure 17a. We change the BC/WC ratio from
0.1 to 1 while keeping the number of cores and ω fixed
at 8 and 10−3 respectively. We report the normalized
energy savings compared to the static scheme with
utilization is 3.5 and BC/WC = 1. The higher BC/WC
ratio, the higher workload variability, and the lower
energy savings compared to the static scheme, for
a fixed system load (utilization). This is because as
BC/WC increases, jobs have larger execution time
and there is a higher chance of overlap between the
primary and the secondary replicas. For utilization
= 1.5, at very low BC/WC ratio, dynamic adapta-
tion techniques provide over 82% energy savings. At
BC/WC = 1, it provides up to 75% energy savings.
Note that even when BC/WC = 1, the dynamic de-
laying technique is able to postpone the execution of
the secondaries and save energy, by exploiting the
available static slack in the system. With increasing
utilization, however, static slack disappears, and the
energy savings solely depend on the BC/WC ratio.

Next we study the impact of system load in Figure
17b. The settings for this experiment are similar to
those in Figure 7. For the BC/WC ratio = 0.5, the
energy savings are reported with respect to the same
static scheme in Figure 17a. We report the energy
savings for three different ω values. As a general
trend the energy savings decrease as we increase the
utilization. The energy savings are typically higher
for lower ω values as we can afford lower reliability.
Notice that at lower utilization (U < 2), the energy
savings are similar for both ω = 1 and = 10−3. This
is because, even though the number of replicas are
higher for ω = 10−3, larger slack allows the secondary
to be delayed significantly and thus avoid execution.
But as the utilization increases, we can no longer
avoid executing the secondary and the energy savings
drop at a higher rate for ω = 10−3.

13

Finally, we consider the impact of coverage factor
in Figure 17c. For three different BC/WC values, we
increase the coverage factor from 0.9 to 1.0. The rest
of the settings are identical to those in Figure 8.
We report the energy savings compared to the static
scheme with BC/WC = 1 and coverage factor 0.9. As
a general trend, as we increase the coverage factor
the energy savings increases; this is because at higher
coverage values it is sufficient to deploy less replica.
For a fixed coverage factor value, the energy savings
increase as we decrease BC/WC value. For BC/WC
= 1, the energy savings increase from 38% to 90% as
we increase the coverage factor from 0.9 to 1.

9 RELATED WORK

Most fault tolerance techniques on multiproces-
sor/multicore real-time systems rely on scheduling
multiple versions of a task, called replicas, on different
processors. The overloading technique has been pro-
posed to improve the schedulability of the system.
The idea is to schedule multiple tasks/versions on
overlapping time intervals on the same processor. The
key is to ensure that at most one of them will need
to be executed at run-time and at least one version
of every task will complete before deadline even in
the presence of faults. One such approach is called
the primary-backup (PB) model, where each task has
a primary and backup copy. [35], [36] considered a
simple PB model, where a backup can be executed at
the same time with any other backup on any of the
processors except the one where the corresponding
primary task is running. This provides greater flex-
ibility, but it can tolerate only one fault at a time.
Manimaran et al. statically grouped processors, allow-
ing backups to overlap only when the corresponding
primary tasks run on the same group [37]. This allows
the system to tolerate one fault per group. [38], [39]
used dynamic grouping to avoid the limitation of
static grouping. Al-Omari et al. proposed a primary-
backup overloading technique, where primary tasks
can overlap with backups of other tasks [40].

With the advance of low-power computing area,
researchers started to consider reliability / fault tol-
erance issues in the context of power awareness. A
set of techniques, called the Reliability-Aware Power
Management (RAPM) [19], [20], exploit time redundancy
available in the system for both energy and reliability
management. These works consider the problem of
preserving the system’s original reliability, which is
the reliability of the system executing tasks without
any slowdown. The scheme in [20] resorts to back-
ward recovery approach and assigns a recovery task
for every task that has been slowed down, while
the technique in [19] uses recovery blocks shared by
all the scaled tasks. The work in [41] exploits the
probability distribution of the task execution times to
improve the energy savings in the RAPM framework.

The reliability-oriented energy management framework
has been proposed for periodic real-time tasks run-
ning on a single-core system [21]. The main objective
is to achieve arbitrary reliability levels, in terms of
tolerance to transient faults, with minimum energy
consumption. The solution still focuses on single-core
systems and hence resorts to a limited number of
shared recovery jobs.

10 CONCLUSIONS

In this paper, we considered the reliability-oriented
energy-management problem for preemptive periodic
real-time applications running on a multi-core system.
We showed how replication can be used to achieve the
given task-level reliability targets that are expressed
in terms of tolerance to transient faults. We presented
techniques to determine the degree of replication
and the frequency assignment for each task while
minimizing overall energy. Although the problem is
intractable in the general case our efficient heuristics
are shown to satisfy the given reliability targets with
considerable energy savings through simulations. We
then proposed dynamic replica delaying techniques
to further reduce energy consumption.

