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Abstract. We propose a locally adaptive technique to address the problem of setting the band-
width parameters for kernel density estimation. Our technique is efficient and can be performed
in only two dataset passes. We also show how to apply our technique to efficiently solve range
query approximation, classification and clustering problems for very large datasets. We validate
the efficiency and accuracy of our technique by presenting experimental results on a variety of
both synthetic and real datasets.
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1. Introduction

Classification and clustering (Bradley et al. 1998) are key steps for many tasks in
data mining, whose aim is to discover unknown relationships and/or patterns from
large sets of data. A variety of methods has been proposed to address such problems.
However, the inherent complexity of both problems is high, and the application of
known techniques on large datasets can be time and resource consuming.

A simple and appealing approach to classification is the K -nearest neighbor
method (McLachlan 1992): it finds the K -nearest neighbours of the query point x0
in the dataset, and then predicts the class label of x0 as the most frequent one occur-
ring in the K neighbours. It produces continuous and overlapping neighbourhoods,
and uses a different neighbourhood for each individual query. Therefore, it results in
a highly stable procedure with respect to perturbations of the data. However, when
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applied on large datasets, the time required to compute the neighbourhoods (i.e., the
distances of the query from the points in the dataset) becomes prohibitive, making
exact answers intractable.

Another relevant problem for data mining applications is the approximation of
multi-dimensional range queries. Answering range queries, in fact, is one of the
simpler data exploration tasks. In this context, the user defines a specific region of the
dataset he/she is interested in exploring, and asks queries to find the characteristics
of this region (e.g., the number of points in the interior of the region, the average
value or the sum of the values of attributes in the region). When the number of
dimensions increases, recent results (Weber et al. 1998) show that the query time is
linear to the size of the dataset. Thus the problem of efficiently approximating the
selectivity of range queries arises naturally.

In general, only efficient approximation algorithms can make data exploration
tasks in large datasets interactive. Our method relies on the observation that the
density of the dataset contains useful information for both the classification and clus-
tering tasks. For classification, the main point is that, given a query, the values of
the class density functions over the space around it quantify the contribution of the
correspondent class within the neighbourhood of the query point. The larger the con-
tribution of a given class is, the larger is the likelihood for the query to belong to that
class. As for clustering, local maxima of the density function of the dataset could
represent cluster centers. A hill-climbing procedure, guided by the gradient of the
density function, and applied at a given point, would identify a local maximum (or
density attractor), corresponding to the center of the cluster the given point belongs
to. Furthermore, the value of the integral of the estimated density, computed over
the volume defined by the range query, will give an approximation of its selectivity.
We observe that the use of the density function makes our technique suited for data
mining tasks in search of sizes of data within regions, and not for tasks in search
of the data points themselves.

For a compact representation of the density of a dataset, we use kernel dens-
ity estimation methods. Kernel methods pose the problem of setting the bandwidth
parameters. Current work on this problem in statistics has addressed only the one
dimensional case satisfactorily (Scott 1992). Approximately optimal bandwidth pa-
rameters in the multi-dimensional case have been obtained only for the special case
in which the following conditions are all true: (i) the attributes are independent,
(ii) the distribution along each dimension is Gaussian and (iii) all bandwidths, for
all kernels and dimensions, are to be set to the same value (Scott 1992). For ex-
ample, one solution to the problem of computing the bandwidths is given by Scott’s
rule (Scott 1992), which estimates one bandwidth parameter per attribute, by setting
its value to a quantity proportional to the standard deviation of the sample on that
attribute. The rule assumes attribute independence.

To achieve more accurate results we propose an adaptive bandwidth estimation
technique that adapts the bandwidth of the kernels using local information, and does
not assume independence among the attributes. The setting of the bandwidth for each
kernel is based on the extension of the points in the neighbourhood, and each kernel
uses the same bandwidth for all dimensions. Our technique is efficient and can be
performed in only two dataset passes.

Using the range query approximation problem as a benchmark, we show the per-
formance improvement we achieve with our method over Scott’s rule by using a var-
iety of both synthetic and real datasets. We then show how to apply our technique
to efficiently solve classification and clustering problems. We focus on classification
and show the results we obtained on synthetic datasets.
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2. The Range Query Approximation Problem

Let R be a dataset of n points, each with d real attributes. The domain of each
attribute is scaled to lie between 0 and 1. We consider range queries of the form
(a1 ≤ R.A1 ≤ b1) ∧ · · · ∧ (ad ≤ R.Ad ≤ bd ). The selectivity of a range query Q,
sel(R, Q), is the number of points in the interior of the hyper-rectangle it represents.
Since n can be very large, the problem of approximating the selectivity of a given
range query Q arises naturally. Approaches proposed to address this problem include
multidimensional histograms (Ioannidis and Poosala 1999; Gunopulos et al. 2000),
kernels (Shanmugasundaram et al. 1999; Gunopulos et al. 2000), and wavelets (Vitter
et al. 1998; Chakrabarti et al. 2000).

