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Cluster ensembles offer a solution to challenges inherent to clustering arising from its ill-posed

nature. Cluster ensembles can provide robust and stable solutions by leveraging the consensus

across multiple clustering results, while averaging out emergent spurious structures that arise

due to the various biases to which each participating algorithm is tuned. In this article, we address

the problem of combining multiple weighted clusters that belong to different subspaces of the input

space. We leverage the diversity of the input clusterings in order to generate a consensus parti-

tion that is superior to the participating ones. Since we are dealing with weighted clusters, our

consensus functions make use of the weight vectors associated with the clusters. We demonstrate

the effectiveness of our techniques by running experiments with several real datasets, including

high-dimensional text data. Furthermore, we investigate in depth the issue of diversity and ac-

curacy for our ensemble methods. Our analysis and experimental results show that the proposed

techniques are capable of producing a partition that is as good as or better than the best individual

clustering.
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1. INTRODUCTION

Recently, cluster ensembles have emerged as a technique for overcoming prob-
lems with clustering algorithms. It is well known that off-the-shelf clustering
methods may discover different patterns in a given set of data. This is because
each clustering algorithm has its own bias resulting from the optimization of
different criteria. Furthermore, there is no ground truth against which the
clustering result can be validated. Thus, no cross-validation technique can be
carried out to tune input parameters involved in the clustering process. As a
consequence, the user is equipped with no guidelines for choosing the proper
clustering method for a given dataset.

A cluster ensemble consists of different partitions. Such partitions can be
obtained from multiple applications of any single algorithm with different ini-
tializations, or on various bootstrap samples of the available data, or from the
application of different algorithms to the same dataset. Cluster ensembles offer
a solution to challenges inherent to clustering arising from its ill-posed nature:
they can provide more robust and stable solutions by making use of the consen-
sus across multiple clustering results, while averaging out emergent spurious
structures that arise due to the various biases to which each participating al-
gorithm is tuned, or to the variance induced by different data samples.

An orthogonal issue related to clustering is high dimensionality. High-
dimensional data pose a difficult challenge to the clustering process. Various
clustering algorithms can handle data with low dimensionality, but as the di-
mensionality of the data increases, these algorithms tend to break down. In
high-dimensional spaces, it is highly likely that, for any given pair of points
within the same cluster, there exist at least few dimensions on which the points
are far apart from each other. As a consequence, distance functions that equally
use all input features may not be effective. As a result, many different subspace
clustering methods have been proposed [Parsons et al. 2004]. They all attempt
to dodge the curse of dimensionality that affects any clustering algorithm in
high-dimensional spaces.

A common scenario with high-dimensional data is that several clusters may
exist in different subspaces comprised of different combinations of features. In
many real-world problems, points in a given region of the input space may clus-
ter along a given set of dimensions, while points located in another region may
form a tight group with respect to different dimensions. Each dimension could
be relevant to at least one of the clusters. Common global dimensionality reduc-
tion techniques are unable to capture such local structure of the data. Thus, a
proper feature selection procedure should operate locally in input space. Local
feature selection allows one to estimate to which degree features participate to
the discovery of clusters. Such estimation is carried out using points within lo-
cal neighborhoods, and it allows the embedding of adaptive distance measures
in different regions of the input space.

To cope with the high-dimensionality of data, Domeniconi et al. [2004, 2007]
proposed a soft feature selection procedure (called LAC) that depends on two
input parameters. The first one is common to all clustering algorithms: the
number of clusters k to be discovered in the data. The second one (called h)
controls the strength of the incentive to cluster on more features. LAC assigns
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weights to features according to the local variance of data along each dimen-
sion. Dimensions along which data are loosely clustered receive a small weight,
which has the effect of elongating distances along that dimension. Features
along which data manifest a small variance receive a large weight, which has
the effect of constricting distances along that dimension. Thus, the learned
weights perform a directional local reshaping of distances which allows a bet-
ter separation of clusters, and therefore the discovery of different patterns in
different subspaces of the original input space.

Although LAC proved to be an effective method for the discovery of sub-
space clusters [Domeniconi et al. 2004, 2007], the setting of the h parameter
is particularly difficult, as no domain knowledge for its tuning is likely to be
available. The setting of the h parameter is an open problem, and motivates
the combination of LAC-based clusterings in cluster ensembles. Here we focus
on setting the parameter h directly from the data. We utilize the diversity of
the clusterings produced by LAC when different values of h are used, in order
to generate a consensus clustering that is superior to the participating ones.
The major challenge we face is to find a consensus partition from the output
of the LAC algorithm to achieve an “improved” overall clustering of the data.
Since we are dealing with subspace clusterings, we need to design a proper
consensus function that makes use of the weight vectors associated with the
input clusters.

In our previous work [Al-Razgan and Domeniconi 2006], we have designed
two new consensus functions (WSPA and WBPA) for an ensemble of subspace
clusterings obtained by means of the LAC algorithm. Our ensemble techniques
reduce the problem of defining a consensus function to a graph partitioning
problem. This article is a major extension of our prior research on cluster en-
sembles. Besides providing further motivation for the two previously proposed
methods (WSPA and WBPA), here we introduce an additional cluster ensemble
technique (WSBPA) that provides weighted clusters in output. The main ad-
vantage of WSBPA is that it provides in output, not only a partition of the data
into k clusters, but also weight vectors that reflect the relevance of features
within each cluster. In other words, the technique preserves the local nature
of the structure discovered by LAC itself from the data (while also improving
the overall quality of such local structure). This is important for the cluster
prediction of future test points (especially in high dimensions).

Overall, our three techniques define a consensus function that takes into
account not only how often points are grouped together across the various input
clusterings, but also the degree of confidence of the groupings. LAC produces
partitions, where each cluster is associated with a weight vector representative
of the subspace the cluster belongs to. To build a consensus function, such
weight vectors are embedded in the distance computation between points and
clusters, so that individual features participate with the proper strength in the
assignment of points to clusters. This characteristic is the main reason for the
superior accuracy achieved by our weighted clustering ensemble algorithms
(e.g., with respect to CSPA and MCLA [Strehl and Ghosh 2002]). To the best of
our knowledge, our techniques provide a first attempt to improving subspace
clustering results by means of ensemble systems.
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Specifically, our contributions are as follows:

(1) We introduce and analyze three consensus functions for subspace clus-
terings. The ultimate goal of our consensus functions is to provide hard
partitions of the data, along with weight vectors that convey information
regarding the subspaces within which the individual clusters exist. This
result is achieved by our WSBPA algorithm.

(2) We demonstrate the effectiveness of our three techniques by running ex-
periments with several real datasets, including high-dimensional text data.
Furthermore, we combine our techniques with both METIS and spectral
clustering, to compute the k-way partition of the resulting graphs (previ-
ously only METIS was used [Al-Razgan and Domeniconi 2006]). Our results
show the applicability of spectral clustering in conjunction with our ensem-
ble techniques, thus enabling the use of our methods also with unbalanced
data.

(3) We experimentally demonstrate the use of our subspace cluster ensemble
technique for the categorization of unlabeled documents, spam/nonspam
messages in particular. The analysis of relevance values credited to features
(i.e., terms) reveals interesting findings, and provides insights on the nature
of the spam filtering problem, and the general classification case.

(4) We investigate in great detail the issue of diversity and accuracy for our en-
semble techniques. We consider two different measures of diversity: a pair-
wise diversity measure based on Normalized Mutual Information (NMI)
that does not depend on the ensemble methodology, and a nonpairwise di-
versity measure based on the Adjusted Random Index (ARI) that depends
on the ensemble methodology. Our objective is to determine which measure
of diversity is the best indicator of good ensemble accuracy, and what is the
preferred level of diversity. Such findings enable one to select, from a set of
ensembles, the one that is most likely to provide good results. Our results
reveal that a diversity measure based on ARI is more robust and consistent,
and that high diversity signifies large accuracy.

The rest of the article is organized as follows. Section 2 discusses related
work on clustering ensembles. Section 3 provides a brief description of the Lo-
cally Adaptive Clustering algorithm (LAC). Section 4 introduces and motivates
our three cluster ensemble algorithms. In Section 5, a motivating example is
discussed. In Section 6, we describe our experiments, and analyze the results.
Section 7 investigates the use of our subspace ensemble technique for the cate-
gorization of unlabeled documents. Section 8 contains a discussion of diversity
measures used in the literature, and presents our investigation and findings
with respect to accuracy/diversity issues for cluster ensembles. Finally, Section
9 provides the final remarks and outlines future research directions.

2. RELATED WORK

A cluster ensemble technique is characterized by two components: the mecha-
nism to generate diverse partitions, and the consensus function to combine the
input partitions into a final clustering.
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Diverse partitions are typically generated by using different clustering al-
gorithms, or by applying a single algorithm with different parameter settings,
possibly in combination with data or feature sampling. The k-means algorithm
with random initializations [Fred and Jain 2002; Kuncheva et al. 2006], or with
random number of clusters [Kuncheva and Hadjitodorov 2004] has been widely
used in the literature to generate diverse clusterings. Topchy et al. [2003] in-
troduce two techniques, called weak clustering algorithms, to produce different
partitions. The first technique clusters random one-dimensional projections of
multidimensional data; the second one splits the data using random hyper-
planes. Random projection is used in Fern and Brodley [2003]. A different ap-
proach is proposed in Topchy et al. [2004], where the ensemble is modeled as
a mixture of multivariate multinomial distributions. A unified framework for
producing multiple partitions is presented in Topchy et al. [2005]. Greene et al.
[2004] apply k-means, k-medoids, and fast weak clustering as strategies to gen-
erate diversity in clustering results, while Minaei-Bidgoli et al. [2004] propose
a resampling technique that generates and then combines partitions of subsets
of the data, to obtain results that reflect the entire dataset.

One popular methodology to build a consensus function utilizes a coassocia-
tion matrix [Fred and Jain 2002; Greene et al. 2004; Minaei-Bidgoli et al. 2004;
Topchy et al. 2003]. Such matrix can be seen as a similarity matrix, and thus
can be used with any clustering algorithm that operates directly on similarities
(e.g., hierarchical clustering) [Topchy et al. 2003; Greene et al. 2004]. Kuncheva
et al. [2006] have shown that good results can be obtained when the coassoci-
ation matrix is used as a data matrix in a new feature space, and k-means is
ran on it. In alternative to the coassociation matrix, voting procedures have
been considered to build consensus functions in Topchy et al. [2004] and in
Dudoit and Fridlyand [2003]. Gondek and Hofmann [2005] derive a consensus
function based on the Information Bottleneck principle: the mutual informa-
tion between the consensus clustering and the individual input clusterings is
maximized directly, without requiring approximation.

