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Abstract. Forming consensus clusters from multiple input clusterings
can improve accuracy and robustness. Current clustering ensemble meth-
ods require specifying the number of consensus clusters. A poor choice
can lead to under or over fitting. This paper proposes a nonparametric
Bayesian clustering ensemble (NBCE) method, which can discover the
number of clusters in the consensus clustering. Three inference methods
are considered: collapsed Gibbs sampling, variational Bayesian inference,
and collapsed variational Bayesian inference. Comparison of NBCE with
several other algorithms demonstrates its versatility and superior stabil-
ity.

1 Introduction

Clustering ensemble methods operate on the output of a set of base clustering
algorithms to form a consensus clustering. Clustering ensemble methods tend to
produce more robust and stable clusterings than the individual solutions [28].
Since these methods require only the base clustering results and not the raw
data themselves, clustering ensembles provide a convenient approach to privacy
preservation and knowledge reuse [31]. Such desirable aspects have generated
intense interest in cluster ensemble methods.

A variety of approaches have been proposed to address the clustering en-
semble problem. Our focus is on statistically oriented approaches. Topchy et al.
[28] proposed a mixture-membership model for clustering ensembles. Wang et
al. [31] applied a Bayesian approach to discovering clustering ensembles. The
Bayesian clustering ensemble model has several desirable properties [31]: it can
be adapted to handle missing values in the base clusterings; it can handle the
requirement that the base clusterings reside on a distributed collection of hosts;
and it can deal with partitioned base clusterings in which different partitions
reside in different locations. Other clustering ensemble algorithms, such as the
cluster-based similarity partitioning algorithm (CSPA) [25], the hypergraph par-
titioning algorithm (HGPA) [25], or k-means based algorithms [18] can handle
one or two of these cases; however, none except the Bayesian method can address
them all.

Most clustering ensemble methods have the disadvantage that the number
of clusters in the consensus clustering must be specified a priori. A poor choice
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can lead to under- or over-fitting. Our approach, nonparametric Bayesian clus-
tering ensembles (NBCE), can discover the number of clusters in the consensus
clustering from the observations. Because it is also a Bayesian approach, NBCE
inherits the desirable properties of the Bayesian clustering ensembles model [31].
Similar to the mixture modeling approach [28] and the Bayesian approach [31],
NBCE treats all base clustering results for each object as a feature vector with
discrete feature values, and learns a mixed-membership model from this feature
representation.

The NBCE model is adapted from the Dirichlet Process Mixture (DPM)
model [22]. The following sections show how the DPM model can be adapted
to the clustering ensemble problem, and examine three inference methods: col-
lapsed Gibbs sampling, standard variational Bayesian inference, and collapsed
variational Bayesian inference. These methods are compared in theory and prac-
tice. Our empirical evaluation demonstrates the versatility and superior stability
and accuracy of NBCE.

2 Related Work

A clustering ensemble technique is characterized by two components: the mech-
anism to generate diverse partitions, and the consensus function to combine the
input partitions into a final clustering. Diverse partitions are typically generated
by using different clustering algorithms [1], or by applying a single algorithm
with different parameter settings [10, 16, 17], possibly in combination with data
or feature sampling [30, 9, 20, 29].

One popular methodology to build a consensus function utilizes a co-
association matrix [10, 1, 20, 30]. Such a matrix can be seen as a similarity matrix,
and thus can be used with any clustering algorithm that operates directly on
similarities [30, 1]. As an alternative to the co-association matrix, voting proce-
dures have been considered to build consensus functions in [7]. Gondek et al. [11]
derive a consensus function based on the Information Bottleneck principle: the
mutual information between the consensus clustering and the individual input
clusterings is maximized directly, without requiring approximation.

A different popular mechanism for constructing a consensus maps the prob-
lem onto a graph-based partitioning setting [25, 3, 12]. In particular, Strehl et
al. [25] propose three graph-based approaches: Cluster-based Similarity Parti-
tioning Algorithm (CSPA), HyperGraph Partitioning Algorithm (HGPA), and
Meta-Clustering Algorithm (MCLA). The methods use METIS (or HMETIS)
[15] to perform graph partitioning. The authors in [23] develop soft versions of
CSPA, HGPA, and MCLA which can combine soft partitionings of data.

