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Abstract

Cluster ensembles offer a solution to challenges inherent
to clustering arising from its ill-posed nature. Cluster
ensembles can provide robust and stable solutions by
leveraging the consensus across multiple clustering re-
sults, while averaging out emergent spurious structures
that arise due to the various biases to which each partic-
ipating algorithm is tuned. In this paper, we address the
problem of combining multiple weighted clusters which
belong to different subspaces of the input space. We
leverage the diversity of the input clusterings in order
to generate a consensus partition that is superior to the
participating ones. Since we are dealing with weighted
clusters, our consensus function makes use of the weight
vectors associated with the clusters. The experimental
results show that our ensemble technique is capable of
producing a partition that is as good as or better than
the best individual clustering.

1 Introduction

In an effort to achieve improved classifier accuracy, ex-
tensive research has been conducted in classifier ensem-
bles. Very recently, cluster ensembles have emerged.
It is well known that off-the-shelf clustering methods
may discover very different structures in a given set of
data. This is because each clustering algorithm has its
own bias resulting from the optimization of different
criteria. Furthermore, there is no ground truth against
which the clustering result can be validated. Thus, no
cross-validation technique can be carried out to tune in-
put parameters involved in the clustering process. As a
consequence, the user is not equipped with any guide-
lines for choosing the proper clustering method for a
given dataset.

Cluster ensembles offer a solution to challenges in-
herent to clustering arising from its ill-posed nature.
Cluster ensembles can provide more robust and stable
solutions by leveraging the consensus across multiple
clustering results, while averaging out emergent spuri-
ous structures that arise due to the various biases to
which each participating algorithm is tuned.
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In this paper, we introduce the problem of combin-
ing multiple weighted clusters, discovered by a locally
adaptive algorithm [5] which detects clusters in differ-
ent subspaces of the input space. We believe this paper
is the first attempt to design a cluster ensemble for sub-
space clustering.

Recently, many different subspace clustering meth-
ods have been proposed [14]. They all attempt to dodge
the curse of dimensionality which affects any algorithm
in high dimensional spaces. In high dimensional spaces,
it is highly likely that, for any given pair of points within
the same cluster, there exist at least a few dimensions
on which the points are far apart from each other. As
a consequence, distance functions that equally use all
input features may not be effective.

Furthermore, several clusters may exist in different
subspaces comprised of different combinations of fea-
tures. In many real-world problems, some points are
correlated with respect to a given set of dimensions,
while others are correlated with respect to different di-
mensions. Each dimension could be relevant to at least
one of the clusters.

Global dimensionality reduction techniques are un-
able to capture local correlations of data. Thus, a
proper feature selection procedure should operate lo-
cally in input space. Local feature selection allows one
to embed different distance measures in different regions
of the input space; such distance metrics reflect local
correlations of data. In [5] we proposed a soft feature
selection procedure (called LAC) that assigns weights
to features according to the local correlations of data
along each dimension. Dimensions along which data are
loosely correlated receive a small weight, which has the
effect of elongating distances along that dimension. Fea-
tures along which data are strongly correlated receive a
large weight, which has the effect of constricting dis-
tances along that dimension. Thus the learned weights
perform a directional local reshaping of distances which
allows a better separation of clusters, and therefore the
discovery of different patterns in different subspaces of
the original input space.

The clustering result of LAC depends on two input
parameters. The first one is common to all clustering
algorithms: the number of clusters k to be discovered
in the data. The second one (called h) controls the



strength of the incentive to cluster on more features
(more details are provided in Section 3). The setting
of h is particularly difficult, since no domain knowledge
for its tuning is likely to be available. Thus, it would
be convenient if the clustering process automatically
determined the relevant subspaces.

In this paper we design two cluster ensemble tech-
niques for the LAC algorithm. Our cluster ensemble
methods can be easily extended for any subspace clus-
tering algorithm. We focus on setting the parameter h
and assume that the number of clusters k is fixed. (The
problem of finding k in an automated fashion through
a cluster ensemble will be addressed in future work.)
We leverage the diversity of the clusterings produced
by LAC when different values of h are used, in order
to generate a consensus clustering that is superior to
the participating ones. The major challenge we face is
to find a consensus partition from the outputs of the
LAC algorithm to achieve an “improved” overall clus-
tering of the data. Since we are dealing with weighted
clusters, we need to design a proper consensus function
that makes use of the weight vectors associated with the
clusters. Our techniques leverage such weights to define
a similarity measure which is associated to the edges of
a graph. The problem of finding a consensus function
is then mapped to a graph partitioning problem.