To formalize the notion of approximating the selectivity of range queries, let
f(x1, . . . xd) be a d-dimensional, non-negative function, defined in [0, 1]d and with
the property

∫
[0,1]d f(x1, . . . xd )dx1 . . . dxd = 1. f is a probability density function.

The value of f at a specific point x = (x1, . . . xd) is the limit of the probability that
a tuple exists in area U around x over the volume of U , when U shrinks to x. Then,
for a given such f , to find the selectivity of a query, we compute the integral of f in
the interior of the given query Q: sel( f, Q) = ∫

[a1,b1]×···×[ad ,bd ] f(x1, . . .xd)dx1 . . .dxd.
For a given R and f , f is a good estimator of R with respect to range queries

if for any range query Q, the selectivity of Q on R and the selectivity of Q on f
multiplied by n are similar. To formalize this notion, we define the following error
metrics.

Following (Vitter et al. 1998), we define the absolute error of a given query
Q to be simply the difference between the real value and the estimated value:
εabs(Q, R, f ) = |sel(R, Q) − n sel( f, Q)|. The relative error of a query Q is gener-
ally defined as the ratio of the absolute error over the selectivity of the query. Since
in our case a query can be empty, we follow (Vitter et al. 1998) in defining the
relative error as the ratio of the absolute error over the maximum of the selectivity
of Q and 1:

εrel(Q, R, f ) = |sel(R, Q) − n sel( f, Q)|
max(1, sel(R, Q))

.

3. Multi-Dimensional Kernel Density Estimators

All the proposed techniques for approximating the query selectivity compute a dens-
ity estimation function. Such a function can be thought as an approximation of the
probability distribution function, of which the dataset at hand is an instance. It fol-
lows that statistical techniques which approximate a probability distribution (Scott
1992; Wand and Jones 1995), such as kernel estimators, are applicable to address
the query estimation problem.

For a dataset R, let S be a set of tuples drawn from R at random. Assume there
exists a d dimensional function k(x1, . . . , xd), the kernel function, with the property∫
[0,1]d k(x1, . . . , xd)dx1 . . . dxd = 1. The approximation of the underlying probability

distribution of R is f(x) = 1
n

∑
ti ∈S k(x1 − ti1, . . . , xd − tid ), and the estimation of

the selectivity of a d-dimensional range query Q is
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Fig. 1. The one-dimensional Epanechnikov kernel, with B = 1, centered around the origin, and, with B =
1/2, centered at 0.5.

sel( f, Q) =
∫

[0,1]d∩Q
f(x1, . . . , xd)dx1 . . . dxd =

1

n

∑

ti∈S

∫

[0,1]d∩Q
k(x1 − ti1 , . . . , xd − tid )dx1 . . . dxd.

It has been shown that the shape of the kernel function does not affect the approxi-
mation substantially (Cressie 1993). The key feature is the standard deviation of the
function, or its bandwidth. Therefore, we choose a kernel function that is easy to in-
tegrate, i.e., the d-dimensional Epanechnikov kernel function (Cressie 1993), whose
equation centered at 0 is (Fig. 1)

k(x1, . . . , xd ) =
{(

3
4

)d 1
B1 B2...Bd

∏
1≤i≤d

(
1 − ( xi

Bi

)2) ∣
∣ xi

Bi

∣
∣ < 1

0 otherwise.

The d parameters B1, . . . , Bd are the bandwidths of the kernel function along each of
the d dimensions. The magnitude of the bandwidth controls how far from the sample
point the weight of the point is distributed. As the bandwidth becomes smaller, also
the non-zero diameter of the kernel becomes smaller.

To estimate the bandwidths, typically Scott’s rule (Scott 1992) is used:

Bi = √
5 si |S|− 1

d+4 ,

where si is the standard deviation of the sample on the i-th attribute. This rule is
derived using the assumption of Gaussian data distribution, therefore in general it
oversmoothes the actual underlying function. The rule assumes attribute indepen-
dence. Other approaches for setting the bandwidths, such as one-dimensional least
squares cross-validation, also assume attribute independence (Park and Turlach 1992).