A different popular mechanism for constructing a consensus maps the
problem onto a graph-based partitioning setting [Strehl and Ghosh 2002;
Ayad and Kamel 2003; Hu 2004]. In particular, Strehl and Ghosh [2002]
propose three graph-based approaches: Cluster-based Similarity Partitioning
Algorithm (CSPA), HyperGraph Partitioning Algorithm (HGPA), and Meta-
Clustering Algorithm (MCLA). In CSPA, a binary similarity matrix is con-
structed for each input clustering. Each column corresponds to a cluster: an
entry has a value of one if the corresponding point belongs to the cluster, and
zero otherwise. An entry-wise average of all the matrices gives an overall sim-
ilarity matrix, utilized to recluster the data using a graph-partitioning based
approach. The induced similarity graph, where vertices correspond to data and
edge weights to similarities, is partitioned using METIS [Karypis and Kumar
1998]. HGPA seeks a partitioning of the hypergraph by cutting a minimal num-
ber of hyperedges. (Each hyperedge represents a cluster of an input clustering.)
All hyperedges have the same weight. This algorithm looks for a hyperedge
separator that partitions the hypergraph into k unconnected components of ap-
proximately the same size. It makes use of the package HMETIS [Karypis and
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Kumar 1998]. MCLA is based on the clustering of clusters. It provides object-
wise confidence estimates of cluster membership. Hyperedges are grouped, and
each data point is assigned to the collapsed hyperedge in which it participates
most strongly.

We observe that all the ensemble methods discussed above take hard clus-
tering as input. A recent paper [Punera and Ghosh 2007] aims at combining
soft partitionings of data (e.g., produced by fuzzy k-mean) without hardening
the partitions before entering them into a consensus mechanism. The authors
develop soft versions of CSPA, HGPA, and MCLA.

Our work on ensembles for subspace clusterings differs from all the previous
approaches as it builds consensus functions that accept in input subspace clus-
tering results. Our work is related to the recent techniques discussed in Punera
and Ghosh [2007]. Our mapping, though, encodes information provided by sub-
space clusterings, rather than fuzzy clusterings. Fuzzy clustering, typically,
produces overlapping clusters that coexist within the same space. On the other
hand, LAC produces hard partitions, where each cluster is associated with a
weight vector representative of the subspace the cluster belongs to. To build
a consensus, such weight vectors are embedded in the distance computation
between points and clusters, so that individual features participate with the
proper strength in the assignment of points to clusters. The ultimate goal of
our consensus functions is to provide hard partitions of the data, along with
weight vectors that convey information regarding the subspaces within which
the individual clusters exist. This result is achieved by our WSBPA algorithm.

3. LOCALLY ADAPTIVE CLUSTERING

In this section we briefly describe the Locally Adaptive Clustering (LAC) al-
gorithm [Domeniconi et al. 2004, 2007]. Let us consider a set of n points in
some space of dimensionality D. A weighted cluster is a subset of datapoints,
together with a vector of weights w = (w1, . . . , wD)t , such that the points in the
cluster are close to each other according to the L2 norm distance weighted using
w. The component wj measures the degree of participation of feature j to the
cluster. The problem is how to estimate the weight vector w for each cluster in
the dataset.

In traditional clustering, the partition of a set of points is induced by a set
of representative vectors, also called centroids or centers. The partition induced
by discovering weighted clusters is formally defined as follows.

Definition. Given a set S of n points x ∈ �D, a set of k centers {c1, . . . , ck},
c j ∈ �D, j = 1, . . . , k, coupled with a set of corresponding weight vectors
{w1, . . . , wk}, w j ∈ �D, j = 1, . . . , k, partition S into k sets:

Sj =
{

x|
( D∑

i=1

wji(xi − c j i)
2

)1/2

(1)

<

(
D∑

i=1

wli(xi − cli)
2

)1/2

, ∀l �= j
}

, j = 1, . . . , k,
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where wji and c j i represent the ith components of vectors w j and c j respec-
tively (ties are broken randomly).

The set of centers and weights is optimal with respect to the Euclidean norm,
if they minimize the error measure:

E1(P, W ) =
k∑

j=1

D∑
i=1

(
wji

1

|Sj |
∑
x∈S j

(c j i − xi)
2

)
(2)

subject to the constraints: ∀ j ,
∑

i w j i = 1. P and W are (D ×k) matrices whose
columns are c j and w j respectively, that is, P = [c1 . . . ck] and W = [w1 . . . wk].

For shortness of notation, we set Xji = 1
|S j |

∑
x∈S j

(c j i − xi)
2, where |Sj | is the

cardinality of set Sj . Xji represents the variance of the data in cluster j along
dimension i. The solution

(P∗, W ∗) = arg min
(P,W )

E1(P, W )

will discover one-dimensional clusters: it will put maximal (unit) weight on the
feature with smallest dispersion Xji within each cluster j , and zero weight on
all other features. Our objective, instead, is to find weighted multidimensional
clusters, where the unit weight gets distributed among all features according
to the respective dispersion of data within each cluster. One way to achieve
this goal is to add the regularization term

∑D
i=1 wjilogwji, which represents

the negative entropy of the weight distribution for each cluster. It penalizes
solutions with maximal weight on the single feature with smallest variance
within each cluster. The resulting error function is

E2(P, W ) =
k∑

j=1

D∑
i=1

(wji Xj i + hwjilog w ji), (3)

subject to the same constraints ∀ j ,
∑

i w j i = 1. The coefficient h ≥ 0 is a pa-
rameter of the procedure; it controls the relative differences between feature
weights. In other words, h controls how much the distribution of weight values
will deviate from the uniform distribution. This constrained optimization prob-
lem can be solved by introducing the Lagrange multipliers. It gives the solution
[Domeniconi et al. 2004]:

w∗
j i = exp(−Xji/h)∑D

i=1 exp(−Xji/h)
(4)

c∗
j i = 1

|Sj |
∑
x∈S j

xi. (5)

Solution (4) puts increased weights on features along which the dispersion Xji

is smaller, within each cluster. The degree of this increase is controlled by the
value h. Setting h = 0 places all weight on the feature i with smallest Xji,
whereas setting h = ∞ forces all features to be given equal weight for each
cluster j .

We need to provide a search strategy to find a partition that identifies the so-
lution clusters. We propose an approach that progressively improves the quality
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of initial centroids and weights, by investigating the space near the centers to
estimate the dimensions that matter the most. We start with well-scattered
points in S as the k centroids. We initially set all weights to 1/D. Given the
initial centroids c j , for j = 1, . . . , k, we compute the corresponding sets Sj as
previously defined. We then compute the average distance Xji along each di-
mension from the points in Sj to c j . The smaller Xji, the stronger is the degree
of participation of feature i to cluster j . We use the value Xji in an exponen-
tial weighting scheme to credit weights to features (and to clusters), as given
in Equation (4). The computed weights are used to update the sets Sj , and
therefore the centroids’ coordinates as given in Equation (5). The procedure is
iterated until convergence is reached.

LAC has shown a highly competitive performance with respect to other state-
of-the-art subspace clustering algorithms [Domeniconi et al. 2007]. Despite its
strong performance, LAC’s dependence on the setting of h is a liability. Because
no domain knowledge is likely to be available, tuning h is difficult. Improving
upon this aspect of LAC’s performance is desirable, and we have sought such
improvement through the development of cluster ensemble techniques, which
is the focus of the following sections.

4. CLUSTERING ENSEMBLE TECHNIQUES

Consider a set S = {x1, x2, . . . , xn} of n points. A clustering ensemble is a collec-
tion of m clustering solutions: G = {G1, G2, . . . , Gm}. Each clustering solution
GL for L = 1, . . . , m, is a partition of the set S, i.e. GL = {G1

L, G2
L, . . . , GKl

L },
where

⋃
K GK

L = S. Given a collection of clustering solutions C and the de-
sired number of clusters k, the objective is to combine the different clustering
solutions and compute a new partition of S into k disjoint clusters.

The challenge in cluster ensembles is the design of a proper consensus func-
tion that combines the component clustering solutions into an “improved” final
clustering. In this section we introduce three consensus functions. In our en-
semble techniques we reduce the problem of defining a consensus function to a
graph partitioning problem. This approach has shown good results in the liter-
ature [Dhillon 2001; Strehl and Ghosh 2002; Fern and Brodley 2004]. Moreover,
the weighted clusters computed by the LAC algorithm offer a natural way to de-
fine a similarity measure to be integrated in the weights associated to the edges
of a graph. The overall clustering ensemble process is illustrated in Figure 1.

4.1 Weighted Similarity Partitioning Algorithm (WSPA)

LAC outputs a partition of the data, identified by the two sets {c1, . . . , ck}
and {w1, . . . , wk}. Our aim here is to generate robust and stable solutions via
a consensus clustering method. We can generate contributing clusterings by
changing the parameter h (as illustrated in Figure 1). The objective is then to
find a consensus partition from the output partitions of the contributing clus-
terings, so that an “improved” overall clustering of the data is obtained. Since
LAC produces weighted clusters, we need to design a consensus function that
makes use of the weight vectors associated with the clusters. The details of our
approach are as follows.
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Fig. 1. The clustering ensemble process.

For each data point xi, the weighted distance from cluster Cl is given by

dil =
√√√√ D∑

s=1

wls(xis − cls)2.

Let Di = maxl {dil } be the largest distance of xi from any cluster. We want to
define the probability associated with cluster Cl given that we have observed xi.
At a given point xi, the cluster label Cl is assumed to be a random variable from
a distribution with probabilities {P (Cl |xi)}k

l=1. We provide a nonparametric es-
timation of such probabilities based on the data and on the clustering result. We
do not make any assumption about the specific form (e.g., Gaussian) of the un-
derlying data distributions, thereby avoiding parameter estimations of models,
which are problematic in high dimensions when the available data are limited.

In order to embed the clustering result in our probability estimations, the
smaller the distance dil is, the larger the corresponding probability credited to
Cl should be. Thus, we can define P (Cl |xi) as follows:

P (Cl |xi) = Di − dil + 1

kDi + k − ∑
l dil

, (6)

where the denominator serves as a normalization factor to guarantee∑k
l=1 P (Cl |xi) = 1. We observe that ∀l = 1, . . . , k and ∀i = 1, . . . , n P (Cl |xi) > 0.

In particular, the added value of 1 in (6) allows for a nonzero probability P (CL|xi)
when L = arg maxl {dil }. (Any small positive constant achieves this goal, with
the normalization factor properly adjusted.) In this last case P (Cl |xi) assumes
its minimum value P (CL|xi) = 1/(kDi +k−∑

l dil ). For smaller distance values
dil , P (Cl |xi) increases proportionally to the difference Di − dil : the larger the
deviation of dil from Di, the larger the increase. As a consequence, the corre-
sponding cluster Cl becomes more likely, as it is reasonable to expect based
on the information provided by the clustering process. Thus, Equation (6) pro-
vides a nonparametric estimation of the posterior probability associated to each
cluster Cl .

We can now construct the vector Pi of posterior probabilities associated with
xi:

Pi = (P (C1|xi), P (C2|xi), . . . , P (Ck|xi))
t , (7)
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where t denotes the transpose of a vector. The transformation xi → Pi maps
the D dimensional data points xi onto a new space of relative coordinates with
respect to cluster centroids, where each dimension corresponds to one cluster.
This new representation embeds information from both the original input data
and the clustering result.

To compute the similarity between xi and x j we used both the cosine simi-
larity and the Kullback-Leibler (KL) divergence. The cosine similarity between
probability vectors associated to xi and x j is defined as:

s(xi, x j ) = Pt
i Pj

‖Pi‖‖Pj ‖ . (8)

In alternative, we compute the distance between xi and x j using the symmetric
KL divergence [Kullback and Leibler 1951]:

d (xi, x j ) = 1

2

k∑
l=1

Pil log2

Pil

Pjl
+ 1

2

k∑
l=1

Pjl log2

Pjl

Pil
. (9)

We then transform the distance into a similarity measure: s(xi, x j ) = 1 −
d (xi, x j )/(maxp,q d (xp, xq)). Both versions of WSPA (with cosine similarity and
KL divergence) gave similar results. Thus, in this paper we report the results
obtained with cosine similarity.