2 Related work

In many domains it has been shown that a classifier
ensemble is often more accurate than any of the single
components. This result has recently initiated further
investigation in ensemble methods for clustering. In [8]
the authors combine different clusterings obtained via
the k-means algorithm. The clusterings produced by k-
means are mapped into a co-association matrix, which
measures the similarity between the samples. Kuncheva
et al. [13] extend the work in [8] by choosing at random
the number of clusters for each ensemble member. The
authors in [16] introduce a meta-clustering procedure:
first, each clustering is mapped into a distance matrix;
second, the multiple distance matrices are combined,
and a hierarchical clustering method is introduced to
compute a consensus clustering. In [11] the authors
propose a similar approach, where a graph-based parti-
tioning algorithm is used to generate the combined clus-
tering. Ayad et al. [1] propose a graph approach where
data points correspond to vertices, and an edge exists
between two vertices when the associated points share a
specific number of nearest neighbors. In [6] the authors
combine random projection with a cluster ensemble.
EM is used as clustering algorithm, and an agglomera-
tive approach is utilized to produce the final clustering.
Greene et al. [10] apply an ensemble technique to med-

ical diagnostic datasets. The authors focus on different
generation and integration techniques for input cluster-
ings to the ensemble. k-means, k-medoids and fast weak
clustering are used as generation strategies. The diverse
clusterings are aggregated into a co-occurrence matrix.
Hierarchical schemes are then applied to compute the
consensus clustering. Greene’s approach follows closely
Fred and Jain’s approach [8]. However, they differ in
the generation strategies. Similarly, in [2] the associ-
ation between different clusterings produced by various
algorithms is investigated. Techniques based on con-
strained and unconstrained clustering and on SVD are
considered. Gionis et al.’s [9] approach finds an en-
semble clustering that agrees as much as possible with
the given clusterings. The proposed technique does not
require the number of clusters as an input parameter,
and handles missing data.

In [15] the authors propose a consensus function
aimed at maximizing the normalized mutual informa-
tion of the combined clustering with the input ones.
Three heuristics are introduced: Cluster-based Similar-
ity Partitioning Algorithm (CSPA), HyperGraph Parti-
tioning Algorithm (HGPA), and Meta-Clustering Algo-
rithm (MCLA). All three algorithms first transform the
set of clusterings into a hypergraph representation.

In CSPA, a binary similarity matrix is constructed
for each input clustering. Each column corresponds to
a cluster: an entry has a value of 1 if the corresponding
two points belong to the cluster, 0 otherwise. An
entry-wise average of all the matrices gives an overall
similarity matrix S. S is utilized to recluster the
data using a graph-partitioning based approach. The
induced similarity graph, where vertices correspond to
data and edges’ weights to similarities is partitioned
using METIS [12].

HGPA seeks a partitioning of the hypergraph by
cutting a minimal number of hyperedges. (Each hyper-
edge represents a cluster of an input clustering.) All hy-
peredges have the same weight. This algorithm looks for
a hyperedge separator that partitions the hypergraph
into k unconnected components of approximately the
same size. It makes use of the package HMETIS.

MCLA is based on the clustering of clusters. It pro-
vides object-wise confidence estimates of cluster mem-
bership. Hyperedges are grouped, and each data point
is assigned to the collapsed hyperedge in which it par-
ticipates most strongly.

Since our weighted clustering ensemble approaches
also map the problem of finding a consensus partition
to a graph partitioning problem, it is natural to com-
pare our techniques with the three algorithms CSPA,
MCLA, and HGPA. The results of these experiments
are presented in Section 6.



3 Locally Adaptive Clustering
Let us consider a set of n points in some space of
dimensionality D. A weighted cluster C is a subset
of data points, together with a vector of weights w =
(w1, . . . , wD)t, such that the points in C are closely
clustered according to the L2 norm distance weighted
using w. The component wj measures the degree of
correlation of points in C along feature j. The problem
is how to estimate the weight vector w for each cluster
in the dataset.

In traditional clustering, the partition of a set of
points is induced by a set of representative vectors,
also called centroids or centers. The partition induced
by discovering weighted clusters is formally defined as
follows.
Definition: Given a set S of n points x ∈ �D, a
set of k centers {c1, . . . , ck}, cj ∈ �D, j = 1, . . . , k,
coupled with a set of corresponding weight vectors
{w1, . . . ,wk}, wj ∈ �D, j = 1, . . . , k, partition S into
k sets:

Sj = {x|(
D∑

i=1

wji(xi − cji)2)1/2(3.1)

< (
D∑

i=1

wli(xi − cli)2)1/2, ∀l �= j}, j = 1, . . . , k

where wji and cji represent the ith components of vec-
tors wj and cj respectively (ties are broken randomly).