3.1. Computing the Selectivity

In (Gunopulos et al. 2000) we have shown how to use multi-dimensional kernel
density estimators to efficiently address the multi-dimensional range query selectivity
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problem. We used Scott’s rule for setting the bandwidths. We presented an experi-
mental study that shows performance improvements over traditional techniques for
density estimation, including sampling (Haas and Swami 1992), multi-dimensional
histograms (Poosala and Ioannidis 1997), and wavelets (Vitter et al. 1998). The main
advantage of kernel density estimators is that the estimator can be computed very
efficiently in one dataset pass, during which the dataset is sampled and the standard
deviation along each attribute is computed.

Since the d-dimensional Epanechnikov kernel function is the product of d one-
dimensional degree-2 polynomials, its integral within a rectangular region can be
computed in O(d) time:

sel( f, [a1, b1] × · · · × [ad, bd]) =
1

n

∫

[a1,b1]×···×[ad ,bd ]
(

∑

1≤i≤|S|
ki(x1, . . . , xd )dx1 . . . dxd) =

1

n

∫

[a1,b1]×···×[ad ,bd ]

∑

1≤i≤|S|

(
3

4

)d 1

B1 B2 . . . Bd

×
∏

1≤ j≤d

(

1 −
(

x j − Xij

B j

)2
)

dx1 . . . dxd =

1

n

(
3

4

)d 1

B1 B2 . . . Bd

∑

1≤i≤|S|

∫

[a1,b1]

(

1 −
(

x1 − Xi1

B1

)2
)

dx1 . . .

∫

[ad ,bd ]

(

1 −
(

xd − Xid

Bd

)2
)

dxd.

It follows that, for a sample of |S| tuples, sel( f, Q) can be computed in O(d|S|)
time.

4. Locally Adaptive Bandwidths

Kernel-based methods are nearest-neighbour-type algorithms: to obtain the density
estimate at a given point, assuming far-off points have negligible contribution to the
sum, one has to consider only the kernel contributions of the nearest neighbours.
It is therefore reasonable to adapt the bandwidths of a kernel, centered at a spe-
cific point, according to the extension of the neighbourhood of its center. The kernel
will mainly contribute to the density estimation of points within that same local
neighbourhood. This allows us to take into account local attribute correlations: ker-
nels with more points close to them (according to the L2 distance metric) will have
smaller bandwidths than those with fewer points close to them. Real life data often
present correlations among attributes, and therefore performance benefits from this
approach (Scott 1992).

As a consequence, we develop a heuristic (ADAptive BANDwidth) that locally
adapts the bandwidths of kernels, according to the extension of points within the
kernel neighbourhood. AdaBand uses the same bandwidth for all the dimensions of
a given kernel, but changes the bandwidth from kernel to kernel. The heuristic works
as follows.
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Input: a d-dimensional dataset R with n points, and parameter EstSize (Estimator Size)

1. Set KCount = EstSize
d+1 ;

2. Take a random sample S of size KCount;
3. For each point s ∈ S:

(a) Compute the n distances d1, . . . , dn of s from the points in R;
(b) Compute the 1

KCount -quantile D of the distances d1, . . . , dn ;
(c) Set Bi = 2×D√

d
, for i = 1, . . . , d, where Bi is the bandwidth along dimension i of the kernel

centered at s.

Fig. 2. The AdaBand algorithm.

A uniform random sample S of a given size, say |S|, is first produced. Let R
be the original dataset, and |R| its size. Each point in S distributes its weight over
the space around it. We want each kernel to distribute its weight over an equal
number of points in the dataset, i.e., as many points as |R|

|S| . For each point s ∈ S,
we compute its distance from the data points in R. Among these |R| distances, we
identify the one that corresponds to the 1

|S| -quantile, i.e., the distance at position

� |R|
|S| � in the sorted sequence of distances. Let D be such quantile. D can be seen

as the distance of s from the vertex of the hypercube centered at s that includes
a neighborhood of � |R|

|S| � points. To set the bandwidth B of a kernel centered at s, we
compute the projection of D along each dimension (and double it to avoid possible
uncovered areas that may contain a fraction of the � |R|

|S| � points), resulting in B =
2×D√

d
. Each kernel has one bandwidth value B associated with it, valid for all the

d dimensions. The algorithm stores (d + 1) numbers per kernel: d values for the
coordinates of the center, and one value for the bandwidth. Figure 2 gives the outline
of the algorithm.

For comparison purposes, we have also performed experiments in which we es-
timate a bandwidth value for each dimension and each kernel, by using a local-
ized standard deviation at the kernel’s center along each dimension. In this case we
store 2d numbers per kernel, and therefore the sample size is reduced to EstSize

2d ,
where EstSize is the size of the estimator. We have observed that the loss due to the
reduced sample size overcomes the gain achieved by storing a distinct bandwidth
value for each dimension. AdaBand, instead, seems to capture sufficient local in-
formation by storing one bandwidth per kernel, without over-penalizing the sample
size.

