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Abstract

Recent advances in data clustering concern clustering

ensembles and projective clustering methods, each address-

ing different issues in clustering problems. In this paper, we

consider for the first time the projective clustering ensemble

(PCE) problem, whose main goal is to derive a proper pro-

jective consensus partition from an ensemble of projective

clustering solutions. We formalize PCE as an optimization

problem which does not rely on any particular clustering

ensemble algorithm, and which has the ability to handle

hard as well as soft data clustering, and different feature

weightings. We provide two formulations for PCE, namely

a two-objective and a single-objective problem, in which

the object-based and feature-based representations of the

ensemble solutions are taken into account differently. Ex-

periments have demonstrated that the proposed methods for

PCE show clear improvements in terms of accuracy of the

output consensus partition.

1. Introduction

Research on data clustering [8] has traditionally assumed

that, given a set of input data and a clustering problem for

that data, (i) the problem at hand is addressed by a cluster-

ing method which is usually equipped with a certain dis-

tance/similarity measure, and (ii) all the features (dimen-

sions) of the given data are considered in the clustering task.

The above assumptions are usually given for enabling a

proposed approach to satisfy some special requirements for

data clustering, such as simplicity, practical applicability,

understandability of the results, and low computational cost.

On the other hand, such assumptions may cause any clus-

tering method to incur serious issues in both effectiveness

and efficiency, especially when (1) the clustering problem

is inherently multi-faceted as there is a number of (differ-

ently relevant) aspects according to which a clustering task

is worth of being performed, and/or (2) the input data is

highly dimensional. Issue 1 is related to the fact that a so-

lution for the clustering problem is inevitably biased due to

the peculiarities of the specific clustering algorithm being

used. Issue 2 is instead related to the so-called curse-of-

dimensionality, which breaks down the significance of the

concept of proximity (thus, cluster) as the number of dimen-

sions or features increases.

In relatively recent years, methodologies have been stud-

ied to distinctly address the above issues in clustering prob-

lems, orthogonally to the existing literature on clustering

algorithms and data proximity measures.

Clustering ensembles [12, 13, 7, 5] has recently emerged

as a powerful tool to face issue 1. Given a data collection,

a set of clustering solutions, or ensemble, can be gener-

ated by varying one or more aspects, such as the cluster-

ing algorithm, the parameter setting, and the number of fea-

tures, objects or clusters. Given an ensemble, the objective

is to extract a consensus partition, i.e., a clustering solu-

tion that maximizes some objective function (the consensus

function), which is defined by taking into account different

information available from the ensemble.

Concerning the aforementioned issue 2, a major conse-

quence of the high dimensionality is that not all features are

relevant for all data in a cluster analysis. Due to the sparsity

naturally occurring in the data representation, it is unlikely

for the data to form meaningful clusters in the full dimen-

sional space. Traditional feature selection and extraction

methods aim to reduce the number of dimensions, but they

treat the dataset as a whole; consequently, some dimensions

potentially relevant for part of the data may be filtered out.

Projective clustering [10, 14, 1, 9] aims to discover clus-

ters which correspond to subsets of the input data and have

different (possibly overlapping) dimensional subspaces as-

sociated to them. Projected clusters tend to be less noisy—

because each group of data is represented over a subspace

which does not contain irrelevant dimensions—and more

understandable—because the exploration of a cluster is eas-

ier as fewer dimensions are involved.

Projective clustering is also related to the subspace clus-



tering problem, whose main goal is to find clustering struc-

tures in every possible subspace. A major difference be-

tween these two problems is that projective clustering out-

puts a single partition of the input set of data objects,

whereas subspace clustering methods aim to find a set of

clustering solutions, each one having clusters defined in a

specific subspace.

In this paper, the problem of projective clustering ensem-

bles (PCE) is addressed for the first time. The objective is to

define methods for clustering ensembles that are able to deal

with ensembles of projective clustering solutions and pro-

vide a projective consensus partition. In particular, we focus

on ensembles composed by axis-aligned (or axis-parallel)

projective clustering solutions, i.e., solutions in which the

subspace associated to each cluster is given by a subset of

the original feature space.

