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ABSTRACT

Protein function prediction is one of the fundamental is-
sues in the post-genomic era. Multi-label learning is widely
used for predicting functions of proteins. Most multi-label
learning methods assume that the proteins with annotation
do not have any missing functions. However, in practice,
we may have a subset of the ground-truth functions for a
protein, and whether the protein has other functions is un-
known. To complete the partial annotation of proteins, we
propose a Protein Function Prediction method with Weak-
label Learning (ProWL), and a variant of ProWL (ProWL-
IF). Both ProWL and ProWL-IF replenish the functions
of proteins under the assumption that proteins are par-
tially annotated. In addition, ProWL-IF takes advantage of
the knowledge that a protein cannot have certain functions
(called irrelevant functions), which can further boost the
performance of protein function prediction. Our experimen-
tal results on protein-protein interaction and gene micro-
array expression benchmarks validate the effectiveness of
ProWL and ProWL-IF.
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1. INTRODUCTION

High-throughput biological techniques provide informa-
tion about the interaction of several thousands of proteins
simultaneously. However, most of these proteins are not
functionally annotated. As such, protein function annota-
tion is one of the fundamental issues in the post-genomic
era [17]. It is time-consuming and expensive to manually
annotate proteins in biological experiments. For these rea-
sons, it is necessary and promising to develop computational
methods to automatically annotate proteins.

Various computational models (including classification
and clustering methods) have been proposed for annotat-
ing proteins. Some approaches annotate proteins using the
amino acid sequences associated with these proteins [7, 9].
Some methods take advantage of the protein protein inter-
actions (PPI) in the cell to predict the functions of proteins
[3, 17]. Some approaches annotate proteins by integrating
various data sources (including amino acid sequences and
PPI)[10, 20].

Proteins have multiple roles and functions; each function
can be viewed as a label. Thus multi-label learning tech-
niques are widely studied in protein function prediction [7,
19]. Some approaches, first train a classifier for each function
and then combine these classifiers’ predictions to annotate
a protein [9]. In particular, some techniques organize the
classifiers trained for each function according to the func-
tion catalogue hierarchical structure [1, 15] and then an-
notate proteins [2, 5, 21]. Another class of protein function
prediction methods incorporate the correlations between the
functions (labels) to improve the multi-label prediction ac-
curacy [8, 23].

All these methods assume that the functions associated
with proteins are complete and fixed, which is often not
true for real-world PPI data. Often we know a subset of the
functions of a protein, and whether an annotated protein
has additional functions is unknown. This type of multi-
label prediction problem is referred to as the ‘weak label’ or
‘incomplete class assignment’ problem [4, 18]. In this paper,
unlike traditional multi-label learning methods [2, 8, 23],
we develop a method, called Protein Function Prediction
with Weak-label Learning (ProWL), which can annotate
proteins with incomplete function assignment in the train-
ing set. The approach proposed in [4, 18] for multi-label
learning with weak labels considers the specified labels of an



instance as relevant labels, and all the unspecified labels of
the instance as candidates for relevant labels. In practice,
we may also know that a protein cannot have certain func-
tions (hereinafter, we call these functions irrelevant func-
tions). Both previous approaches [4, 18] ignore this prior
knowledge, which can further boost the performance of pro-
tein function prediction. Here, we make use of these irrel-
evant functions and propose a variation of ProWL, called
Protein Function Prediction with Weak-label Learning and
Knowledge of Irrelevant Function (ProWL-IF). ProWL-IF
can not only leverage the functions associated with a pro-
tein, but also the irrelevant ones. We summarize our key
contributions as follows:

1. We consider the incomplete annotation problem for
protein function prediction.

2. We design the ProWL alogrithm to annotate proteins
with incomplete annotations, and propose the ProWL-
IF algorithm, which takes advantage of both relevant
and irrelevant functions to replenish missing functions
of proteins.

3. We compare the proposed methods against other re-
lated techniques using various metrics on public avail-
able protein datasets, and show their effectiveness.

2. RELATED WORK

Traditional multi-label learning approaches focus on pre-
dicting the multiple labels for each test instance simulta-
neously [19]. These methods utilize the label correlations
among the different multi-labeled instances [23], and often
assume that the given labels for the training instances are
complete and accurate. However, in several real world appli-
cations, complete or full set of labels may be missing, noisy
and not provided. A few weak label (or missing label) learn-
ing algorithms have been proposed in the literature within
the single label or multiple label learning settings [4, 18, 22].
Prediction of the complete set of labels (i.e., predicting the
missing labels), given partial or incomplete labels is defined
as the “weak label learning problem”.