We combine all pairwise similarities (8) into an (n × n) similarity matrix S,
where Sij = s(xi, x j ). We observe that, in general, each clustering may provide a
different number of clusters, with different sizes and boundaries. The size of the
similarity matrix S is independent of the clustering approach, thus providing a
way to align the different clustering results onto the same space, with no need
to solve a label correspondence problem.

After running the LAC algorithm m times for different values of the h pa-
rameter, we obtain the m similarity matrices S1, S2, . . . , Sm. The combined sim-
ilarity matrix � defines a consensus function that can guide the computation
of a consensus partition:

� = 1

m

m∑
l=1

Sl . (10)

�i j reflects the average similarity between xi and x j (through Pi and Pj ) across
the m contributing clusterings.

We now map the problem of finding a consensus partition to a graph par-
titioning problem. We construct a complete graph G = (V , E), where |V | = n
and the vertex Vi identifies xi. The edge Eij connecting the vertices Vi and Vj

is assigned the weight value �i j . We run METIS [Karypis and Kumar 1998]
on the resulting graph to compute a k-way partitioning of the n vertices that
minimizes the edge weight-cut.1 This gives the consensus clustering we seek.
The size of the resulting graph partitioning problem is n2. The steps of the algo-
rithm, which we call WSPA (Weighted Similarity Partitioning Algorithm), are
summarized in the following.

1In our experiments we also apply spectral clustering to compute a k-way partitioning of the n
vertices.

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 4, Article 17, Publication date: January 2009.



Weighted Cluster Ensembles: Methods and Analysis • 17:11

Input: n points x ∈ R D, and k.

(1) Run LAC m times with different h values. Obtain m partitions: {cν
1, . . . , cν

k},
{wν

1, . . . , wν
k}, ν = 1, . . . , m

(2) For each partition ν = 1, . . . , m:

(a) Compute d ν
il =

√∑D
s=1 wν

ls(xis − cν
ls)

2

(b) Set Dν
i = maxl {d ν

il }
(c) Compute P (Cν

l |xi) = Dν
i −dν

il +1

kDν
i +k−∑

l dν
il

(d) Set P ν
i = (P (Cν

1 |xi), P (Cν
2 |xi), . . . , P (Cν

k |xi))
t

(e) Compute the similarity

sν(xi , x j ) = P ν
i P ν

j

‖P ν
i ‖‖P ν

j ‖
, ∀i, j

(f) Construct the matrix Sν where Sν
i j = sν(xi , x j )

(3) Build the consensus function � = 1
m

∑m
ν=1 Sν

(4) Construct the complete graph G = (V , E), where |V | = n and Vi ≡ xi . Assign �i j as

the weight value of the edge Eij connecting the vertices Vi and Vj

(5) Run METIS (or spectral clustering) on the resulting graph G

Output: The resulting k-way partition of the n vertices

4.2 Weighted Bipartite Partitioning Algorithm (WBPA)

Our second approach (WBPA) maps the problem of finding a consensus partition
to a bipartite graph partitioning problem. This mapping was first introduced
in Fern and Brodley [2004]. In Fern and Brodley [2004], however, 0/1 weight
values are used. Here we extend the range of weight values to [0,1].

The technique described here has a conceptual advantage with respect to
WSPA. We observe that the consensus function ψ used in WSPA measures
pairwise similarities which are solely instance-based. On the other hand, the
bipartite graph partitioning problem, to which the WBPA technique reduces,
partitions both cluster vertices and instance vertices simultaneously. Thus, it
also accounts for similarities between clusters. Consider, for example, four in-
stances x1, x2, x3, and x4. Suppose that x1 and x2 are never clustered together
in the input clusterings, and the same holds for x3 and x4. However, the groups
to which x1 and x2 belong often share the same instances, but this is not the
case for the groups x3 and x4 belong to. Intuitively, we would consider x1 and
x2 more similar to each other than x3 and x4. But WSPA is unable to distin-
guish these two cases, and may assign low similarity values to both pairs. On
the other hand, WBPA is able to differentiate the two cases by modeling both
instance-based and cluster-based similarities.

The graph in WBPA models both instances (e.g., datapoints) and clusters, and
the graph edges can only connect an instance vertex to a cluster vertex, forming
a bipartite graph. In detail, we proceed as follows for the construction of the
graph. Suppose, again, that we run the LAC algorithm m times for different val-
ues of the h parameter. For each instance xi, and for each clustering ν=1, . . . , m,
we then can compute the vector of posterior probabilities P ν

i , as defined in
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Equations (7) and (6). Using the P vectors, we construct the following matrix A:

A =

⎛
⎜⎜⎜⎜⎝

(P1
1 )t (P2

1 )t . . . (Pm
1 )t

(P1
2 )t (P2

2 )t . . . (Pm
2 )t

...
...

...

(P1
n )t (P2

n )t . . . (Pm
n )t

⎞
⎟⎟⎟⎟⎠ . (11)

Note that the (P ν
i )ts are row vectors (t denotes the transpose). The dimen-

sionality of A is therefore n × km, under the assumption that each of the m
clusterings produces k clusters. (We observe that the definition of A can be
easily generalized to the case where each clustering may discover a different
number of clusters.)

Based on A we can now define a bipartite graph to which our consensus par-
tition problem maps. Consider the graph G = (V , E) with V and E constructed
as follows. V = V C ∪ V I , where V C contains km vertices, each representing a
cluster of the ensemble, and V I contains n vertices, each representing an input
data point. Thus |V | = km + n. The edge Eij connecting the vertices Vi and
Vj is assigned a weight value defined as follows. If the vertices Vi and Vj rep-
resent both clusters or both instances, then E(i, j ) = 0; otherwise, if vertex Vi

represents an instance xi and vertex Vj represents a cluster Cν
j (or vice versa)

then the corresponding entry of E is A(i, k(ν − 1) + j ). More formally:

— E(i, j ) = 0 when ((1 ≤ i ≤ km) and (1 ≤ j ≤ km)) or ((km + 1 ≤ i ≤ km + n)
and (km + 1 ≤ j ≤ km + n)) (This is the case in which Vi and Vj are both
clusters or both instances.)

— E(i, j ) = A(i − km, j ) when (km + 1 ≤ i ≤ km + n) and (1 ≤ j ≤ km) (This
is the case in which Vi is an instance and Vj is a cluster.)

— E(i, j ) = E( j , i) when (1 ≤ i ≤ km) and (km + 1 ≤ j ≤ km + n) (This is the
case in which Vi is a cluster and Vj is an instance.)

Note that the dimensionality of E is (km + n) × (km + n), and E can be written
as follows:

E =
(

0 At

A 0

)
.

A partition of the bipartite graph G partitions the cluster vertices and the
instance vertices simultaneously. The partition of the instances can then be
output as the final clustering. Due to the special structure of the graph G (sparse
graph), the size of the resulting bipartite graph partitioning problem is kmn.
Assuming that (km) � n, this complexity is much smaller than the size n2 of
WSPA.

The steps of the algorithm, which we call WBPA (Weighted Bipartite Parti-
tioning Algorithm), are summarized in the following.

Input: n points x ∈ R D, and k

(1) Run LAC m times with different h values. Obtain the m partitions:

{cν
1, . . . , cν

k},{wν
1, . . . , wν

k}, ν = 1, . . . , m

(2) For each partition ν = 1, . . . , m:
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(a) Compute d ν
il =

√∑D
s=1 wν

ls(xis − cν
ls)

2

(b) Set Dν
i = maxl {d ν

il }
(c) Compute P (Cν

l |xi) = Dν
i −dν

il +1

kDν
i +k−∑

l dν
il

(d) Set P ν
i = (P (Cν

1 |xi), P (Cν
2 |xi), . . . , P (Cν

k |xi))
t

(3) Construct the matrix A as in (11)

(4) Construct the bipartite graph G = (V , E), where V = V C∪V I , |V I | = n and V I
i ≡ xi ,

|V C| = km and V C
j ≡ Cj (a cluster of the ensemble). Set E(i, j ) = 0 if Vi and Vj

are both clusters or both instances. Set E(i, j ) = A(i − km, j ) = E( j , i) if Vi and Vj

represent an instance and a cluster

(5) Run METIS (or spectral clustering) on the resulting graph G

Output: The resulting k-way partition of the n vertices in V I

We observe that WBPA captures instance-based similarity. Suppose, for ex-
ample, that x1 and x2 are always clustered together in the m input clusterings.
Then, the weights, P (Cν

i |x1) and P (Cν
i |x2), of the edges connecting x1 and x2 to

the same cluster vertex Cν
i have high values, for ν = 1, . . . , m. As a consequence,

the k-way partitioning of the n instances will not cut such edges. As a result,
x1 and x2 will be grouped together in the final consensus clustering.

4.3 Weighted Subspace Bipartite Partitioning Algorithm (WSBPA)

The two algorithms WSPA and WBPA provide as output a partition of the data
into k clusters, with no information regarding feature relevance for each of the
clusters. Next, we discuss a clustering ensemble algorithm (WSBPA) that pro-
vides weighted clusters in output. Our approach represents the first attempt
in the literature to produce subspace clustering results within the context of
ensemble research. This technique advances the WBPA method (Section 4.2)
by adding to the final partition weighted features associated with each cluster.
By assigning a value to each dimension, WSBPA captures the local relevance of
features within each cluster. Thus, the structure of the output provided by a sin-
gle run of LAC is preserved. The output of WSBPA, then, becomes twofold, and
has good potential to advance the research on the label assignment problem,
which is a difficult and open research issue. For example, for text documents,
the analysis of weights assigned to features (i.e., terms) can guide the identi-
fication of keywords representative of the topics discussed in the documents.
Possibly, relevant keywords, combined with associated weight values, can be
used to provide short summaries for clusters and to automatically annotate
documents (e.g., for indexing purposes). We will demonstrate this further in
Section 7.

As we mentioned in our discussion on WBPA, a partition of the bipartite
graph G partitions the cluster and the instance vertices simultaneously. How-
ever, only the partition of the instance vertices is used to output the final result
in WBPA; the partition of the cluster vertices is discarded. WSBPA also uses the
partition of cluster vertices; such partition reflects cluster-based similarities.
Specifically, WSBPA utilizes the information associated with the partitioned
cluster vertices to compute weight vectors for the final clustering.
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Let us consider the bipartite graph G = (V , E) as constructed by the algo-
rithm WBPA. We recall that V = V C ∪ V I , where V C contains km vertices,
each representing a cluster of the ensemble, and V I contains n vertices, each
representing an input datapoint. A k-way partition of the bipartite graph G
partitions the cluster vertices and the instance vertices simultaneously into k
sets. Furthermore, the k-way partition of G provides a one-to-one correspon-
dence between the k elements of the partition of V C and the k elements of the
partition of V I . In symbols, let PV C = {V C

1 , V C
2 , . . . , V C

k } be the partition of V C

into k sets, and let PV I = {V I
1 , V I

2 , . . . , V I
k } be the partition of V I into k sets. V C

j

and V I
j , for j = 1, . . . , k, are the sets of cluster vertices and instance vertices

grouped together by the k-way partitioning of graph G.
As in WBPA, the partition PV I provides the resulting clustering of the n

input datapoints x1, . . . , xn. Each element in PV C is a set of cluster vertices:
V C

l = {vC
l1

, . . . , vC
l |V C

l |
}, for l = 1, . . . , k. Each element in V C

l represents a cluster

from a run of the LAC algorithm. Thus, it has an associated weight vector. Let
wC

li
be the weight vector associated with the cluster vertex vC

li
. We average the

weight vectors wC
li

, for i = 1, . . . , |V C
l |, to obtain the weights for cluster V I

l , for
l = 1, . . . , k:

wl = 1

|V C
l |

|V C
l |∑

i=1

wC
li
. (12)

We therefore obtain k clusters along with the associated weight vectors:
{(V I

l , wl )}k
l=1. We observe that a k-way partitioning of G that minimizes the

edge weight-cut groups together instances x and clusters C with a high value
for P (C|x). This means that, according to LAC clustering, C is a likely cluster
given that we have observed x. Thus, the weight vector for the cluster contain-
ing x should be close to the weight vector associated with C. The averaging in
(12) gives each cluster C (i.e., the corresponding weight) with high P (C|x) equal
importance for the computation of the weight of the cluster containing x. The
steps of the algorithm, which we call Weighted Subspace Bipartite Partitioning
Algorithm (WSBPA) are summarized in the following.