As more and more real-time embedded applications
many of which exhibiting reliability requirements of
varying degrees are implemented upon multi-core
platforms, tackling both the energy-efficiency and re-
liability challenges simultaneously becomes critical.
Our work illustrates the potential of the joint use of
replication and DVS on such platforms while guaran-
teeing the timing constraints. We believe that as more
cores becomes available on such systems, replication
will be an even more attractive option; however, to
optimize energy consumption the number of replicas
and frequency levels should be determined carefully.
A very interesting future research direction is the
re-consideration of the same problem on emerging
asymmetric multicore systems.

REFERENCES
[1] A. Ejlali, B. M. Al-Hashimi, and P. Eles, “Low-energy standby-

sparing for hard real-time systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 31,
no. 3, pp. 329–342, 2012.

[2] M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware standby-
sparing technique for periodic real-time applications,” in Pro-
ceedings of the IEEE International Conference onComputer Design
(ICCD), 2011.

[3] R. Melhem, D. Mossé, and E. Elnozahy, “The interplay of
power management and fault recovery in real-time systems,”
IEEE Transactions on Computers, vol. 53, pp. 217–231, 2004.

[4] O. S. Unsal, I. Koren, and C. M. Krishna, “Towards energy-
aware software-based fault tolerance in real-time systems,” in
Proceedings of the IEEE International Symposium on Low Power
Electronics and Design, 2002.

[5] Y. Zhang and K. Chakrabarty, “Dynamic adaptation for fault
tolerance and power management in embedded real-time
systems,” ACM Transactions on Embedded Computer Systems,
vol. 3, pp. 336–360, May 2004.

[6] I. Koren and C. M. Krishna, Fault-tolerant systems. Morgan
Kaufmann, 2010.

[7] D. Pradhan, Fault Tolerant Computer System Design. Prentice
Hall, 1996.

14

[8] X. Castillo, S. R. McConnel, and D. P. Siewiorek, “Derivation
and calibration of a transient error reliability model,” IEEE
Transactions on Computers, vol. 31, pp. 658–671, 1982.

[9] R. K. Iyer, D. J. Rossetti, and M. C. Hsueh, “Measurement
and modeling of computer reliability as affected by system
activity,” ACM Transactions on Computer Systems, vol. 4, pp.
214–237, 1986.

[10] V. Ferlet-Cavrois, L. W. Massengill, and P. Gouker, “Single
event transients in digital cmos: a review,” IEEE Transactions
on Nuclear Science, vol. 60, no. 3, pp. 1767–1790, 2013.

[11] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error
problem: An architectural perspective,” in 11th International
Symposium on High-Performance Computer Architecture. IEEE,
2005, pp. 243–247.

[12] M. Ebrahimi et al., “Comprehensive analysis of alpha and
neutron particle-induced soft errors in an embedded processor
at nanoscales,” in Proc. of the IEEE Design, Automation and Test
in Europe Conference and Exhibition (DATE), 2014.

[13] N. Seifert et al., “Soft error susceptibilities of 22 nm tri-gate
devices,” IEEE Transactions on Nuclear Science, vol. 59, no. 6,
pp. 2666–2673, 2012.

[14] S. Borkar, “Extreme energy efficiency by near threshold volt-
age operation,” in Near Threshold Computing. Springer, 2016.

[15] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling
for reduced cpu energy,” in Mobile Computing, 1996.

[16] H. Aydin and R. Melhem, “Power-aware scheduling for peri-
odic real-time tasks,” IEEE Transactions on Computers, vol. 53,
no. 5, pp. 584 – 600, 2004.

[17] D. Ernst et al., “Razor: circuit-level correction of timing errors
for low-power operation,” IEEE Micro, vol. 6, pp. 10–20, 2004.

[18] D. Zhu, R. Melhem, and Mossé, “The effects of energy man-
agement on reliability in real-time embedded systems,” in
Proc. of the IEEE Conf. on Computer Aided Design, 2004.

[19] B. Zhao, H. Aydin, and D. Zhu, “Enhanced reliability-aware
power management through shared recovery technique,” in
Proc. of the IEEE Conf. on Computer Aided Design, 2009.

[20] D. Zhu and H. Aydin, “Reliability-aware energy management
for periodic real-time tasks,” IEEE Transactions on Computers,
vol. 58, no. 10, pp. 1382 – 1397, 2009.

[21] B. Zhao, H. Aydin, and D. Zhu, “Energy management under
general task-level reliability constraints,” in Proceedings of the
IEEE Real-Time and Embedded Technology and Applications Sym-
posium, 2012.

[22] M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware task repli-
cation to manage reliability for periodic real-time applications
on multicore platforms,” in Proceedings of the IEEE International
Green Computing Conference (IGCC), 2013.

[23] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” Journal
of the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[24] R. Sridharan and R. Mahapatra, “Reliability aware power
management for dual-processor real-time embedded systems,”
in Proc. of the IEEE Design Automation Conference, 2010.