The set of centers and weights is optimal with
respect to the Euclidean norm, if they minimize the
error measure:

(3.2) E1(C,W ) =
k∑

j=1

D∑
i=1

(wji
1

|Sj |
∑
x∈Sj

(cji − xi)2)

subject to the constraints ∀j ∑
iwji = 1. C and W

are (D × k) matrices whose columns are cj and wj

respectively, i.e. C = [c1 . . . ck] and W = [w1 . . .wk].
For notational brevity, we set Xji = 1

|Sj |
∑

x∈Sj
(cji −

xi)2, where |Sj | is the cardinality of set Sj . Xji

represents the average distance from the centroid cj of
points in cluster j along dimension i. The solution

(C∗,W ∗) = arg min
(C,W )

E1(C,W )

will discover one-dimensional clusters: it will put maxi-
mal (unit) weight on the feature with smallest dispersion
Xji within each cluster j, and zero weight on all other
features. Our objective, instead, is to find weighted
multidimensional clusters, where the unit weight gets
distributed among all features according to the respec-
tive dispersion of data within each cluster. One way

to achieve this goal is to add the regularization term∑D
i=1 wjilogwji, which represents the negative entropy

of the weight distribution for each cluster. It penal-
izes solutions with maximal weight on the single feature
with smallest dispersion within each cluster. The re-
sulting error function is

(3.3) E2(C,W ) =
k∑

j=1

D∑
i=1

(wjiXji + hwji logwji)

subject to the same constraints ∀j ∑
iwji = 1. The

coefficient h ≥ 0 is a parameter of the procedure;
it controls the strength of the incentive for clustering
on more features. Increasing (decreasing) its value
will encourage clusters on more (less) features. This
constrained optimization problem can be solved by
introducing the Lagrange multipliers. It gives the
solution [5]:

(3.4) w∗
ji =

exp(−Xji/h)∑D
i=1 exp(−Xji/h)

(3.5) c∗ji =
1

|Sj |
∑
x∈Sj

xi

Solution (3.4) puts increased weights on features along
which the dispersion Xji is smaller, within each cluster.
The degree of this increase is controlled by the value h.
Setting h = 0 places all weight on the feature i with
smallest Xji, whereas setting h = ∞ forces all features
to be given equal weight for each cluster j.

We need to provide a search strategy to find a
partition P that identifies the solution clusters. We
propose an approach that progressively improves the
quality of initial centroids and weights, by investigating
the space near the centers to estimate the dimensions
that matter the most. We start with well-scattered
points in S as the k centroids. We initially set all
weights to 1/D. Given the initial centroids cj , for
j = 1, . . . , k, we compute the corresponding sets Sj

as previously defined. We then compute the average
distance Xji along each dimension from the points in
Sj to cj . The smaller Xji, the larger the correlation
of points along dimension i. We use the value Xji in
an exponential weighting scheme to credit weights to
features (and to clusters), as given in equation (3.4).
The computed weights are used to update the sets
Sj , and therefore the centroids’ coordinates as given
in equation (3.5). The procedure is iterated until
convergence is reached.

We point out that LAC has shown a highly compet-
itive performance with respect to other state-of-the-art
subspace clustering algorithms [5]. Therefore, improv-
ing upon LAC performance is a desirable achievement.
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Figure 1: The clustering ensemble process

4 Weighted Clustering Ensembles

In the following we introduce two consensus functions
to identify an emergent clustering that arises from
multiple clustering results. We reduce the problem of
defining a consensus function to a graph partitioning
problem. This approach has shown good results in the
literature [4, 15, 7]. Moreover, the weighted clusters
computed by the LAC algorithm offer a natural way
to define a similarity measure to be integrated in the
weights associated to the edges of a graph. The overall
clustering ensemble process is illustrated in Figure 1.

4.1 Weighted Similarity Partitioning Algo-
rithm (WSPA) LAC outputs a partition of the
data, identified by the two sets {c1, . . . , ck} and
{w1, . . . ,wk}. Our aim here is to generate robust and
stable solutions via a consensus clustering method. We
can generate contributing clusterings by changing the
parameter h (as illustrated in Figure 1). The objective
is then to find a consensus partition from the output
partitions of the contributing clusterings, so that an
“improved” overall clustering of the data is obtained.
Since LAC produces weighted clusters, we need to de-
sign a consensus function that makes use of the weight
vectors associated with the clusters. The details of our
approach are as follows.

For each data point xi, the weighted distance from
cluster Cl is given by

dil =

√√√√ D∑
s=1

wls(xis − cls)2

Let Di = maxl{dil} be the largest distance of xi from
any cluster. We want to define the probability associ-
ated with cluster Cl given that we have observed xi. At
a given point xi, the cluster label Cl is assumed to be a

random variable from a distribution with probabilities
{P (Cl|xi)}k

l=1. We provide a nonparametric estimation
of such probabilities based on the data and on the clus-
tering result. We do not make any assumption about
the specific form (e.g., Gaussian) of the underlying data
distributions, thereby avoiding parameter estimations of
models, which are problematic in high dimensions when
the available data are limited.