The projective consensus partition to be discovered is

computed as a solution of an optimization problem formu-

lated by exploiting information available from the input en-

semble. Since we are interested in developing general meth-

ods for PCE, such objective functions have to meet the fol-

lowing strong requirements: (i) to discard the original fea-

ture values of the input data; (ii) to be independent of the

specific clustering algorithm and of any prior knowledge on

the setup for ensemble generation; (iii) to handle hard as

well as soft data clustering in a projective setting; (iv) to al-

low for unequally weighted feature-to-cluster assignments.

Within this view, we propose two formulations of PCE,

namely a two-objective and a single-objective. The first one

involves two objective functions which consider the data

object clustering and feature-to-cluster assignment, respec-

tively; the second formulation has one objective function

which acts as an error criterion in the computation of any

cluster (of a candidate clustering solution) by involving both

the object-based representation and the feature-based repre-

sentation of the cluster.

For each of the two proposed formulations of PCE,

we developed well-founded heuristics, in which a multi-

objective evolutionary strategy [2] and an EM-like approach

are employed. Experiments conducted on ten benchmark

datasets have shown that both the proposed algorithms lead

to more accurate consensus partitions, in terms of internal

similarity w.r.t. reference classifications (i.e., external clas-

sifications and clustering ensembles) and in terms of intra-

cluster error-rate.

We would like to point out that, among the existing clus-

tering ensemble and projective clustering methods in the lit-

erature, the Weighted Subspace Bipartite Partitioning Algo-

rithm (WSBPA) [5] is somehow related to the approaches

proposed in this work. However, WSBPA cannot represent

a valid solution for the projective clustering ensemble prob-

lem, since it does not satisfy any of the aforementioned re-

quirements. Indeed, WSBPA requires to access the original

features of the data objects, works only if the projective so-

lutions are generated by running a specific projective clus-

tering algorithm (i.e., LAC [6]), and it does not deal with

projective solutions that are soft at data clustering level.

2. Projective Clustering Ensembles

Definition 1 (projective clustering solution) Let D =
{~o1, . . . , ~oN} be a set of D-dimensional points (data ob-

jects). A projective clustering solution C defined over D is

a triple 〈L,Γ,∆〉:

• L = {ℓ1, . . . , ℓK} is a set of cluster labels which

uniquely represent the K clusters

• Γ : L × D → SΓ is a function which stores the

probability that object ~on belongs to the cluster la-

beled with ℓk, ∀k ∈ [1..K], n ∈ [1..N ], such that∑K

k=1 Γkn = 1, ∀n ∈ [1..N ], where Γkn hereinafter

refers to Γ(ℓk, ~on)

• ∆ : L × [1..D] → [0, 1] is a function which stores the

probability that the d-th feature is a relevant dimension

for the objects in the cluster labeled with ℓk, ∀k ∈
[1..K], d ∈ [1..D], such that

∑D

d=1 ∆kd = 1, ∀k ∈
[1..K], where ∆kd hereinafter refers to ∆(ℓk, d)

Definition 2 (projective ensemble) Given a set D of

data objects, a projective ensemble defined over D
is a set E = {C1, . . . , CM}, where each Cm =
〈L(m),Γ(m),∆(m)〉 is a projective clustering solution de-

fined over D, ∀m ∈ [1..M ], and L(i) ∩ L(j) = ∅, ∀i, j ∈
[1..M ], i 6= j.

Definition 3 (ensemble label set) Let E = {C1, . . . , CM}
be a projective ensemble, where Cm =
〈L(m),Γ(m),∆(m)〉, ∀m ∈ [1..M ]. The ensemble la-

bel set of E is defined as L = {l1, . . . , lH} =
⋃M

m=1 L
(m).

Definition 4 (projective cluster representation) Let D =
{~o1, . . . , ~oN} be a set of D-dimensional data objects

and E be a projective ensemble defined over D. The

N -dimensional object-based representation and the D-

dimensional feature-based representation for the cluster la-

beled with lh, ∀h ∈ [1..H ], are given by the vectors ~γh and
~δh, respectively, which are defined as follows:

~γh = (Γ′
k′1, . . . ,Γ

′
k′N ) ~δh = (∆′

k′1, . . . ,∆
′
k′D)

where the Γ′ and ∆′ functions are involved in the solution

C′ ∈ E such that C′ = 〈L′,Γ′,∆′〉, L′ = {ℓ′1, . . . , ℓ
′
K′},

lh ∈ L′, and k′ ∈ [1..K ′] is the index such that ℓ′k′ = lh.