Another class of clustering ensemble algorithms is based on probabilistic
mixture models [28, 31]. Topchy et al. [28] model the clustering ensemble as a
finite mixture of multinomial distributions in the space of base clusterings. A
consensus result is found as a solution to the corresponding maximum likelihood
problem using the EM algorithm. Wang et al. [31] proposed Bayesian Cluster
Ensembles (BCE), a model that applies a Bayesian approach to protect against
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the over-fitting to which the maximum likelihood method is prone [28]. The
BCE model is applicable to some important variants of the basic clustering
ensemble problem, including clustering ensembles with missing values, as well as
row-distributed or column-distributed clustering ensembles. Our work extends
the BCE model to a nonparametric version, keeping all the advantages thereof,
while allowing the number of clusters to adapt to the data.

3 Dirichlet Process Mixture Model

The Dirichlet process (DP) [8] is an infinite-dimensional generalization of the
Dirichlet distribution. Formally, let S be a set, G0 a measure on S, and α0 a
positive real number. The random probability distribution G on S is distributed
according to DP with the concentration parameter α0 and the base measure G0,
if for any finite partition {Bk}1≤k≤K of S:

(G(B1), G(B2), · · · , G(BK)) ∼
Dir(α0G0(B1), α0G0(B2), · · · , α0G0(BK))

Let G be a sample drawn from a DP. Then with probability 1, G is a discrete
distribution [8]. In addition, if the firstN−1 draws fromG yieldK distinct values
θ∗1:K with multiplicities n1:K , then the probability of the N th draw conditioned
on the previous N − 1 draws is given by the Pólya urn scheme [5]:

θN =

{
θ∗k, with prob nk

N−1+α0
, k ∈ {1, · · · ,K}

θ∗K+1 ∼ G0, with prob α0
N−1+α0

The DP is often used as a nonparametric prior in Bayesian mixture models
[2]. Assume the data are generated from the following generative procedure:

G ∼ Dir(α0, G0)
θ1:N ∼ G

x1:N ∼
N∏
n=1

F (·|θn)

The θ1:N typically contains duplicates; thus, some data points are generated
from the same mixture component. It is natural to define a cluster as those
observations generated from a given mixture component. This model is known as
the Dirichlet process mixture (DPM) model. Although any finite sample contains
only finitely many clusters, there is no bound on the number of clusters and any
new data point has non-zero probability of being drawn from a new cluster [22].
Therefore, DPM is known as an “infinite” mixture model.

The DP can be generated via the stick-breaking construction [24]. Stick-
breaking draws two infinite sequences of independent random variables, vk ∼
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Beta(1, α0) and θ∗k ∼ G0 for k = {1, 2, · · · }. Let G be defined as:

πk = vk

k−1∏
j=1

(1− vj) (1)

G(θ) =
∞∑
k=1

πkδ(θ, θ∗k) (2)

where π = 〈πk|k = 1, 2, · · · 〉 are the mixing proportions of the infinite number
of components. Then G ∼ Dir(α0, G0). It is helpful to use an indicator variable
zn to denote which mixture component is associated with xn. The generative
procedure for the DPM model using the stick-breaking construction becomes:

1. Draw vk ∼ Beta(1, α0), k = {1, 2, · · · } and calculate π as in Eq (1).
2. Draw θ∗k ∼ G0, k = {1, 2, · · · }
3. For each data point:

– Draw zn ∼ Discrete(π)
– Draw xn ∼ F (·|θ∗zn

)

In practice, the process is typically truncated at level K by setting vK−1 = 1
[13]; Eq (1) then implies that all πk for k > K are zero. The truncated process is
called truncated stick-breaking (TSB). The resulting distribution, the truncated
Dirichlet process (TDP), closely approximates the Dirichlet process when K is
sufficiently large. The choice of the truncation level K is discussed in [13]. The
joint probability over data items X = 〈xn|n ∈ {1, · · · , N}〉, component assign-
ments Z = 〈zn|n ∈ {1, · · · , N}〉, stick-breaking weights v = 〈vk|k ∈ {1, · · · ,K}〉
and component parameters θ∗ = 〈θ∗k|k ∈ {1, · · · ,K}〉 is:

p(X,Z,v,θ∗) =

"
NY
n=1

F (xn|θ∗zn
)πzn(v))

#"
KY
k=1

G0(θ∗k)Beta(vk; 1, α0)