In order to embed the clustering result in our
probability estimations, the smaller the distance dil is,
the larger the corresponding probability credited to Cl

should be. Thus, we can define P (Cl|xi) as follows:

(4.6) P (Cl|xi) =
Di − dil + 1

kDi + k − ∑
l dil

where the denominator serves as a normalization factor
to guarantee

∑k
l=1 P (Cl|xi) = 1. We observe that

∀l = 1, . . . , k and ∀i = 1, . . . , n P (Cl|xi) > 0. In
particular, the added value of 1 in (4.6) allows for a
non-zero probability P (CL|xi) when L = argmaxl{dil}.
In this last case P (Cl|xi) assumes its minimum value
P (CL|xi) = 1/(kDi + k +

∑
l dil). For smaller distance

values dil, P (Cl|xi) increases proportionally to the
difference Di − dil: the larger the deviation of dil from
Di, the larger the increase. As a consequence, the
corresponding cluster Cl becomes more likely, as it is
reasonable to expect based on the information provided
by the clustering process. Thus, equation (4.6) provides
a nonparametric estimation of the posterior probability
associated to each cluster Cl.

We can now construct the vector Pi of posterior
probabilities associated with xi:

(4.7) Pi = (P (C1|xi), P (C2|xi), . . . , P (Ck|xi))t

where t denotes the transpose of a vector. The transfor-
mation xi → Pi maps the D dimensional data points xi



onto a new space of relative coordinates with respect to
cluster centroids, where each dimension corresponds to
one cluster. This new representation embeds informa-
tion from both the original input data and the clustering
result.

We then define the similarity between xi and xj as
the cosine similarity between the corresponding proba-
bility vectors:

(4.8) s(xi,xj) =
P t

i Pj

‖Pi‖‖Pj‖
We combine all pairwise similarities (4.8) into an (n×n)
similarity matrix S, where Sij = s(xi,xj). We observe
that, in general, each clustering may provide a different
number of clusters, with different sizes and boundaries.
The size of the similarity matrix S is independent of the
clustering approach, thus providing a way to align the
different clustering results onto the same space, with no
need to solve a label correspondence problem.

After running the LAC algorithm m times for
different values of the h parameter, we obtain the
m similarity matrices S1, S2, . . . , Sm. The combined
similarity matrix Ψ defines a consensus function that
can guide the computation of a consensus partition:

(4.9) Ψ =
1
m

m∑
l=1

Sl

Ψij reflects the average similarity between xi and xj

(through Pi and Pj) across the m contributing cluster-
ings.

We now map the problem of finding a consensus
partition to a graph partitioning problem. We construct
a complete graph G = (V,E), where |V | = n and the
vertex Vi identifies xi. The edge Eij connecting the
vertices Vi and Vj is assigned the weight value Ψij . We
run METIS [12] on the resulting graph to compute a
k-way partitioning of the n vertices that minimizes the
edge weight-cut. This gives the consensus clustering
we seek. The size of the resulting graph partitioning
problem is n2. The steps of the algorithm, which we call
WSPA (Weighted Similarity Partitioning Algorithm),
are summarized in the following.
Input: n points x ∈ RD, and k.

1. Run LAC m times with different h values. Obtain the
m partitions: {cν

1 , . . . , cν
k},{wν

1 , . . . ,wν
k}, ν = 1, . . . , m.

2. For each partition ν = 1, . . . , m:

(a) Compute dν
il =

√∑D
s=1 wν

ls(xis − cν
ls)

2.

(b) Set Dν
i = maxl{dν

il}.
(c) Compute P (Cν

l |xi) =
Dν

i −dν
il+1

kDν
i +k−∑

l dν
il

.

(d) Set P ν
i = (P (Cν

1 |xi), P (Cν
2 |xi), . . . , P (Cν

k |xi))
t.

(e) Compute the similarity

sν(xi,xj) =
P ν

i P ν
j

‖P ν
i ‖‖P ν

j ‖
,∀i, j

(f) Construct the matrix Sν where Sν
ij = sν(xi,xj).

3. Build the consensus function Ψ = 1
m

∑m
ν=1 Sν .

4. Construct the complete graph G = (V, E), where |V | =
n and Vi ≡ xi. Assign Ψij as the weight value of the
edge Eij connecting the vertices Vi and Vj .

5. Run METIS on the resulting graph G. Output the re-
sulting k-way partition of the n vertices as the consensus
clustering.