Sun et. al. [18] developed a method called WEak Label
Learning (WELL) for predicting missing labels for multi-
labeled instances. WELL formulates a convex optimization,
that first approximates similarities between labels by assum-
ing a group of low-rank base similarities. WELL was vali-
dated on a set of text, image and bioinformatic applications.
Buncak et. al. [4] studied the incomplete class assignments
problem for annotating images, and developed an approach
called MLR-GR. This method optimizes ranking errors and
the group lasso loss. Qi et. al. [14] uses the Hierarchical
Dirichlet Process to append missing labels for a set of im-
ages. In addition, Wang et. al. [22] developed an approach
for annotating weakly labeled facial images. However, this
approach is a single-label (or multi-class) method and fo-
cuses on refining the noisy labeled images.

Several computational approaches have been developed
for protein function prediction, that differ in terms of
methodology, input data, and even problem definition. We
refer the reader to a comprehensive survey paper on this
topic [12]. Relevant to our work, Chi et. al. [6] proposed an
iterative protein function prediction method using partial
annotations. At each iteration, using the most confident
predicted functions, pairwise similarities between training

proteins and testing proteins are updated. This updated
similarity is used for predicting functions for test proteins
at the next iteration.

In our paper, we develop a new weak labeled learning al-
gorithm for predicting multiple functions (or labels) of pro-
teins. We refer to our approach as ProWL, Protein function
prediction with Weak-label Learning. We extend ProWL
to incorporate irrelevant function (or labels) information of
proteins and call this approach as ProWL-IF.

3. PROBLEM FORMULATION

In this paper, we study the weak-label problem in protein
function prediction for two tasks as illustrated in Figure 1.
In the first task, we have partially labeled proteins: Given
a protein, some of its functions are specified, and some may
be missing. The task we address is: How to use incomplete
annotations to replenish the missing functions (cf. Figure
1(a) and 1(b))? We develop algorithms for two scenarios.
In the first case, we develop ProWL to replenish missing
functions by assuming that we have prior knowledge of only
the relevant functions. As shown in Figure 1(a), we have
known relevant functions denoted by 1 and missing functions
denoted by “?”, which are set to 0, and become candidates
for being predicted as relevant i.e., ProWL may modify a 0
to 1.

We also consider the case (Fig 1(b)), where we have prior
knowledge of both the relevant and irrelevant functions. We
develop ProWL-IF to handle this case. In this case, the
relevant functions are denoted by 1, irrelevant functions are
denoted by -1 and the missing functions denoted by “?” are
set to 0. ProWL-IF’s objective is to identify if the missing
functions (0s) are relevant or not i.e., 1 or -1, respectively.

In the second task, we address the following issue: How to
utilize the incomplete annotated proteins to annotate pro-
teins which are completely unlabeled (cf. Figure 1(c))?. In
this case the goal is to predict functions for completely unan-
notated proteins, e.g., proteins p5 and p6 in Figure 1(c).
For this task, we assume that we have knowledge of only
relevant functions for the set of incomplete annotated pro-
teins (or training proteins).

3.1 Protein Function Prediction with Weak-
label Learning

Given n proteins, let the number of distinct functions
across all proteins be K. Let Y = [y1,y2,...,yn] be the
original label set with y;,x = 1 if protein ¢ has the k-th func-
tion, and y;x = 0 otherwise. It is important to incorporate
function correlation in protein function prediction [8, 13, 23].
Various methods are proposed to measure the function corre-
lation. We define a function correlation matrix ¢’ € R¥*¥
based on cosine similarity (also used in [8]) as follows:

/ Yivy,

= XY y
C LY (

where C’;t is the function correlation between functions s and
t, and Y , represents the s-th column of Y. From Eq. (1),
we can observe that, given functions s, ¢, and u, if functions
s and t often co-exist in the same proteins, while functions
s and u seldom co-exist, then C;t will be larger than C;u.
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Figure 1: Task Summaries

We normalize O as follows:

’
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K ’
Zk:l C.sk:
Thus, Cs¢ can be viewed as the likelihood that a protein has
function ¢ given that it is annotated with function s.
We now consider the case with incomplete annotation,

and define the weighted loss function as the first part of our
objective function as follows:

Py (f) = Z

= 3lMo (F—Y)T(F—Y)Hg ®3)
where o means element-wise multiplication (also called
Hadamard product), ¥ = [§1,¥2,...,¥n] is the extended
function set of n proteins, with ¥ = Y'C. fix is the predicted
likelihood of protein i with respect to the k-th function. If
functions s and ¢ often co-exist in the same proteins, then,
if a protein is annotated with function s, it is likely that it
will also have function ¢. M;y is the weight of protein ¢ with
respect to function k:

Lo oy =1
M, = 4
r { Yicryix =0 “)

Cot = (2)
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where c i is the k-th column of C. As defined in Eq. (4), if
the annotated functions of protein ¢ have large correlation
score with function k, the weight M;; will be large. If the
k-th function of protein ¢ is missing, the minimization of Eq.
(3) can help us to replenish this function.

Proteins with similar acid amino sequences tend to have
similar functions, and the ‘guilt by association’ rule [16] as-
sumes that interacting proteins are more likely to share sim-
ilar functions. To make use of this kind of knowledge, as in
semi-supervised learning [24], we incorporate a smoothness
term within our objective function:

Dy (f)

f;

= tr(FT(I—D*%WD*E)F)
= tr(F'LF) (5)

where F' = [fi,fs,...,f,], D is a diagonal matrix with
D;; = Z?=1 Wij. Wi captures the similarity between pro-

teins ¢ and j. The matrix W can be set using the pair-
wise sequence similarities, or using the frequency of interac-
tions found in multiple PPI studies, or as a kernel matrix
derived from PPI studies. [ is an n X n identity matrix,
L=1- D_%WD_%, and tr(-) is the matrix trace oper-
ation. The motiviation to minimize Eq. (5) is that if the
similarity (or interaction weight) W;; between protein ¢ and
J is high, these two proteins are more likely to share sim-
ilar functions (i.e., ||fi — f;]|3 should be small). Thus, by
minimizing Eq. (5), we can ensure similar proteins to have
similar functions, which is in accordance with the ‘guilt by
association’ rule.
Our objective function to be minimized is:

@(F) = S|IM o (F~ V)" (F - V)3
+atr(FTLF) + B|IF"F||3 (6)

The third term is added to control the sparsity of F', since
each function is associated with a small number of proteins.
«a and B are parameters to balance the importance of the
second and third terms, respectively.

Optimization:. Taking the derivative of Eq. (6) with re-
spect to F', we have:
0D (F)
OF
Eq. (7) can be divided into K problems and for the k-th
problem it can be solved as:

(M + oL+ By = pk (8)

=Mo(F—Y)+aLF+ BIF (7)

where
M‘k = diag(M_k), Pr = M_k OY_k (9)

diag(-) is the vector diagonalization operation. Instead of
computing the inverse of (M., + oL + BI), Eq. (8) can be
solved with various existing fast iterative solvers [11]. We
use the Conjugate Gradient (CG) solver, which is guaran-
teed to terminate in n steps. The most time-consuming step
at each iteration of CG is a matrix vector product, whose
time complexity is proportional to the number of non-zero
elements in M + oL + 8I. Since M., L and I are sparse,
positive definite, and with O(n) non-zero elements, Eq. (8)
can be efficiently solved. In our experiments, we find CG
terminates in fewer than 30 iterations. The ProWL is de-
scribed in Algorithm 1.



Algorithm 1 ProWL: Protein Function Prediction with
Weak-label Learning

Input:
Weight matrix W, incomplete annotations Y =
[ylayQa e aynL Of, B
Output:

Predicted likelihood score vectors {f;}i;
1: Compute C using Eq. (3) and L=1 — D WD 2.
2: Set Y = YC and initialize M using Eq. (4).
3: for k = 1to K do
4:  Set M) and py using Eq. (9).
5 Solve £ using Eq. (8)
6: end for
7: return F = [f1,fo,... fx]7.

3.2 Protein Function Prediction with Weak-
label Learning and Knowledge of Irrele-
vant Functions

In practice, we may know that some functions are not as-
sociated with specific proteins. However, all the aforemen-
tioned multi-label learning methods with weak labels [4, 14,
18] consider the irrelevant functions as candidates for miss-
ing functions, thus ignoring this knowledge. We introduce
ProWL-IF, a variation of ProWL, which takes advantage
of both the annotated relevant and irrelevant functions, in
addition to missing functions.

