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Abstract
Nearest neighbor classification assumes locally con-

stant class conditional probabilities. This assumption be-
comes invalid in high dimensions with finite samples due to
the curse of dimensionality. Severe bias can be introduced
under these conditions when using the nearest neighbor
rule. We propose a locally adaptive nearest neighbor clas-
sification method to try to minimize bias. We use a Chi-
squared distance analysis to compute a flexible metric for
producing neighborhoods that are highly adaptive to query
locations. Neighborhoods are elongated along less rel-
evant feature dimensions and constricted along most in-
fluential ones. As a result, the class conditional prob-
abilities tend to be smoother in the modified neighbor-
hoods, whereby better classification performance can be
achieved. The efficacy of our method is validated and com-
pared against other techniques using a variety of simulated
and real world data.

1 Introduction
In a classification problem, we are given classes and
training observations. The training observations consist

of feature measurements and
the known class labels, , . The goal is to
predict the class label of a given query .
The nearest neighbor classification method [3, 8, 9,

10] is a simple and appealing approach to this problem: it
finds the nearest neighbors of in the training set, and
then predicts the class label of as the most frequent one
occurring in the neighbors. Such a method produces
continuous and overlapping, rather than fixed, neighbor-
hoods and uses a different neighborhood for each individ-
ual query so that all points in the neighborhood are close
to the query. In addition, it has been shown [4, 5] that the
one nearest neighbor rule has asymptotic error rate that is
at most twice the Bayes error rate, independent of the dis-
tance metric used.
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The nearest neighbor rule becomes less appealing with
finite training samples, however. This is due to the curse-
of-dimensionality [2]. Severe bias can be introduced in the
nearest neighbor rule in a high dimensional input feature
space with finite samples. As such, the choice of a dis-
tance measure becomes crucial in determining the outcome
of nearest neighbor classification [6, 7, 9]. The commonly
used Euclidean distance measure, while simple computa-
tionally, implies that the input space is isotropic. However,
the assumption for isotropy is often invalid and generally
undesirable in many practical applications. This implies
that distance computation does not vary with equal strength
in all directions in the feature space emanating from the
input query. Capturing such information, therefore, is of
great importance to any classification procedure in high di-
mensional settings.
In this paper we propose an adaptive nearest neigh-

bor classification method to try to minimize bias in high
dimensions. We estimate a flexible metric for comput-
ing neighborhoods based on Chi-squared distance analy-
sis. The resulting neighborhoods are highly adaptive to
query locations. Moreover, the neighborhoods are elon-
gated along less relevant feature dimensions and con-
stricted along most influential ones. As a result, the class
conditional probabilities tend to be constant in the modified
neighborhoods, whereby better classification performance
can be obtained.

2 Local Feature Relevance Measure
Kernel methods are based on the assumption of smooth-

ness of the target functions, which translates to locally con-
stant class posterior probabilities for a classification prob-
lem. This assumption, however, becomes invalid for any
fixed distance metric when the input observation ap-
proaches class boundaries. In the following, we describe
a nearest neighbor classification technique that is capable
of producing a local neighborhood in which the posterior
probabilities are approximately constant, and that is highly
adaptive to query locations.



Our technique is motivated as follows. Let be the
test point whose class membership we are predicting. In
the one nearest neighbor classification rule, a single near-
est neighbor is found according to a distance metric

. Let be the class conditional probabil-
ity at point . Consider the weighted Chi-squared distance
[7, 11]

(1)

which measures the distance between the test point and
the point , in terms of the difference between the class
posterior probabilities at the two points. Small
indicates that the classification error rate will be close to
the asymptotic error rate for one nearest neighbor. In
general, this can be achieved when ,
which states that if can be sufficiently well approx-
imated at , the asymptotic 1-NN error rate might result
in finite sample settings.
Equation (1) computes the distance between the true

and estimated posteriors. Now, imagine we replace
with a quantity that attempts to predict

under the constraint that the quantity is conditioned at a
location along a particular feature dimension. Then, the
Chi-squared distance (1) tells us the extent to which that
dimension can be relied on to predict . Thus, Equa-
tion (1) provides us with a foundation upon which to de-
velop a theory of feature relevance in the context of pattern
classification.
Based on the above discussion, our proposal is the fol-

lowing. We first notice that is a function of .
Therefore, we can compute the conditional expectation of

, denoted by , given that assumes
value , where represents the th component of . That
is,

(2)