#

Another approach to approximate the DP is to assume a finite but large K-
dimensional symmetric Dirichlet prior (FSD) on the mixture proportion π [14],
which is π ∼ Dir(α0/K, · · · , α0/K). This results in the joint distribution:

p(X,Z,π,θ∗) =[
N∏
n=1

F (xn|θ∗zn
)πzn

][
K∏
k=1

G0(θ∗k)

]
Dir(π;

α0

K
, · · · , α0

K
)

With TSB, the cluster weights differ in expected value, with lower-numbered
cluster indices having higher probability. With FSD, the clusters are exchange-
able. A detailed comparison of these DP approximations can be found in [19].

4 NBCE Generative Model

Following [28] and [31], we assume there are M base clustering algorithms, each
generating a hard partition on the N data items to be clustered. Let Jm denote
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the number of clusters generated by the mth clustering ϕm, m ∈ {1, · · · ,M},
and let ynm ∈ {1, · · · , Jm} denote the cluster ID assigned to the nth data item
xn by ϕm, n ∈ {1, · · · , N}. The row yn = 〈ynm|m ∈ {1, · · · ,M}〉 of the base
clustering matrix Y gives a new feature vector representation for the nth data
item.

Figure 1 depicts the generative model for Y . We assume yn is generated from
a truncated Dirichlet Process mixture model, where α0 is the concentration pa-
rameter, G0 is the base measure, and K is the truncation level. The probability
of generating a cluster ID ynm = jm by ϕm for xn is θnmjm , jm ∈ {1, · · · , Jm}
and

∑Jm

jm=1 θnmjm = 1. So yn = 〈ynm = jm|m ∈ {1, · · · ,M}〉 is generated
with probability

∏M
m=1 θnmjm . We define θnm = 〈θnmjm |jm ∈ {1, · · · , Jm}〉. We

further assume a prior G(m)
0 for θ·m = {θnm|n = 1, · · · , N}, where G(m)

0 is a
symmetric Dirichlet distribution of dimension Jm with hyperparameter β. The
base measure G0 is defined as G0 = G

(1)
0 ×· · ·×G

(M)
0 . We denote θn = 〈θnm|m ∈

{1, · · · ,M}〉. Since the truncation level is K, there are K unique θn, denoted
as θ∗k = 〈θ∗km|m ∈ {1, · · · ,M}〉, where θ∗km = 〈θ∗kmjm |jm ∈ {1, · · · , Jm}〉,∑Jm

jm=1 θ
∗
kmjm

= 1 and k ∈ {1, · · · ,K}. We associate with each xn an indi-
cator variable zn to indicate which θ∗k is assigned to xn; if zn = k, then θn = θ∗k.
A consensus cluster is defined as a set of data items associated with the same θ∗k.
That is, zn indicates which consensus cluster xn belongs to. There are at most
K consensus clusters, but some consensus clusters may be empty; we define the
total number of consensus clusters to be the number of distinct zn in the sample.

α0

!π !θ∗km
KG

G
(m)
0

zn ynm

MN

Fig. 1. Nonparametric Bayesian Clustering Ensembles Model

The stick breaking generative process for Y is:

1. Draw vk ∼ Beta(1, α0), for k = {1, · · · ,K} and calculate π as in Eq (1)
2. Draw θ∗k ∼ G0, for k = {1, · · · ,K}
3. For each xn:

– Draw zn ∼ Discrete(π)
– For each base clustering ϕm, draw ynm ∼ Discrete(θ∗znm)
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Using the symmetric Dirichlet prior, step 1 becomes:

1. Draw π ∼ Dir(α0
K , · · · ,

α0
K )

5 Inference and Learning

This section considers three inference and learning methods: collapsed Gibbs
sampling, standard variational Bayesian, and collapsed variational Bayesian in-
ference. Table 1 gives the notation used throughout this section.