In this setting, we have a partially annotated function set
Z = [z1,22,...,2Zn], With z;; = 1 if protein ¢ has the k-th
function, z;x = —1 if protein ¢ does not have this function,
and z;x = 0 if it’s unknown whether the protein has the
function i.e., it is missing. At first, we transform Z into
Z = 71,22, ..,%n) Where 7; = %‘Z“, and |z;| is the ab-
solute value of z;. Next, we define the correlation between
functions s and t based on Z as follows:

5 2.7,

Pk . (10)
1Z.s[[11Z.¢]

where Z , is the s-th column of Z. We normalize C as in
Eq. (2).

Similarly to Eq. (3), the weighted loss function of ProWL-
IF is defined as:

n K
Uy (f) = %ZZM;k(fm — Zin)” (11)
=1 k=1

where Z = [Z1,2Z2, . ..,2Zn] is the extended label set of pro-
teins. For the i-th protein with respect to the k-th function,
Zik is specified as:

5. = Rik,
ik ZzTCJW
where c i is the k-th column of the correlation matrix C,

and M;k is the weight of protein i with respect to the k-th
function:

ZikZIOT‘ Zik:—l

zik =0 (12)

o 1, zik=1or zg=-—1

My = { zick, zik=0 (13)
Eq. (11) looks similar to Eq. (3), but in Eq. (11) z; € [-1,1]
and in Eq. (3) y; € [0,1]. In addition, Eq. (11) does
not consider the irrelevant functions as candidate missing
functions, whereas Eq. (3) does. Therefore, ProWL-IF has

the advantage of properly capturing the prior irrelevant and
relevant function information.

Putting together Eq. (11) and Eq. (5), the objective of
ProWL-IF is to minimize the following function:

W(F) = LM o (F~ 2)"(F - 2)]3

tatr(FTLE) + B|[(F + Loxx) " (F + Laxx)|3  (14)

1,xx is an n X K matrix with all entries equal to 1. The
third term controls the complexity and sparsity of F', since
each protein has a large proportion of irrelevant functions
(denoted by -1) and a small proportion of relevant functions
(denoted by 1). a and g are scalar parameters to balance
the importance of the smoothness and sparsity terms, re-
spectively.

Taking the derivation of ¥(F') with respect to F', we have:

dU(F)
oF

where I« is an n X n identity matrix. Similar to Eq. (7),
Eq. (15) can be divided into K problems and solved as:

=M o(F = 2) 4+ aLF + BLuxn(F + luxx) (15)

(My + aL + BLuxn)fr = an (16)

where

My = diag(Ms), ax = Mg 0 Zux = Bluxnloxs  (17)
Eq. (16) can be efficiently solved in the same way as Eq.
(8), and the learning procedure for ProWL-IF is similar to
that of ProWL (Algorithm 1).

4. EXPERIMENTAL SETUP
4.1 Datasets

We evaluate the performance of the proposed methods
on public available protein function prediction benchmarks,
among which three are PPIs and one is a micro-array gene
expression data. The first dataset (DS1) was extracted from
BioGrid ! with PubMed ID 17200106, and its largest con-
nected component contains 1002 proteins annotated accord-
ing to FunCat [15]?, across 33 functions. The functions in
FunCat are organized in a tree structure. We use the most
informative functions as defined in [8] and [23]. Informa-
tive functions are the ones that have at least 30 proteins
as members, and within the tree structure these functions
do no not have a particular descendant node with more
than 30 proteins. The second dataset (DS2) was down-
loaded from BioGrid (2011-12-25). After the preprocessing
and filtering, it contains 3041 proteins annotated with 86
informative functions. The weight matrix W of the second
dataset are specified by the number of PubMed IDs, where 0
means no interaction between two proteins and p > 0 means
this interaction is supported by p distinct publications. The
third dataset (DS3) was extracted from heterogeneous data
sources of humans [10]®. We use its largest connected com-
ponent, which includes 2950 proteins annotated according to
the Gene Ontology [1]. Similar to [10], we use the functions
that have at least 30 proteins annotated with them. The
fourth dataset (DS4) was used in WELL [18]* and includes

"http://thebiogrid.org/
http://mips.helmholtz-muenchen.de/proj/funcatDB/
3http:/ /morrislab.med.utoronto.ca/?sara/SW
“http://lamda.nju.edu.cn/files/ WELL.rar




1500 proteins annotated with 14 functions. We specify the
weight matrix W for proteins in the same way as it was
done for WELL. The weight matrices W of DS1 and DS3
were specified by the providers, and the same matrices were
used for ourselves. The statistics of the processed datasets
are listed in Table 1.