Here is the conditional density of the other
input variables. Let

(3)

represents the ability of feature to predict the
s at . The closer is to
, the more information feature carries for predict-

ing the class posterior probabilities locally at .
We can now define a measure of feature relevance for

as
(4)

where denotes the neighborhood of containing
the nearest training points, according to a given metric.
measures how well on average the class posterior prob-

abilities can be approximated along input feature within
a local neighborhood of . Small implies that the class
posterior probabilities will be well captured along dimen-
sion in the vicinity of . Note that is a function of
both the test point and the dimension , thereby making

a local relevance measure.
The relative relevance, as a weighting scheme, can then

be given by ,
where , giving rise to linear and quadratic weight-
ings, respectively. In this paper we propose the following
exponential weighting scheme

(5)

where is a parameter that can be chosen to maximize
(minimize) the influence of on . When we
have , thereby ignoring any difference between
the ’s. On the other hand, when is large a change in
will be exponentially reflected in . The exponential

weighting is more sensitive to changes in local feature rel-
evance (4) and gives rise to better performance improve-
ment. Thus, (5) can be used as weights associated with
features for weighted distance computation

(6)

These weights enable the neighborhood to elongate less
important feature dimensions, and to constrict the most in-
fluential ones. Note that the technique is query-based be-
cause weightings depend on the query [1].

3 Estimation
Since both and in (3) are un-

known, we must estimate them using the training data
in order for the relevance measure (4) to be

useful in practice. Here . The quantity
is estimated by considering a neighborhood

centered at :

(7)

where is an indicator function such that it returns 1
when its argument is true, and 0 otherwise.



Given a test point , and input parameters , , , , , and :

1. Initialize in (6) to 1;
2. Compute the nearest neighbors of using the weighted distance metric (6);
3. For each dimension , , compute relevance estimate (4) through Equations (7) and (8);
4. Update according to (5);
5. Iterate steps 2, 3, and 4;
6. At completion, use , hence (6), for -nearest neighbor classification at the test point .

Figure 1: The ADAMENN algorithm

To compute , we
introduce a dummy variable such that if , then

, otherwise , where . We
then have , from which it is not hard to
show that . However, since
there may not be any data at , the data from the
neighborhood of along dimension are used to estimate

. In details, by noticing the
estimate can be computed from

(8)
where is a neighborhood centered at (larger than

), and the value of is chosen so that the interval
contains a fixed number of points:

Using the estimates in (7) and
in (8), we obtain an empirical measure of the relevance (4)
for each input variable .

4 Adaptive Metric Nearest Neighbor Algo-
rithm
The adaptive metric nearest neighbor algorithm

(ADAMENN) has six adjustable tuning parameters: :
the number of neighbors of the test point; : the num-
ber of neighbors in for estimation (7); : the size
of the neighborhood for each of the neighbors
for estimation (8); : the number of points within the
intervals; : the number of neighbors in the final nearest
neighbor rule; and : the positive factor for the exponential
weighting scheme (5).
At the beginning, the estimation of the values in (4)

is accomplished by using a weighted distance metric (6)
with being initialized to 1. Then, the elements of
are updated according to values via (5). In our experi-
ments, we tested both a linear and an exponential weight-
ing scheme. We obtained better results using the exponen-
tial scheme, therefore we present the results for this case.

The update of can be iterated. At completion, the result-
ing is plugged in (6) to compute nearest neighbors at the
test point .
In all our experiments we obtained optimal performance

for small values (one or three) of parameters and .
Optimal values for parameters and are in a range
close to respectively 10% and 15% of the number of train-
ing points. The value for is usually set to be roughly half
the value of . Different values of the factor turned out
to be optimal for different problems (5, 11, and 16). An
outline of the ADAMENN algorithm is shown in Figure 1.

5 Empirical Results
We compare the following classification methods, us-

ing both simulated and real data: (1) ADAMENN-adaptive
metric nearest neighbor described in Figure 1 (one itera-
tion), coupled with the exponential weighting scheme (5);
(2) i-ADAMENN-adaptive metric nearest neighbor with
five iterations; (3) Simple K-NN method using the Eu-
clidean distance measure; (4) C4.5 decision tree method
[12]; (5) Machete [6]: it is a recursive partitioning proce-
dure, in which the input variable used for splitting at each
step is the one that maximizes the estimated local relevance
(normalized) described in equation (9); and (6) Scythe [6]:
it is a generalization of the machete algorithm, in which the
input variables influence each split in proportion to their
estimated local relevance, rather than the winner-take-all
strategy of the machete.
In all the experiments, the features are first normalized

over the training data to have zero mean and unit variance,
and the test data features are normalized using the corre-
sponding training mean and variance. Procedural parame-
ters for each method were determined empirically through
cross-validation.
5.1 Experiments on Simulated Data
For all simulated data, 20 independent training samples

(of size ) were generated. For each of these, an addi-
tional independent test sample consisting of 500 observa-



tions was generated. These test data were classified by
each competing method using the respective training data
set. Error rates computed over all 10000 such classifica-
tions are reported in Table 1.