The joint probability of observed base clustering results Y = 〈yn|n ∈
{1, · · · , N}〉, indicator variables Z = 〈zn|n ∈ {1, · · · , N}〉, component weights
π = 〈πk|k ∈ {1, · · · ,K}〉, and component parameters θ∗ = 〈θ∗k|k ∈ {1, · · · ,K}〉
is given by:

p(Y ,Z,π,θ∗|α0, G0) =(
N∏
n=1

p(zn|π)p(yn|θ∗, zn)

)
· p(π|α0)

(
K∏
k=1

p(θ∗k|G0)

)
=(

N∏
n=1

p(zn|π)
M∏
m=1

p(ynm|θ∗znm)

)
· p(π|α0)

(
K∏
k=1

M∏
m=1

p(θ∗km|G
(m)
0 )

)
(3)

After marginalizing out the parameters π and θ, the complete data likelihood
is:

p(Y ,Z|α0, G0, ) = p(Z|α0) (4)

·

 M∏
m=1

K∏
k=1

Γ (Jmβ)
Γ (Jmβ +Nz·=k)

Jm∏
jm=1

Γ (β +N y·m=jm
z·=k

)
Γ (β)


where for the two DP approximations, p(Z|α0) is different [19]:

pTSB(Z|α0) =
∏
k<K

Γ (1 +Nz·=k)Γ (α0 +Nz·>k)
Γ (1 + α0 +Nz·≥k)

pFSD(Z|α0) =
Γ (α0)

Γ (α0 +N)

K∏
k=1

Γ (α0
K +Nz·=k)
Γ (α0

K )

5.1 Collapsed Gibbs Sampling

Collapsed Gibbs sampling [21] speeds up the convergence of Gibbs sampling by
marginalizing out the parameters π and θ, sampling only the latent indicator
variables Z over the so-called collapsed space.

From Eq (4), we can derive the distribution for sampling components of Z:

p(zn = k|Z¬n,Y ) ∝

p(zn = k|Z¬n)
M∏
m=1

(∏Jm

jm=1(β +N¬nz·=k,y·m=jm
)

Jmβ +N¬nz·=k

)
(5)
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Table 1. Notation Description

Symbols Description
N the number of data

xn the nth data item
M the number base clusterings

ϕm the mth base clustering algorithm
ynm the cluster ID assigned to xn by ϕm

K the number of consensus clusters (truncation level)

Jm the number of clusters in the mth base clustering

jm the jth cluster in the mth base clustering

G
(m)
0 the Dirichlet prior to {1, 2, · · · , Jm} of ϕm

β the hyperparameter of G
(m)
0

G0
QM

m=1G0m
zn the indicator variable of xn to indicate which θ∗k assigned to xn

Z¬n the indicator variables except for xn

θnmjm the probability of ynm = jm
θnm 〈θnmjm |jm ∈ {1, · · · , Jm}〉 and

PJm
jm=1 θnmjm = 1

θn 〈θnm|m ∈ {1, · · · ,M}〉
θ∗kmjm

the probability of ynm = jm if zn = k

θ∗km 〈θ∗kmjm
|jm ∈ {1, · · · , Jm}〉 and

PJm
jm=1 θ

∗
kmjm

= 1

θ∗k 〈θ∗km|m ∈ {1, · · · ,M}〉, unique parameter value of θn

θ∗ 〈θ∗k|k ∈ {1, · · · , K}〉
Nz·=k

PN
n=1 δ(zn, k)

N¬n
z·=k

PN
n′=1,n′ 6=n

δ(zn′ , k)

Ny·m=jm
z·=k

PN
n=1 δ(zn, k)δ(ynm, jm)

N¬n
z·=k,y·m=jm

PN
n′=1,n′ 6=n

δ(zn′ , k)δ(yn′m, jm)

Nz·≥k

PN
n=1 1{z≥k}(zn)

N¬n
z·≥k

PN
n′=1,n′ 6=n

1{z≥k}(zn′ )

where for the two different DP approximations, p(zn = k|Z¬n) is different:

pTSB(zn = k|Z¬n) =
1 +N¬nz·=k

1 + α0 +N¬nz·≥k

∏
h<k

α0 +N¬nz·>h
1 + α0 +N¬nz·≥h

pFSD(zn = k|Z¬n) =
α0
K +N¬nz·=k
α0 +N − 1

5.2 Standard Variational Bayesian Inference

Variational Bayesian inference [4] approximates the posterior distribution by
adjusting free parameters of a tractable variational distribution to minimize the
KL-divergence between the variational and true distributions. This is equivalent
to maximizing a lower bound on the true log-likelihood.