2.1. Two-objective PCE

A projective consensus partition C∗ = 〈L∗,Γ∗,∆∗〉 de-

rived from an ensemble E should meet two different kinds

of requirements: the first one is related to the data object

clustering of the solutions in E , whereas the other one re-

gards the feature-to-cluster assignment of the solutions in

E . To this purpose, the PCE problem can be naturally for-

mulated as a two-objective optimization problem:

C
∗ = arg min

Ĉ

[
Ψo(Ĉ, E ,D), Ψf (Ĉ, E ,D)

]
(1)

where Ψo and Ψf are two optimization functions that ac-

count for the data clustering and the feature-to-cluster as-

signment of the projective clusterings in E , respectively, and

are defined as follows:

Ψo(Ĉ, E ,D) =
X

C∈E

ψo(C, Ĉ) (2)

Ψf (Ĉ, E ,D) =
X

C∈E

ψf (C, Ĉ) (3)

where ψo(Ci, Cj) (resp., ψf (Ci, Cj)) is a function that

measures the distance between the projective clustering so-

lutions Ci = 〈L(i),Γ(i),∆(i)〉 and Cj = 〈L(j),Γ(j),∆(j)〉
in terms of their corresponding object-based partitioning

(resp., feature-to-cluster assignment):

ψo(Ci, Cj) =
1

2

(
ψo(Ci, Cj) + ψo(Cj , Ci)

)
(4)

ψf (Ci, Cj) =
1

2

(
ψf (Ci, Cj) + ψf (Cj , Ci)

)
(5)

where

ψo(Ci, Cj) =
1

|L(i)|

|L(i)|∑

k=1

(
1 − max

k′∈[1..|L(j)|]
J
(
~a

(i)
k ,~a

(j)
k′

))

ψf (Ci, Cj) =
1

|L(i)|

|L(i)|∑

k=1

(
1 − max

k′∈[1..|L(j)|]
J
(
~b

(i)
k ,~b

(j)
k′

))

with ~a
(y)
z =

(
Γ

(y)
z1 , . . . ,Γ

(y)
zN

)
, ~b

(y)
z =

(
∆

(y)
z1 , . . . ,∆

(y)
zN

)
,

and J
(
~u,~v

)
=

(
~u ~v

)
/
(
‖~u‖2 + ‖~v‖2 − ~u ~v

)
ranging within

[0, 1] and denoting the extended Jaccard similarity coeffi-

cient between two any real-valued vectors ~u and ~v [8].

The MOEA-PCE algorithm. The NP-hard problem P
defined in Eq. (1) is a multi-objective optimization prob-

lem, in which the objectives are conflicting with each other.

An approach that has been recognized as particularly appro-

priate for this kind of problem is given by the Multi Objec-

tive Evolutionary Algorithms (MOEAs) [2]. These methods

are able to maintain the underlined multi-objective struc-

ture, i.e., they work without requiring a combination of the

objectives into a single one.

Within this view, in order to provide a valuable heuris-

tic for P , we resort to the MOEAs domain and pro-

pose the MOEA-based Projective Clustering Ensembles

(MOEA-PCE) algorithm. More precisely, we exploit the

elitist MOEA Nondominated Sorting Genetic Algorithm-II

(NSGA-II) [3], whose evolutionary strategy is based on the

notion of Pareto-ranking.

Definition 5 (domination) Let P be a multi-

objective optimization problem of the form {x∗ =
argminx̂[f1(x̂), . . . , fs(x̂)]}, and x′ and x′′ two can-

didate solutions of P . x′ dominates x′′ (x′ ≺ x′′) if

and only if fi(x
′) ≤ fi(x

′′), ∀i ∈ [1..s], and (ii)

∃j ∈ [1..s] : fj(x
′) < fj(x

′′).

Definition 6 (Pareto-optimality) Let P be a

multi-objective optimization problem of the form

{x∗ = arg minx̂[f1(x̂), . . . , fs(x̂)]}, and S a popula-

tion of individuals for P , i.e., a set of candidate solutions

of P . S∗
P ⊆ S is a Pareto-optimal solution set of P w.r.t. S

if and only if x ⊀ x∗, ∀x ∈ S, ∀x∗ ∈ S∗
P .