5.1.1 The Problems

1. This problem is taken from [6], and designed to be fa-
vorable to the adaptive methods (ADAMENN, scythe, ma-
chete, C4.5), and unfavorable to the regular K-NN pro-
cedure. There are input features,
training data, and classes. Data for the first
class are generated from a standard normal distribution

. Data for the second class are also gen-
erated from a normal distribution , with
the coordinate mean values and covariance matrix given
by Although all
input variables are relevant, the ones with higher coordi-
nate number are more so. The first column of Table 1
shows the results for the six methods under comparison.
2. This problem is taken from [6], and it is designed to be
more favorable to the K-NN procedure. There are
input features, training data, and classes.
Data for the first class are generated from a standard nor-
mal distribution. Data for the second class are also normal
with the same covariance matrix as in the previous prob-
lem, and mean values given by .
Although the variances in the first problem are most differ-
ent between the two classes on the high coordinates, their
means now are most separated in the lower coordinates, so
that all variables contain substantial discriminating infor-
mation. The second column of Table 1 shows the results
for this problem.
3. This problem is adapted from [7], and consists of
four dimensional spheres with 6 noise features. There are

input features, training data, and
classes. The last 6 features are noise variables, with stan-
dard Gaussian distributions, independent of each other and
the class membership. The data for both classes are gen-
erated from a standard normal distribution. The data for
class one have the property that the radius, computed from
the first four features, is greater than 1.85 while the data
for class two do not have such restriction. Class one basi-
cally surrounds class two in the subspace spanned by the
first four features. Results are shown in the second column
of Table 1.
4. This example is also taken from [6]. It is designed to
be more favorable to the K-NN procedure, since all the
input variables have the same global relevance. As be-
fore there are input features and classes,
but training data. The data for both classes
are generated from a standard normal distribution

, and the classes are defined by

The fourth column of Ta-
ble 1 shows the results for this example.
5. This example is again taken from [6]. It is constructed
so that all input variables have equal local relevance ev-
erywhere in the input space. However, there is a single
direction in the space that contains all the discriminant in-
formation. There are input features,
training data, and classes defined by

. Results are shown
in the third column of Table 1.

5.1.2 Results

Table 1 shows that, for each method, there is at least one
example for which it has the best performance, or close to
the best. Therefore, it seems natural to ask the question of
robustness. That is, how well a particular method per-
forms on average in situations that are most favorable to
other procedures. Following Friedman [6], we capture ro-
bustness by computing the ratio of its error rate and
the smallest error rate over all methods being compared in
a particular example: . Thus, the best
method for that example has , and all other
methods have larger values , for . The
distribution of the values for each method over all
the examples, therefore, seems to be a good indicator con-
cerning its robustness.

Table 1: Average classification error rates for simulated
data.

Ex1 Ex2 Ex3. Ex4 Ex5
ADAMENN 9.9 7.3 23.9 33.7 20.8
i-ADAMENN 8.3 6.3 23.1 33.7 20.3

K-NN 14.7 10.4 33.9 36.1 18.1
C4.5 10.3 11.5 14.6 30.6 30.1

Machete 7.1 6.9 21.7 33.0 25.7
Scythe 7.9 6.6 25.6 32.7 22.2

Figure 2 plots the distribution of for each method
over the five simulated data sets. The dark area represents
the lower and upper quartiles of the distribution that are
separated by the median. The outer vertical lines show
the entire range of values for the distribution. It is clear
that the most robust method over the simulated data is i-
ADAMENN. In 4/5 of the data its error rate was no worse
than higher than the best error rate. In the worst case
it was . In contrast, K-NN has the worst distribution,
where the corresponding numbers are and .



5.2 Experiments on Real Data
In this section we examine the performance of the com-

peting classification methods using real world data.
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Figure 2: Performance distributions for simulated data.

In our experiments we used five different real
data sets. The Iris, Sonar, Vowel, and Glass data
are taken from UCI Machine Learning Repository at
http://www.cs.uci.edu/ mlearn/MLRepository.html. The
Image data are obtained from MIT Media Lab at
ftp://whitechapel.media.mit.edu/pub/VisTex. For the Iris,
Sonar, and Glass data we perform leave-one-out cross-
validation to measure performance. On the Vowel and Im-
age data we randomly divide the data into a training set of
200 data points and a test set consisting of the remaining
data points (320 for the Vowel data and 440 for the Image
data). We repeat this process 10 times independently, and
report the average cross-validation error rates for these two
data sets. Table 2 shows the cross-validated error rates for
the six methods under consideration on the five real data.