4.1. Running Time

Computing a kernel density estimator with |S| kernels, as described above, can be
done in two dataset passes. During the first pass, a random sample of size |S| is
taken. During the second pass, an approximation of the 1

|S| -quantiles for the points
in S is computed.

In the implementation of AdaBand, to efficiently estimate the quantiles we use the
technique described in (Manku et al. 1998), which guarantees arbitrarily tight error
bounds and, for a given desirable accuracy, allows the estimation of the optimal
space complexity.
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5. Classification

Here we show how we can apply the AdaBand algorithm to address classifica-
tion problems. In a classification problem we are given C classes and n training
observations. The training observations consist of d attribute measurements x =
(x1, . . . , xd ) ∈ �d and the known class labels: {(xi, yi)}n

i=1, where yi ∈ {1, . . . , C}.
The objective is to predict the class label of a given query x0. The given training
data are used to obtain the estimates.

We assume, again, that the given dataset is large, and we want to be able to
perform our prediction efficiently. The AdaBand algorithm, applied within the data
of each class, allows to efficiently compute an estimation of the class density dis-
tributions of the given dataset. Formally, by denoting with Sc the sample extracted
from the nc training data of class c, the within class density function estimate at
a given point x is

f̂c(x) = 1

nc

∑

i∈Sc

(
3

4

)d 1

Bi
d

∏

1≤ j≤d

(

1 −
(

x j − sij

Bi

)2
)

. (1)

For a given query point x0, we have then C within class density function es-
timates: f̂1(x0), . . . , f̂C(x0). The class c∗ that gives the largest value

∫
V f̂c(x0)dx0,

computed over a volume V centered at x0, is our prediction for the class of x0, i.e.,

c∗ = arg max
1≤c≤C

∫

V
f̂c(x0)dx0.

We observe that the integrals can be computed efficiently in O(d|Sc|) time, as
described in Sect. 3.1. The integral operation allows to smooth away the estimated
density functions, thereby achieving more accurate results than with a pointwise esti-
mation. This method, which we call DenClass, can be seen as an attempt to approx-
imate the optimal Bayesian classification error rate (as formalized in the following
lemma), where P̂(c|x0) = ∫

V f̂c(x0)dx0 is our density-based approximation of class
posterior probabilities at query points. We note that, for a correct class assignment,
the classifier f̂c(x) needs only to preserve the order relation among the estimated
quantities. This means that we can afford biased estimates, as long as all are affected
roughly in the same proportion.

The experimental results indeed suggest that the integration operation conveys
robustness to our method. The extent of the volume V is an input parameter of
the DenClass algorithm, which we optimize by cross-validation in our experiments.
Figure 3 gives the outline of the DenClass algorithm.

We formalize the motivation for the DenClass algorithm in the following lemma:

Lemma. The classification outcome of the DenClass algorithm corresponds to the
outcome provided by the K-nearest neighbour method, under the assumption of equal
prior probabilities.

Proof. Equation 1 defines the within class density function estimates f̂c, for c =
1, . . . , C. By definition of a distribution function of a continuous random variable,
we have:

∫

V
f̂c(x0)dx0 = P(xi ∈ V |c), (2)
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Classifier construction.

Input: a d-dimensional dataset R with n points and C classes, the parameter |Sc| for each class c ∈ C.

1. Run AdaBand on Rc and EstSize = |Sc|(d + 1) (Rc is the set of points in R with label c).

Output: f̂c(x), for c = 1, . . . , C.

Testing phase.

Input: a query point x0.

1. Classify x0 to class c∗ s.t.
c∗ = arg max1≤c≤C

∫
V f̂c(x0)dx0.

Fig. 3. The DenClass algorithm.

which represents the probability that a point of class c is in V . Applying Bayes
theorem, we obtain:

P(c|xi ∈ V ) =
∫

V f̂c(x0)dx0 P(c)

P(xi ∈ V )
, (3)

where P(c) is the prior probability of class c.
According to the K-nearest neighbour method

Papprox(c|x0) =
∑n

i=1 1(xi ∈ N(x0))1(yi = c)
∑n

i=1 1(xi ∈ N(x0))
, (4)

that is Papprox(c|x0) = P(c|xi ∈ V ), where V = N(x0) is a neighborhood of x0, and
1() is an indicator function such that it returns 1 when its argument is true, and 0
otherwise. Then it follows

Papprox(c|x0) = P(c|xi ∈ V ) =
∫

V f̂c(x0)dx0 P(c)

P(xi ∈ V )
. (5)

Under the assumption of equal prior probabilities, we can ignore the factor
P(c)/P(xi ∈ V ) for classification purposes, and obtain

arg max
1≤c≤C

∫

V
f̂c(x0)dx0 = arg max

1≤c≤C
Papprox(c|x0). (6)

This concludes the proof of the lemma. 
�

6. Clustering

The method we present here is an extension of the approach presented in (Hinneburg
and Keim 1998). The technique in (Hinneburg and Keim 1998) employs all data
points; a grid approximation is proposed to cope with large datasets, and the resulting
complexity depends on the size of the grid.