Definition 7 (Pareto-ranking) Let P be a multi-

objective optimization problem of the form {x∗ =
argminx̂[f1(x̂), . . . , fs(x̂)]}, and S a population of indi-

viduals for P . The Pareto-ranking function ρ : S → N for

P is defined as ρ(x) = min{r ∈ N, r > 0 : x ∈ S∗
P,r},

∀x ∈ S, where S∗
P,z is the Pareto-optimal solution set of P

w.r.t. the population SP,z = {x′ ∈ S : ρ(x′) ≥ z}.

The MOEA-PCE algorithm (Algorithm 1) starts by ran-

domly generating the initial population S (Line 1), and pro-

ceeds by performing the main loop until a maximum num-

ber I of iterations has been reached (Lines 3-9). At each

iteration, the Pareto-ranking function ρ, defined w.r.t. the

current populationS, is computed according to Definition 7,

where the problem denoted with P is the one reported in

Eq. (1) (Line 4). The procedure used for computing ρ is the

one described in [3]. The ρ values of each individual in S
are then exploited for sorting S and partitioning it into two

equal-size subsets, i.e., S′ and S′′, so that each individual in

S′ has a ρ value not greater than any other individual in S′′

(Line 5). The subset S′ undergoes a crossover-and-mutation

step, which is performed as described in [11] (Line 6); the

mutation step consists in adding random Gaussian noise to

the solutions in S′. The result of this step is the “offspring”

set S′
CM of new individuals which, along with S′, forms

the new population (Line 7). Finally, the Pareto-optimal

solution set S∗ (i.e., the set of output projective consensus

partitions) is derived from the population S computed at the

last iteration (Line 11).

2.2. Single-objective PCE

The two-objective projective clustering ensembles for-
mulation may incur issues concerning the parameter setting



Algorithm 1 MOEA-PCE

Input: a projective ensemble E of size M , defined over a set D of N
D-dimensional objects; the number K of clusters in the output pro-

jective consensus partitions; the population size t; the maximum

number I of iterations

Output: a set S∗ of projective consensus partitions

1: S ← populationRandomGen(E, t, K)
2: it← 1
3: repeat

4: ρ← computeParetoRanking(S) {see Def. 7}
5: 〈S′,S′′〉 ← 〈Š′ ⊂ S, Š′′ ⊂ S〉 : |Š′| = |S|/2, |Š′′| =

|S|/2, Š′ ∪ Š′′ = S, ρ(x′) ≤ ρ(x′′), ∀x′ ∈ Š′, x′′ ∈ Š′′

6: S′
CM
← crossoverAndMutation(S′)

7: S ← S′ ∪ S′
CM

8: it← it + 1
9: until it = I

10: ρ← computeParetoRanking(S)
11: S∗ ← {x′ ∈ S : ρ(x′) ≤ ρ(x′′), ∀x′′ ∈ S, x′′ 6= x′}

and the interpretation of the convergence criterion. Within
this view, we alternatively propose a different and simpler
formulation that is based on a single objective function:

C
∗ = arg min

Ĉ

Q(Ĉ, E) (6)

s.t .
K

X

k=1

Γ̂kn = 1, ∀n ∈ [1..N ] (7)

D
X

d=1

∆̂kd = 1, ∀k ∈ [1..K] (8)

Γ̂kn ≥ 0, ∆̂kd ≥ 0,

∀k∈ [1..K], n∈ [1..N ], d∈ [1..D] (9)

whereQ(Ĉ, E) =
∑K

k=1

∑N

n=1 Γ̂
α

kn

∑H

h=1 γhn

∑D

d=1

(
∆̂kd−

δhd

)2
and α > 1 is an integer that guarantees the nonlin-

earity of Q w.r.t. Γ̂kn, which is needed for ensuring that the

values of Γ̂kn range within [0, 1] (instead of {0, 1}).

The EM-PCE algorithm. In order to provide a heuristic

solution for the NP-hard problem in Eq. (6)-(9), we define a

novel procedure that is inspired by the popular Expectation

Maximization (EM) algorithm [4].