Input: n points x ∈ R D, and k

(1) Run LAC m times with different h values. Obtain the m partitions:

{cν
1, . . . , cν

k},{wν
1, . . . , wν

k}, ν = 1, . . . , m

(2) For each partition ν = 1, . . . , m:

(a) Compute d ν
il =

√∑D
s=1 wν

ls(xis − cν
ls)

2

(b) Set Dν
i = maxl {d ν

il }
(c) Compute P (Cν

l |xi) = Dν
i −dν

il +1

kDν
i +k−∑

l dν
il

(d) Set P ν
i = (P (Cν

1 |xi), P (Cν
2 |xi), . . . , P (Cν

k |xi))
t

(3) Construct the A matrix as in (11)

(4) Construct the bipartite graph G = (V , E) as in the algorithm WBPA

(5) Run METIS (or spectral clustering) on the resulting graph G. Consider the resulting

partitions PV C = {V C
1 , V C

2 , . . . , V C
k } and PV I = {V I

1 , V I
2 , . . . , V I

k } of the cluster and

instance vertices respectively
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Fig. 2. (Left): Two-Gaussian data. (Right): Random sampling of 100 points (crosses and dots) from

each cluster.

(6) Compute the average weight vector wl for each element V C
l in PV C , as given in

Equation (12)

Output: The resulting weight vectors coupled with the corresponding cluster centroids:

{(cI
l , wl )}k

l=1, where cI
l is the centroid of cluster V I

l

5. AN ILLUSTRATIVE EXAMPLE

Here we present and discuss an illustrative example to demonstrate that the
relative coordinates P (C|x) provide a suitable representation for the computa-
tion of pairwise similarities. We emphasize that this is an important point since
the information provided by the subspace clustering is embedded into these co-
ordinates, and, in turn, the proposed consensus function is constructed upon
such representation of the data. Thus, the efficacy of the consensus function
itself relies on the suitability of these coordinates.

We have designed one simulated dataset with two clusters distributed as
bivariate Gaussians (Figure 2(Left)). The mean and standard deviation vectors
for each cluster are as follows: m1 = (0.5, 5), s1 = (1, 9); m2 = (12, 5), s2 = (6, 2).
Each cluster has 300 points. We ran the LAC algorithm on the Two-Gaussian
dataset for two values of the 1/h parameter (7 and 12). For (1/h) = 7, LAC
provides a perfect separation (the error rate is 0.0%); the corresponding weight
vectors associated to each cluster are w(7)

1 = (0.81, 0.19), w(7)
2 = (0.18, 0.82). For

(1/h) = 12, the error rate of LAC is 5.3%; the weight vectors in this case are
w(12)

1 = (0.99, 0.01), w(12)
2 = (0.0002, 0.9998).

For the purpose of plotting the two-dimensional posterior probability vectors
associated with each point x, we consider a random sample of 100 points from
each cluster (as shown in Figure 2(Right)). The probability vectors (computed
as in equations (7) and (6)) of such sample points are plotted in Figure 3(Left)
and Figure 3(Right), respectively for (1/h) = 7 and (1/h) = 12. We observe
that in Figure 3 (Left) ((1/h) = 7) for points x of cluster 1 (green points square-
shaped) P (C1|x) > P (C2|x), and for points x of cluster 2 (red points diamond-
shaped) P (C2|x) > P (C1|x). Thus, there is no overlapping (in relative coordinate
space) between points of the two clusters, and LAC achieves a perfect separa-
tion (the error rate is 0.0%). On the other hand, Figure 3(Right) ((1/h) = 12)
demonstrates that for a few points x of cluster 1 (green points square-shaped)
P (C1|x) < P (C2|x) (overlapping region in Figure 3(Right)). LAC misclassifies
these points as members of cluster 2, which results in an error rate of 5.3%.
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Fig. 3. (Left): Two dimensional probability vectors P = (P (C1|x), P (C2|x))t , (1/h) = 7. LAC error

rate is 0.0%. (Right): Two dimensional probability vectors P = (P (C1|x), P (C2|x))t , (1/h) = 12.

Fig. 4. Results on Two-Gaussian data. METIS was used in conjunction with WSPA, WBPA, and

WSBPA.

Thus, the relative coordinates P (C|x) provide a suitable representation
to compute the pairwise similarity measure in our clustering ensemble ap-
proaches. By combining the clustering results in the relative coordinate space
obtained by different runs of LAC, we aim at utilizing the consensus across
multiple clusterings, while averaging out emergent spurious structures. The
experimental results obtained for this dataset (presented in the next Section)
corroborate our analysis. In fact, we anticipate here that our three clustering en-
semble methods WSPA, WBPA, and WSBPA achieved 0.17%, 0.0%, and 0.0% er-
ror rates, respectively. Thus, they successfully separated the two clusters, as the
best input clustering provided by LAC did (see Table III and Figure 4 for details).

6. EXPERIMENTAL DESIGN AND RESULTS

We have designed two simulated datasets to analyze the behavior of the pro-
posed techniques in a controlled setting. These datasets contain two and three
clusters, respectively, distributed as bivariate Gaussians (Figures 2(Left) and
5). The mean and standard deviation vectors for the Two-Gaussian dataset are
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Fig. 5. Three Gaussian dataset.

Table I. Characteristics of the Datasets

Dataset k D n (points-per-class)

Two-Gaussian 2 2 600 (300-300)

Three-Gaussian 3 2 900 (300-300-300)

Iris 3 4 150 (50-50-50)

WDBC 2 31 424 (212-212)

Breast 2 9 478 (239-239)

Letter(A,B) 2 16 1555 (789-766)

SatImage 2 36 2110 (1072-1038)

Spam2000 2 2000 1284 ( 642-642)

Spam5996 2 5996 1284 ( 642-642)

as described in Section 5. The mean and standard deviation vectors for the
Three-Gaussian dataset are as follows: m1 = (2, 5), s1 = (1, 9); m2 = (12, 5),
s2 = (6, 2); m3 = (23, 5), s3 = (1, 9). In our experiments, we also used seven real
datasets. The characteristics of all datasets are given in Table I. Iris, Breast,
Letter(A,B), and SatImage are from the UCI Machine Learning Repository
[Asuncion and Newman 2007]. WDBC is the Wisconsin Diagnostic Breast Can-
cer dataset [Mangasarian and Wolberg 1990]. Spam2000 and Spam5996 are
two high-dimensional text (spam) datasets. The documents in each dataset
were preprocessed by eliminating stop words (based on a stop words list) and
stemming words to their root source. As feature values in the vector space model
we have used the frequency of the terms in the corresponding document. Both
Spam2000 and Spam5996 belong to the Email-1431 dataset.2 This dataset con-
sists of emails falling into three categories: conference (370), jobs (272), and
spam (786). We ran two different experiments with this dataset. In one case
we reduced the dimensionality to 2000 terms (Spam2000), and in the second
case to 5996 (Spam5996). In both cases we consider two clusters by merging
the conference and jobs mails into one group (nonspam).

Since METIS [Karypis and Kumar 1998] requires balanced datasets, we
performed random sampling on Breast, WDBC, Spam2000, and Spam5996. In
each case, we subsampled the most populated class: from 357 to 212 for WDBC,
from 444 to 239 for Breast, and from 786 to 642 for Spam2000 and Spam5996.

2The Email-1431 dataset was created by Finn Arup Nielsen. It is available at: http://www.imm.dtu.

dk/∼rem/data/Email-1431.zip.
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For the Letter dataset, we used the classes A and B (balanced), and for the
SatImage we used classes 1 and 7 (again balanced).

Besides METIS, we also used spectral clustering3 [Ng et al. 2002] to compute
the k-way partitioning of the resulting graph, for the three techniques WSPA,
WBPA, and WSBPA. The advantage of spectral clustering over METIS is that
spectral clustering does not require balanced data. Here, for comparison pur-
poses, we apply both METIS and spectral clustering on the same balanced data.
Our objective is to demonstrate the applicability of spectral clustering in con-
junction with our ensemble techniques, thus enabling the use of our methods
also with unbalanced data.

We compared our weighted clustering ensemble techniques (WSPA, WBPA,
and WSBPA) with the three methods CSPA, HGPA, and MCLA [Strehl and
Ghosh 2002]. Like our methods, these three techniques transform the problem
of finding a consensus clustering into a graph partitioning problem, and make
use of METIS. Thus, it was a natural choice for us to compare our methods with
these approaches. We consider the partitions provided by LAC (and discard
the weights) in order to run CSPA, HGPA, and MCLA, since these methods
are designed to accept clusterings (not subspace clusterings). In this paper we
report the accuracy achieved by CSPA and MCLA, as HGPA was consistently
the worst. The ClusterPack Matlab Toolbox was used.4

To further analyzing the benefits of diverse results generated by means of
subspace clustering, we also considered a consensus function not based on a
graph partitioning problem. The specific goals of these experiments are: (1) Test
whether the diverse clusterings produced by LAC can be effectively combined
using a consensus function based on a coassociation matrix; and (2) compare
our approach of generating diversity with alternate approaches available in the
literature (e.g., varying k-means). To this end, we ran LAC with different values
of h as before. For each of the m resulting partitions (weights are discarded), we
construct a coassociation matrix T of size n × n, where T (l )

i j = 1 if xi and x j are

clustered together in partition l , T (l )
i j = 0 otherwise. A final coassociation matrix

T is derived by averaging the individual T (l ), l = 1, . . . , m: Tij = 1
m

∑m
l=1 T (l )

i j ,
i, j = 1, . . . , n. Previous work [Kuncheva et al. 2006; Pekalska 2005] has shown
that good results can be obtained when T is used as a data matrix in a new
feature space (rather then a similarity matrix). Thus, we used T as data, and
ran k-means on it [Kuncheva et al. 2006]. We identify the resulting method as
LAC+Co-as. To account for the subspace structure discovered by LAC, we also
consider � (as defined in (10)) as data matrix. We call this approach LAC+wCo-
as. In addition, we ran the same consensus function on clusterings generated
by k-means with random initializations. The resulting approach is denoted as
k-means+Co-as. We observe that the consensus function has a random element
(as it relies on k-means). Thus, we ran it 10 times, and report average accu-
racies. Finally, we consider another variation of k-means clustering, where we
vary the number of clusters in each partition. Specifically, we ran the Evidence

3We used the Matlab Toolbox available at: http://www.cs.washington.edu/homes/sagarwal/code.

html.
4Available at: www.lans.ece.utexas.edu/∼strehl/.
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Accumulation Clustering (EAC) algorithm introduced in Fred and Jain [2005].
For each partition, k-means is ran with k uniformly distributed in the interval
[kmin, kmax], and with random initial centroids. To find the consensus partition,
hierarchical clustering is used with the coassociation matrix as similarity ma-
trix (applying both single and average link). To determine the final number of
clusters, the algorithm looks for the number of clusters that has the longest
lifetime on the dendogram, (i.e., the largest range of distance values on the
dendogram that leads to the identification of the clusters). We consistently ob-
tained better results with average link, and thus do not report the results for
single link. We call this approach k-means-EAC-AL (k free). We also ran the
same algorithm with the final number of clusters set equal to the number of
classes k in the data. We call the resulting approach k-means-EAC-AL (k fixed).
In our experiments, we set kmin = 2 and kmax = 20. As suggested in Fred and
Jain [2005], we make sure that the range (kmin,kmax) is not completely below
the minimum k value.