We consider only the FSD prior as the DP approximation for standard vari-
ational Bayesian (VB) inference. VB assumes the following variational distribu-
tions:

q(π,θ,Z|ξ,ρ,γ) = q(π|ξ)

(
K∏
k=1

p(θ∗k|ρk)

)(
N∏
n=1

p(zn|γn)

)

= q(π|ξ)

(
K∏
k=1

M∏
m=1

p(θ∗km|ρkm)

)(
N∏
n=1

p(zn|γn)

)
(6)
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where ξ = 〈ξk|k ∈ {1, · · · ,K}〉, ρ = 〈ρk|k ∈ {1, · · · ,K}〉 = 〈ρkm|k ∈
{1, · · · ,K},m ∈ {1, · · · ,M}〉 and γ = 〈γn|n ∈ {1, · · · , N}〉 are variational pa-
rameters, assumed to be independent. Further, given these variational parame-
ters, the model parameters and indicator variables, π, θ and Z are independent
of each other.3 In particular, ξ specifies a K-dimensional Dirichlet distribution
for π, ρkm specifies a Jm-dimensional Dirichlet distribution for θ∗km, and γn
specifies an N -dimensional multinomial distribution for the indicator zn of xn.

A lower bound LV B for the log-likelihood is given by:

log p(Y |α0, G0) ≥ (7)
Eq[log p(Y ,Z,π,θ∗|α0, G0)]− Eq[log q(π,θ∗,Z|ξ,ρ,γ)] =(

N∑
n=1

M∑
m=1

Eq[log p(ynm|θ∗znm)]

)
− Eq[log p(π|α0)] +

(
N∑
n=1

Eq[log p(zn|π)]

)
+(

K∑
k=1

Eq[log p(θ∗k|G0)]

)
− Eq[log q(π|ξ)]− Eq[log q(θ∗|ρ)]− Eq[log q(Z|γ)]

See the Appendix for the expansion of Eq (7).
A local optimum is found by setting the partial derivatives of LV B with

respect to each variational parameter to be zero. This gives rise to the following
first-order conditions:

γnk ∝ exp
{ M∑

m=1

Jm∑
jm=1

δ(ynm, jm) log ρkmjm

+ Ψ(ξk)− Ψ(
K∑
h=1

ξh)
}

ρkmjm = β +
N∑
n=1

Jm∑
jm=1

γnkδ(ynm, jm)

ξk =
α0

K
+

N∑
n=1

γnk.

As for the remaining parameters α0 and β, we first write the parts of LV B
involving α0 and β as:

L[α0]
V B = logΓ (α0)−K logΓ (

α0

K
) +

(α0

K
− 1
) K∑
k=1

[
Ψ(ξk)− Ψ(

K∑
h=1

ξh)

]
L[β]
V B =

M∑
m=1

(
K logΓ (Jmβ)−KJm logΓ (β)+

(β − 1)
K∑
k=1

Jm∑
jm=1

[
Ψ(ρkmjm)− Ψ(

Jm∑
h=1

ρkmh)

])
Estimates for α0 and β are then obtained by maximization of L[α0]

V B and L[β]
V B

using standard methods such as Newton-Raphson [6].
3 This is a strong assumption: note the dependences between π and Z, θ and Z, θ

and π depicted in Figure 1.
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5.3 Collapsed Variational Bayesian Inference

Inspired by collapsed Gibbs sampling, collapsed variational Bayesian (CVB) in-
ference for NBCE optimizes a lower bound LCV B for the log-likelihood in the
collapsed space, in which the model parameters θ∗ are marginalized out.

CVB assumes the following variational distribution:

q(Z|γ) =

NY
n=1

q(zn|γn) (8)

where γ = 〈γn|n ∈ {1, · · · , N}〉 are variational parameters. Here, γn parameter-
izes an N -dimensional multinomial distribution for the indicator zn of xn. As
shown in Figure 2, marginalizing out θ∗ removes the need to specify variational
parameters for θ∗. Thus, CVB searches for an optimum in a less restricted space
than VB, which may lead to a better posterior approximation than VB.

zn

γn

N

Fig. 2. Graphical model representation of the collapsed variational distribution used
to approximate the posterior in NBCE

The lower bound LCV B for the log-likelihood is:

log p(Y |α0, G0, ) ≥
Eq(Z|γ)[log p(Y ,Z|α0, G0, )]− Eq(Z|γ)[log q(Z|γ)] (9)