The proposed algorithm, called EM-based Projective

Clustering Ensembles (EM-PCE) (Algorithm 2), consists of

two main EM-like steps, which are iterated until a conver-

gence criterion is met. Such steps exploit the functionQ and

aim to find an optimal solution for Γ̂kn (resp., ∆̂kd) values,

while maintaining fixed ∆̂kd (resp., Γ̂kn) values. The basic

equations for the two steps are:

Γ∗
kn =

[
K

X

k′=1

(
Xkn

Xk′n

) 1
α−1

]−1

(10)

∆∗
kd =

Zkd

Yk

(11)

Algorithm 2 EM-PCE

Input: a projective ensemble E of size M , defined over a set D of N
D-dimensional data objects; the number K of clusters in the output

projective consensus partition;

Output: the projective consensus partition C∗

1: L∗ ← {1, . . . , K}
2: 〈Γ∗, ∆∗〉 ← randomGen(E, K)
3: repeat

4: compute Γ∗ according to Eq. (10)

5: compute ∆∗ according to Eq. (11)

6: until convergence
7: C∗ = 〈L∗,Γ∗, ∆∗〉

where Xkn =
∑H

h=1 γhn

∑D

d=1

(
∆̂kd − δhd

)2
,

Yk =
∑N

n=1 Γ̂
α

kn

∑H

h=1 γhn, and Zkd =∑N

n=1 Γ̂
α

kn

∑H

h=1 γhn δhd.

The expressions reported in Eq. (10) and (11), i.e., the

solutions for the problem P defined in Eq. (6)-(9), have

been derived by means of the conventional Lagrange mul-

tipliers method, considering the relaxed problem P ′ ob-

tained by temporarily discarding the inequality constraints

from the constraint set of P . In particular, we define

the new (unconstrained) objective function Qλ for P ′ as

Qλ(Ĉ, E) = Q(Ĉ, E) +
∑N

n=1 λ
′
n

(∑K

k′=1 Γ̂k′n − 1
)

+∑K

k=1 λ
′′
k

( ∑D

d′=1 ∆̂kd′ −1
)
, and, for a fixed assignment of

∆̂kd, we compute the optimal Γ∗
kn by solving the system of

equations given by ∂ Qλ/∂ Γ̂kn = α (Γ̂kn)α−1 Xkn+λ′n =

0 and ∂ Qλ/∂ λ
′
n =

∑K

k′=1 Γ̂k′n − 1 = 0, whose solution

is given by Eq. (10). Analogously, for a fixed assignment of

Γ̂kn, we compute the optimal ∆∗
kd by solving the equations

∂ Qλ/∂ ∆̂kd =
∑N

n=1 Γ̂
α

kn

∑H

h=1 2 γhn

(
∆̂kd−δhd

)
+λ′′k =

0 and ∂ Qλ/∂ λ
′′
k =

∑D

d′=1 ∆̂kd′ − 1 = 0 which are solved

by Eq. (10). Since, according to the solutions for P ′ re-

ported in Eq. (10) and (11), it holds that Γ∗
kn ≥ 0, ∆∗

kd ≥ 0,

∀k ∈ [1..K], n ∈ [1..N ], d ∈ [1..D], then such solutions

satisfy the inequality constraints that were temporarily dis-

carded in order to define the relaxed problem P ′; thus, they

represent the optimal solutions of the original problem P .

3. Experimental evaluation

3.1. Evaluation methodology

Datasets. We used eight benchmark datasets from the

UCI Machine Learning Repository,1 namely Iris, Wine,

Glass, Ecoli, Yeast, Segmentation, Abalone and Let-

ter, and two time-series datasets from the UCR Time Se-

ries Classification/Clustering Page,2 namely Tracedata and

ControlChart. Table 1 specifies the main characteristics of

the selected datasets.

1http://archive.ics.uci.edu/ml/
2http://www.cs.ucr.edu/∼eamonn/time series data/



Table 1. Datasets used in the experiments

dataset objects attributes classes

Iris 150 4 3

Wine 178 13 3

Glass 214 10 6

Ecoli 327 7 5

Yeast 1,484 8 10

Segmentation 2,310 19 7

Abalone 4,124 7 17

Letter 7,648 16 10

Tracedata 200 275 4

ControlChart 600 60 6

Ensemble generation. For each set of experiments and

dataset we generated twenty different ensembles; all the

reported results were averaged over the runs obtained on

each of these ensembles. Ensembles for each dataset were

generated by the LAC algorithm [6], where the diversity of

the solutions was guaranteed by randomly choosing the ini-

tial centroids and varying the parameter h in LAC.3 LAC

yields projective clusterings that are hard at data cluster-

ing level and have feature-to-cluster assignments unequally

weighted; consequently, in order to test the ability of the

proposed algorithms to deal also with soft clustering so-

lutions and with solutions having feature-to-cluster assign-

ments equally weighted, we generated each ensemble E as

a composition of four equal-size subsets, namely E1, E2, E3,

and E4 such that:

• E1 contains solutions hard at data clustering level

and having feature-to-cluster assignments unequally

weighted, i.e., solutions obtained by standard LAC;

• E2 contains solutions that are hard at data clustering

level and have feature-to-cluster assignments equally

weighted. Starting from a LAC solution C =
〈L,Γ,∆〉 defined over a set of N D-dimensional ob-

jects, where L = {ℓ1, . . . , ℓK}, we derived the cor-

responding projective clustering C′, having feature-

to-cluster assignments equally weighted, as C′ =
〈L,Γ,∆′〉, where ∆′

kd = ⌊∆kd + 1/D⌋, ∀k ∈
[1..K], d ∈ [1..D];

• E3 contains solutions that are soft at data cluster-

ing level and have feature-to-cluster assignments un-

equally weighted. Starting from a LAC solution C =
〈L,Γ,∆〉 defined over a set of N D-dimensional ob-

jects, where L = {ℓ1, . . . , ℓK}, we derived the cor-

responding soft projective clustering C′′ as C′′ =
〈L,Γ′′,∆〉, where Γ′′

kn = Pr(k|n), ∀k ∈ [1..K], n ∈
[1..N ]. Pr(k|n) is the probability of the cluster labeled

with ℓk given the observation of the object ~on, which

is computed as described in [5].

• E4 contains solutions that are soft at data clustering

level and have feature-to-cluster assignments equally

3This parameter controls the incentive for clustering on more features

according to the local variance of data along each dimension.

weighted, which were derived from the standard LAC

solutions according to the methods employed for gen-

erating E2 and E3, respectively.

Setting of the proposed algorithms. We experimentally

observed that our methods were scarcely influenced by any

specific setting. This allowed to easily select values well-

suited for all the evaluation datasets. Precisely, in the case

of MOEA-PCE, the population size (t) was set equal to 15%
of the ensemble size and the number I of maximum iter-

ations equal to 200. The random Gaussian noise needed

for the mutation step was obtained by performing a Monte

Carlo sampling on a Gaussian probability density function

with zero mean value and variance equal to one. In the case

of EM-PCE, the α parameter of the objective function Q
was set equal to 2.

Evaluation criteria. For each dataset D = {~o1, . . . , ~oN},

where ~on = (on1, . . . , onD), ∀n ∈ [i..N ], accuracy of out-

put consensus partitions Č = 〈Ľ, Γ̌, ∆̌〉, |Ľ| = Ǩ , was

evaluated in terms of:

1. similarity w.r.t. the (hard) reference classifica-

tion C̃, which is defined as follows. C̃ =
〈L̃, Γ̃, ∆̃〉, where L̃ = {ℓ̃1, . . . , ℓ̃ eK

} and Γ̃ are

directly available from D, whereas ∆̃ as in [6]:

∆̃kd =
(
exp (−Xkd/h)

)
/
(∑D

d′=1 exp (−Xkd′/h)
)
,

∀k ∈ [1..K̃], d ∈ [1..D], where Xkd =( ∑N

n=1 Γ̃kn

)−1 ∑N

n=1 Γ̃kn

(
ckd − ond

)2
, ckd =( ∑N

n=1 Γ̃kn

)−1 ∑N

n=1 Γ̃kn ond; moreover, LAC’s pa-

rameter h was set equal to 0.2. The evaluation between

Č and C̃ was performed according to both object- and

feature-based representations, by using 1−ψo (Eq. (4))

and 1 − ψf (Eq. (5)), respectively;

2. error-rate (E) [6], which is an internal criterion that

measures the intra-cluster compactness: E(Č) =
∑Ǩ

k=1

∑D

d=1

(
∆̌kd/

( ∑N

n=1 Γ̌kn

) ∑N

n=1 Γ̌kn

(
ckd −

ond

)2
.

3.2. Results

For each algorithm, dataset and ensemble, we performed

fifty different runs and reported average results, and maxi-

mum (best) results with relative standard deviation.