Evaluating the quality of clustering is in general a difficult task. Since class
labels are available for the datasets used here, we evaluate the results by com-
puting the error rate, which is computed according to the confusion matrix.

We observe that the algorithm WSBPA outputs weight vectors coupled with
the corresponding cluster centroids: {(cI

l , wl )}k
l=1. In order to compute the cor-

responding partition, we assign each point to the closest centroid according to
the locally weighted Euclidean distance.

6.1 Analysis of the Results

For each dataset, we ran the LAC algorithm for several values of the input
parameter h. The clustering results of LAC are then given as input to the con-
sensus clustering techniques being compared. (As the value of k, we input both
LAC and the ensemble algorithms with the actual number of classes in the
data.) Figures 4 and 7 plot the error rate (%) achieved by LAC as a function of
the 1/h parameter, for each dataset considered. The error rates of our weighted
clustering ensemble methods (WSPA, WBPA, and WSBPA in conjunction with
METIS), and of the CSPA and MCLA techniques are also reported. Each fig-
ure clearly shows the sensitivity of the LAC algorithm to the value of h. The
trend of the error rate clearly depends on the data distribution. Detailed results
for all data are provided in Tables II–XI, where we report the error rate (ER)
of the ensembles, and the maximum, minimum, and average error rate val-
ues for the input clusterings. Thirteen methods are being compared: our three
methods WSPA, WBPA, WSBPA, each combined with both METIS and spec-
tral clustering (SPEC is short for spectral clustering), CSPA and MCLA, and
the five techniques based on a coassociation matrix. The value in parenthesis
reported for k-means-EAC-AL (k free) corresponds to the number of clusters in
the consensus clustering.

We further illustrate the sensitivity of the LAC algorithm to the value of h
for the Three-Gaussian data (Figure 5). Figures 6(Left) and 6(Right) depict the
clustering results of LAC for (1/h) = 1 and (1/h) = 4, respectively. Figure 6
(Left) clearly shows that for (1/h) = 1, LAC is unable to discover the structure
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Table II. Average Error Rates on all Real

Datasets

Avg-Error

WSPA-METIS 7.07

WSPA-SPEC 6.04
WBPA-METIS 6.67

WBPA-SPEC 6.14

WSBPA-METIS 8.51

WSBPA-SPEC 8.32

CSPA 8.59

MCLA 9.36

LAC 13.59

LAC+Co-as. 10.07

LAC+wCo-as. 9.7

k-means+Co-as. 16.78

k-means+EAC-AL (k fixed) 29.8

k-means+EAC-AL (k free) 28.4

Fig. 6. (Left): LAC: Clustering results for Three-Gaussian data, (1/h) = 1. The error rate is 34.6%.

(Right): LAC: Clustering results for Three-Gaussian data, (1/h) = 4. The error rate is 1.3%

of the three clusters, and gives an error rate of 34.6%. On the other hand,
LAC achieves a nearly perfect separation for (1/h) = 4, as shown in Figure 6
(Right). The error rate in this case is 1.3%, which is also the minimum achieved
in all the runs of the algorithm. Results for the ensemble techniques on the
Three-Gaussian data are given in Figure 7 and in Table IV. We observe that
the WSPA(-METIS) technique perfectly separates the data (0.0% error), and
that WBPA(-METIS) gives a 0.44% error rate. In both cases, the error rate
achieved is lower than the minimum error rate among the input clusterings
(1.3%). Moreover, WSBPA gives an error rate of 1.3%, which is equal to the
lowest error rate achieved by LAC. We note that WSBPA(-METIS) and MCLA
provide the same error rate for this problem. However, WSBPA produces not
only a partition of points as the final result, but also relevance values of features
associated with each cluster. In this regard, WSBPA provides more information,
and is therefore superior to MCLA.

In general, all three of our ensemble techniques were able to filter out spuri-
ous structures identified by individual runs of LAC, and provided a better error
rate than (or equal to) LAC’s minimum error rate. For all seven real datasets
either WBPA, WSPA, or WSBPA provided the lowest error rate among the
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Fig. 7. Clustering Ensemble Results. METIS was used in conjunction with WSPA, WBPA, and

WSBPA.
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Table III. Results on Two-Gaussian Data

Ens-ER Max-ER Min-ER Avg-ER

WSPA-METIS 0.17 5.5 0 2.2

WSPA-SPEC 1.3 5.5 0 2.2

WBPA-METIS 0 5.5 0 2.2

WBPA-SPEC 1.3 5.5 0 2.2

WSBPA-METIS 0 5.5 0 2.2

WSBPA-SPEC 0 5.5 0 2.2

CSPA 0 5.5 0 2.2

MCLA 0 5.5 0 2.2

LAC+Co-as. 0 5.5 0 2.2

LAC+wCo-as. 0.18 5.5 0 2.2

k-means+Co-as. 1.3 1.3 1.3 1.3

k-means+EAC-AL (k fixed) 0.5 0.8 0.0 0.45

k-means+EAC-AL (k free) 0 (k = 217) 0.8 0.0 0.45

Table IV. Results on Three Gaussian Data

Ens-ER Max-ER Min-ER Avg-ER

WSPA-METIS 0 34.9 1.3 10.5

WSPA-SPEC 2.2 34.9 1.3 10.5

WBPA-METIS 0.44 34.9 1.3 10.5

WBPA-SPEC 1.3 34.9 1.3 10.5

WSBPA-METIS 1.3 34.9 1.3 10.5

WSBPA-SPEC 1.56 34.9 1.3 10.5

CSPA 2.3 34.9 1.3 10.5

MCLA 1.3 34.9 1.3 10.5

LAC+Co-as. 17.3 34.9 1.3 10.5

LAC+wCo-as. 2.7 34.9 1.3 10.5

k-means+Co-as. 17.2 1.2 1.1 1.17

k-means+EAC-AL (k fixed) 0.3 33.3 0.2 4.0

k-means+EAC-AL (k free) 0.3 (k = 3) 33.3 0.2 4.0

methods being compared. For the Iris, WDBC, Breast, SatImage, and Spam5996
datasets (five out of seven total), the error rate provided by the WBPA technique
is as good or better than the best individual input clustering. For the Letter(A,B)
and Spam2000 datasets, the error rate of WBPA is still below the average er-
ror rate of the input clusterings. WSPA gave excellent results as well. For Iris,
WDBC, Breast, SatImage, and Spam5996 the error rate provided by WSPA is
lower than the best individual input clustering. For Spam2000 (with METIS)
and Letter(A,B) the error rate of WSPA is well below the average error rate of
the input clusterings.

Also WSBPA performed quite well. It produced error rates comparable with,
and sometime better than, the other techniques. In addition, WSBPA provides
information on the relevance of features associated with each cluster. In each
dataset, WSBPA achieved a result far superior to the average error rate of the
input clusterings. Furthermore, we note that for Iris, SatImage, Spam2000,
and Spam5996 (four out of seven total) WSBPA has provided a result superior
to both the results provided by CSPA and MCLA. In particular, WSBPA (both
with METIS and SPEC) produced excellent results for the high-dimensional
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Table V. Results on Iris Data

Ens-ER Max-ER Min-ER Avg-ER

WSPA-METIS 10.00 17.3 9.3 12.9

WSPA-SPEC 6.00 17.3 9.3 12.9

WBPA-METIS 9.3 17.3 9.3 12.9

WBPA-SPEC 6.6 17.3 9.3 12.9

WSBPA-METIS 11.3 17.3 9.3 12.9

WSBPA-SPEC 9.3 17.3 9.3 12.9

CSPA 13.3 17.3 9.3 12.9

MCLA 13.3 17.3 9.3 12.9

LAC+Co-as. 20.8 17.3 9.3 12.9

LAC+wCo-as. 15.7 17.3 9.3 12.9

k-means+Co-as. 19.9 33.3 10.6 17.6

k-means+EAC-AL (k fixed) 12.0 12.7 2.7 7.1

k-means+EAC-AL (k free) 12.0 (k = 4) 12.7 2.7 7.1

Table VI. Results on WDBC Data

Ens-ER Max-ER Min-ER Avg-ER

WSPA-METIS 10.6 48.5 11.1 23.4

WSPA-SPEC 10.3 48.5 11.1 23.4

WBPA-METIS 8.7 48.5 11.1 23.4

WBPA-SPEC 10.3 48.5 11.1 23.4

WSBPA-METIS 12.5 48.5 11.1 23.4

WSBPA-SPEC 12.7 48.5 11.1 23.4

CSPA 11.1 48.5 11.1 23.4

MCLA 13.4 48.5 11.1 23.4

LAC+Co-as. 12.9 48.5 11.1 23.4

LAC+wCo-as. 12.7 48.5 11.1 23.4

k-means+Co-as. 49.7 49.7 49.7 49.7

k-means+EAC-AL (k fixed) 49.8 46.2 33.7 38.9

k-means+EAC-AL (k free) 46.2 (k = 4) 46.2 33.7 38.9

data Spam2000 and Spam5996. In these two cases, WSBPA produced better
results than the four competing techniques, and achieved a lower error rate
than (or equal to) the minimum error rate among the input clusterings.

Clearly, our weighted clustering ensemble techniques are capable of achiev-
ing superior accuracy results with respect to the CSPA and MCLA techniques
on the tested datasets. This result is summarized in Table II, where we report
the average error rate on all real datasets. We observe that, on average, SPEC
performed better than METIS. We also report the average values for the LAC
algorithm to emphasize the large improvements obtained by the ensembles
across the real datasets. Given the competitive behavior shown by LAC in the
literature [Domeniconi et al. 2007], this is a significant result.