By taking the derivatives of LCV B with respect to q(zn = k|γn), we have:

q(zn = k|γn) ∝ exp


Eq(Z¬n,|γ)

»
log p(zn = k|Z¬n)+ M∑

m=1

Jm∑
jm=1

log(β +N¬nz·=k,y·m=jm)

−( M∑
m=1

log(Jmβ +N¬nz·=k)

)]}
(10)

where for the two DP approximations, log p(zn = k|Z¬n) is different:

log pTSB(zn = k|Z¬n) = log(1 +N¬nz·=k)− log(1 + α0 +N¬nz·≥k)+∑
h<k

[
log(α0 +N¬nz·>h)− log(1 + α0 +N¬nz·≥h)

]
log pFSD(zn = k|Z¬n) = log(

α0

K
+N¬nz·=k)− log(α0 +N − 1)
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Following [26], we apply the first-order latent-space variational Bayesian
approximation to Eq (10). Applying the second-order latent-space variational
Bayesian inference [27] will lead to a better approximation, but is more expen-
sive. We plan to use it in our future work. Here we just illustrate how to calculate
Eq(Z¬n|γ)[log(β + N¬nz·=k,y·m=jm

)] and Eq(Z¬n|γ)[log(Jmβ + N¬nz·=k)]. The calcu-
lation of other expectations is similar.

According to [26], we have:

Eq(Z¬n|γ)

»
log(β +N¬nz·=k,y·m=jm)

–
≈ log

(
β + Eq(Z¬n|γ)

[
N¬nz·=k,y·m=jm

])
Eq(Z¬n|γ)

[
log(Jmβ +N¬nz·=k)

]
≈ log

(
Jmβ + Eq(Z¬n|γ)

[
N¬nz·=k

])
Denote γnk = q(zn = k|γn), then we get:

Eq(Z¬n|γ)

»
N¬nz·=k,y·m=jm

–
=

N∑
n′=1,n′ 6=n

γn′kδ(yn′m = jm)

Eq(Z¬n|γ)

[
N¬nz·=k

]
=

N∑
n′=1,n′ 6=n

γn′k (11)

Calculating all the expectations and plugging them back into Eq (10) yields
approximations to γnk = q(zn = k|γn). Repeating this process gives an EM-style
iterative algorithm for estimating the γnk. The algorithm terminates when the
change in γnk drops below a threshold.

6 Empirical Evaluation

We compared several ensemble methods. We first used k-means with different
initializations to obtain a set of base clusterings. Then we generated a consen-
sus clustering using various clustering ensemble algorithms, including Bayesian
clustering ensembles (BCE) [31], mixture model (MM) [28], CSPA, HGPA, and
MCLA [25]. All of these are parametric methods. We also compared two different
DP approximations, TSB and FSD, and the performance of NBCE estimated
with collapsed Gibbs sampling, collapsed and standard variational approxima-
tion.

Datasets. We evaluated NBCE on both synthetic and real datasets. We gen-
erated a set of synthetic data with two clusters and some outliers to test the
robustness of NBCE. The synthetic data are plotted in Figure 3. To generate
the base clusterings on the synthetic data, following [31], we randomly added
noise into the ground-truth labeling, e.g., we randomly modified the true labels
of 5%, 10%, 15% and 20% of the data points. In each case, we generated 10 base
noisy clusterings.
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Fig. 3. Synthetic Data: Two Clusters with Outliers

We also used five benchmark datasets from the UCI Machine Learning Repos-
itory4: Glass, Ecoli, ImageSegmentation, ISOLET, and LetterRecognition. Glass
contains glass instances described by their chemical components. Ecoli contains
data on E. Coli bacteria. ImageSegmentation contains data from images that
were hand-segmented classifying each pixel. ISOLET contains data represent-
ing spoken letters of the alphabet; we selected the letters A, B, C, D, E, and
G. LetterRecognition contains character images corresponding to the capital let-
ters in the English alphabet; we selected 700 samples of the letters A to J. We
also used two time-series datasets from different application domains, namely
Tracedata and ControlChart5. Tracedata simulates signals representing instru-
mentation failures. ControlChart contains synthetically generated control charts
that are classified into one of the following: normal, cyclic, increasing trend,
decreasing trend, upward shift, and downward shift.