The DenClass algorithm can be extended to also address clustering problems. In
clustering, data are unlabelled, and the density estimation is conducted for the whole
dataset. Local maxima of f̂ (x), that are above a certain threshold t, can be consid-
ered cluster centers. A hill-climbing procedure applied at a given point identifies
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Density Estimation.

Input: a d-dimensional dataset R with n points, and the input parameter |S|.
1. Run AdaBand on R and EstSize = |S|(d + 1).

Output: f̂ (x).

Clustering phase.

Input: a query point x0, and the input parameter t.

1. Compute the gradient ∇ f̂ (x0);
2. Perform hill-climbing. Let x∗ be the resulting density attractor;
3. If f̂ (x∗) > t, assign x0 to the cluster identified by x∗;
4. If f̂ (x∗) ≤ t

(a) Use a grid to merge x0 with a connected cluster center x∗′
;

(b) Assign x0 to the cluster identified by x∗′
.

Fig. 4. The DenClust algorithm.

its density attractor. Points that converge to the same attractor belong to the same
cluster. For density attractors below t, we can use connectivity information (using
a grid in input space, for example) to merge them with connected cluster centers.

What is a good choice for t? If we assume that the dataset R is noise-free,
all density attractors x∗ for S are significant and t should be chosen in 0 ≤ t ≤
minx∗ { f̂ (x∗)}. In most cases the dataset will contain noise. If the noise level can
be modelled by taking into account knowledge specific to the problem at hand,
then t should be chosen above such level. As an alternative, the value of t could
be set above the average value of the density function evaluated at the attractors:

1
|x∗|

∑
x∗ f̂ (x∗). In general, the smaller the value of t is, the more sensitive the clus-

tering algorithm will be to outliers; the larger t is, the less details will be captured
by the algorithm. Figure 4 gives the outline of the method, which we call DenClust.

7. Experimental Evaluation

In our experiments we compare the performance of AdaBand, Scott’s rule, Random
Sampling and GenHist (Gunopulos et al. 2000) on synthetic and real life datasets
with real valued attributes. For both AdaBand and Scott’s rule we use the formu-
las described in Sect. 3.1 to compute the selectivity of range queries. We examine
the behaviour of the methods as additional space for storing the estimator becomes
available. We also evaluate the accuracy of the methods as the dimensionality of
data increases.

To test the accuracy of the DenClass algorithm we use synthetic datasets and
compare its performance with well known methods in the literature: K-NN, C4.5
decision tree (Quinlan 1993), and K-means. We include K-means since it allows
a compact representation of the dataset, specifically the within class mean vectors.
Note that since we are applying K-means to classification problems the value of K
is equal to the number of classes. We also compare the performance of DenClass
with an algorithm (that we call DenScott) that proceeds as DenClass, but sets the
bandwidth values according to Scott’s rule (one bandwidth value for each dimension
and for each class).
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Procedural parameters (|I | for DenClass and K for K-NN) are determined em-
pirically through cross-validation.

7.1. Synthetic Datasets

We have designed the following synthetic datasets for the range query selectivity
problem. In Figs. 5–7 the 1-norm average relative errors computed over five runs
are reported.

OneGaussian. This dataset contains 106 5-dimensional points drawn according to
a Gaussian distribution with standard deviation set to 5 along each dimension. In
this situation Scott’s rule finds the optimal bandwidth values.

MultiGaussian. This dataset contains 106 10-dimensional points drawn according
to 25 Gaussian distributions with mean values randomly chosen within the range
[25, 74], and standard deviation values for all dimensions set to 0.25. Each Gaussian
generates the same number of data points.

DiffGaussian. This dataset contains 106 10-dimensional points equally drawn accord-
ing to 25 Gaussian distributions with mean values randomly chosen within the range
[25, 74], and standard deviation values randomly chosen within the set {0.1, 0.2, 0.3,
. . . , 1.0}.
NoisyGaussian. This dataset contains 106 10-dimensional points. 25% of the data
(250,000 points) is uniformly distributed random noise. The remaining 750,000 points
are equally generated according to 25 Gaussian distributions with mean values ran-
domly chosen again within the range [25, 74], and standard deviation values for all
dimensions set to 0.25.