We observe that the consensus function � defined in (10) measures the sim-
ilarity of points in terms of how close the “patterns” captured by the corre-
sponding probability vectors are. As a consequence, � (as well as the matrix A
for the WBPA and WSBPA techniques) takes into account not only how often
the points are grouped together across the various input clusterings, but also
the degree of confidence of the groupings. On the other hand, the CSPA and
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Table VII. Results on Breast Data

Ens-ER Max-ER Min-ER Avg-ER

WSPA-METIS 3.6 34.1 5.9 20.5

WSPA-SPEC 3.77 34.1 5.9 20.5

WBPA-METIS 3.6 34.1 5.9 20.5

WBPA-SPEC 3.77 34.1 5.9 20.5

WSBPA-METIS 9.6 34.1 5.9 20.5

WSBPA-SPEC 10.0 34.1 5.9 20.5

CSPA 4.8 34.1 5.9 20.5

MCLA 10.3 34.1 5.9 20.5

LAC+Co-as. 8.2 34.1 5.9 20.5

LAC+wCo-as. 11.0 34.1 5.9 20.5

k-means+Co-as. 5.2 5.2 4.8 5.1

k-means+EAC-AL (k fixed) 5.0 4.8 2.1 3.4

k-means+EAC-AL (k free) 5.0 (k = 2) 4.8 2.1 3.4

Table VIII. Results on Letter(A,B) Data

Ens-ER Max-ER Min-ER Avg-ER

WSPA-METIS 8.6 47.9 6.4 13.6

WSPA-SPEC 6.6 47.9 6.4 13.6

WBPA-METIS 8.2 47.9 6.4 13.6

WBPA-SPEC 6.6 47.9 6.4 13.6

WSBPA-METIS 9.9 47.9 6.4 13.6

WSBPA-SPEC 9.4 47.9 6.4 13.6

CSPA 8.6 47.9 6.4 13.6

MCLA 10.8 47.9 6.4 13.6

LAC+Co-as. 10.8 47.9 6.4 13.6

LAC+wCo-as. 10.0 47.9 6.4 13.6

k-means+Co-as. 11.9 18.0 7.3 12.6

k-means+EAC-AL (k fixed) 24.9 19.0 2.1 7.5

k-means+EAC-AL (k free) 19.2 (k = 3) 19.0 2.1 7.5

MCLA approaches take as input the partitions provided by each contributing
clustering algorithm. That is, ∀ν and ∀i, P (Cν

l |xi) = 1 for a given l , and 0 other-
wise. Thus, the information concerning the degree of confidence associated with
the clusterings is lost. This is likely the reason for the superior performance
achieved by our weighted clustering ensemble algorithms.

In some cases, the WBPA technique gives a lower error rate compared to the
WSPA technique (WBPA-METIS performs slightly better than WSPA-METIS,
on average). This result may be due to the conceptual advantage of WBPA
with respect to WSPA discussed at the beginning of Section 4.2. The consen-
sus function ψ used in WSPA measures pairwise similarities which are solely
instance-based. On the other hand, the bipartite graph partitioning problem,
to which the WBPA technique reduces, partitions both cluster vertices and in-
stance vertices simultaneously. Thus, it also accounts for similarities between
clusters.

The results obtained for LAC+Co-as. and LAC+wCo-as. show that the di-
verse clusterings produced by LAC can be effectively combined using also a
consensus function based on a coassociation matrix. LAC+wCo-as. gives on
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Table IX. Results on SatImage Data

Ens-ER Max-ER Min-ER Avg-ER

WSPA-METIS 14.9 16.5 15.4 15.8

WSPA-SPEC 13.2 16.5 15.4 15.8

WBPA-METIS 15.0 16.5 15.4 15.8

WBPA-SPEC 13.2 16.5 15.4 15.8

WSBPA-METIS 14.5 16.5 15.4 15.8

WSBPA-SPEC 15.2 16.5 15.4 15.8

CSPA 20.3 16.5 15.4 15.8

MCLA 15.6 16.5 15.4 15.8

LAC+Co-as. 15.6 16.5 15.4 15.8

LAC+wCo-as. 16.1 16.5 15.4 15.8

k-means+Co-as. 15.7 15.7 15.6 15.7

k-means+EAC-AL (k fixed) 17.5 19.0 1.0 6.3

k-means+EAC-AL (k free) 17.5 (k = 2) 19.0 1.0 6.3

Table X. Results on Spam2000 Data

Ens-ER Max-ER Min-ER Avg-ER

WSPA-METIS 0.7 1.5 0.6 0.9

WSPA-SPEC 1.4 1.5 0.6 0.9

WBPA-METIS 0.7 1.5 0.6 0.9

WBPA-SPEC 1.4 1.5 0.6 0.9

WSBPA-METIS 0.6 1.5 0.6 0.9

WSBPA-SPEC 0.6 1.5 0.6 0.9

CSPA 0.7 1.5 0.6 0.9

MCLA 0.7 1.5 0.6 0.9

LAC+Co-as. 0.7 1.5 0.6 0.9

LAC+wCo-as. 0.8 1.5 0.6 0.9

k-means+Co-as. 9.7 47.9 5.4 22.3

k-means+EAC-AL (k fixed) 49.3 48.6 2.2 18.5

k-means+EAC-AL (k free) 49.3 (k = 2) 48.6 2.2 18.5

average lower error rates than LAC+Co-as. This is expected since LAC+wCo-
as. embeds the subspace structure discovered by LAC into the consensus func-
tion. The coassociation matrix is also effective when combined with k-means
(note that the high error rate of k-means+Co-as. on the WDBC data is due to
the fact that k-means gave the same high error rate on each single run. See
Table VI.) Overall, though, LAC provides better accuracy/diversity trade-offs,
which lead to more accurate ensembles (see Table II). k-means-EAC-AL (both
with k fixed and k free) provides very good results on the Gaussian data (see
Tables III and IV). This demonstrates the advantage of using k-means with
larger values of k when the clusters are shaped as elongated Gaussians. (We
observe that, although k-means-EAC-AL (k free) achieves zero error rate on the
Two-Gaussian data, the algorithm identifies 217 clusters, and most of the clus-
ters contains just few points.) k-means-EAC-AL provides the poorest results on
average on the real datasets. We observe that the error rate of the consensus
clustering in each case is very close to the largest error rate among the compo-
nents. For k fixed, this happens in part because the algorithm is forced to find
a partition with a number of clusters equal to the number of classes. For k free,
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Table XI. Results on Spam5996 Data

Ens-ER Max-ER Min-ER Avg-ER

WSPA-METIS 1.17 49.7 1.9 7.9

WSPA-SPEC 0.93 49.7 1.9 7.9

WBPA-METIS 1.12 49.7 1.9 7.9

WBPA-SPEC 0.93 49.7 1.9 7.9

WSBPA-METIS 0.93 49.7 1.9 7.9

WSBPA-SPEC 0.93 49.7 1.9 7.9

CSPA 1.3 49.7 1.9 7.9

MCLA 1.3 49.7 1.9 7.9

LAC+Co-as. 1.5 49.7 1.9 7.9

LAC-wCo-as. 1.6 49.7 1.9 7.9

k-means+Co-as. 5.4 49.7 5.4 41.2

k-means+EAC-AL (k fixed) 49.9 49.3 2.5 37.5

k-means+EAC-AL (k free) 49.9 (k = 2) 49.3 2.5 37.5

the algorithm itself settles for a consensus partition with a number of clusters
very close or equal to the number of classes. High error rates are obtained on
WDBC, Spam2000, and Spam5996. We observe that, in these cases, the algo-
rithm groups almost the entire collection of data in a single cluster. Although
k-means-EAC-AL (k free) identifies the correct number of clusters for the Spam
data, it fails to discover any structure (almost all points populate a single clus-
ter). We tested a variety of ranges for (kmin,kmax) on WDBC, including those
suggested in Fred and Jain [2005] (e.g., [2,20], [10,30], [60,90], [10,50],[2,10]),
but the results did not improve.

We finally tested how the size of the ensemble affects the error rate. Figure 8
shows the results for WSPA-METIS and WBPA-METIS on the real data sets.
Each point corresponds to an average of ten ensembles of the corresponding size.
Ensemble components are randomly chosen from a collection of 50 partitions
obtained by running LAC with 1/h = 1, . . . , 50. Ensemble sizes between 10
and 45 are considered. Overall, the error rate slowly decreases as the ensemble
size increases. An ensemble size of 25–30 components seems to be a reasonable
choice in general.

7. CATEGORIZATION OF UNLABELED DOCUMENTS: AN APPLICATION

Here we investigate the use of our subspace cluster ensemble technique
(WSBPA) for the categorization of unlabeled documents. The output of WSBPA
is twofold: it provides a partition of the data and a measure of local feature
relevance for each identified group of data. For text documents, the analysis
of relevance values (i.e., weights) credited to features (i.e., terms) can assist
the identification of descriptive words representative of topics discussed in the
documents.

To demonstrate these concepts we performed experiments with two datasets:
spam Email-1431 and 20 Newsgroups. To reduce the dimensionality of the data,
we followed the procedure presented in Kang et al. [2005]. Documents were
first preprocessed by eliminating stop and rare words, and by stemming words
to their root source. A global unsupervised feature selection procedure, based
on frequent itemset mining, was then applied. The objective of this step is to
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Fig. 8. Error rate as a function of the ensemble size.

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 4, Article 17, Publication date: January 2009.



17:28 • C. Domeniconi and M. Al-Razgan

Table XII. Results on Email-1431

Ens-ER Min-ER Max-ER Avg-ER

WSPA-METIS 5.3 1.5 2.2 1.95

WBPA-METIS 5.3 1.5 2.2 1.95

WSBPA-METIS 1.6 1.5 2.2 1.95

WSPA-SPEC 1.5 1.5 2.2 1.95

WBPA-SPEC 1.6 1.5 2.2 1.95

WSBPA-SPEC 1.6 1.5 2.2 1.95

Table XIII. Results on 20 Newsgroups (electronic, medical)

Ens-ER Min-ER Max-ER Avg-ER

WSPA-METIS 18.16 16.79 46.17 20.37

WBPA-METIS 16.95 16.79 46.17 20.37

WSBPA-METIS 16.89 16.79 46.17 20.37

WSPA-SPEC 17.15 16.79 46.17 20.37

WBPA-SPEC 17.09 16.79 46.17 20.37

WSBPA-SPEC 17.19 16.79 46.17 20.37

identify sets of terms that co-occur frequently in the given corpus of documents.
Such terms become the features used in the final representation of documents.

Email-1431 is the same dataset used in the experiments described in Sec-
tion 6. The original size of the dictionary is 38,713. After processing the data as
described previously, the dictionary size was reduced to 285. As before, we ran
a two-class classification problem by merging the conference and jobs emails
into one group (nonspam). 20 Newsgroups is a collection of 20,000 messages
collected from 20 different netnews newsgroups. One thousand messages from
each of the 20 newsgroups were chosen at random and partitioned by news-
groups name. In our experiments we consider the categories medical (990) and
electronics (981). The original size of the dictionary is 24,546; after processing
the data, the dictionary size was reduced to 321.

Tables XII and XIII report the results we obtained for these two datasets.
We ran our three methods (WSPA, WBPA, and WSBPA) using both METIS and
spectral clustering. We report the ensemble error rate, and minimum, max-
imum and average error rates of the input clusterings. (Figure 9 shows the
ranges of values for the parameter h used to construct the ensembles.)