To generate an ensemble on real data, we varied the number of output clusters
of the base clustering algorithms. We computed clustering solutions obtained
from multiple runs of k-means with different random initializations. The output
clustering solutions were composed of a number of clusters equal to 50%, 75%,
100%, 150%, and 200% of the number of ideal classes of the specific dataset. We
used 10 base clusterings for each dataset.

Setting of Clustering Ensemble Methods. For each parametric method
and dataset, we set the number of output clusters equal to the actual number of
classes, according to the ground truth. For the graph-partitioning-based methods
(i.e., CSPA, HGPA, and MCLA), we set the METIS parameters as suggested in
[15]. For NBCE, we set the truncation level K = 100. When comparing NBCE
with other ensemble methods, we use Gibbs sampling for the inference of NBCE.

4 http://archive.ics.uci.edu/ml/
5 For a description see: http://www.cs.ucr.edu/∼eamonn/time series data/
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Evaluation Criteria. Since k-means, CSPA, HGPA, and MCLA are non-
generative approaches, to compare the quality of their consensus partitions with
NBCE, we evaluated their clustering accuracy using the F1-measure. The ob-
jective is to evaluate how well a consensus clustering fits the ground-truth parti-
tion. The F1-measure is defined as the harmonic average of precision and recall.
Given a set D = {x1, · · · , xn} of n data objects, and A = {A1, · · · , Ah} and
B = {B1, · · · , Bk} being two clustering solutions defined over D, the precision
(P ) and recall (R) are defined as:

P (Ai, Bj) =
|Ai ∩Bj |
|Ai|

R(Ai, Bj) =
|Ai ∩Bj |
|Bj |

P (A,B) =
1
h

k∑
i=1

max
j∈{1,··· ,k}

P (Ai, Bj)

R(A,B) =
1
h

k∑
i=1

max
j∈{1,··· ,k}

R(Ai, Bj)

The F1-measure is defined as: F1 = 2P (A,B)R(A,B)
P (A,B)+R(A,B) .

Since MM, BCE and NBCE are generative models, we used perplexity to
compare them. The perplexity of the observed base clusterings Y is defined
as [6]:

perp(Y ) = exp

„
− log p(Y )

NM

«
(12)

Clearly, the perplexity monotonically decreases with the log-likelihood. Thus, a
lower perplexity value on the training data means that the model fits the data
better, and a lower value on the test data means that the model can better
explain unseen data.

6.1 Results

Evaluation of Clustering Ensemble Methods. We held out 1/4 of the
data to evaluate the predictive performance of MM, BCE and NBCE. Table 2
compares the clustering ensemble results for k-means, CSPA, HGPA, MCLA
and NBCE in terms of the F1-measure on the real datasets excluding the hold-
out set. We can see clearly that all ensemble methods outperform the baseline
k-means algorithm, and NBCE gives the highest accuracy for each dataset. A
paired t-test of NBCE against the next best accuracy is significant at the 0.002
level. Thus the comparison results of NBCE versus all competitors are statisti-
cally significant.

Table 4 compares MM, BCE and NBCE in terms of the perplexity on the
synthetic datasets. It’s clear that NBCE fits the data better than BCE and
MM. BCE and MM are parametric models, and thus fail to handle outliers. In
contrast, NBCE is robust to outliers because it can find the number of clusters
that fits the data best.
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Table 2. F1-measure Results

Base k-means
CSPA HGPA MCLA NBCE

max avg
Glass 0.57 0.51 0.66 0.59 0.61 0.69
Ecoli 0.61 0.56 0.67 0.65 0.68 0.72

ImageSegmentation 0.52 0.42 0.53 0.44 0.59 0.65
ISOLET 0.53 0.41 0.59 0.50 0.65 0.66

LetterRecognition 0.48 0.40 0.49 0.50 0.53 0.62
Tracedata 0.49 0.44 0.51 0.62 0.61 0.66

ControlChart 0.62 0.56 0.73 0.70 0.67 0.77

Table 3. Perplexity Results on the Synthetic Dataset

5% 10% 15% 20%
MM 10.04 13.27 17.36 21.20
BCE 7.92 9.76 14.22 18.98

NBCE 5.63 8.31 11.16 15.87

Tables 4 and 5 compare MM, BCE and NBCE in terms of the perplexity on
training and test (i.e., hold-out) data for the real datasets. NBCE fits the data
better than BCE, and BCE is better than MM.