4.2 Weighted Bipartite Partitioning Algorithm
(WBPA) Our second approach maps the problem of
finding a consensus partition to a bipartite graph parti-
tioning problem. This mapping was first introduced in
[7]. In [7], however, 0/1 weight values are used. Here
we extend the range of weight values to [0,1].

In this context, the graph models both instances
(e.g., data points) and clusters, and the graph edges
can only connect an instance vertex to a cluster vertex,
thus forming a bipartite graph. In detail, we proceed as
follows for the construction of the graph.

Suppose, again, that we run the LAC algorithm m
times for different values of the h parameter. For each
instance xi, and for each clustering ν = 1, . . . ,m we
then can compute the vector of posterior probabilities
P ν

i , as defined in equations (4.7) and (4.6). Using the
P vectors, we construct the following matrix A:

A =

⎛
⎜⎜⎜⎝

(P 1
1 )t (P 2

1 )t . . . (Pm
1 )t

(P 1
2 )t (P 2

2 )t . . . (Pm
2 )t

...
...

...
(P 1

n)t (P 2
n)t . . . (Pm

n )t

⎞
⎟⎟⎟⎠

Note that the (P ν
i )ts are row vectors (t denotes the

transpose). The dimensionality of A is therefore n×km,
under the assumption that each of the m clusterings
produces k clusters. (We observe that the definition
of A can be easily generalized to the case where each
clustering may discover a different number of clusters.)

Based on A we can now define a bipartite graph to
which our consensus partition problem maps. Consider
the graph G = (V,E) with V and E constructed as
follows. V = V C ∪ V I , where V C contains km vertices,
each representing a cluster of the ensemble, and V I

contains n vertices, each representing an input data
point. Thus |V | = km+n. The edge Eij connecting the
vertices Vi and Vj is assigned a weight value defined as
follows. If the vertices Vi and Vj represent both clusters
or both instances, then E(i, j) = 0; otherwise, if vertex



Table 1: Characteristics of the datasets

dataset k D n (points-per-clsss)
Two-Gaussian 2 2 600 (300-300)
Three-Gaussian 3 2 900 (300-300-300)

Iris 3 4 150 (50-50-50)
WDBC 2 31 424 (212-212)
Breast 2 9 478 (239-239)

Modis-4 4 112 1989 (497-490-503-499)
Letter(A,B) 2 16 1555 (789-766)
SatImage 2 36 2110 (1072-1038)

Vi represents an instance xi and vertex Vj represents a
cluster Cν

j (or vice versa) then the corresponding entry
of E is A(i, k(ν − 1) + j). More formally:

• E(i, j) = 0 when ((1 ≤ i ≤ km) and (1 ≤ j ≤ km))
or ((km + 1 ≤ i ≤ km + n) and (km + 1 ≤ j ≤
km + n)) (This is the case in which Vi and Vj are
both clusters or both instances.)

• E(i, j) = A(i−km, j) when (km+1 ≤ i ≤ km+n)
and (1 ≤ j ≤ km) (This is the case in which Vi is
an instance and Vj is a cluster.)

• E(i, j) = E(j, i) when (1 ≤ i ≤ km) and (km+1 ≤
j ≤ km+n) (This is the case in which Vi is a cluster
and Vj is an instance.)

Note that the dimensionality of E is (km+n)×(km+n),
and E can be written as follows:

E =
(

0 At

A 0

)

A partition of the bipartite graph G partitions the
cluster vertices and the instance vertices simultaneously.
The partition of the instances can then be output as
the final clustering. Due to the special structure of
the graph G (sparse graph), the size of the resulting
bipartite graph partitioning problem is kmn. Assuming
that (km) << n, this complexity is much smaller than
the size n2 of WSPA.

We again run METIS on the resulting bipartite
graph to compute a k-way partitioning that minimizes
the edge weight-cut. We call the resulting algorithm
WBPA (Weighted Bipartite Partitioning Algorithm).

5 An Illustrative Example
We have designed one simulated dataset with two
clusters distributed as bivariate Gaussians (Figure 2).
The mean and standard deviation vectors for each
cluster are as follows: m1 = (0.5, 5), s1 = (1, 9); m2 =
(12, 5), s2 = (6, 2). Each cluster has 300 points. We ran
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Figure 2: Two-Gaussian data

the LAC algorithm on the Two-Gaussian dataset for two
values of the 1/h parameter (7 and 12). For (1/h) = 7,
LAC provides a perfect separation (the error rate is
0.0%); the corresponding weight vectors associated to
each cluster are w(7)

1 = (0.81, 0.19), w(7)
2 = (0.18, 0.82).