WSBPA gives good results in both cases. We observe that for the Email-1431
dataset, WSBPA gives the same error rate (1.6%) when combined with either
METIS or spectral clustering (as shown in Figure 9(Left) and in Table XII). Such
error rate is very close to the minimum error rate provided by the runs of LAC.
Moreover, WSBPA significantly outperforms WSPA and WBPA when METIS is
used. With SPEC, all three methods provide similar results. The fact that SPEC
performs better than METIS might be due to the slightly unbalanced data
(786 spams vs. 642 non-spams). Also for the 20 Newsgroups dataset (electronic,
medical), WSBPA gives an error rate that is very close to the minimum error
rate provided by LAC (for both METIS and SPEC) (see Figure 9(Right) and
Table XIII). In this case, METIS and SPEC give similar results (the dataset is
balanced).
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Fig. 9. Results on text datasets. (Left): Email-1431 dataset. (Right): 20 Newsgroups dataset

(electronic-medical).

Fig. 10. Email-1431: Words and Corresponding Weight Values.

7.1 Analysis of Weights

We analyzed the weights credited to features by the algorithm WSBPA (com-
bined with METIS). The analysis of weights assigned to words provides some
insights on the nature of the spam filtering problem and the general classifica-
tion case. As Figures 10 and 11 show, the selected words (i.e., those words that
receive largest weight values) are representative of the underlying categories,
which provides evidence that our subspace cluster ensemble technique is ca-
pable of sifting relevant words, while discarding (i.e., assigning a low weight
value) spurious ones.

Let us consider the distribution of weights obtained for the Email-1431
dataset. Figure 10 shows the weight values and corresponding words for the
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Fig. 11. 20 Newsgroups (electronic, medical): Words and Corresponding Weight Values.

two-class case (the nonspam class corresponds to both conference and jobs
emails). Here we plot the top words that received highest weight for each
class (discarding those without a clear meaning, e.g., abbreviations, acronyms,
etc.). We observe that words reflecting the topic of a category receive a larger
weight in the other class. For example, the words sales, money, marketing,
credit, etc. get a larger weight in the non-spam category (their weights in the
spam class are very close to zero). Similarly, the words computational, neuro-
science, neural, algorithms, deadline, etc. receive larger weights in the spam
category. The weights for these words in the nonspam class are very close to
zero. While surprising at first, this trend may be due to the nature of the spam
and nonspam email distributions. Each of these two categories is actually a
combination of subclasses. The nonspam class in this case is the union of con-
ference and jobs emails (by construction). Likewise, the spam messages can
be very different in nature (sales, jokes, diets, fraud, etc.), and therefore dif-
ferent in their word content. As a consequence, the variance of feature values
for words reflecting the general topic of a category is larger within the same
category than in the other one (e.g., the word sales appears only in half of the
spam messages, and does not appear in any of the nonspam emails). Since
the weights computed by the LAC algorithm are inversely proportional to a
measure of such variance of values (i.e., Xji), we obtain the “swapping phe-
nomenon” depicted in Figure 10. This analysis can be interpreted as the fact
that the absence of a certain term (e.g., absence of the word sales within the non-
spam messages) is a characteristic shared across the emails of a given category;
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whereas the presence of certain words shows a larger variability across emails
of a given category (e.g., the word sales appears only in half of the spam
messages).

Figure 11 shows the weight values and corresponding words for the 20 News-
groups (electronic, medical) dataset. In this case words receive largest weights
within the representative class (e.g., system, noise, circuit, range, for the elec-
tronic class; screen, hot, dead, cost, program for the medical class). In this case,
categories represent focused topics, and therefore words reflecting the content
of documents show a small variance (e.g., the word system appears in all docu-
ments on electronics, and thus its variance is zero).

For this dataset, we also analyzed the dictionary of the corpus, and noticed
that the majority of words are descriptive of the electronic category, while the
medical domain is underrepresented. This bias was also reflected within the
words that received larger weights: we could easily identify many words of the
electronic domain, while words from the medical domains were less in number.
Given the biased dictionary, this result is expected.

These results provide evidence that the weights computed by the WSBPA
algorithm are meaningful, that is the averaging of weights performed by Equa-
tion (12) properly captures the local relevance of features. This is important for
the cluster prediction of future data. Local weights also provide information re-
garding the subspace each cluster belongs to, thus allowing data interpretation,
and possibly data compression. Specifically, for text categorization, the analysis
of weights can be informative of the nature of the categorization problem, and
can be used to guide the process of text interpretation. Of course, we are not ad-
vocating that local weights alone can solve the problem of automatic document
annotation. Our results simply show that they are useful for the identification
of descriptive words. Local weights alone, though, are not able to account for
all possible configurations and words’ distributions. For example, a word that
appears in all documents of one class and in zero documents of the other, re-
ceives large weight in both (its variance is zero in both cases). Considering the
frequency of occurrence within each class, may clarify which class the word is
descriptive of. While this phenomenon was not observed in our data, one has
to account for such instances in general. Considering relative frequencies of
words that receive large weight in both classes is a viable solution.

8. MEASURES OF DIVERSITY AND ACCURACY

Diversity is an important aspect in building clustering ensembles. It is expected
that the accuracy of the ensemble improves when a larger number of input clus-
terings is given, provided that the clusterings are diverse. Diversity in cluster-
ing ensembles is under investigation by many researchers. Here we study the
interplay between accuracy and diversity for our ensemble techniques.

Fern and Brodley [2003] illustrate the importance of diversity for cluster
ensemble accuracy. They measure diversity using NMI, a pairwise similarity
measure that quantifies the information shared between two partitions. Let A
and B be two partitions of n points into cA and cB clusters, respectively. Let’s
assume nA

i represent the number of points in cluster i of A, nB
j represent the
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number of points in cluster j of B, and nij is the number of points shared by
cluster i of A and cluster j of B. The NMI between A and B is a value in [0, 1]
and is defined as follows [Strehl and Ghosh 2002]:

NMI(A, B) =
∑cA

i=1

∑cB
j=1 nij log

nij n
nA

i nB
j√∑cA

i=1 nA
i log

nA
i
n

∑cB
j=1 nB

j log
nB

j

n

. (13)

Since NMI measures the similarity between two partitions, (1 − NMI) gives
the pairwise diversity. The pairwise measure of diversity, based on NMI, of an
ensemble of L partitions is then defined as follows:

DNMI = 2

L(L − 1)

L−1∑
i=1

L∑
j=i+1

(1 − NMI(Pi, Pj )), (14)

where Pi and Pj are two of the L partitions.
Kuncheva and Hadjitodorov [2004] and Hadjitodorov et al. [2006] discuss

diversity and accuracy measures in great depth. In particular, Hadjitodorov
et al. [2006] investigate which diversity measure gives more accurate results.
In all, six measures were examined. One is based on the Adjusted Rand Index
(ARI), which measures the amount of departure from the assumption that any
two clustering results have occurred by chance. ARI is a measure of similarity
between two partitions, and is defined as follows:

t1 =
cA∑

i=1

(
nA

i
2

)
, t2 =

cB∑
j=1

(
nB

j
2

)
, t3 = 2t1t2

n(n − 1)
,

ar(A, B) =
∑cA

i=1

∑cB
j=1

(
nij

2

)
− t3

1
2
(t1 + t2) − t3

, (15)

where
( a

b
)

is the binomial coefficient. A and B are two partitions of a dataset
with n points, cA and cB are the number of clusters in partitions A and B
respectively, nA

i is the number of points in cluster i of partition A, nB
j is the

number of points in cluster j of partition B, and nij is the number of points
cluster i of A and cluster j of B have in common. Since ar() measures the
similarity between two partitions, to compute the pairwise diversity one would
consider (1 − ar()). Therefore, the measure of diversity, based on ARI, of an
ensemble is defined as follows:

Dp = 2

L(L − 1)

L−1∑
i=1

L∑
j=i+1

(1 − ar(Pi, Pj )).

Dp measures the diversity of an ensemble with L partitions, where Pi, Pj are
two such partitions.
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Other measures evaluate individual (i.e, nonpairwise) diversities, by compar-
ing individual clustering results with the ensemble result. One such measure
is:

Dnp1
= 1

L

L∑
i=1

(1 − ar(Pi, P∗)),

where Pi and P∗ are the individual clustering result and the ensemble result
respectively, and L is the number of clustering members.

An additional measure focuses on the spread of diversity (with respect to P∗)
of individual clusterings. It is defined as follows:

Dnp2
=

√√√√ 1

L − 1

L∑
i=1

(1 − ar(Pi, P∗) − Dnp1
)2.

Using this measure, Hadjitodorov et al. [2006] discover that a larger spread is
not strongly related to the ensemble accuracy. To take this result into account,
another measure was introduced:

DARI = 1

2
(1 − Dnp1

+ Dnp2
), (16)

which considers both variability and accuracy. Assuming that the ensemble
result is close to the true labeling, we can measure the accuracy of individual
clusterings by measuring how close they are to the ensemble result. Thus, a
larger value of (1 − Dnp1

) means higher accuracy. At the same time, variability
within the ensemble can be measured using Dnp2

. Equation (16) achieves a
trade-off between accuracy and variability.

Hadjitodorov et al. [2006] indicate that the most stable measures are Dnp1

and DAR I . The study focuses on the coassociation approach to construct consen-
sus functions. The authors conclude that an ensemble selected through medium
diversity will fare better than either randomly selected ensembles or those se-
lected through maximum diversity.

Based on the findings discussed above, we investigate here the issue of diver-
sity and accuracy in more detail for our ensemble techniques (WSPA, WBPA,
and WSBPA). Our objective is to investigate which measure of diversity is the
best indicator for a good ensemble accuracy, and what is the preferred level
of diversity (high, medium, or low). Such findings would enable one to select,
from a set of ensembles, the one that is most likely to provide good results. We
consider two measures of diversity, one based on NMI as defined in (14), and
one based on ARI as defined in (16). We observe that DNMI is a pairwise diver-
sity measure that does not depend on the ensemble methodology, while DAR I is
a nonpairwise diversity measure that depends on the ensemble methodology.
Furthermore, we experiment with two methods to build a cluster ensemble:
we run LAC with different values of h in one case, and with initial random
centroids in the second case. In the following, we provide the details of the ex-
periments, and discuss the results. The results obtained with random centroids
are consistent with those obtained by varying h. Therefore, in the following, we
omit the accuracy/diversity plots for random centroids.

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 4, Article 17, Publication date: January 2009.



17:34 • C. Domeniconi and M. Al-Razgan

8.1 Building Cluster Ensembles by Varying h

To study how accuracy relates with the chosen measures of diversity, we created
50 ensembles of size 15 by varying the value of h. As clustering algorithm, we
always used LAC. For each of the 50 ensembles, we computed both measures
of diversity DNMI and DARI, and corresponding accuracy values. In details, we
ran the following procedure:

(1) Run the LAC algorithm for 1/h = 1, . . . , 50;

(2) Repeat the following 50 times:
(a) Sample 15 clusterings out of the 50 generated in 1;
(b) Run WBPA, WSPA, WSBPA (using METIS) on the selected 15 cluster-

ings;
(c) Compute the diversity measures DNMI as in (14) and DARI as in (16),

for L = 15;
(d) Compute the average accuracy of the ensemble components, both based

on NMI and ARI, as follows:

AccNMI = 1

15

15∑
i=1

NMI(Pi, P T ) (17)

AccARI = 1

15

15∑
i=1

ar(Pi, P T ), (18)

where P T is the target partition (according to the ground truth);
(e) Compute the accuracy of the ensemble decision, both based on NMI and

ARI, as follows:

Acc∗
NMI = NMI(P∗, P T ) (19)

Acc∗
ARI = ar(P∗, P T ), (20)

where P∗ is the ensemble partition, and P T is the target partition.