Table 1: Statistics of datasets (Avg+Std means av-
erage number of functions for each protein and its
standard deviation)

Dataset #Proteins | #Functions Avg+Std

DS1 1002 33 2.00 £ 1.37
DS2 3041 86 1.94 £ 1.60
DS3 2950 200 6.86 £ 3.77
DS4 1500 14 4.23 +1.58

We assume the datasets used in the experiments have com-
plete functions annotations, and simulate the weak-label set-
tings of ProWL and ProWL-IF on these functions. When
evaluating ProWL, we simulate the incomplete annotation
problem by masking the ground truth (or relevant) functions
(1) to missing functions (?) based on a threshold called the
Incomplete Function (IF) ratio. The IF ratio denotes the
percentage of relevant functions (denoted by labels 1s), for
a protein that are masked or set to missing or “?”, see Figure
1(a) for more detail. When evaluating ProWL-IF, the IF ra-
tio sets both the relevant (1s) and irrelevant (-1s) functions
to missing i.e., “?”. For consistency, the IF ratio is defined
for the relevant functions and the same number of irrelevant
functions are masked in this case. see Figure 1(b) for more
detail.

There is no weak-label learning method proposed for pro-
tein function prediction domain. We compare our methods
with WELL [18] and MLR-GL [4]. WELL and MLR-GL
need an input kernel matrix, and we substitute the kernel
with the PPI matrices, or specify it as in WELL[18]. The
parameters of WELL are specified as the authors reported.
For MLR-GL we use the default parameters in the package
provided by the authors °. For ProWL and ProWL-IF, we
set @ and B to 0.01 and 0.001, respectively. We observe
the performance with respect to various metrics does not
change as we vary « and § around the fixed values. This
setting is not optimal, and we will investigate how to adapt
the parameter values in the future.

4.2 Evaluation Metrics

Various performance metrics have been developed for eval-
uating multi-label learning methods [19]. Here we introduce
the metrics will be used in this paper (previously used in
WELL and MLR-GL).

MacroF1 is the average F'1 scores of different functions:

1 al 2pgT
ETk
MacroFl:—E _—
K= pe+ 7k

where pr and 7 are the precision and recall of the k-th
function.

MicroF'1 calculates the F'1 measure on the predictions of
different functions as a whole:

K
2
MicroF1 = iw

K ka:l Pk + Tk

®http://www.cse.msu.edu/~bucakser/

Ranking loss evaluates the average fraction of function
label pairs that are not correctly ordered.

N
1 1

RankingLoss = — ———{(y1,y2) €
n ; lyil|¥:] 7

Vi X ¥il F(i,31) < F(i,y2)}

where ¥; contains the labels that are not in y; with g;c = 1
iff yie = 0, and @i = 0 iff y;c = 1. The performance is
perfect when RankingLoss = 0.

The adapted Area Under the Curve (AUC) for multi-label
learning was introduced in [4]. AUC first ranks all the func-
tions for each test protein in descending order of their scores;
it then varies the number of predicted functions from 1 to
the total number of functions, and computes the receiver
operator curve by calculating true positive rate and false
positive rate for each number of predicted functions. It fi-
nally computes the area under the curve of all functions to
evaluate the multi-label learning methods.

To maintain consistency with other evaluation metrics,
we report 1-RankingLoss. Thus, the higher the value of I1-
RankingLoss, the better the performance.

S. EXPERIMENTAL ANALYSIS

5.1 Performance on Replenishing Missing
Functions

We performed experiments to investigate the performance
of the proposed methods in replenishing the missing func-
tions. In these experiments, we use all the proteins within
the datasets and vary the IF ratio of each protein from 20%
to 60%, with an interval of 10%, to study the performance
of different methods. Some proteins in the PPI network do
not have any true functions. To make use of the PPI net-
work structure, we do not remove them, but we evaluate the
performance of replenishing missing functions on only the
annotated proteins. The experimental results (average of
20 independent runs and standard deviations) are shown in
Figures 2 - 5. We were not able to run WELL to completion
on DS3 (using 4GB RAM). MicroF1 and MacroF1 depend
on a hard partitioning of f; into relevant and irrelevant func-
tions. Here we consider the functions corresponding to the
largest s values of f; as the relevant ones, and the remaining
as irrelevant functions of protein i. s is determined by the
number of ground-truth functions of the i-th protein.