For (1/h) = 12, the error rate of LAC is 5.3%; the
weight vectors in this case are w(12)

1 = (0.99, 0.01),
w(12)

2 = (0.0002, 0.9998).
For the purpose of plotting the two-dimensional

posterior probability vectors associated with each point
x, we consider a random sample of 100 points from
each cluster (as shown in Figure 3). The probability
vectors (computed as in equations (4.7) and (4.6)) of
such sample points are plotted in Figures 4 and 6,
respectively for (1/h) = 7 and (1/h) = 12. We
observe that in Figure 4 ((1/h) = 7) for points x
of cluster 1 (green points square-shaped) P (C1|x) >
P (C2|x), and for points x of cluster 2 (red points
diamond-shaped) P (C2|x) > P (C1|x). Thus, there is
no overlapping (in relative coordinate space) between
points of the two clusters, and LAC achieves a perfect
separation (the error rate is 0.0%). On the other
hand, Figure 6 ((1/h) = 12) demonstrates that for a
few points x of cluster 1 (green points square-shaped)
P (C1|x) < P (C2|x) (overlapping region in Figure 6).
LAC misclassifies these points as members of cluster 2,
which results in an error rate of 5.3%.

Thus, the relative coordinates P (C|x) provide a
suitable representation to compute the pairwise simi-
larity measure in our clustering ensemble approaches.
By combining the clustering results in the relative coor-
dinate space obtained by different runs of LAC, we aim
at leveraging the consensus across multiple clusterings,
while averaging out emergent spurious structures. The
results of the ensembles for this dataset are provided in
Table 3 and in Figure 5. We observe that our two clus-
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Figure 3: Random sampling of 100 points (crosses and
dots) from each cluster.
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Figure 4: Two dimensional probability vectors P =
(P (C1|x), P (C2|x))t, (1/h) = 7. LAC error rate is 0.0%.

tering ensemble methods WSPA and WBPA achieved
0.17% and 0.0% error rates. Thus, they successfully
separated the two clusters, as the best input clustering
provided by LAC did.

6 Experimental Results
We have designed two simulated datasets with two
and three clusters, respectively, distributed as bivari-
ate Gaussians (Figures 2 and 7). We also tested our
technique on six real datasets. The characteristics of
all datasets are given in Table 1. Iris, Breast, Let-
ter, and SatImage are from the UCI Machine Learn-
ing Repository. WDBC is the Wisconsin Diagnos-
tic Breast Cancer dataset [3]. The Modis-4 dataset
(land-cover classification #2) was downloaded from
http://mow.ecn.purdue.edu/∼xz/ (the first four classes,
which are balanced, were used in our experiments).
Since METIS requires balanced datasets, we performed
random sampling on the WDBC and Breast datasets.
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Figure 5: Results on Two-Gaussian data
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Figure 6: Two dimensional probability vectors P =
(P (C1|x), P (C2|x))t, (1/h) = 12. LAC error rate is
5.3%.

In each case, we sub-sampled the most populated class:
from 357 to 212 for WDBC, and from 444 to 239 for
Breast. For the Letter dataset, we used the classes “A”
and “B” (balanced), and for the SatImage classes 1 and
7 (again balanced).

We compare our weighted clustering ensemble tech-
niques (WSPA and WBPA) with the three methods
CSPA, HGPA, and MCLA [15]. These three techniques
also transform the problem of finding a consensus clus-
tering to a graph partitioning problem, and make use
of METIS. Thus, it was a natural choice for us to
compare our methods with these approaches. In this
paper we report the accuracy achieved by CSPA and
MCLA, as HGPA was consistently the worst. The
ClusterPack Matlab Toolbox was used (available at:
www.lans.ece.utexas.edu/∼strehl/).

Evaluating the quality of clustering is in general a
difficult task. Since class labels are available for the
datasets used here, we evaluate the results by computing
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Figure 8: LAC: Clustering results for Three-Gaussian
data, (1/h) = 1. The error rate is 34.6%

the error rate and the normalized mutual information
(NMI). The error rate is computed according to the
confusion matrix. The NMI provides a measure that is
impartial with respect to the number of clusters [15]. It
reaches its maximum value of one only when the result
completely matches the original labels. The NMI is
computed according to the average mutual information
between every pair of cluster and class [15]:

NMI =

∑k
i=1

∑k
j=1 ni,j log ni,jn

ninj√∑k
i=1 ni log ni

n

∑k
j=1 nj log nj

n

where ni,j is the number of agreement between cluster
i and class j, ni is the number of data in cluster i, nj is
the number of data in class j, and n is the total number
of points.