Table 4. Perplexity Results on Training data for Real Datasets

Glass Ecoli ImageSegmentation ISOLET LetterRecognition Tracedata ControlChart
MM 1.02 1.33 1.40 1.63 2.21 2.97 4.34
BCE 0.99 1.10 1.23 1.34 1.98 2.53 4.01

NBCE 0.77 0.92 1.03 1.24 1.76 2.38 3.63

Comparison of TSB and FSD. In principle, TSB tends to produce larger
clusters then FSD. The experimental results confirm this fact by showing that
NBCE with a TSB prior gives a smaller number of singleton clusters than NBCE
with FSD. Table 6 shows the percentage of outliers in singleton clusters for the
five UCI datasets, when using collapsed Gibbs sampling with the two different
priors.

Comparison of CVB, VB and Gibbs. Table 7 illustrates the perplexity of
the three inference methods of NBCE on the UCI datasets excluding the hold-
out set. Collapsed Gibbs sampling is asymptotically unbiased, so it gives lower
perplexity than CVB and VB; CVB has less restricted assumption than VB, and
CVB has lower perplexity than VB. The perplexity is calculated at convergence.

7 Conclusion

A nonparametric Bayesian clustering ensemble model was proposed and three in-
ference methods were considered: collapsed Gibbs sampling, variational Bayesian
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Table 5. Perplexity Results on Test Data for Real Datasets

Glass Ecoli ImageSegmentation ISOLET LetterRecognition Tracedata ControlChart
MM 1.15 1.51 1.49 1.72 2.51 3.22 5.56
BCE 1.07 1.39 1.37 1.60 2.33 2.94 4.88

NBCE 0.98 1.18 1.16 1.47 1.96 2.62 4.58

Table 6. Outlier Percentage

TSB FSD
Glass 3.2% 5.4%
Ecoli 4.3% 5.1%

ImageSegmentation 3.2% 3.5%
ISOLET 2.9% 3.1%

LetterRecognition 3.3% 3.6%

Table 7. Perplexity of Gibbs, CVB and VB

Gibbs CVB VB
Glass 0.77 0.85 0.91
Ecoli 0.92 0.96 1.02

ImageSegmentation 1.03 1.06 1.11
ISOLET 1.24 1.28 1.30

LetterRecognition 1.76 1.80 1.88

inference, and collapsed variational Bayesian inference. The versatility, and su-
perior stability and accuracy of NBCE were demonstrated through empirical
evaluation.
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Appendix

LV B , Eq (7), has 7 terms. After the expansion, LV B can be rewritten as follows, where
each line corresponds to a term of Eq (7):

LV B = 
NX
n=1

MX
m=1

KX
k=1

JmX
jm=1

γnkδ(ynm, jm) log ρkmjm

!
+

 
logΓ (α0)−K logΓ (

α0

K
) + (

α0

K
− 1)

KX
k=1

"
Ψ(ξk)− Ψ(

KX
h=1

ξh)

#!
+

NX
n=1

KX
k=1

γnk[Ψ(ξk)− Ψ(

KX
h=1

ξh)] +

MX
m=1

„
K logΓ (Jmβ)−KJm logΓ (β) + (β − 1)

KX
k=1

JmX
jm=1

"
Ψ(ρkmjm)− Ψ(

JmX
h=1

ρkmh)

#«
−

 
logΓ (

KX
k=1

ξk)−
KX
k=1

logΓ (ξk) +
KX
k=1

(ξk − 1)[Ψ(ξk)− Ψ(
KX
h=1

ξh)]

!
−

KX
k=1

MX
m=1

„
logΓ (

JmX
jm=1

ρkmjm)−
JmX
jm=1

logΓ (ρkmjm) +

JmX
jm=1

(ρkmjm − 1)

"
Ψ(ρkmjm)− Ψ(

JmX
h=1

ρkmh)

#«
−

NX
n=1

KX
k=1

γnk log γnk

Here, δ(·, ·) is the Kronecker delta function; Ψ(·) is the digamma function, the first
derivative of the log Gamma function; γnk = q(zn = k|γn); ρkmjm = q(θ∗kmjm |ρkm);
and γnk = q(zn = k|γn).