Figures 12–20 show the results of accuracy vs. diversity for our nine datasets.
To construct the plots, we proceeded as follows. We sorted the 50 DNMI values
in increasing order. Each DNMI value was associated with the corresponding
AccNMI and Acc∗

NMI values. We plotted the collection of two dimensional points
(DNMI, AccNMI) and (DNMI, Acc∗

NMI), and connected them with a line. We pro-
ceeded similarly for the measures based on ARI. This procedure was performed
for each of the three ensemble techniques WSPA, WBPA, and WSBPA. In
Figures 12–20, the points marked with a “∗” symbol correspond to
(DNMI, AccNMI) and (DARI, AccARI). The points marked with an “open square”
symbol correspond to (DNMI, Acc∗

NMI) and (DARI, Acc∗
ARI). From the plots, we

observe the following:

(1) Larger DNMI (DARI) values give larger AccNMI (AccARI) values and larger
Acc∗

NMI (Acc∗
ARI) values, for all datasets and all the three ensemble methods.

This result suggests that, to obtain good ensemble accuracy, a high level of
diversity should be preferred. (The same trend was obtained when diversity
was generated by means of random centroids.)
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Fig. 12. Two Gaussian dataset: accuracy vs. diversity.

Fig. 13. Three Gaussian dataset: accuracy vs. diversity.

(2) For a given value of diversity DNMI (DARI), the accuracy of the ensemble deci-
sion, Acc∗

NMI (Acc∗
ARI), is typically larger than the average accuracy of the en-

semble components, AccNMI (AccARI), for all three methods and all datasets
(with few exceptions discussed below). This demonstrates the efficacy of
our ensemble methods. Furthermore, the gain in accuracy, Acc∗

NMI − AccNMI

(Acc∗
ARI − AccAR I ), in many cases is larger for larger diversity values (DNMI

and DARI, respectively). Again, this confirms that a high level of diversity
should be preferred.

(3) WDBC dataset and WSBPA ensemble method: For lower values of diver-
sity (both based on NMI and ARI), the accuracy of the ensemble decision is
very low, and slightly below the average accuracy of the ensemble compo-
nents. As diversity increases, the ensemble accuracy improves rapidly, and
achieves significant improvement upon the components. This case stresses
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Fig. 14. Iris dataset: accuracy vs. diversity.

Fig. 15. WDBC dataset: accuracy vs. diversity.

the importance of high diversity. Note that, for this dataset, also the WSPA
and WBPA techniques show a much larger accuracy gain for larger diversity
values.

(4) Results similar to WDBC are observed for the Letter(A,B) dataset, and
accuracy/diversity measures based on NMI.

(5) In general, given an ensemble of partitions, the average accuracy value of
the components computed according to NMI (AccNMI) is higher than the av-
erage accuracy value computed according to ARI (AccARI). This is because
NMI() ∈ [0, 1], while ar() ∈ [−1, 1]. Thus, the summation in (18) may con-
tain negative values, which lead to smaller averages than in (17) (where
the smallest components are zeros). On the other hand, the values Acc∗

NMI
and Acc∗

ARI, which measure the accuracy of the ensemble partitions, are in
general closer to each other. This happens because the largest value both
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Fig. 16. Breast dataset: accuracy vs. diversity.

Fig. 17. Letter(A,B) dataset: accuracy vs. diversity.

for NMI() and ar(), in (19) and (20) respectively, is 1. This different scaling
of the accuracy/diversity measures causes the values (DNMI, Acc∗

NMI) to lie
below the (DNMI, AccNMI) values for the SatImage dataset (while the oppo-
site trend is observed for the measures based on ARI) (see Figure 18). We
also observe that the range for the diversity values is very narrow in this
case, suggesting the presence of correlated partitions in the ensembles. Ac-
cording to Table IX, our three ensemble techniques provide a smaller error
rate than the minimum error rate of the input clusterings. This suggests
that a measure of accuracy/diversity based on ARI might be more robust
and consistent than a measure based on NMI. Nevertheless, it is important
to keep in mind that DARI depends on the ensemble methodology. Thus,
our findings are not necessarily applicable to other ensemble techniques or
datasets.
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Fig. 18. SatImage dataset: accuracy vs. diversity.

Fig. 19. Spam2000 dataset: accuracy vs. diversity.

9. CONCLUSIONS

This article discusses the challenges related to clustering due to its ill-posed
nature. In particular, we address problems which arise from high-dimensional
data, and issues due to parameter tuning. Our solutions make use of the en-
semble methodology.

We have introduced three cluster ensemble techniques for subspace cluster-
ing. The experimental results show that our weighted clustering ensembles can
provide solutions that are as good as or better than the best individual cluster-
ing, provided that the input clusterings are diverse. We have also demonstrated
the use of our methods for the categorization of unlabeled documents. Further-
more, we addressed in depth the issue of diversity and accuracy. Our findings
show that, typically, a high level of diversity should be preferred. Moreover,
our results reveal that a diversity measure based on ARI is more robust and
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Fig. 20. Spam5996 dataset: accuracy vs. diversity.

consistent. We finally note that “universal” rules for choosing the preferred
level of diversity should be used with caution, as the “optimal” level clearly de-
pends on the consensus function and on the dataset. Our future research effort
will focus on achieving a better understanding on which consensus function
and which diversity-based ensemble selection method is more appropriate for
which dataset.

ACKNOWLEDGMENTS

The authors would like to thank Ana Fred for providing the Matlab implemen-
tation of the EAC algorithm.

REFERENCES

AL-RAZGAN, M. AND DOMENICONI, C. 2006. Weighted clustering ensembles. In Proceedings of the
SIAM International Conference on Data Mining. 258–269.

ASUNCION, A. AND NEWMAN, D. 2007. UCI Machine Learning Repository. http://www.ics.uci.edu/

∼mlearn/{MLR}epository.html.

AYAD, H. AND KAMEL, M. 2003. Finding natural clusters using multi-clusterer combiner based on

shared nearest neighbors. In Proceedings of the International Workshop on Multiple Classifier
Systems. 166–175.

DHILLON, I. 2001. Co-clustering documents and words using bipartite spectral graph partitioning.

In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 269–274.

DOMENICONI, C., GUNOPULOS, D., MA, S., YAN, B., AL-RAZGAN, M., AND PAPADOPOULOS, D. 2007. Locally

adaptive metrics for clustering high-dimensional data. Data Min. Knowl. Discov. J. 14, 1, 63–97.

DOMENICONI, C., PAPADOPOULOS, D., GUNOPULOS, D., AND MA, S. 2004. Subspace clustering of high-

dimensional data. In Proceedings of the SIAM International Conference on Data Mining. 517–520.

DUDOIT, S. AND FRIDLYAND, J. 2003. Bagging to improve the accuracy of a clustering procedure.

Bioinformatics 19, 9, 1090–1099.

FERN, X. AND BRODLEY, C. 2003. Random projection for high-dimensional data clustering: A cluster

ensemble approach. In Proceedings of the International Conference on Machine Learning. 63–74.

FERN, X. AND BRODLEY, C. 2004. Solving cluster ensemble problems by bipartite graph partitioning.

In Proceedings of the International Conference on Machine Learning. 281–288.

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 4, Article 17, Publication date: January 2009.



17:40 • C. Domeniconi and M. Al-Razgan

FRED, A. AND JAIN, A. 2002. Data clustering using evidence accumulation. In Proceedings of the
International Conference on Pattern Recognition. 276–280.

FRED, A. AND JAIN, A. 2005. Combining multiple clusterings using evidence accumulation. IEEE
Trans. Patt. Analy. Mach. Intell. 27, 6, 835–850.

GONDEK, D. AND HOFMANN, T. 2005. Non-redundant clustering with conditional ensembles. In

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 70–77.

GREENE, D., TSYMBAL, A., BOLSHAKOVA, N., AND CUNNINGHAM, P. 2004. Ensemble clustering in medi-

cal diagnostics. In Proceedings of the 17th IEEE Symposium on Computer-Based Medical Systems.

576–581.

HADJITODOROV, S., KUNCHEVA, L., AND TODOROVA, L. 2006. Moderate diversity for better cluster

ensembles. Inform. Fusion 7, 3, 264–275.

HU, X. 2004. Integration of cluster ensemble and text summarization for gene expression analy-

sis. In Proceedings of the 4th IEEE Symposium on Bioinformatics and Bioengineering. 251–258.

KANG, N., DOMENICONI, C., AND BARBARA, D. 2005. Categorization and keyword identification of

unlabeled documents. In Proceedings of the 5th IEEE International Conference on Data Mining.

677–680.

KARYPIS, G. AND KUMAR, V. 1998. A fast and high quality multilevel scheme for partitioning irreg-

ular graphs. SIAM J. Scient. Comput. 20, 1, 359–392.

KULLBACK, S. AND LEIBLER, R. A. 1951. On information and sufficiency. Annals Math. Statist. 22, 1,

79–86.

KUNCHEVA, L. AND HADJITODOROV, S. 2004. Using diversity in cluster ensembles. In Proceedings of
the IEEE International Conference on Systems, Man and Cybernetics. Vol. 2. 1214–1219.

KUNCHEVA, L. I., HADJITODOROV, S. T., AND TODOROVA, L. P. 2006. Experimental comparison of cluster

ensemble methods. In Proceedings of the International Conference on Information Fusion. 1–7.

MANGASARIAN, O. L. AND WOLBERG, W. H. 1990. Cancer diagnosis via linear programming. SIAM
News 23, 5, 1–18.

MINAEI-BIDGOLI, B., TOPCHY, A., AND PUNCH, W. 2004. A comparison of resampling methods for clus-

tering ensembles. In Proceedings of the International Conference on Machine Learning: Models,
Technologies and Applications. 939–945.

NG, A. Y., JORDAN, M. I., AND WEISS, Y. 2002. On spectral clustering: analysis and an algorithm.

In Advances in Neural Information Processing Systems. Vol. 14. 849–856.

PARSONS, L., HAQUE, E., AND LIU, H. 2004. Subspace clustering for high-dimensional data: a review.

ACM SIGKDD Explor. Newslet. 6, 1, 90–105.

PEKALSKA, E. 2005. The dissimilariy representations in pattern recognition. concepts, theory and

applications. Ph.D. thesis, Delft University of Technology, Delft.

PUNERA, K. AND GHOSH, J. 2007. Soft cluster ensembles. In Advances in Fuzzy Clustering and its
Applications, J. V. de Oliveira and W. Pedrycz, Eds. John Wiley & Sons, Ltd., 69–90.

STREHL, A. AND GHOSH, J. 2002. Cluster ensembles—a knowledge reuse framework for combining

multiple partitions. J. Mach. Learn. Resea. 3, 3, 583–617.

TOPCHY, A., JAIN, A., AND PUNCH, W. 2003. Combining multiple weak clusterings. In Proceedings
of the IEEE International Conference on Data Mining. 331–338.

TOPCHY, A., JAIN, A., AND PUNCH, W. 2004. A mixture model for clustering ensembles. In Proceed-
ings of the SIAM International Conference on Data Mining. 379–390.

TOPCHY, A., JAIN, A., AND PUNCH, W. 2005. Clustering ensembles: Models of consensus and weak

partitions. IEEE Trans. Patt. Anal. Mach. Intell. 27, 12, 1866–1881.

Received August 2007; revised June 2008; accepted August 2008

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 4, Article 17, Publication date: January 2009.