6.1 Analysis of the Results For each dataset, we
run the LAC algorithm for several values of the input
parameter h. The clustering results of LAC are then
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Figure 9: LAC: Clustering results for Three-Gaussian
data, (1/h) = 4. The error rate is 1.3%
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Figure 10: Results on Three-Gaussian data

given in input to the consensus clustering techniques
being compared. (As the value of k, we input both LAC
and the ensemble algorithms with the actual number
of classes in the data.) Figures 5 and 10-16 plot
the error rate (%) achieved by LAC as a function of
the 1/h parameter, for each dataset considered. The
corresponding error rates of our weighted clustering
ensemble methods (WSPA and WBPA) and of the
CSPA and MCLA techniques are also reported. Each
figure clearly shows the sensitivity of the LAC algorithm
to the value of h. The trend of the error rate clearly
depends on the data distribution.

We further illustrate the sensitivity of the LAC
algorithm to the value of h for the Three-Gaussian data
(Figure 7). Figures 8 and 9 depict the clustering results
of LAC for (1/h) = 1 and (1/h) = 4, respectively.
Figure 8 clearly shows that for (1/h) = 1, LAC is
unable to discover the structure of the three clusters,
and gives an error rate of 34.6%. On the other hand,
LAC achieves a nearly perfect seperation for (1/h) = 4,
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Figure 11: Results on Iris data
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Figure 12: Results on WDBC data

as shown in Figure 9. The error rate in this case
is 1.3%, which is also the minimum achieved in all
the runs of the algorithm. Results for the ensemble
techniques on the Three-Gaussian data are given in
Figure 10 and in Table 4. We observe that the WSPA
technique perfectly separates the data (0.0% error),
and WBPA gives a 0.44% error rate. In both cases,
the error achieved is lower than the minimum error
rate among the input clusterings (1.3%). Thus, the
spurious structure identified by some runs of LAC was
successfully filtered out by our ensemble techniques,
which also perform better than any single run of LAC.

Detailed results for all data are provided in Tables 3-
10, where we report the NMI and error rate (ER) of the
ensembles, and the maximum, minimum, and average
NMI and error rate values for the input clusterings.
Each ensemble method is given as input the complete
set of clusterings obtained by LAC.

We observe that for all six real datasets either
WBPA or WSPA provides the lowest error rate among
the four methods being compared. For the Iris, WDBC,
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Figure 13: Results on Breast data
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Figure 14: Results on Modis data

Breast, and SatImage (four out of six total) datasets the
error rate provided by the WBPA technique is as good
or better than the best individual input clustering. For
the Modis-4 and Letter(A,B) datasets, the error rate of
WBPA is still below the average error rate of the input
clusterings. Moreover, for each real dataset the WSPA
technique provides the second best error rate, with a
tie for the best error rate on the Breast data. For
the WDBC, Breast, and SatImage datasets, the error
rate provided by WSPA is also better than the best
individual input clustering. For the Iris and Letter(A,B)
datasets the error rate of WSPA is below the average
error rate of the input clusterings (and still close to the
average for the Modis-4 data).

Clearly, our weighted clustering ensemble tech-
niques are capable of achieving superior accuracy re-
sults with respect to the CSPA and MCLA techniques
on the tested datasets. This result is summarized in
Table 2, where we report the average NMI and average
error rate on all real datasets. We also report the av-
erage values for the LAC algorithm to emphasize the



Table 2: Average NMIs and error rates
Avg-NMI Avg-Error

WSPA 0.557 14.9

CSPA 0.517 16.3

MCLA 0.502 17.9

WBPA 0.575 14.1

LAC 0.454 21.2

large improvements obtained by the ensembles across
the real datasets. Given the competitive behavior shown
by LAC in the literature [5], this is a significant result.

We observe that the consensus function Ψ defined
in (4.9) measures the similarity of points in terms of
how close the “patterns” captured by the corresponding
probability vectors are. As a consequence, Ψ (as well
as the matrix A for the WBPA technique) takes into
account not only how often the points are grouped
together across the various input clusterings, but also
the degree of confidence of the groupings. On the other
hand, the CSPA and MCLA approaches take as input
the partitions provided by each contributing clustering
algorithm. That is, ∀ν and ∀i, P (Cν

l |xi) = 1 for
a given l, and 0 otherwise. Thus, the information
concerning the degree of confidence associated with
the clusterings is lost. This is likely the reason for
the superior performance achieved by our weighted
clustering ensemble algorithms.