The following datasets are used for the classification problem. For each of them,
five independent training data were generated. For each of these, an additional test
set (of size 2,000 for Ex1, 1,000 for Ex2, 6,000 for Ex3, 2,000 for Ex4, and 3,000
for Ex5) was generated. Error rates and standard deviation values are computed over
all such classifications and reported in Table 1.

Example 1. This dataset has d = 5 attributes, n = 500,000 data points, and C = 2
classes (250,000 points per class). The data for both classes are generated from
a multivariate normal distribution with standard deviation 8 along each dimension,
and mean vector (40, . . . , 40) in one case, and (60, . . . , 60) in the other. The sample
size used for the DenClass algorithm is |Sc| = 500 for both classes. By taking into
account both the sample points and the bandwidth values, the resulting classifier
f̂c(x), c = 1, 2, requires the storage of 6,000 numbers. We therefore allow a sample
of 600 points for both classes for the other four methods.

Example 2. This dataset has d = 2 attributes, n = 500,000 data points, and C = 2
classes (250,000 points per class). The data for this problem are generated as in the
previous example, with the addition of 25% uniformly distributed random noise. We
use |Sc| = 500 for DenClass, and accordingly a sample size of 750 points for the
other methods.

Example 3. This dataset has d = 2, n = 240,000, and C = 2 classes. Each class
contains six spherical bivariate normal subclasses, having standard deviation one.
The means of the 12 subclasses are chosen at random without replacement from the
integers [25+2k]24

k=0×[25+2k]24
k=0. For each class, data are evenly drawn from each
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Fig. 5. OneGaussian dataset, Query workload 3, 5-dim.

of the six normal subclasses. We use |Sc| = 1,000 for DenClass for this example,
and accordingly a sample size of 1,500 data points per class for the other methods.

Example 4. This dataset has d = 10, n = 400,000, and C = 2 classes. 20% of
the n points is uniformly distributed random noise. The data for both classes are
generated from a multivariate normal distribution with standard deviation 9 along
each dimension, and mean vector (40, . . . , 40) in one case, and (50, . . . , 50) in the
other.

Example 5. This dataset has d = 10, n = 600,000, and C = 3 classes (200,000
points per class). 20% of the n points is uniformly distributed random noise. The
data for all three classes are generated from a multivariate normal distribution with
standard deviation 10 along each dimension. The mean vectors are: (40, . . . , 40),
(50, . . . , 50), and (60, . . . , 60).

7.2. Real Datasets

We use three real datasets. The USCities and the NorthEastern datasets contain, re-
spectively, 1,300,000 postal addresses of cities in the US, and 130,000 postal ad-
dresses of the North Eastern states. Each point has two attributes. We also use the
Forest Cover Dataset from the UCI KDD archive. This dataset was obtained from
the US Forest Service (USFS). It includes 590,000 points, and each point has 54
attributes, 10 of which are numerical. In our experiments we use the entire set of 10
numerical attributes. In this dataset the distribution of the attributes is non-uniform,
and there are correlations between pairs of attributes. In Figs. 8–9 the 1-norm average
relative errors computed over five runs are reported.

7.3. Query Workloads

To evaluate the techniques on the range query approximation problem we generated
workloads of three types of queries.
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Fig. 6. (Upper panel) MultiGaussian dataset, Query workload 2, 10-dim. (Lower panel) DiffGaussian dataset,
Query workload 2, 10-dim.

Workloads 1 and 2 contain 104 random queries with selectivity approximately
10% and 1%, respectively. Workload 3 consists of 20,000 queries of the form
(R.A1 < a1)∧· · ·∧(R.Ad < ad), for a randomly chosen point (a1, . . . , ad ) ∈ [0, 1]d.

For each workload we compute the average absolute error ‖ eabs ‖1 and the
average relative error ‖ emod ‖1.

7.4. Experimental Results for Query Approximation

The OneGaussian dataset has been designed to test AdaBand performance under
optimal conditions for Scott’s rule. Scott’s rule finds optimal bandwidth values for
this dataset. Figure 5 shows the results for query workload 3. As expected, Scott’s
rule shows the best performance, but AdaBand is not too far from it. This means
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Fig. 7. NoisyGaussian dataset, 10-dim. (Upper panel) Query workload 2. (Lower panel) Query workload 3.

that we don’t lose too much in performance with our adaptive technique in the ideal
case for Scott’s rule.

The variance (spikes) observed in Fig. 5 for smaller estimator sizes may be
due to the fact that the dataset is 5-dimensional, and therefore larger sample sizes
are required to attain a smoother performance behaviour. Furthermore, workload
3 presents a higher degree of difficulty since queries in this case have arbitrary
sizes. This characteristic may also have contributed to the variance of the perform-
ance.