5.2.1 The Problems

1. Iris data. This data set consists of measurements
made on each of iris plants of species. The
problem is to classify each test point to its correct species
based on the four measurements. The results on this data
set are shown in the first column of Table 2.
2. Sonar data. This data set consists of frequency
measurements made on each of data of
classes (“mines” and “rocks”). The problem is to classify
each test point in the 60-dimensional feature space to its
correct class. The results on this data set are shown in the
second column of Table 2.
3. Vowel data. This example has measurements
and classes. There are samples in this
example. Results are shown in the third column of Table 2.
4. Glass data. This data set consists of chemical
attributes measured for each of data of

classes. The problem is to classify each test point in the
9-dimensional space to its correct class. Results are shown
in the fourth column of Table 2.
5. Image data. This data set consists of 640 images of 15
classes. The number of images in each class varies from 16
to 80. The images in this database are represented by
dimensional feature vectors (8 Gabor filters: 2 scales

and 4 orientations). Results are shown in the fifth column
of Table 2.

Table 2: Average classification error rates for real data.

Iris Sonar Vowel Glass Image
ADAMENN 4.0 9.1 10.7 24.8 5.2
i-ADAMENN 5.0 9.6 10.9 24.8 5.2

K-NN 6.0 12.5 11.8 28.0 6.1
C4.5 8.0 23.1 36.7 31.8 21.6

Machete 5.0 21.2 20.2 28.0 12.3
Scythe 4.0 16.3 15.5 27.1 6.1

5.2.2 Results

Table 2 shows that ADAMENN achieved the best perfor-
mance over the real data sets, followed by i-ADAMENN.
As shown in Figure 3, the spread of the error distribution
for ADAMENN is zero, and the spread for i-ADAMENN
is narrow and close to 1. The results clearly demonstrate
that they obtained the most robust performance over these
data sets. Similar characteristics were also observed for the
two methods over the simulated data sets. This could be at-
tributed to the fact that local feature relevance estimate in
ADAMENN is conducted over regions in the feature space
instead of using individual points, as is done in machete
and scythe [6].

6 Related Work
Friedman [6] describes an approach for learning local

feature relevance that combines some of the best features
of K-NN learning and recursive partitioning. This ap-
proach recursively homes in on a query along the most
(locally) relevant dimension, where local relevance is com-
puted from a reduction in prediction error given the query’s
value along that dimension. This method performs well on
a number of classification tasks. In our notations, the re-
duction in prediction error can be described by

(9)



where represents the expected value of .
This measure reflects the influence of the th input variable
on the variation of at the particular point .
In this case, the most informative input variable is the one
that gives the largest deviation from .
The main difference, however, between our relevance

measure (4) and Friedman’s (9) is the first term in the
squared difference. While the class conditional probabil-
ity is used in our relevance measure, its expectation is used
in Friedman’s. As a result, a feature dimension is more
relevant than others when it minimizes (3) in case of our
relevance measure, whereas when it maximizes (9) in case
of Friedman’s. Furthermore, we take into account not only
the test point itself, but also its nearest neighbors,
resulting in a relevance measure (4) that is in general more
robust.
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Figure 3: Performance distributions for real data.

In [7], Hastie and Tibshirani propose an adaptive near-
est neighbor classification method based on linear discrim-
inant analysis. The method computes a distance metric as
a product of properly weighted within and between sum
of squares matrices. They show that the resulting metric
approximates the Chi-squared distance (1) by a Taylor se-
ries expansion. While sound in theory, the method is quite
limited in practice. The main concern is that in high di-
mensions we may never have sufficient data to fill in
matrices. It is interesting to note that our work can serve as
a potential bridge between Friedman’s and that of Hastie
and Tibshirani.

7 Summary and Conclusions
This paper presents an adaptive nearest neighbor

method for effective pattern classification. This method
estimates a flexible metric for producing neighborhoods
that are elongated along less relevant feature dimensions
and constricted along most influential ones. As a result,

the class conditional probabilities tend to be more homo-
geneous in the modified neighborhoods. The experimen-
tal results using both simulated and real data show clearly
that the ADAMENN algorithm can potentially improve the
performance of K-NN and recursive partitioning methods
in some classification problems, especially when the rela-
tive influence of input features changes with the location
of the query to be classified in the input feature space. The
results are also in favor of ADAMENN over other adaptive
methods such as machete.
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