In several cases, the WBPA technique gives a lower
error rate compared to the WSPA technique. These
results may be due to a conceptual advantage of WBPA
with respect to WSPA. We observe that the consensus
function ψ used in WSPA measures pairwise similarities
which are solely instance-based. On the other hand,
the bipartite graph partitioning problem, to which
the WBPA technique reduces, partitions both cluster
vertices and instance vertices simultaneously. Thus, it
also accounts for similarities between clusters. Consider,
for example, four instances x1, x2, x3, and x4. Suppose
that x1 and x2 are never clustered together in the input
clusterings, and the same holds for x3 and x4. However,
the groups to which x1 and x2 belong often share the
same instances, but this is not the case for the groups
x3 and x4 belong to. Intuitively, we would consider
x1 and x2 more similar to each other than x3 and x4.
But WSPA is unable to distinguish these two cases,
and may assign low similarity values to both pairs.
On the other hand, WBPA is able to differenciate the
two cases by modeling both instance-based and cluster-
based similarities.
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Figure 15: Results on Letter (A,B) dataset
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Figure 16: Results on SatImage dataset

7 Conclusions and Future Work

We have introduced two cluster ensemble techniques for
the LAC algorithm. The experimental results show that
our weighted clustering ensembles can provide solutions
that are as good as or better than the best individual
clustering, provided that the input clusterings are di-
verse.

In our future work we will consider utilizing our
consensus function as a similarity matrix for hierarchical
and spectral clustering. This approach will eliminate
the requirement for balanced clusters. We will extend
our approach to be used with any subspace clustering
technique. In addition, we aim at designing an ensemble
that preserves a subspace clustering structure. One
possibility is to leverage the weight vectors associated
with the input clustering that shares the highest NMI
with the clustering produced by the ensemble (this
can be performed using the RAND statistic). Another
possibility is to infer a set of dimensions for each cluster
from the clustering result of the ensemble.

The diversity-accuracy requirements of the individ-



Table 3: Results on Two-Gaussian data
Methods Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA 0.984 0.17 1 0.75 0.88 5.5 0 2.2

CSPA 1 0 1 0.75 0.88 5.5 0 2.2

MCLA 1 0 1 0.75 0.88 5.5 0 2.2

WBPA 1 0 1 0.75 0.88 5.5 0 2.2

Table 4: Results on Three Gaussian data
Methods Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA 1 0 0.940 0.376 0.789 34.9 1.3 10.5

CSPA 0.893 2.3 0.940 0.376 0.789 34.9 1.3 10.5

MCLA 0.940 1.3 0.940 0.376 0.789 34.9 1.3 10.5

WBPA 0.976 0.44 0.940 0.376 0.789 34.9 1.3 10.5

ual clusterings, in order for the ensemble to be effective,
will be also investigated. It is expected that the accu-
racy of the ensemble improves when a larger number of
input clusterings is given, provided that the contribut-
ing clusterings are diverse.
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Table 5: Results on Iris data
Methods Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA 0.744 10.0 0.758 0.657 0.709 17.3 9.3 12.9

CSPA 0.677 13.3 0.758 0.657 0.709 17.3 9.3 12.9

MCLA 0.708 13.3 0.758 0.657 0.709 17.3 9.3 12.9

WBPA 0.754 9.3 0.758 0.657 0.709 17.3 9.3 12.9

Table 6: Results on WDBC data
Methods Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA 0.512 10.6 0.524 0.009 0.329 48.5 11.1 23.4

CSPA 0.498 11.1 0.524 0.009 0.329 48.5 11.1 23.4

MCLA 0.457 13.4 0.524 0.009 0.329 48.5 11.1 23.4

WBPA 0.573 8.7 0.524 0.009 0.329 48.5 11.1 23.4

Table 7: Results on Breast data
Methods Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA 0.779 3.6 0.700 0.197 0.422 34.1 5.9 20.5

CSPA 0.722 4.8 0.700 0.197 0.422 34.1 5.9 20.5

MCLA 0.575 10.3 0.700 0.197 0.422 34.1 5.9 20.5

WBPA 0.779 3.6 0.700 0.197 0.422 34.1 5.9 20.5

Table 8: Results on Modis-4 data
Methods Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA 0.336 41.5 0.448 0.229 0.326 47.8 33.9 40.9

CSPA 0.355 39.9 0.448 0.229 0.326 47.8 33.9 40.9

MCLA 0.335 43.9 0.448 0.229 0.326 47.8 33.9 40.9

WBPA 0.359 39.9 0.448 0.229 0.326 47.8 33.9 40.9

Table 9: Results on Letter(A,B) data
Methods Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA 0.579 8.6 0.707 0.001 0.514 47.9 6.4 13.6

CSPA 0.579 8.6 0.707 0.001 0.514 47.9 6.4 13.6

MCLA 0.512 10.8 0.707 0.001 0.514 47.9 6.4 13.6

WBPA 0.592 8.2 0.707 0.001 0.514 47.9 6.4 13.6

Table 10: Results on SatImage data
Methods Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA 0.392 14.9 0.433 0.400 0.423 16.5 15.4 15.8

CSPA 0.273 20.3 0.433 0.400 0.423 16.5 15.4 15.8

MCLA 0.427 15.6 0.433 0.400 0.423 16.5 15.4 15.8

WBPA 0.389 15.0 0.433 0.400 0.423 16.5 15.4 15.8