Evaluation w.r.t. reference classification. Table 2 and

Table 3 show the performance on the various datasets in

terms of similarity w.r.t. the reference classifications, using

the object-based representation and the feature-based repre-

sentation, respectively.

In both cases, we observed that the proposed algorithms

lead to an average similarity of the consensus partition(s)

that is comparable or far better than the average intra-

ensemble similarity. Using the object-based representation



(Table 2), the average improvements (gains) obtained by

MOEA-PCE and EM-PCE over all datasets are 13.6% and

4.3%, respectively, with peaks above 16% on five out of

ten datasets by MOEA-PCE (up to 29% on Iris), and peaks

above 10% on three datasets by EM-PCE (up to 13% on

Iris). Using the feature-based representation (Table 3), the

average improvements achieved by MOEA-PCE and EM-

PCE over all datasets are 13.3% and 7.3%, respectively.

Table 2. Similarity results w.r.t. reference
classification (object-based representation)

ensemble MOEA-PCE EM-PCE

gain gain

w.r.t. w.r.t.

ens. ens.

data avg-max avg max-std (avg) avg max-std (avg)

Iris .632 .925 .919 .925 .015 +.287 .762 .767 .040 +.130

Wine .738 .910 .913 .928 .105 +.175 .782 .840 .028 +.044

Glass .565 .775 .683 .768 .046 +.118 .639 .644 .002 +.074

Ecoli .421 .689 .603 .686 .054 +.182 .329 .419 .040 -.092

Yeast .675 .750 .723 .745 .015 +.048 .638 .641 .001 -.037

Segm. .590 .821 .755 .835 .049 +.165 .653 .663 .004 +.063

Abal. .509 .520 .518 .558 .043 +.009 .512 .542 .002 +.003

Letter .522 .640 .597 .612 .031 +.075 .554 .562 .006 +.032

Trace .772 .868 .862 .998 .059 +.090 .875 .935 .030 +.103

Contr. .681 .981 .895 .965 .049 +.214 .790 .806 .007 +.109

Evaluation in terms of error rate. We also compared the

performance of MOEA-PCE and EM-PCE with both the

reference classification and the ensemble, for each dataset,

in terms of error rate. Due to the space limits of this pa-

per, here we summarize that evaluation with the following

remarks.

MOEA-PCE outperforms the standard ensemble, obtain-

ing an average improvement (gain) over all the datasets of

+0.6 w.r.t. the reference classification and +0.358 w.r.t.

the ensemble. EM-PCE also improves upon the error rate

of the reference classification (+0.51) and of the ensemble

(+0.27).

4. Conclusion

In this paper we addressed for the first time the projec-

tive clustering ensembles problem (PCE). Given an ensem-

ble of projective clustering solutions, PCE aims to find a

proper projective consensus partition, i.e., a new projec-

tive clustering computed by optimizing one or more criteria

properly defined by exploiting the information from the en-

semble. We proposed two different formulations of PCE,

according to which the problem at hand was defined as

a two- and single-objective optimization problem, respec-

tively, and provided heuristic algorithms for solving both

PCE problems. Experimental results show the improved ac-

curacy of the projective consensus partition obtained by the

proposed algorithms, in terms of both external and internal

evaluation criteria.

Table 3. Similarity results w.r.t. reference

classification (feature-based representation)

ensemble MOEA-PCE EM-PCE

gain gain

w.r.t. w.r.t.

ens. ens.

data avg-max avg max-std (avg) avg max-std (avg)

Iris .662 .998 .988 1 .029 +.326 .845 .895 .043 +.183

Wine .822 .989 .955 .997 .027 +.133 .869 .899 .080 +.047

Glass .731 .891 .851 .900 .027 +.120 .817 .877 .041 +.086

Ecoli .763 .879 .858 .884 .016 +.095 .903 .953 .052 +.140

Yeast .720 .805 .790 .804 .009 +.070 .684 .690 .003 -.036

Segm. .618 .720 .729 .737 .049 +.111 .625 .632 .008 +.007

Abal. .716 .754 .759 .849 .023 +.043 .726 .748 .013 +.010

Letter .646 .693 .767 .818 .012 +.121 .780 .786 .007 +.134

Trace .661 .818 .755 .811 .0.25 +.094 .753 .773 .021 +.092

Contr. .663 .894 .880 .910 .016 +.217 .734 .774 .022 +.071
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