Figures 6–7 show the results for the MultiGaussian, DiffGaussian and Noisy-
Gaussian datasets on query workloads 2 and 3. We obtained similar results for the
MultiGaussian and DiffGaussian datasets. AdaBand outperforms by far Scott’s rule
in both cases. Scott’s rule is not able to scale its performance as the size of the
estimator increases, whereas our technique is capable of adapting the bandwidths
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Fig. 8. (Upper panel) NorthEastern dataset, Query workload 1, 2-dim. (Lower panel) NorthEastern dataset,
Query workload 3, 2-dim.

according to the number of kernels that become available. A similar behaviour is
observed for the NoisyGaussian dataset on query workload 2 (Fig. 7, upper panel).
On query workload 3, the increase in error of Scott’s rule is likely to be due to
the fact that the NoisyGaussian dataset is 10-dimensional, and workload 3 includes
queries of arbitrary sizes. Indeed, errors on different runs showed a large variance
for the tested estimator sizes. The plot for AdaBand is rather flat, but does show
improvement for larger estimator sizes.

Figures 8–9 show the results for the real datasets. AdaBand shows large improve-
ments in performance over Scott’s rule with both the NorthEastern and USCities
datasets for query workload 3. For query workload 1 AdaBand performs slightly
better than Scott’s rule on the NorthEastern and Forest Cover datasets. Figures 8–9
also show the results obtained applying Random Sampling, and GenHist. The results
confirm the superiority of kernel estimators over histograms, particularly with data
in higher dimensions.
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Fig. 9. (Upper panel) USCities dataset, Query workload 3, 2-dim. (Lower panel) Forest Cover dataset, Query
workload 2, 10-dim.

7.5. Experimental Results for Classification

Table 1 shows the error rates obtained for classification. We observe that DenClass
outperforms DenScott, C4.5 and K-means in all three cases. DenScott shows a high
sensitivity to uniformly distributed noise (Example 2). This is likely due to the global
nature of the settings of bandwidth values. In general, the error rates for the DenScott
procedure suffer from large variance. This result demonstrates the lack of robustness
of techniques based on Scott’s rule for classification purposes, and shows the supe-
riority of our local DenClass method.

DenClass and K-NN show similar performances in each problem (Table 1). Fig-
ures 10–11 plot CPU times and Error Rates versus the Number of Stored Values
for both DenClass and K-NN, and for Examples 4 and 5 respectively. In both cases
we observe that as the number of Stored Values increases, DenClass is capable of
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Table 1. Average classification error rates and standard deviation values.

Method Ex1 Ex2 Ex3

DenClass 0.3 ± 0.1 15.4 ± 0.1 0.3 ± 0.6
K-NN 0.4 ± 0.1 15.3 ± 0.1 0.3 ± 0.6
DenScott 10.4 ± 12.4 46.4 ± 1.4 0.6 ± 0.9
C4.5 2.5 ± 0.5 17.0 ± 0.4 0.6 ± 0.7
K-means 0.4 ± 0.1 15.6 ± 0.2 26.7 ± 8.7

Fig. 10. Example 4, 10-dim, two classes. (Upper panel) CPU-time versus Number of Stored Values. (Lower
panel) Error Rate versus Number of Stored Values.



766 C. Domeniconi, D. Gunopulos

Fig. 11. Example 5, 10-dim, three classes. (Upper panel) CPU-time versus Number of Stored Values. (Lower
panel) Error Rate versus Number of Stored Values.

approximating K-NN in accuracy, while significantly improving the execution time.
These results provide evidence that we have successfully designed an efficient ap-
proximation scheme for nearest neighbour approaches to classification. Such approx-
imation makes K-NN techniques applicable in very large datasets. Given that nearest
neighbour methods in many benchmark studies turn out to be competitive, and often
are among the best performers, an efficient approximation that allows its usage for
large datasets is indeed highly desirable.

8. Related Work

Multi-dimensional histograms are particularly suited as density estimators when each
attribute has a finite discrete domain. Efficient construction of accurate histograms
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becomes a problem in high dimensional spaces and when the attributes are real val-
ued. In such cases, in fact, histogram constructions become inefficient (Gunopulos et
al. 2000). In contrast, our locally adaptive kernel approach allows an efficient estima-
tor construction that requires only two dataset passes. Efficient query approximation
can be performed in time linear to the size of the estimator and to the dimension-
ality. Furthermore, kernel density estimators have sufficient expressive power, since
any distribution can be represented as the sum of a sufficient number of kernel con-
tributions. As a consequence, they are able to provide accurate estimators.