[25] X. Fan, C. Ellis, and A. Lebeck, “The synergy between power-
aware memory systems and processor voltage scaling,” in
Power - Aware Computer Systems. Springer, 2005, pp. 151–166.

[26] R. Jejurikar and R. Gupta, “Dynamic voltage scaling for
systemwide energy minimization in real-time embedded sys-
tems,” in Proceedings of the IEEE/ACM International Symposium
on Low Power Electronics and Design, 2004.

[27] J. Zhuo and C. Chakrabarti, “System-level energy-efficient
dynamic task scheduling,” in Proceedings of the IEEE annual
Design Automation Conference, 2005.

[28] Y. Zhang and K. Chakrabarty, “Energy-aware adaptive check-
pointing in embedded real-time systems,” in Proc. of the IEEE
Conf. on Design, Automation and Test in Europe, 2003.

[29] Q. Han, L. Niu, G. Quan, S. Ren, and S. Ren, “Energy efficient
fault-tolerant earliest deadline first scheduling for hard real-
time systems,” Journal of Real-Time Systems, vol. 50, no. 5-6, pp.
592–619, 2014.

[30] N. Dutt et al., “Multi-layer memory resiliency,” in Proc. of
ACM/IEEE Design Automation Conference (DAC), 2014.

[31] Intel, Intel Pentium M Processor
Datasheet, 2004. [Online]. Available:
http://download.intel.com/support/processors/mobile/pm
/sb/25261203.pdf

[32] M. R. Garey and D. S. Johnson, Computers and Intractability.
Freeman, 1979.

[33] D. S. Johnson et al., “Worst-case performance bounds for
simple one-dimensional packing algorithms,” SIAM Journal on
Computing, vol. 3, no. 4, pp. 299–325, 1974.

[34] E. Bini and G. C. Buttazzo, “Measuring the performance of
schedulability tests,” Journal of Real-Time Systems, vol. 30, no.
1-2, pp. 129–154, 2005.

[35] S. Ghosh, R. Melhem, and D. Mosse, “Fault-tolerant schedul-
ing on a hard real-time multiprocessor system,” in Proceedings
of the IEEE International Parallel Processing Symposium, 1994.

[36] S. Ghosh, R. Melhem, and D. Mossé, “Fault-tolerance through
scheduling of aperiodic tasks in hard real-time multiprocessor
systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 8, no. 3, pp. 272–284, 1997.

[37] G. Manimaran and C. S. R. Murthy, “A fault-tolerant dynamic
scheduling algorithm for multiprocessor real-time systems
and its analysis,” IEEE Transactions on Parallel and Distributed
Systems, vol. 9, no. 11, pp. 1137–1152, 1998.

[38] R. Al-Omari, G. Manimaran, and A. K. Somani, “An efficient
backup-overloading for fault-tolerant scheduling of real-time
tasks,” in Proceedings of the IEEE Workshop on Parallel and
Distributed Processing, 2000.

[39] K. Yu and I. Koren, “Reliability enhancement of real-time
multiprocessor systems through dynamic reconfiguration,”
in Proceedings of IEEE Workshop on Fault-Tolerant Parallel and
Distributed Systems, 1994.

[40] R. Al-Omari, A. K. Somani, and G. Manimaran, “Efficient over-
loading techniques for primary-backup scheduling in real-time
systems,” Journal of Parallel and Distributed Computing, vol. 64,
no. 5, pp. 629–648, 2004.

[41] D. Zhu, H. Aydin, and J.-J. Chen, “Optimistic reliability aware
energy management for real-time tasks with probabilistic ex-
ecution times,” in Proceedings of the IEEE Real-Time Systems
Symposium, 2008.

Mohammad A. Haque Mohammad A.
Haque received the M.Sc. degree in Com-
puter Science from George Mason Univer-
sity, Fairfax, Virginia, USA, in 2010. He is
currently a PhD candidate in the same de-
partment. His area of research includes low-
power computing, real-time systems, and op-
erating systems.

Hakan Aydin Hakan Aydin received the
Ph.D. degree in computer science from the
University of Pittsburgh. He is currently an
Associate Professor in the Computer Sci-
ence Department at George Mason Univer-
sity. He has served on the program commit-
tees of several conferences and workshops.
He served as the Technical Program Com-
mittee Chair of IEEE Real-time and Embed-
ded Technology and Applications Sympo-
sium (RTAS’11). He was the General Chair of

IEEE RTAS in 2012. He received NSF CAREER Award in 2006. His
research interests include real-time systems, low-power computing,
and fault tolerance.

Dakai Zhu Dakai Zhu received the PhD de-
gree in Computer Science from University of
Pittsburgh in 2004. He is currently an Asso-
ciate Professor in the Department of Com-
puter Science at the University of Texas at
San Antonio. His research interests include
real-time systems, power-aware computing
and fault-tolerant systems. He has served
on program committees (PCs) for several
major conferences (e.g., RTSS and RTAS).
He received NSF CAREER Award in 2010.