From the figures, we can observe that ProWL outper-
forms WELL and MLR-GL in replenishing missing func-
tions of proteins in almost all the metrics across the four
datasets. For example, ProWL on average is 6.96% better
than WELL, and 58.70% better than MLR-GL, when com-
pared using MicroF1 on DS4. These results confirm the
effectiveness of ProWL in Task 1.

Another interesting observation from Figures 2 - 5 is that
the multi-label MicroF1 and MacroF'1 scores decrease as
the IF ratio increases. However, for DS3 and DS4 the de-
crease in the F1 scores is not as evident as for DS1 and DS2.
This can be explained by the fact that DS3 and DS4 have a
larger number of functions per protein, and a higher IF ra-
tio still allows proteins within the set to have a few relevant
functions. ProWL uses these functions and replenishes the
missing ones.

Since the setting of ProWL-IF is different from ProWL,
WELL and MLR-GL, we conducted additional experiments
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Figure 2: Replenishing missing functions of DS1.

on the four datasets to investigate the performance of
ProWL-IF. We simulated the setting of ProWL-IF by mask-
ing some relevant functions (+1) and some irrelevant func-
tions (-1) to missing functions (0). We set the incomplete
function ratio with respect to the relevant functions (+1)
similarly to ProWL and the number of masked irrelevant
functions (-1) in ProWL-IF was the same as relevant func-
tions. All the unmaksed functions were served as relevant
functions or irrelevant functions. We just report the results
with respect to MacroF1 and MicroF1 in Table 2 (other re-
sults will be provided on a supplementary webpage). The
better performance in Table 2 are shown in boldface (sta-
tistical significance is examined via pairwise t-test at 95%
significant level). We can observe that ProWL-IF generally
outperforms ProWL. This observation shows the benefit in
making use of irrelevant functions as prior knowledge.

5.2 Performance for Task 2 (Completely Un-
labeled Test Proteins)

We wanted to assess the strengths of ProWL in leveraging
the partially annotated proteins and making predictions for
proteins that were completely unannotated. We performed
another set of experiments to investigate the performance of
ProWL in this scenario. We first partitioned our dataset into
two parts: (i) training set with missing annotations and (ii)
test set with no annotations (i.e., completely unannotated).
For the training set we varied the IF ratio from 20% to
80% in increments of 20%, and used ProWL to report the
prediction performance on the test set only.

To assess the advantage of the missing function assump-
tion, we also include the results for another variation of
ProWL called ProWL-Part. For ProWL-Part we assume
that a missing label for a protein in the training set will be
set as an irrelevant function for the protein (i.e., set M;x to
0, if the k-th function is missing for protein i). We again
report the performance of ProWL-Part for the test set i.e.,
proteins with no annotations. The experimental results (av-
erage of 20 independent runs) are reported in Tables 3- 4.
The setting of missing functions for each protein is deter-
mined as in the first set of experiments, but s is specified
as the average number of functions of all proteins. Due
to space limit, we report only the results for MicroF'1, 1-
RankingLoss, and AUC, and fix the training set to 80% of
the dataset and the test set to 20% of DS3 and DS4 (other
results will be provided on a supplementary webpage). The
best performance and its comparable performance are shown
in boldface (statistical significance is examined via pairwise
t-test at 95% significant level).

From these tables, we can see that ProWL predicts the
functions of proteins with higher accuracy than the other

methods in most metrics. Considering MicroF1 on DS4, for
example, ProWL on average is 9.93% better than MLR-GL
and 2.72% better than WELL. With the same IF ratio in
all the three metrics, ProWL outperforms ProWL-Part 18
times, ties with ProWL-Part 5 times, and loses to ProWL-
Part only one time. This statistic corroborates the benefit in
introducing the missing function assumption. The difference
between ProWL and ProWL-Part diminishes as the IF ratio
increases. This is because the estimated function correlation
become inaccurate as the IF ratio increases.

6. CONCLUSION

In this paper, we studied the incomplete annotation prob-
lem for protein function prediction and propose ProWL to
annotate proteins with incomplete annotation. To make use
of irrelevant functions of proteins, we introduce a variant
of ProWL, called ProWL-IF. Unlike traditional multi-label
learning methods, which consider all the missing functions
as candidates of relevant functions, ProWL-IF takes into
account both relevant and irrelevant functions for predic-
tion. Our experimental results demonstrate that the pro-
posed methods have higher performance than other related
methods.

We will investigate a function correlation scheme that can
capture the correlation with a large ratio of missing func-
tions.
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