In (Bennett et al. 1999) the density function of the data is estimated in order
to build a clustered index for efficient retrieval of approximate nearest neighbour
queries. Both our density estimation approach and the clustering process in (Bennett
et al. 1999) work on all dimensions simultaneously. The data density modeling is
performed in the two cases for different purposes. In (Bennett et al. 1999), the model
of the density is used to reorganize the data on the disk, with the objective of min-
imizing the number of cluster scans at query time. In our case it synthesizes the
relevant information about the data to directly address the tasks.

Furthermore, the density estimation process itself is different. In (Bennett et al.
1999), the location in space for placing the Gaussian kernels is determined by finding
clusters in the data. We instead extract a uniform random sample from the data, and
center the kernels at the sampled points. As a consequence, in our case the number
of kernels used is driven by the estimator size we can afford. In (Bennett et al. 1999),
the number of clusters used affects the amount of data to be scanned at query time,
and its “optimal” value needs to be estimated.

Locally adaptive density estimators have been introduced in multivariate statistics.
The balloon estimator (Terrell and Scott 1992; Sain 1999) varies the bandwidth at
each estimation point. Given a point x at which the density is to be estimated, the
bandwidth value is set to the distance hk(x) of x from the K th nearest data point.
Then, kernels of the same size hk(x) are centered at each data point, and the density
estimate is computed by taking the average of the heights of the kernels at the
estimation point.

The balloon estimator requires all data points to be kept in memory, since the
bandwidth value depends on the estimation point x, and on its distance from the K th
nearest data point (unless an approximation scheme is used). Furthermore, K acts as
a smoothing parameter, and its setting is critical. The computation of a proper value
for K is an open problem, and expensive least-squares cross-validation techniques
are used to determine its value.

These limitations, along with the fact that a different density approximation func-
tion is computed for each estimation point, make this approach not suited for efficient
solutions of data exploration tasks considered here.

Another locally adaptive technique is the sample-point estimator (Breiman et al.
1977; Sain 1999). It places a kernel at each data point x. Each kernel has its own
bandwidth, set to the distance of the center x from the K th nearest point. Again,
as for the balloon estimator, the choice of K is critical, and the problem of setting
its value is open. We also observe that both the balloon and sample-point estimators
fit a kernel at each data point. It is not clear how to couple these techniques with
sampling, since the bandwidth values won’t properly adjust to the sample size. In
contrast, in our algorithm bandwidth values are function of both sample and original
dataset sizes.

Our approach is related to the Variable-kernel Similarity Metric (VSM) technique,
introduced in (Lowe 1995). Here, the K -nearest neighbour technique is combined
with a variable kernel method to address classification problems. The bandwidth of
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a Gaussian kernel centered at a point x is set proportionally to the average distance
from x of the k neighbours. The classification problem for a given query point is
then solved by taking the weighted average of the known correct outputs of the k
nearest neighbours of the query point. The weight values are provided by the kernel,
based on the distance of each neighbour from the query point. Distances are also
weighted using global weights computed by mean of a cross-validation procedure,
and the conjugate gradient optimization method.

The VSM technique requires, for each given query point, the computation of the
k-nearest neighbours, making it an expensive procedure especially for high dimen-
sional data. Furthermore, it has large memory requirements, since it needs to store the
entire dataset. To reduce memory requirements, Lowe (1995) implements a process
for thinning data in regions where class labels are uniform. Clearly, the effectiveness
of this technique depends on the distribution of data, and, in general, the memory
requirement will still be much larger than the space utilization of DenClass, which
only retains the estimated density function.

The DenClass algorithm is also related to the procedure introduced in (Friedman
and Fisher 1999). The authors in (Friedman and Fisher 1999) discuss a bump hunting
method that seeks sub-regions of the space of input values within which the average
value of the target is much larger than its average over the entire input space. This
approach can be used for function approximation, classification, and clustering. For
classification, the goal is to identify those regions within which an observation is
most likely to be from one specific class j . These are the regions where P( j|x)
is larger than that of any other class. Similarly, our method classifies the query
point x0 with the label of the class whose density function gives the largest “bump”
contribution within a region centered at x0.

9. Conclusions

We have proposed a locally adaptive technique to address the problem of setting the
bandwidth parameters optimally for kernel density estimation. We have also shown
how to apply our technique to efficiently solve range query approximation, classifi-
cation and clustering problems for very large datasets.

Our technique manifests a robust and competitive behaviour across all the datasets
we have considered in our experiments. Moreover, it has the advantage of being
simple and can be implemented efficiently in only two dataset passes. In the future,
we plan to extend the AdaBand algorithm for an on-line setting via efficient quantile
updates.
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